CN113823992B - Semiconductor device manufacturing method and semiconductor device - Google Patents
Semiconductor device manufacturing method and semiconductor device Download PDFInfo
- Publication number
- CN113823992B CN113823992B CN202111071850.7A CN202111071850A CN113823992B CN 113823992 B CN113823992 B CN 113823992B CN 202111071850 A CN202111071850 A CN 202111071850A CN 113823992 B CN113823992 B CN 113823992B
- Authority
- CN
- China
- Prior art keywords
- photoresist
- etching
- solution
- semiconductor device
- iii
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 73
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 238000005530 etching Methods 0.000 claims abstract description 105
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 97
- 238000000034 method Methods 0.000 claims abstract description 94
- 239000000463 material Substances 0.000 claims abstract description 71
- 238000002955 isolation Methods 0.000 claims abstract description 67
- 238000001039 wet etching Methods 0.000 claims abstract description 27
- 230000007797 corrosion Effects 0.000 claims abstract description 18
- 238000005260 corrosion Methods 0.000 claims abstract description 18
- 238000000059 patterning Methods 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 61
- 239000003929 acidic solution Substances 0.000 claims description 23
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 18
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 4
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims description 3
- 239000012895 dilution Substances 0.000 claims description 2
- 238000010790 dilution Methods 0.000 claims description 2
- 230000006378 damage Effects 0.000 abstract description 10
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 20
- 235000012431 wafers Nutrition 0.000 description 20
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 11
- 235000009161 Espostoa lanata Nutrition 0.000 description 8
- 240000001624 Espostoa lanata Species 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 8
- 229910021641 deionized water Inorganic materials 0.000 description 8
- 238000001312 dry etching Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000000206 photolithography Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 229910052786 argon Inorganic materials 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001451 molecular beam epitaxy Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 229910001868 water Inorganic materials 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 206010067482 No adverse event Diseases 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 3
- 229910017855 NH 4 F Inorganic materials 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- YASYEJJMZJALEJ-UHFFFAOYSA-N Citric acid monohydrate Chemical compound O.OC(=O)CC(O)(C(O)=O)CC(O)=O YASYEJJMZJALEJ-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 231100000925 very toxic Toxicity 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Drying Of Semiconductors (AREA)
- Semiconductor Lasers (AREA)
- Weting (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体制造技术领域,尤其涉及一种基于III-V族化合物的半导体器件制造方法。The invention relates to the technical field of semiconductor manufacturing, in particular to a method for manufacturing semiconductor devices based on III-V compounds.
背景技术Background technique
III-V族化合物,是元素周期表中III族的B,Al,Ga,In和V族的N,P,As,Sb形成的化合物,通常所说的III-V族半导体是由上述III族和V族元素所形成的两元化合物,其成分化学比为1:1。III-V族化合物半导体材料在光电子器件、光电集成、超高速微电子器件和超高频微波器件及电路上已得到了重要应用,具有广阔前景。目前工业上所使用的III-V族半导体主要为砷化镓(GaAs)、磷化铟(InP)和氮化镓。III-V group compound is a compound formed by B, Al, Ga, In of group III and N, P, As, Sb of group V in the periodic table of elements. The so-called group III-V semiconductor is composed of the above-mentioned group III The binary compound formed with group V elements has a chemical ratio of 1:1. III-V compound semiconductor materials have been widely used in optoelectronic devices, optoelectronic integration, ultra-high-speed microelectronic devices and ultra-high frequency microwave devices and circuits, and have broad prospects. The III-V semiconductors currently used in industry are mainly gallium arsenide (GaAs), indium phosphide (InP) and gallium nitride.
由于材料自身特性的原因,基于III-V族化合物的半导体器件制造工艺相比传统的Si、Ge系半导体存在很多不同之处,例如使用Si系材料制作的半导体器件具有成熟的COMS工艺,只需要事先设计好需要的器件结构,便可以按照统一的流程进行制作;而III-V族化合物半导体由于材料的不同,在干法刻蚀气体、湿法腐蚀液体方面都有很大的不同。比如砷化镓材料常用的刻蚀气体是氯气、氩气、三氯化硼。而磷化铟材料常用的刻蚀气体为氯气、甲烷、氩气,这其中也包括刻蚀工序中的光刻胶去除。在半导体器件制造过程中,往往需要至少一道刻蚀工序,以在半导体衬底或层结构上刻蚀形成所需要的图案;这一工序的通常是以图案化的光刻胶作为掩模,以实现按照掩膜版上的设计刻蚀基片或层结构的目的,当刻蚀结束后,需要将光刻胶从晶片表面剥除,以便进行下一工序。现有的光刻胶去除方法主要有以下几类:第一类直接去胶法。即在去除光刻胶时使用有机溶剂(如丙酮)或者专用的去胶液对光刻胶进行去除,这种方法有两个缺点,一是去胶时间相对较长,且需要水浴加热,二是去胶往往不够干净彻底,这是这个方法最大的缺点。第二类是等离子体预先轰击法。这类方法是在光刻胶作为掩膜进行干法刻蚀前,对光刻胶进行等离子体轰击(主要是氧气离化的等离子),使得光刻胶与刻蚀材料的结合不是那么紧密。从而在之后使用有机溶剂去除光刻胶时,更容易去除。这类方法主要的缺点是无法将光刻胶去除干净,只能起到一定的改善效果。第三类是氧气辉光法。这类方法是先使用有机溶剂去除光刻胶。此时在刻蚀材料的表面会有一些光刻胶残留。之后在ICP中使用O2对刻蚀材料表面进行轰击,从而将光刻胶去除。这种方法首先会对刻蚀材料的表面造成损害,并且对于一些容易氧化的材料会使得刻蚀材料出现氧化,从而影响器件的性能。Due to the characteristics of the material itself, the manufacturing process of semiconductor devices based on III-V compounds has many differences compared with traditional Si and Ge-based semiconductors. For example, semiconductor devices made of Si-based materials have a mature CMOS process. After designing the required device structure in advance, it can be manufactured according to a unified process; and III-V compound semiconductors are very different in terms of dry etching gas and wet etching liquid due to different materials. For example, the commonly used etching gases for gallium arsenide materials are chlorine gas, argon gas, and boron trichloride. The commonly used etching gases for indium phosphide materials are chlorine, methane, and argon, which also include the removal of photoresist in the etching process. In the manufacturing process of semiconductor devices, at least one etching process is often required to etch the required pattern on the semiconductor substrate or layer structure; this process usually uses a patterned photoresist as a mask to To achieve the purpose of etching the substrate or layer structure according to the design on the mask plate, after the etching is completed, the photoresist needs to be stripped from the wafer surface for the next process. The existing photoresist removal methods mainly fall into the following categories: the first type is the direct resist removal method. That is, when removing the photoresist, use an organic solvent (such as acetone) or a special degumming solution to remove the photoresist. This method has two disadvantages. One is that the degumming time is relatively long and water bath heating is required. But the glue removal is often not clean and thorough enough, which is the biggest shortcoming of this method. The second type is the plasma pre-bombardment method. This type of method is to perform plasma bombardment (mainly oxygen ionized plasma) on the photoresist before the photoresist is used as a mask for dry etching, so that the combination of the photoresist and the etching material is not so tight. This makes it easier to remove the photoresist later when organic solvents are used to remove it. The main disadvantage of this type of method is that the photoresist cannot be removed completely, and it can only achieve a certain improvement effect. The third category is the oxygen glow method. In this type of method, the photoresist is first removed using an organic solvent. At this time, some photoresist remains on the surface of the etching material. After that, O2 is used in ICP to bombard the surface of the etching material to remove the photoresist. This method will first cause damage to the surface of the etching material, and for some easily oxidized materials, the etching material will be oxidized, thereby affecting the performance of the device.
