Disclosure of Invention
Aiming at the defects of the prior art, the invention provides a novel AlGaN/GaN heterojunction field effect transistor and application thereof.
Interpretation of terms
A channel refers to a thin semiconductor layer between a source region and a drain region in a field effect transistor in which current flows controlled by a gate potential.
The technical scheme of the invention is as follows:
the utility model provides a novel AlGaN/GaN heterojunction field effect transistor, its device structure is similar with traditional AlGaN/GaN heterojunction field effect transistor structure on the whole, including source electrode, grid, drain electrode, the difference lies in that the grid includes horizontal opening, and the grid of traditional structure is complete and continuous the covering by grid metal, and neotype open gate structure then utilizes the open region that does not have grid metal to cover, will originally complete grid from the centre divide into two sections to form two different work areas, grid region and open region promptly.
Preferably, the open region width is less than the total channel width of the device.
More preferably, 0 < opening area width ≦ 1/5 · total channel width.
It is further preferred that the width of the open region is 3-5 μm at a total channel width of the device of 100 μm.
The current in the region is too large and can not be turned off due to too large width; and the threshold voltage is not too small, otherwise, the regulation effect on the threshold voltage is not obvious enough. Within the verified size range, the opening area width is between 3-5 μm when the total channel width is 100 μm, which can achieve better results.
For a traditional AlGaN/GaN heterojunction field effect transistor, the grid bias can regulate and control the density of two-dimensional electron gas of a channel under a grid. Along with the negative increase of the gate bias (approaching from zero to a negative value), the two-dimensional electron gas density of the channel is reduced until the two-dimensional electron gas density is exhausted, the channel resistance is increased along with the increase of the two-dimensional electron gas density of the channel, the current is reduced until the channel is switched off, and therefore the regulation and control of the gate bias on the channel current are achieved. We call this regulatory mechanism 1.
For the AlGaN/GaN heterojunction field effect transistor with an open gate structure, the regulation mechanism of the gate region is the same as that of the traditional device, and the control of the current of the gate region is realized through the mechanism 1, namely, the gate bias regulates the two-dimensional electron density of a channel under a gate. However, for the opening region, since the opening region is not covered by the gate metal, the two-dimensional electron gas density of the channel is not controlled by the gate bias, i.e., the mechanism 1 cannot function in the region.
The mechanism of operation of open gate devices in the open region is related to surface electron injection and Polarization Coulomb Field (PCF) scattering. On the one hand, when a drain-source voltage is applied to the device, electrons are injected to the surface of the device through the source electrode and are trapped by trap states on the surface, so that the surface potential of the device is reduced. Thus, a negative potential difference is generated between the surface and the channel, which corresponds to the presence of a negatively biased dummy gate on the device surface. As the drain-source voltage increases, the potential of the near drain end of the channel increases, and the absolute value of the potential difference between the near drain end of the channel and the surface virtual grid increases. Increasing to a certain extent will pinch off the channel at this point, thereby achieving channel current saturation. On the other hand, due to the existence of polarization Coulomb field scattering, the two-dimensional electron gas electron mobility of the opening region can be regulated and controlled by the gate bias, and the channel current of the region is indirectly influenced, so that the regulation and control of the gate bias on the channel current are realized.
In AlGaN/GaN heterojunction field effect transistors, there are a number of scattering mechanisms, such as: dislocation (DIS) scattering, Acoustic Phonon (AP) scattering, Polarized Optical Phonon (POP) scattering, interface roughness scattering (IFR), and polarized coulomb field scattering. Other scattering mechanisms than polarized coulomb field scattering are only related to the two-dimensional electron gas density of the open area. Since the two-dimensional electron gas density of the open region is constant, it is believed that the other scattering mechanisms in this region do not change with the gate bias. And the polarization coulomb field scattering is related to the density of the additional polarization charges under the grid of the device besides the density of the two-dimensional electron gas in the opening area. For the AlGaN/GaN heterojunction, the polarization charges of the material are uniformly distributed on a heterojunction interface, however, after the AlGaN/GaN heterojunction material is prepared into a transistor device, when bias voltage is applied to a grid electrode, additional polarization charges are introduced into the grid electrode area due to the inverse piezoelectric effect, so that a scattering effect is generated on channel carriers, and the scattering effect is polarization Coulomb field scattering. When the applied gate bias is negative, the opening area is considered as the reference, i.e. the opening area additional polarization charge is zero, and only the gate area has negative additional polarization charge. Since the gate electrodes at both ends of the opening are symmetrically distributed and the bias voltages applied to the two electrodes are the same, the additional polarization charge densities of the two gate regions are the same.