发明内容Contents of the invention
本发明所要解决的技术问题在于克服现有光刻胶去除工艺的不足,提供一种半导体器件制造方法,可在刻蚀工序中实现光刻胶的彻底去除,且对刻蚀目标层的表面几乎不造成损伤。The technical problem to be solved by the present invention is to overcome the deficiencies of the existing photoresist removal process, and provide a semiconductor device manufacturing method, which can realize the complete removal of photoresist in the etching process, and has almost no effect on the surface of the etching target layer. Do not cause damage.
本发明具体采用以下技术方案解决上述技术问题:The present invention specifically adopts the following technical solutions to solve the above technical problems:
一种半导体器件制造方法,包括至少一道刻蚀工序,用于以图案化的光刻胶作为掩模,将所述图案转移至由第一III-V族半导体材料所构成的刻蚀目标层,并清除光刻胶;所述刻蚀工序包括以下步骤:A method for manufacturing a semiconductor device, comprising at least one etching process, for using a patterned photoresist as a mask to transfer the pattern to an etching target layer composed of a first III-V semiconductor material, And remove the photoresist; the etching process includes the following steps:
在刻蚀目标层上形成由第二III-V族半导体材料所构成的隔离层,所述第二III-V族半导体材料与第一III-V族半导体材料具有腐蚀选择性且两者晶格匹配;Form an isolation layer made of a second III-V group semiconductor material on the etching target layer, the second III-V group semiconductor material and the first III-V group semiconductor material have corrosion selectivity and both crystal lattices match;
在所述隔离层上涂抹光刻胶并使之图案化;Applying and patterning a photoresist on the isolation layer;
以图案化的光刻胶作为掩模,将所述图案刻蚀转移至隔离层和刻蚀目标层;Using the patterned photoresist as a mask, etching and transferring the pattern to the isolation layer and the etching target layer;
去除至少部分光刻胶;removing at least a portion of the photoresist;
通过选择性湿法腐蚀工艺去除隔离层以及其上的残留光刻胶。The isolation layer and the residual photoresist thereon are removed by a selective wet etching process.
优选地,使用外延生长的方式在刻蚀目标层上形成所述隔离层。Preferably, the isolation layer is formed on the etching target layer by means of epitaxial growth.
优选地,所述隔离层的厚度为50nm~150nm。Preferably, the thickness of the isolation layer is 50nm-150nm.
作为本发明其中一个优选方案,所述第一III-V族半导体材料为AlxGa1-xAs,所述第二III-V族半导体材料为AlyGa1-yAs,其中,x的取值范围为0~0.4,y的取值范围为0.7~1。As one of the preferred solutions of the present invention, the first III-V group semiconductor material is Al x Ga 1-x As, and the second III-V group semiconductor material is Aly Ga 1-y As , wherein x is The value range is 0-0.4, and the value range of y is 0.7-1.
优选地,所述选择性湿法腐蚀工艺所使用的选择性腐蚀液为HF溶液体系。Preferably, the selective etching solution used in the selective wet etching process is an HF solution system.
进一步优选地,所述选择性腐蚀液为稀释HF溶液,稀释比例HF:H2O=1:20。Further preferably, the selective etching solution is a diluted HF solution with a dilution ratio of HF:H 2 O=1:20.
作为本发明另一优选方案,所述第一III-V族半导体材料为AlxGa1-xAs,所述第二III-V族半导体材料为AlyGa1-yAs,其中,x的取值范围为0.8~1,y的取值范围为0~0.2。As another preferred solution of the present invention, the first III-V group semiconductor material is Al x Ga 1-x As, and the second III-V group semiconductor material is Aly Ga 1-y As , wherein x is The value range is 0.8 to 1, and the value range of y is 0 to 0.2.
优选地,所述选择性湿法腐蚀工艺所使用的选择性腐蚀液为50 %柠檬酸溶液与30 %双氧水溶液按1 ∶1 ~ 3 ∶1的体积比混合而成。Preferably, the selective etching solution used in the selective wet etching process is a mixture of 50% citric acid solution and 30% hydrogen peroxide solution in a volume ratio of 1:1 to 3:1.
进一步优选地,所述选择性腐蚀液为50 %柠檬酸溶液与 30 %双氧水溶液按1 ∶2的体积比混合而成。Further preferably, the selective etching solution is formed by mixing 50% citric acid solution and 30% hydrogen peroxide solution in a volume ratio of 1:2.
作为本发明又一优选方案,所述第一III-V族半导体材料为InGaAs,所述第二III-V族半导体材料为InP。As another preferred solution of the present invention, the first III-V group semiconductor material is InGaAs, and the second III-V group semiconductor material is InP.
优选地,所述选择性湿法腐蚀工艺所使用的选择性腐蚀液为:H3PO4:HCl=3:1~10:1的酸性溶液,或HCl:H2O =5:1~3:1的酸性溶液,或HCl:H3PO4:H2O =3:1:1的酸性溶液。Preferably, the selective etching solution used in the selective wet etching process is: H 3 PO 4 :HCl=3:1~10:1 acidic solution, or HCl:H 2 O =5:1~3 :1 acidic solution, or HCl:H 3 PO 4 :H 2 O =3:1:1 acidic solution.
进一步优选地,所述选择性腐蚀液为HCl:H2O =3:1的酸性溶液。Further preferably, the selective etching solution is an acidic solution of HCl:H 2 O =3:1.
作为本发明再一优选方案,所述第一III-V族半导体材料为InGaAsP,所述第二III-V族半导体材料为InP。As another preferred solution of the present invention, the first III-V group semiconductor material is InGaAsP, and the second III-V group semiconductor material is InP.
优选地,所述选择性湿法腐蚀工艺所使用的选择性腐蚀液为:HCl:CH3COOH=1:1的酸性溶液,或HCl:H2O =2:1~1:1的酸性溶液,或H3PO4:HBr =1:1的酸性溶液。Preferably, the selective etching solution used in the selective wet etching process is: an acidic solution of HCl:CH 3 COOH=1:1, or an acidic solution of HCl:H 2 O =2:1~1:1 , or an acidic solution of H 3 PO 4 :HBr =1:1.
进一步优选地,所述选择性腐蚀液为HCl:H2O =1:1的酸性溶液。Further preferably, the selective etching solution is an acidic solution of HCl:H 2 O =1:1.
基于以上技术方案还可以得到:Based on the above technical scheme, it is also possible to obtain:
一种半导体器件,使用如上任一技术方案所述方法制造。A semiconductor device manufactured using the method described in any of the above technical solutions.
相比现有技术,本发明技术方案具有以下有益效果:Compared with the prior art, the technical solution of the present invention has the following beneficial effects:
本发明根据III-V族半导体材料体系的极强的选择湿法腐蚀特性,通过在刻蚀目标层与光刻胶之间设置与刻蚀目标层具有腐蚀选择性且两者晶格匹配的隔离层,然后在刻蚀完成后利用选择性湿法腐蚀工艺将隔离层以及其上的光刻胶去除,相比现有各种去胶方案,可更彻底地清除光刻胶,且对刻蚀目标层的表面几乎不造成损伤。According to the extremely strong selective wet etching characteristics of the III-V semiconductor material system, the present invention sets an isolation layer between the etching target layer and the photoresist that has corrosion selectivity and lattice matching with the etching target layer. layer, and then use a selective wet etching process to remove the isolation layer and the photoresist on it after the etching is completed. Compared with the existing various stripping solutions, the photoresist can be removed more thoroughly, and the etching The surface of the target layer is hardly damaged.
附图说明Description of drawings
图1为VCSEL芯片制造过程中的传统去胶方案示意图;Figure 1 is a schematic diagram of a traditional deglue solution in the VCSEL chip manufacturing process;
图2为本发明的去胶方案示意图。Fig. 2 is a schematic diagram of the degumming scheme of the present invention.
具体实施方式Detailed ways
针对现有去胶技术所存在的不足,本发明的解决思路是基于III-V族半导体材料体系的极强的选择湿法腐蚀特性,通过在刻蚀目标层与光刻胶之间设置与刻蚀目标层具有腐蚀选择性且两者晶格匹配的隔离层,然后在刻蚀完成后利用选择性湿法腐蚀工艺将隔离层以及其上的光刻胶去除,从而可实现光刻胶百分百地清除,且对刻蚀目标层的表面几乎不造成损伤。Aiming at the deficiencies in the existing degelling technology, the solution of the present invention is based on the extremely strong selective wet etching characteristics of the III-V semiconductor material system, by setting and etching between the etching target layer and the photoresist. Etch the isolation layer with etch selectivity and lattice matching between the target layer, and then use the selective wet etching process to remove the isolation layer and the photoresist on it after the etching is completed, so that the photoresist percentage can be achieved It can be easily removed without causing any damage to the surface of the etching target layer.
本发明的半导体器件制造方法,包括至少一道刻蚀工序,用于以图案化的光刻胶作为掩模,将所述图案转移至由第一III-V族半导体材料所构成的刻蚀目标层,并清除光刻胶;所述刻蚀工序包括以下步骤:The method for manufacturing a semiconductor device of the present invention includes at least one etching process, which is used to use the patterned photoresist as a mask to transfer the pattern to the etching target layer composed of the first III-V semiconductor material , and remove the photoresist; the etching process includes the following steps:
在刻蚀目标层上形成由第二III-V族半导体材料所构成的隔离层,所述第二III-V族半导体材料与第一III-V族半导体材料具有腐蚀选择性且两者晶格匹配;Form an isolation layer made of a second III-V group semiconductor material on the etching target layer, the second III-V group semiconductor material and the first III-V group semiconductor material have corrosion selectivity and both crystal lattices match;
在所述隔离层上涂抹光刻胶并使之图案化;Applying and patterning a photoresist on the isolation layer;
以图案化的光刻胶作为掩模,将所述图案刻蚀转移至隔离层和刻蚀目标层;Using the patterned photoresist as a mask, etching and transferring the pattern to the isolation layer and the etching target layer;
去除至少部分光刻胶;removing at least a portion of the photoresist;
通过选择性湿法腐蚀工艺去除隔离层以及其上的残留光刻胶。The isolation layer and the residual photoresist thereon are removed by a selective wet etching process.
为了便于公众理解,下面通过一组具体实施例,并结合附图来对本发明的技术方案进行详细说明:In order to facilitate the public's understanding, the technical solution of the present invention will be described in detail below through a set of specific embodiments and in conjunction with the accompanying drawings:
实施例1:Example 1:
本实施例中的半导体器件为垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser,简称VCSEL)。在VCSEL芯片中,所使用的AlxGa1-xAs 材料的DBR层以及GaAs衬底上(x的取值范围为0~0.4),需要蚀刻出侧壁光滑、陡直、底部平坦的台阶。为了做出器件所需的图形,需要在外延片上涂抹光刻胶进行光刻,从而形成光刻胶掩模,如图1所示;然后需要以光刻胶作为掩模,刻蚀AlxGa1-xAs以及GaAs材料。由于刻蚀的时间较长,很容易在干法刻蚀的过程中造成光刻胶的碳化。现有技术是使用氧气(O2)进行等离子体轰击,以及使用丙酮去除光刻胶,而这些方法很容易造成光刻胶的残留,在片子表面产生脏点,或者对材料表面产生损伤,影响器件的性能。The semiconductor device in this embodiment is a vertical-cavity surface-emitting laser (Vertical-Cavity Surface-Emitting Laser, VCSEL for short). In the VCSEL chip, on the DBR layer of the Al x Ga 1-x As material used and on the GaAs substrate (the value of x ranges from 0 to 0.4), it is necessary to etch steps with smooth side walls, steep sides, and flat bottoms. . In order to make the pattern required by the device, it is necessary to apply photoresist on the epitaxial wafer for photolithography to form a photoresist mask, as shown in Figure 1; then it is necessary to use the photoresist as a mask to etch Al x Ga 1-x As and GaAs materials. Due to the long etching time, it is easy to cause carbonization of the photoresist during the dry etching process. The existing technology is to use oxygen (O 2 ) for plasma bombardment and acetone to remove the photoresist, but these methods are likely to cause photoresist residue, dirty spots on the surface of the film, or damage to the surface of the material, affecting device performance.