Considering the scattering effect of the additional polarization charges in the gate region on the electrons in the gate region, the effect strength can be expressed by the additional scattering potential, and the following formula is given:
wherein e is the absolute value of the electron charge amount, ε0Is a vacuum dielectric constant of ∈sIs the static dielectric constant of GaN, LGIs the gate length, W is the total channel width, WoIs the width of the opening area, σGThe additional polarization charge density of the gate region, (x, y, z) is the position coordinate of the electrons of the two-dimensional electron gas of the open region.
According to the principle of inverse piezoelectric effect, when the applied gate bias is negative, the gate region adds a polarization charge density σGNegative and with increasing negative gate bias, additional polarization charge density σGThe absolute value of (a) increases.
From the above equation (1), it can be seen that the polarization charge density σ is added to the gate regionGIncreases the absolute value of the additional scattering potential V (x, y, z) experienced by the electrons of the two-dimensional electron gas at any point in the open area. This means that the electrons are more strongly scattered by the polarized coulomb field and the electron mobility corresponding to the polarized coulomb field scattering is reduced accordingly. This will directly result in a reduction of the total electron mobility, with the electron mobility corresponding to the other scatterings being unchanged.
In summary, for the open-gate device, as the gate bias increases negatively, the absolute value of the additional polarization charge density under the gate increases, the polarization coulomb field scattering effect on the two-dimensional electron gas in the open region is enhanced, so that the electron mobility at the open region is reduced, the resistance is increased, and the current is reduced, thereby realizing the regulation and control of the gate bias on the device channel current. We call this regulatory mechanism 2.
Based on the above analysis, for the open gate device with the gate region width much larger than the opening region width, the on mode of the device changes during the process of the gate bias voltage approaching from zero to negative. When the absolute value of the gate bias voltage is small and the two-dimensional electron gas of the channel under the gate is not exhausted, the whole channel (including the gate region and the opening region) is conducted, and at this time, the regulation of the mechanism 1 and the mechanism 2 exist, but because the width of the gate region is far larger than the opening region, the mechanism 1 plays a main role. We call this conduction mode 1. When the absolute value of the gate bias voltage is larger and the two-dimensional electron gas of the channel under the gate is exhausted, only the opening region is conducted and only the mechanism 2 is in effect. We call this conduction mode 2.
The threshold voltage of the device is related to the ability of the gate bias to regulate the channel current, and is approximately equal in value to the off-voltage of the device. For a normal device, when the two-dimensional electron gas of the channel under the gate is exhausted, the channel current is cut off. For the open gate device, after the two-dimensional electron gas of the channel under the gate is exhausted, the device enters the mode 2 from the mode 1, but can still be conducted continuously. Therefore, the threshold voltage of the open gate device is smaller than that of the normal device.
For an open gate device, the larger the width of the open region, the larger the current in the on region after entering mode 2, and the smaller the gate bias voltage (i.e., the larger the negative gate bias voltage) must be provided in order to turn it off. Therefore, the threshold voltage of the device decreases as the opening width increases. This shows that, for the novel AlGaN/GaN heterojunction field effect transistor with the open gate structure, the threshold voltage of the device can be effectively regulated and controlled by a simple method of changing the opening width.
On the other hand, when the open gate device operates in the mode 2, the regulation of the channel current by the gate bias is realized by means of the mechanism 2, namely an indirect mode that the electron mobility of the two-dimensional electron gas in the opening region is regulated by polarization coulomb field scattering. The regulation capability of mechanism 2 is much weaker than that of mechanism 1, in which the gate bias directly regulates the density of the two-dimensional electron gas. Therefore, for mode 2 of the open gate device, there is no problem that "a small voltage signal can cause a large current change". Since the opening width is small, the on-current of the entire mode 2 is small, and the power consumption of the device is inevitably low. Therefore, when the opening device works in the mode 2, the effective amplification of a larger input voltage signal can be realized under the condition of low power consumption, and the opening device is suitable for a low-power-consumption class-A voltage amplifier.
The application of the novel AlGaN/GaN heterojunction field effect transistor in preparing electronic integrated circuits.