为解决这一问题,本实施例采用以下的刻蚀工艺:To solve this problem, this embodiment adopts the following etching process:
步骤1、制作隔离层:Step 1. Make the isolation layer:
在制作VCSEL芯片过程中,先在AlxGa1-xAs(x的取值范围为0~0.4)层生成较薄的AlyGa1-yAs层(y的取值范围为0.7~1)作为隔离层,用于后续光刻胶的去除。AlyGa1-yAs层与AlxGa1-xAs之间具有极强的选择性腐蚀特性,并且两者晶格匹配,不会因为应力产生晶圆层与层之间的断裂这样的不良影响。其中,隔离层的厚度优选为50nm~150nm,本实施例中为100nm~150nm。隔离层的生成可以采用现有的物理气相沉积方法或化学气相沉积方法,也可以采用分子束外延生长;优选外延生长方式,隔离层既可以与刻蚀目标层一起外延生长得到,也可以在刻蚀前通过二次外延生长得到。In the process of making VCSEL chips, a thinner Al y Ga 1-y As layer (y ranges from 0.7 to 1 ) as an isolation layer for subsequent photoresist removal. The Al y Ga 1-y As layer and the Al x Ga 1-x As layer have extremely strong selective corrosion characteristics, and the lattices of the two are matched, and there will be no fracture between wafer layers due to stress. adverse effects. Wherein, the thickness of the isolation layer is preferably 50 nm to 150 nm, and in this embodiment, it is 100 nm to 150 nm. The isolation layer can be formed by the existing physical vapor deposition method or chemical vapor deposition method, and can also be grown by molecular beam epitaxy; the epitaxial growth method is preferred. Obtained by secondary epitaxial growth before etching.
步骤2、制作光刻胶掩模:Step 2, making a photoresist mask:
如图2所示,在形成了隔离层的AlxGa1-xAs层上涂覆光刻胶,并通过光刻制作出光刻胶掩模。As shown in FIG. 2, a photoresist is coated on the AlxGa1 - xAs layer on which the isolation layer is formed, and a photoresist mask is fabricated by photolithography.
步骤3、刻蚀图案:Step 3, etching pattern:
利用ICP刻蚀机刻蚀AlyGa1-yAs层和AlxGa1-xAs材料。AlxGa1-xAs的刻蚀参数不需要改变。这是因为:在刻蚀AlxGa1-xAs材料时,所使用的气体为氯气、三氯化硼和氩气,AlyGa1- yAs层的干法刻蚀性质与上述材料基本相同,并且由于厚度极薄,对原有刻蚀工艺的影响基本可以忽略。The Al y Ga 1-y As layer and the Al x Ga 1-x As material are etched using an ICP etching machine. The etch parameters for AlxGa1 - xAs do not need to be changed. This is because: when etching the Al x Ga 1-x As material, the gas used is chlorine, boron trichloride and argon, and the dry etching properties of the Al y Ga 1- y As layer are basically the same as those of the above-mentioned materials. The same, and due to the extremely thin thickness, the impact on the original etching process can basically be ignored.
步骤4、去除至少部分光刻胶:Step 4. Remove at least part of the photoresist:
这一步骤的主要目的是为了使得尽可能多的隔离层表面暴露在外,以加快后续选择性湿法腐蚀的速度,对于光刻胶去除质量以及是否会对隔离层表面产生损伤并不需要在意,因此可根据实际情况灵活采用各种现有的湿法或干法去胶方式,最好选用操作最方便、实现成本最低的方式。本实施例中利用丙酮等有机溶剂对光刻胶进行清洗。The main purpose of this step is to expose as much of the surface of the isolation layer as possible to speed up the subsequent selective wet etching. It is not necessary to care about the quality of photoresist removal and whether it will cause damage to the surface of the isolation layer. Therefore, various existing wet or dry degumming methods can be flexibly used according to the actual situation, and it is best to choose the method with the most convenient operation and the lowest cost. In this embodiment, an organic solvent such as acetone is used to clean the photoresist.
步骤5、选择性湿法腐蚀去除隔离层:Step 5. Selective wet etching to remove the isolation layer:
由于经历了较长的干法刻蚀过程,光刻胶会有一部分碳化而难以被去除,一些不挥发副产物覆盖在光刻胶表面,这是现有去胶方案所难以解决的。本发明通过选择性湿法腐蚀工艺去除隔离层,具体而言,即通过选择性腐蚀液只将隔离层的AlyGa1-yAs腐蚀掉,同时不会对刻蚀目标层的AlxGa1-xAs产生影响。所述选择性湿法腐蚀工艺所使用的选择性腐蚀液为HF溶液体系,包括但不限于:BOE溶液、缓冲HF(HF:NH4F:H2O=3:6:10)溶液、稀释HF溶液(与水的体积比1:5-1:30均可)、HF( 48w t% ) /CrO3 ( 33w t% )(体积比由 0. 01~ 0.138)混合溶液。其中,BOE溶液、缓冲HF(HF:NH4F:H2O=3:6:10)溶液、以及1:5~1:15稀释的HF浓度较高,腐蚀速度过快,而HF( 48w t% ) /CrO3 ( 33w t% )(体积比由 0. 01~ 0. 138)混合溶液含有铬,毒性很大,易对人体造成伤害;因此综合考虑优选1:20稀释的HF溶液,其腐蚀速率适中,容易配置,选择腐蚀性高。Due to the long dry etching process, part of the photoresist will be carbonized and difficult to remove, and some non-volatile by-products will cover the surface of the photoresist, which is difficult to solve in the existing photoresist removal scheme. The present invention removes the isolation layer through a selective wet etching process, specifically, only the Al y Ga 1-y As of the isolation layer is etched away by a selective etching solution, and at the same time, the Al x Ga 1-y As of the etching target layer is not affected. 1-x As has an effect. The selective etching solution used in the selective wet etching process is an HF solution system, including but not limited to: BOE solution, buffered HF (HF:NH 4 F:H 2 O=3:6:10) solution, diluted HF solution (volume ratio of 1:5-1:30 to water is acceptable), HF (48w t%)/CrO 3 (33w t%) (volume ratio from 0.01 to 0.138) mixed solution. Among them, BOE solution, buffered HF (HF:NH 4 F:H 2 O=3:6:10) solution, and 1:5~1:15 diluted HF concentration are high, and the corrosion rate is too fast, while HF ( 48w t% ) /CrO 3 ( 33w t% ) (volume ratio from 0.01 to 0.138) mixed solution contains chromium, which is very toxic and easy to cause harm to the human body; therefore, a 1:20 diluted HF solution is preferred, Its corrosion rate is moderate, easy to configure, and has high selective corrosion.
将步骤4去胶后的外延片在1:20稀释的HF溶液中湿释放90s并适当搅拌,然后用去离子水将腐蚀液清洗干净,之后用棉球蘸取丙酮轻轻擦拭外延片表面、棉球蘸取异丙醇轻轻擦拭外延片表面,如此循环若干次,最后用去离子水清洗干净即可。此时隔离层已被完全清除,隔离层上附着的残余光刻胶也同时被彻底去除。最终处理后的刻蚀目标层的RMS为0.2nm,与外延生长的表面光滑度水平基本相同。Release the epitaxial wafer after degumming in step 4 in the 1:20 diluted HF solution for 90 seconds and stir properly, then clean the corrosion solution with deionized water, and then use a cotton ball dipped in acetone to gently wipe the surface of the epitaxial wafer, Dip a cotton ball with isopropanol and gently wipe the surface of the epitaxial wafer, repeat this cycle several times, and finally clean it with deionized water. At this time, the isolation layer has been completely removed, and the residual photoresist attached to the isolation layer is also completely removed at the same time. The RMS of the etch target layer after final processing is 0.2nm, which is basically the same level of surface smoothness as epitaxial growth.
实施例2:Example 2:
本实施例中的半导体器件为布里渊激光器。在布里渊激光器中,对于刻蚀目标层AlxGa1-xAs(x的取值范围为0.8~1)的波导宽度、刻蚀深度、侧壁平滑度以及表面的洁净程度有非常高的要求。为了制作该器件,需要在外延片上涂抹光刻胶进行光刻,从而形成光刻胶掩膜,然后以光刻胶作为掩膜,刻蚀AlxGa1-xAs(x的取值范围为0.8~1)以形成波导。AlxGa1-xAs(x的取值范围为0.8~1)材料很容易被氧化,如果使用氧气(O2)进行等离子体轰击,很容易使波导层材料氧化,使得器件的传输损耗大大增加,并且会显著影响激光器的发光谱。The semiconductor device in this embodiment is a Brillouin laser. In the Brillouin laser, the waveguide width, etching depth, side wall smoothness and surface cleanliness of the etching target layer Al x Ga 1-x As (x ranges from 0.8 to 1) have very high requirements. In order to make the device, it is necessary to apply photoresist on the epitaxial wafer for photolithography to form a photoresist mask, and then use the photoresist as a mask to etch Al x Ga 1-x As (the value range of x is 0.8~1) to form a waveguide. Al x Ga 1-x As (x ranges from 0.8 to 1) materials are easily oxidized. If oxygen (O 2 ) is used for plasma bombardment, it is easy to oxidize the waveguide layer material, which greatly reduces the transmission loss of the device. increase, and will significantly affect the emission spectrum of the laser.
本实施例具体采用以下的刻蚀工艺:This embodiment specifically adopts the following etching process:
步骤1、制作隔离层:Step 1. Make the isolation layer:
本实施例为刻蚀目标层AlxGa1-xAs(x的取值范围为0.8~1)所选取的隔离层材料为AlyGa1-yAs(y的取值范围为0~0.2)。这两种材料之间具有极强的选择性腐蚀特性,并且两者晶格匹配,不会因为应力产生层与层之间的断裂这样的不良影响。其中,隔离层的厚度优选为50nm~150nm,本实施例中为100nm~150nm。隔离层的生成可以采用现有的物理气相沉积方法或化学气相沉积方法,也可以采用分子束外延生长,优选外延生长方式。In this embodiment, the isolation layer material selected for etching the target layer Al x Ga 1-x As (the value range of x is 0.8-1) is Al y Ga 1-y As (the value range of y is 0-0.2 ). These two materials have extremely strong selective corrosion characteristics, and the lattices of the two materials are matched, so there will be no adverse effects such as fracture between layers due to stress. Wherein, the thickness of the isolation layer is preferably 50 nm to 150 nm, and in this embodiment, it is 100 nm to 150 nm. The isolation layer can be formed by using the existing physical vapor deposition method or chemical vapor deposition method, or by molecular beam epitaxy growth, preferably the epitaxial growth method.
步骤2、制作光刻胶掩模:Step 2, making a photoresist mask:
在形成了隔离层的AlxGa1-xAs层上涂覆光刻胶,并通过光刻制作出光刻胶掩模。A photoresist is coated on the AlxGa1 - xAs layer on which the isolation layer is formed, and a photoresist mask is fabricated by photolithography.
步骤3、刻蚀图案:Step 3, etching pattern:
利用ICP刻蚀机刻蚀AlyGa1-yAs层和AlxGa1-xAs材料。AlxGa1-xAs的刻蚀参数不需要改变。这是因为:在刻蚀AlxGa1-xAs材料时,所使用的气体为氯气、三氯化硼和氩气,AlyGa1- yAs层的干法刻蚀性质与上述材料基本相同,并且由于厚度极薄,对原有刻蚀工艺的影响基本可以忽略。The Al y Ga 1-y As layer and the Al x Ga 1-x As material are etched using an ICP etching machine. The etch parameters for AlxGa1 - xAs do not need to be changed. This is because: when etching the Al x Ga 1-x As material, the gas used is chlorine, boron trichloride and argon, and the dry etching properties of the Al y Ga 1- y As layer are basically the same as those of the above-mentioned materials. The same, and due to the extremely thin thickness, the impact on the original etching process can basically be ignored.
步骤4、去除至少部分光刻胶:Step 4. Remove at least part of the photoresist:
这一步骤的主要目的是为了使得尽可能多的隔离层表面暴露在外,以加快后续选择性湿法腐蚀的速度,对于光刻胶去除质量以及是否会对隔离层表面产生损伤并不需要在意,因此可根据实际情况灵活采用各种现有的湿法或干法去胶方式,最好选用操作最方便、实现成本最低的方式。本实施例中利用丙酮等有机溶剂对光刻胶进行清洗。The main purpose of this step is to expose as much of the surface of the isolation layer as possible to speed up the subsequent selective wet etching. It is not necessary to care about the quality of photoresist removal and whether it will cause damage to the surface of the isolation layer. Therefore, various existing wet or dry degumming methods can be flexibly used according to the actual situation, and it is best to choose the method with the most convenient operation and the lowest cost. In this embodiment, an organic solvent such as acetone is used to clean the photoresist.