The invention has the beneficial effects that:
the invention introduces an opening area without being covered by grid metal in the middle of the original grid metal electrode, (1) after introducing an opening grid structure, the threshold voltage of the device can be regulated and controlled in a large range through simple device structure adjustment, namely, the width of the opening area is changed; (2) the open gate device can realize the A-type voltage amplification of large signals under the condition of low power consumption.
Detailed Description
The present invention will be further described by way of examples, but not limited thereto, with reference to the accompanying drawings.
Example 1:
the invention relates to a novel AlGaN/GaN heterojunction field effect transistor, which comprises a source electrode, a grid electrode and a drain electrode, wherein the grid electrode comprises a transverse opening to form two different working regions, namely a grid electrode region and an opening region. The device structure is shown in FIG. 2, the gate length (L) of the deviceG) 40 μm, a total channel width (W) of 100 μm, a gate-source distance (L)GS) And gate to drain distance (L)GD) Each 6 μm, width of opening area (W)O) Is 3 μm. FIG. 1 shows a conventional AlGaN/GaN heterojunction field effect crystal used for comparisonThe grid electrode of the transistor is not opened, and the size of other parts is the same as that of the opened grid device.
Fig. 5a to 5b are current-voltage characteristic curves of the device, and fig. 5a and 5b correspond to a conventional device and an open gate device with an opening of 3 μm in the present embodiment, respectively. As can be seen, the threshold voltage of the normal device is-4.5V, and the threshold voltage of the open gate device with an opening of 3 μm is-6V. Therefore, the regulation and control of the threshold voltage of the device are effectively realized by introducing the open gate structure.
Example 2:
the difference between the novel AlGaN/GaN heterojunction field effect transistor described in embodiment 1 is that the device of embodiment 2 has an opening width of 4 μm, a structure shown in fig. 3, and the remaining dimensions are the same as those of embodiment 1.
The current-voltage characteristic curve of example 2 is shown in fig. 5 c. As can be seen from the figure, the threshold voltage of the open gate device with an opening width of 4 μm is-7V, which is significantly smaller than that of the open gate device with an opening width of 3 μm, proving that the method of modulating the threshold voltage of the device by changing the opening width is effective.
Example 3:
the difference between the novel AlGaN/GaN heterojunction field effect transistor described in embodiment 1 is that the device in embodiment 3 has an opening width of 5 μm, a structure shown in fig. 4, and the remaining dimensions are the same as those of embodiment 1.
The current-voltage characteristic curve of example 3 is shown in fig. 5 d. As can be seen, the threshold voltage of the open gate device with an opening width of 5 μm is-8V, which is significantly smaller than that of the open gate devices with opening widths of 3 μm and 4 μm. This indicates that the threshold voltage of the device decreases with increasing opening width, further proving that the method of modulating the threshold voltage of the device by varying the opening width is effective.
In order to prove the effectiveness of the device in the application aspect of the low-power-consumption class-A voltage amplifier, the device of the invention is taken as an example, and a current-voltage characteristic curve shown in figure 5d is combined to theoretically predict a novel AlGaN/GaN heterojunction field effect transistor with an open gate structure as a performance parameter of the class-A voltage amplifier.
selecting-7.5V to-4.5V as the working interval of the amplifier, wherein the device works in the mode 2 and only the opening part is conducted. As can be seen from fig. 5d, the gate bias has better control over the channel current in this voltage range.
Maximum current (I) of the device in the gate bias range
max) I.e. the gate bias voltage V
GSWhen the voltage is equal to-4.5V, the corresponding saturation current is I
max=1.02×10
-4A. As class A voltage amplifier, the quiescent point should be selected near the midpoint of the device operating region to turn on the device during the entire period of the input sinusoidal signal, where the amplitude of the input signal voltage is x
in1.5V. Maximum output voltage amplitude (x)
om) The Breakdown Voltage (BV) of the device was about 170V as determined by the breakdown voltage of the device. Therefore, it can be found that,
based on the above calculations, it can be concluded that the theoretical limit of the device on voltage amplification is
At the static operating point, the theoretical value of the direct current power loss of the device is I
maxAnd BV decision, are
It can be seen that the use of the open gate device as a class a voltage amplifier can effectively amplify a large input signal with low dc loss. Therefore, the novel AlGaN/GaN heterojunction field effect transistor is proved to be more suitable for being applied to a class-A voltage amplifier with low power consumption.