步骤5、选择性湿法腐蚀去除隔离层:Step 5. Selective wet etching to remove the isolation layer:
本实施例中所选取的选择性腐蚀液为:50 %柠檬酸溶液和 30 %双氧水溶液按体积比从 1 ∶1 到 3 ∶1混合(50 %柠檬酸溶液是由一水柠檬酸晶体和去离子水按质量比 1:1配成);优选的腐蚀液配比为 1 ∶2,此配比腐蚀液的选择腐蚀性最高,选择比最高可以达到116。The selective corrosion solution selected in this embodiment is: 50% citric acid solution and 30% hydrogen peroxide solution are mixed from 1:1 to 3:1 by volume (50% citric acid solution is composed of monohydrate citric acid crystals and Ionized water is made according to the mass ratio of 1:1); the optimal ratio of corrosion solution is 1:2, the selective corrosion of this ratio of corrosion solution is the highest, and the maximum selection ratio can reach 116.
将步骤4去胶后的外延片在选择性腐蚀液中湿释放90s并适当搅拌,然后用去离子水将腐蚀液清洗干净,之后用棉球蘸取丙酮轻轻擦拭外延片表面、棉球蘸取异丙醇轻轻擦拭外延片表面,如此循环若干次,最后用去离子水清洗干净即可。此时隔离层已被完全清除,隔离层上附着的残余光刻胶也同时被彻底去除。最终处理后的刻蚀目标层的RMS为0.2nm,与外延生长的表面光滑度水平基本相同。Wet release the epitaxial wafer after degumming in step 4 in the selective etching solution for 90s and stir properly, then clean the etching solution with deionized water, and then use a cotton ball dipped in acetone to gently wipe the surface of the epitaxial wafer, a cotton ball dipped in Use isopropanol to gently wipe the surface of the epitaxial wafer, repeat this cycle several times, and finally clean it with deionized water. At this time, the isolation layer has been completely removed, and the residual photoresist attached to the isolation layer is also completely removed at the same time. The RMS of the etch target layer after final processing is 0.2nm, which is basically the same level of surface smoothness as epitaxial growth.
实施例3:Example 3:
本实施例中的半导体器件为1.1微米波段激光器。有源层InGaAs材料的发光峰位于该波段。为了提高发光效率和降低阈值,有时需要对有源层进行特殊设计。在激光器中,光滑、陡直的侧壁起到了谐振腔反射镜的作用,所以要对外延片进行干法刻蚀。为了做出器件所需要的图形,需要在外延片上涂抹光刻胶进行光刻,从而形成光刻胶掩模,然后需要以光刻胶作为掩模,刻蚀InGaAs层。由于激光器需要侧壁非常光滑洁净,光刻胶的残留会使激光造成泄露,从而造成激光阈值的增加以及发光效率的降低甚至无法产生激光。The semiconductor device in this embodiment is a 1.1 micron band laser. The luminescence peak of the active layer InGaAs material is located in this band. In order to improve the luminous efficiency and lower the threshold, sometimes a special design of the active layer is required. In lasers, the smooth, steep sidewalls act as resonator mirrors, so epitaxial wafers are dry etched. In order to make the pattern required by the device, it is necessary to apply photoresist on the epitaxial wafer for photolithography to form a photoresist mask, and then use the photoresist as a mask to etch the InGaAs layer. Since the sidewall of the laser needs to be very smooth and clean, the residue of the photoresist will cause the laser to leak, resulting in an increase in the laser threshold and a decrease in luminous efficiency, or even failure to generate laser light.
本实施例具体采用以下的刻蚀工艺:This embodiment specifically adopts the following etching process:
步骤1、制作隔离层:Step 1. Make the isolation layer:
本实施例为刻蚀目标层InGaAs所选取的隔离层材料为InP。这两种材料之间具有极强的选择性腐蚀特性,并且两者晶格匹配,不会因为应力产生层与层之间的断裂这样的不良影响。其中,隔离层的厚度优选为50nm~150nm,本实施例中为100nm~150nm。隔离层的生成可以采用现有的物理气相沉积方法或化学气相沉积方法,也可以采用分子束外延生长,优选外延生长方式。In this embodiment, the material of the isolation layer selected for etching the target layer InGaAs is InP. These two materials have extremely strong selective corrosion characteristics, and the lattices of the two materials are matched, so there will be no adverse effects such as fracture between layers due to stress. Wherein, the thickness of the isolation layer is preferably 50 nm to 150 nm, and in this embodiment, it is 100 nm to 150 nm. The isolation layer can be formed by using the existing physical vapor deposition method or chemical vapor deposition method, or by molecular beam epitaxy growth, preferably the epitaxial growth method.
步骤2、制作光刻胶掩模:Step 2, making a photoresist mask:
在形成了隔离层的InGaAs层上涂覆光刻胶,并通过光刻制作出光刻胶掩模。A photoresist is coated on the InGaAs layer on which the isolation layer is formed, and a photoresist mask is fabricated by photolithography.
步骤3、刻蚀图案:Step 3, etching pattern:
利用ICP刻蚀机刻蚀InGaAs层和InP层。InGaAs的刻蚀参数不需要改变。这是因为:在刻蚀InGaAs材料时,所使用的气体为氯气、甲烷和氩气,InP层的干法刻蚀性质与上述材料基本相同,并且由于厚度极薄,对原有刻蚀工艺的影响基本可以忽略。The InGaAs layer and the InP layer are etched using an ICP etching machine. The etching parameters of InGaAs do not need to be changed. This is because: when etching InGaAs materials, the gases used are chlorine, methane and argon, and the dry etching properties of the InP layer are basically the same as those of the above-mentioned materials, and due to the extremely thin thickness, the original etching process The impact can basically be ignored.
步骤4、去除至少部分光刻胶:Step 4. Remove at least part of the photoresist:
这一步骤的主要目的是为了使得尽可能多的隔离层表面暴露在外,以加快后续选择性湿法腐蚀的速度,对于光刻胶去除质量以及是否会对隔离层表面产生损伤并不需要在意,因此可根据实际情况灵活采用各种现有的湿法或干法去胶方式,最好选用操作最方便、实现成本最低的方式。本实施例中利用丙酮等有机溶剂对光刻胶进行清洗。The main purpose of this step is to expose as much of the surface of the isolation layer as possible to speed up the subsequent selective wet etching. It is not necessary to care about the quality of photoresist removal and whether it will cause damage to the surface of the isolation layer. Therefore, various existing wet or dry degumming methods can be flexibly used according to the actual situation, and it is best to choose the method with the most convenient operation and the lowest cost. In this embodiment, an organic solvent such as acetone is used to clean the photoresist.
步骤5、选择性湿法腐蚀去除隔离层:Step 5. Selective wet etching to remove the isolation layer:
本实施例中所选取的选择性腐蚀液为:H3PO4:HCl=3:1~10:1的酸性溶液,或HCl:H2O =5:1~3:1的酸性溶液,或HCl:H3PO4:H2O =3:1:1的酸性溶液。优选HCl:H2O =3:1的酸性溶液,其对于InGaAs/ InP选择性高,并且只涉及一种酸,配比简单。The selective etching solution selected in this embodiment is: H 3 PO 4 :HCl=3:1~10:1 acidic solution, or HCl:H 2 O=5:1~3:1 acidic solution, or HCl:H 3 PO 4 :H 2 O =3:1:1 acidic solution. The acidic solution of HCl:H 2 O =3:1 is preferred, which has high selectivity for InGaAs/InP, and only involves one kind of acid, and the ratio is simple.
将步骤4去胶后的外延片在选择性腐蚀液中湿释放90s并适当搅拌,然后用去离子水将腐蚀液清洗干净,之后用棉球蘸取丙酮轻轻擦拭外延片表面、棉球蘸取异丙醇轻轻擦拭外延片表面,如此循环若干次,最后用去离子水清洗干净即可。此时隔离层已被完全清除,隔离层上附着的残余光刻胶也同时被彻底去除。最终处理后的刻蚀目标层与外延生长的表面光滑度水平基本相同。Wet release the epitaxial wafer after degumming in step 4 in the selective etching solution for 90s and stir properly, then clean the etching solution with deionized water, and then use a cotton ball dipped in acetone to gently wipe the surface of the epitaxial wafer, a cotton ball dipped in Use isopropanol to gently wipe the surface of the epitaxial wafer, repeat this cycle several times, and finally clean it with deionized water. At this time, the isolation layer has been completely removed, and the residual photoresist attached to the isolation layer is also completely removed at the same time. The etch target layer after final processing has approximately the same level of surface smoothness as the epitaxial growth.
实施例4:Example 4:
本实施例中的半导体器件为1.7微米波段激光器。有源层InGaAsP材料的发光峰位于该波段。为了提高发光效率和降低阈值,有时需要对有源层进行特殊设计。在激光器中,光滑、陡直的侧壁起到了谐振腔反射镜的作用,所以要对外延片进行干法刻蚀。为了做出器件所需要的图形,需要在外延片上涂抹光刻胶进行光刻,从而形成光刻胶掩模。然后需要以光刻胶作为掩模,刻蚀InGaAsP。由于激光器需要侧壁非常光滑洁净,光刻胶的残留会使激光造成泄露,从而造成激光阈值的增加以及发光效率的降低甚至无法产生激光。The semiconductor device in this embodiment is a 1.7 micron band laser. The luminescence peak of the active layer InGaAsP material is located in this band. In order to improve the luminous efficiency and lower the threshold, sometimes a special design of the active layer is required. In lasers, the smooth, steep sidewalls act as resonator mirrors, so epitaxial wafers are dry etched. In order to make the pattern required by the device, it is necessary to smear photoresist on the epitaxial wafer for photolithography to form a photoresist mask. Then need to use photoresist as a mask to etch InGaAsP. Since the sidewall of the laser needs to be very smooth and clean, the residue of the photoresist will cause the laser to leak, resulting in an increase in the laser threshold and a decrease in luminous efficiency, or even failure to generate laser light.
本实施例具体采用以下的刻蚀工艺:This embodiment specifically adopts the following etching process:
步骤1、制作隔离层:Step 1. Make the isolation layer:
本实施例为刻蚀目标层InGaAsP所选取的隔离层材料为InP。这两种材料之间具有极强的选择性腐蚀特性,并且两者晶格匹配,不会因为应力产生层与层之间的断裂这样的不良影响。其中,隔离层的厚度优选为50nm~150nm,本实施例中为100nm~150nm。隔离层的生成可以采用现有的物理气相沉积方法或化学气相沉积方法,也可以采用分子束外延生长,优选外延生长方式。In this embodiment, the material of the isolation layer selected for etching the target layer InGaAsP is InP. These two materials have extremely strong selective corrosion characteristics, and the lattices of the two materials are matched, so there will be no adverse effects such as fracture between layers due to stress. Wherein, the thickness of the isolation layer is preferably 50 nm to 150 nm, and in this embodiment, it is 100 nm to 150 nm. The isolation layer can be formed by using the existing physical vapor deposition method or chemical vapor deposition method, or by molecular beam epitaxy growth, preferably the epitaxial growth method.
步骤2、制作光刻胶掩模:Step 2, making a photoresist mask:
在形成了隔离层的InGaAsP层上涂覆光刻胶,并通过光刻制作出光刻胶掩模。A photoresist is coated on the InGaAsP layer on which the isolation layer is formed, and a photoresist mask is fabricated by photolithography.
步骤3、刻蚀图案:Step 3, etching pattern:
利用ICP刻蚀机刻蚀InGaAsP层和InP层。InGaAsP的刻蚀参数不需要改变。这是因为:在刻蚀InGaAsP材料时,所使用的气体为氯气、甲烷和氩气,InP层的干法刻蚀性质与上述材料基本相同,并且由于厚度极薄,对原有刻蚀工艺的影响基本可以忽略。The InGaAsP layer and the InP layer are etched using an ICP etching machine. The etch parameters of InGaAsP do not need to be changed. This is because: when etching InGaAsP materials, the gases used are chlorine, methane and argon, and the dry etching properties of the InP layer are basically the same as those of the above-mentioned materials, and due to the extremely thin thickness, it is difficult for the original etching process. The impact can basically be ignored.
步骤4、去除至少部分光刻胶:Step 4. Remove at least part of the photoresist:
这一步骤的主要目的是为了使得尽可能多的隔离层表面暴露在外,以加快后续选择性湿法腐蚀的速度,对于光刻胶去除质量以及是否会对隔离层表面产生损伤并不需要在意,因此可根据实际情况灵活采用各种现有的湿法或干法去胶方式,最好选用操作最方便、实现成本最低的方式。本实施例中利用丙酮等有机溶剂对光刻胶进行清洗。The main purpose of this step is to expose as much of the surface of the isolation layer as possible to speed up the subsequent selective wet etching. It is not necessary to care about the quality of photoresist removal and whether it will cause damage to the surface of the isolation layer. Therefore, various existing wet or dry degumming methods can be flexibly used according to the actual situation, and it is best to choose the method with the most convenient operation and the lowest cost. In this embodiment, an organic solvent such as acetone is used to clean the photoresist.
步骤5、选择性湿法腐蚀去除隔离层:Step 5. Selective wet etching to remove the isolation layer:
本实施例中所选取的选择性腐蚀液为:HCl:CH3COOH=1:1的酸性溶液,或HCl:H2O =2:1~1:1的酸性溶液,或H3PO4:HBr =1:1的酸性溶液;优选的腐蚀液为HCl:H2O (1:1),其选择腐蚀性高,配比简单,相比H3PO4:HBr (1:1)毒性小,安全系数高。The selective etching solution selected in this example is: HCl:CH 3 COOH=1:1 acidic solution, or HCl:H 2 O =2:1~1:1 acidic solution, or H 3 PO 4 : HBr = 1:1 acidic solution; the preferred corrosive solution is HCl:H2O (1:1), which has high selective corrosion and simple proportion, and is less toxic and safe than H 3 PO 4 :HBr (1:1) The coefficient is high.
将步骤4去胶后的外延片选择性腐蚀液中湿释放90s并适当搅拌,然后用去离子水将腐蚀液清洗干净,之后用棉球蘸取丙酮轻轻擦拭外延片表面、棉球蘸取异丙醇轻轻擦拭外延片表面,如此循环若干次,最后用去离子水清洗干净即可。此时隔离层已被完全清除,隔离层上附着的残余光刻胶也同时被彻底去除。最终处理后的刻蚀目标层与外延生长的表面光滑度水平基本相同。Wet the epitaxial wafer after degumming in step 4 in the selective etching solution for 90 seconds and stir properly, then clean the etching solution with deionized water, and then use a cotton ball to dip acetone to gently wipe the surface of the epitaxial wafer, and a cotton ball to remove Gently wipe the surface of the epitaxial wafer with isopropanol, repeat this cycle several times, and finally clean it with deionized water. At this time, the isolation layer has been completely removed, and the residual photoresist attached to the isolation layer is also completely removed at the same time. The etch target layer after final processing has approximately the same level of surface smoothness as the epitaxial growth.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111071850.7A CN113823992B (en) | 2021-09-14 | 2021-09-14 | Semiconductor device manufacturing method and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111071850.7A CN113823992B (en) | 2021-09-14 | 2021-09-14 | Semiconductor device manufacturing method and semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113823992A CN113823992A (en) | 2021-12-21 |
CN113823992B true CN113823992B (en) | 2022-11-11 |
Family
ID=78914492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111071850.7A Active CN113823992B (en) | 2021-09-14 | 2021-09-14 | Semiconductor device manufacturing method and semiconductor device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113823992B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114777695B (en) * | 2022-04-15 | 2024-08-27 | 河南仕佳光子科技股份有限公司 | Method for accurately measuring thickness of top layer of InP-based laser |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0450255B1 (en) * | 1990-04-06 | 1994-07-06 | International Business Machines Corporation | Process for forming the ridge structure of a self-aligned semiconductor laser |
US6551936B2 (en) * | 2000-12-29 | 2003-04-22 | Bookham Technology Plc | Method of etching patterns into epitaxial material |
US7867913B2 (en) * | 2007-09-28 | 2011-01-11 | Hynix Semiconductor Inc. | Method for fabricating fine pattern in semiconductor device |
KR20120095411A (en) * | 2009-11-09 | 2012-08-28 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Etching process for semiconductors |
TWI403235B (en) * | 2010-07-14 | 2013-07-21 | Taiwan Memory Company | Manufacturing method for a buried circuit structure |
CN104701145B (en) * | 2013-12-10 | 2018-08-10 | 中芯国际集成电路制造(上海)有限公司 | The forming method of semiconductor structure |
US9293523B2 (en) * | 2014-06-24 | 2016-03-22 | Applied Materials, Inc. | Method of forming III-V channel |
CN104282548A (en) * | 2014-09-12 | 2015-01-14 | 电子科技大学 | Etching method for III-V-group compound semiconductor materials |
CN105668540B (en) * | 2014-11-19 | 2017-11-14 | 清华大学 | A kind of preparation method of nanowire array |
CN106257624A (en) * | 2016-08-29 | 2016-12-28 | 北京代尔夫特电子科技有限公司 | A kind of caustic solution of compound semiconductor |
US9941168B1 (en) * | 2016-09-21 | 2018-04-10 | Korea Institute Of Science And Technology | Method for manufacturing semiconductor device by epitaxial lift-off using plane dependency of III-V compound |
CN108383078B (en) * | 2018-02-28 | 2019-04-30 | 清华大学 | Preparation method of silicon needle array |
-
2021
- 2021-09-14 CN CN202111071850.7A patent/CN113823992B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113823992A (en) | 2021-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080070413A1 (en) | Fabrication methods of a patterned sapphire substrate and a light-emitting diode | |
TW201706452A (en) | Method for stripping growth substrate by chemical etching | |
CN113991422B (en) | DFB laser manufacturing method based on deterministic grating coupling coefficient of medium sidewall grating | |
CN113823992B (en) | Semiconductor device manufacturing method and semiconductor device | |
JPH04273432A (en) | Device manufacturing method and resulting device | |
CN110808533B (en) | High-temperature ICP (inductively coupled plasma) etching method for aluminum-containing material in high-speed DFB (distributed feed Back) chip | |
US20060137717A1 (en) | Method for removing impurities grown on a phase shift mask | |
CN111585170A (en) | Semiconductor laser and manufacturing method thereof | |
JPH09283861A (en) | Manufacture of group iii nitride semiconductor laser diode | |
CN104300048B (en) | Manufacturing method for GaN-based light-emitting diode chip | |
JP2000200946A (en) | Semiconductor device and manufacturing method thereof | |
CN101484983A (en) | Etching method, etching mask and method for manufacturing semiconductor device using the same | |
CN114094439B (en) | Gallium nitride surface emitting laser based on silicon nitride photonic crystal and preparation method thereof | |
CN1287424C (en) | Method of manufacturing optical devices and related improvements | |
CN111244239B (en) | LED patterned substrate and preparation method thereof | |
JPH1041585A (en) | Manufacture of group iii nitride semiconductor laser diode | |
JP3994640B2 (en) | Method for cleaning substrate for growth of gallium nitride compound semiconductor | |
JP2005532692A (en) | Defect reduction in semiconductor materials. | |
KR20100070282A (en) | Method for manufacturing nitride semiconductor device | |
KR100771227B1 (en) | Nitride-based light emitting device having a dielectric DVR and its manufacturing method | |
CN111934198B (en) | Preparation method of high-reflectivity VCSEL chip | |
TW200305212A (en) | A chemistry for etching quaternary interface layers on InGaAsP mostly formed between GaAs and InxGa(1-x)P layers | |
JP4415480B2 (en) | Structure substrate and method for manufacturing semiconductor device | |
JPH10294528A (en) | Manufacturing method of surface emitting semiconductor laser | |
JP2004363150A (en) | Method of forming pattern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |