CN113816770B - Preparation method for improving surface activity of aluminum oxide-zirconium oxide composite ceramic - Google Patents
Preparation method for improving surface activity of aluminum oxide-zirconium oxide composite ceramic Download PDFInfo
- Publication number
- CN113816770B CN113816770B CN202111058276.1A CN202111058276A CN113816770B CN 113816770 B CN113816770 B CN 113816770B CN 202111058276 A CN202111058276 A CN 202111058276A CN 113816770 B CN113816770 B CN 113816770B
- Authority
- CN
- China
- Prior art keywords
- alumina
- composite ceramic
- zirconia composite
- laser
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 60
- 239000002131 composite material Substances 0.000 title claims abstract description 48
- 230000000694 effects Effects 0.000 title claims abstract description 14
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- VCRLKNZXFXIDSC-UHFFFAOYSA-N aluminum oxygen(2-) zirconium(4+) Chemical compound [O--].[O--].[Al+3].[Zr+4] VCRLKNZXFXIDSC-UHFFFAOYSA-N 0.000 title claims 2
- 238000000576 coating method Methods 0.000 claims abstract description 89
- 239000000758 substrate Substances 0.000 claims abstract description 80
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 77
- 239000011248 coating agent Substances 0.000 claims abstract description 76
- 238000000034 method Methods 0.000 claims abstract description 54
- 238000004372 laser cladding Methods 0.000 claims abstract description 30
- 230000008569 process Effects 0.000 claims abstract description 18
- 239000000843 powder Substances 0.000 claims description 69
- 239000011268 mixed slurry Substances 0.000 claims description 10
- 239000007921 spray Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000011812 mixed powder Substances 0.000 claims description 8
- 239000012153 distilled water Substances 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 238000005469 granulation Methods 0.000 claims description 4
- 230000003179 granulation Effects 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 238000000498 ball milling Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims description 2
- 238000003892 spreading Methods 0.000 claims 1
- 238000003756 stirring Methods 0.000 claims 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 abstract description 13
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 abstract description 13
- 238000011065 in-situ storage Methods 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 238000002848 electrochemical method Methods 0.000 abstract description 2
- 238000001652 electrophoretic deposition Methods 0.000 abstract description 2
- 238000004904 shortening Methods 0.000 abstract description 2
- 238000003980 solgel method Methods 0.000 abstract description 2
- 238000002474 experimental method Methods 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 16
- 239000013078 crystal Substances 0.000 description 12
- 239000002002 slurry Substances 0.000 description 12
- 239000011575 calcium Substances 0.000 description 11
- 239000010410 layer Substances 0.000 description 8
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 8
- 210000000988 bone and bone Anatomy 0.000 description 6
- 238000000149 argon plasma sintering Methods 0.000 description 5
- 239000007943 implant Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910001069 Ti alloy Inorganic materials 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 238000005253 cladding Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000007751 thermal spraying Methods 0.000 description 4
- 239000003462 bioceramic Substances 0.000 description 3
- 239000001506 calcium phosphate Substances 0.000 description 3
- 229910000389 calcium phosphate Inorganic materials 0.000 description 3
- 235000011010 calcium phosphates Nutrition 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 229910014497 Ca10(PO4)6(OH)2 Inorganic materials 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000007581 slurry coating method Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000012072 active phase Substances 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003592 biomimetic effect Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- MXCNPGJZHAUBMR-UHFFFAOYSA-H calcium zirconium(4+) diphosphate Chemical compound [Ca++].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O MXCNPGJZHAUBMR-UHFFFAOYSA-H 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000004053 dental implant Substances 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 210000004394 hip joint Anatomy 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010883 osseointegration Methods 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 230000004819 osteoinduction Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
- C04B41/5048—Phosphates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials For Medical Uses (AREA)
Abstract
一种改善氧化铝‑氧化锆复合陶瓷表面活性的方法,利用激光熔覆法在氧化铝‑氧化锆复合陶瓷表面原位合成羟基磷灰石,得到的涂层厚度均匀,且改善了氧化铝‑氧化锆复合陶瓷的表面活性;实现涂层与基板间的冶金结合,使二者之间无裂纹和间隙,结合牢固。本发明相比于溶胶凝胶法、电化学法和电泳沉积法,整个过程没有冗长的化学反应周期,从而缩短了制备时长,简化了加工工序,节约了实验成本。
A method for improving the surface activity of alumina-zirconia composite ceramics. The laser cladding method is used to synthesize hydroxyapatite on the surface of alumina-zirconia composite ceramics in situ, and the obtained coating has a uniform thickness and improves alumina-zirconia. The surface activity of zirconia composite ceramics; realize the metallurgical bond between the coating and the substrate, so that there is no crack and gap between the two, and the bond is firm. Compared with the sol-gel method, the electrochemical method and the electrophoretic deposition method, the invention has no lengthy chemical reaction cycle in the whole process, thereby shortening the preparation time, simplifying the processing procedure and saving the experiment cost.
Description
技术领域technical field
本发明涉及生物医用材料领域,具体是一种改善氧化铝-氧化锆复合陶瓷表面活性的制备方法。The invention relates to the field of biomedical materials, in particular to a preparation method for improving the surface activity of alumina-zirconia composite ceramics.
背景技术Background technique
生物陶瓷凭借其优异的物理化学稳定性、良好的生物相容性和力学相容性、特殊的生物亲和性和灭菌性已被广泛应用于生物医疗领域,如骨填充物、髋关节修复体和义齿等方面。其中,氧化锆陶瓷已被人们视为义齿修复体的首选对象,临床上可用作牙冠、固定局部义齿和种植牙等。这主要是因为它除了具有优异的力学性能和生物相容性外,还具有与自然牙可媲美的美学性能。然而,在生物体内受潮湿环境的影响,氧化锆陶瓷会自发发生晶型转变,这一现象称为老化。老化会降低氧化锆陶瓷的力学性能,影响其临床使用寿命。目前,发展氧化锆-氧化铝复合陶瓷是提高抗老化能力的方法之一。氧化铝的加入能够大大提高氧化锆陶瓷相变的阈值,从而抑制相变的发生。Bioceramics have been widely used in biomedical fields, such as bone fillers, hip joint repair, due to their excellent physical and chemical stability, good biocompatibility and mechanical compatibility, special bioaffinity and sterilization. body and dentures. Among them, zirconia ceramics have been regarded as the first choice for denture restorations, and can be used clinically as dental crowns, fixed partial dentures and implants. This is mainly because in addition to its excellent mechanical properties and biocompatibility, it also has aesthetic properties comparable to natural teeth. However, under the influence of humid environment in vivo, zirconia ceramics will spontaneously undergo crystal transformation, a phenomenon called aging. Aging will reduce the mechanical properties of zirconia ceramics and affect its clinical service life. At present, the development of zirconia-alumina composite ceramics is one of the methods to improve the anti-aging ability. The addition of alumina can greatly increase the threshold of phase transition of zirconia ceramics, thereby inhibiting the occurrence of phase transition.
但是,氧化铝和氧化锆均属于生物惰性陶瓷,骨整合行为和骨诱导行为差。在植入人体后,不能与自然骨形成紧密的化学结合,也不能诱导新骨的生成。通常会在植入体和自然骨的界面处会形成不具有粘结作用的纤维胶囊,导致植入体松动,从而影响长期使用效果。因此,对氧化铝-氧化锆陶瓷进行表面改性是目前亟需解决的问题。羟基磷灰石具有与人体牙齿和骨组织相似的化学成分,因此常被用作惰性种植体的涂层材料。在涂层的制备方法中,喷涂法是最常见的方法之一。文献[K.Kulpetchdara,A.Limpichaipanit,G.Rujijanagul,et al.HA/β-TCP plasma sprayed coatings on Ti substrate forbiomedical application[J].Ceramics International 44(2018)1328–1333.]使用等离子喷涂法在钛基板表面制备了羟基磷灰石/磷酸钙复合涂层。文献[A.Jemat,M.J.Ghazalia,M.Razali,et al.Influence of the nano hydroxyapatite powder onthermally sprayed HA coatings onto stainless steel[J].Surface&CoatingsTechnology 306(2016)181–186.]采用热喷涂法在不锈钢基板表面成功制备了羟基磷灰石涂层。而从目前公开渠道可知,关于陶瓷基板表面改性的方法主要集中在湿法喷涂法、涂覆法和生物仿生法。文献[K.Pardun,L.Treccani,E.Volkmann,et al.Mixed zirconiacalciumphosphate coatings for dental implants:Tailoring coating stability andbioactivity potential[J].Materials Science and Engineering C 48(2015)337–346.]采用湿法喷涂法成功地在氧化锆种植体表面制备出磷酸钙锆活性涂层。虽然通过以上方法制备的涂层均表现出生物活性,但涂层与基板之间存在裂纹和间隙,结合不牢固。However, both alumina and zirconia are biologically inert ceramics with poor osseointegration and osteoinduction behaviors. After implantation in the human body, it cannot form a close chemical bond with natural bone, nor can it induce the formation of new bone. Usually, a fibrous capsule with no bonding effect is formed at the interface between the implant and the natural bone, which leads to the loosening of the implant and affects the long-term use effect. Therefore, surface modification of alumina-zirconia ceramics is an urgent problem to be solved at present. Hydroxyapatite has a chemical composition similar to that of human teeth and bone tissue, so it is often used as a coating material for inert implants. Among the preparation methods of coatings, spraying is one of the most common methods. Literature [K.Kulpetchdara,A.Limpichaipanit,G.Rujijanagul,et al.HA/β-TCP plasma sprayed coatings on Ti substrate forbiomedical application[J].Ceramics International 44(2018)1328–1333.] using plasma spraying method in A hydroxyapatite/calcium phosphate composite coating was prepared on the surface of the titanium substrate. Literature [A.Jemat,M.J.Ghazalia,M.Razali,et al.Influence of the nano hydroxyapatite powder onthermally sprayed HA coatings onto stainless steel[J].Surface&CoatingsTechnology 306(2016)181–186.] using thermal spraying method on stainless steel substrate A hydroxyapatite coating was successfully prepared on the surface. From the current public sources, the methods for surface modification of ceramic substrates mainly focus on wet spraying method, coating method and biomimetic method. Literature [K.Pardun,L.Treccani,E.Volkmann,et al.Mixed zirconiacalciumphosphate coatings for dental implants:Tailoring coating stability and bioactivity potential[J].Materials Science and Engineering C 48(2015)337–346.] using wet method The active coating of calcium zirconium phosphate was successfully prepared on the surface of zirconia implant by spraying method. Although the coatings prepared by the above methods all showed biological activity, there were cracks and gaps between the coatings and the substrate, and the bonding was not strong.
近些年来,激光熔覆法凭借加工过程简便、灵活且能够实现基板和涂层冶金结合的特点,引起了人们的广泛关注。它采用高能激光束作为加热源,将所需要的材料通过预置粉末或同步送粉的方式熔覆在基板表面,是一种很有前途的涂层制备工艺。文献[F.J.Pou,M.Boutinguiza,et al.Main characteristics of calcium phosphatecoatings obtained by laser cladding[J].Applied Surface Science 247(2005)486–492.]通过同步送粉的方式将羟基磷灰石熔覆在钛合金表面,成功对钛合金进行了表面改性。然而羟基磷灰石粉末价格昂贵,直接使用其作为原始涂层粉末会增加生产成本,因此可使用CaHPO4·2H2O和CaCO3混合粉末来替代羟基磷灰石作为原始涂层粉末。在高能激光束的作用下,CaHPO4·2H2O和CaCO3能够原位反应生成羟基磷灰石等活性材料。文献[邓迟,张亚平,高家诚.激光熔覆生物陶瓷涂层和界面的研究[J].应用激光,26(1)(2006)21-28.]以CaHPO4·2H2O和CaCO3混合粉末为原始涂层粉末,采用CO2激光在钛合金表面原位合成具有良好生物活性的涂层,改善了钛合金的表面性能。文献[M.Zheng,D.Fan,X.K.Li,etal.Microstructure and osteoblast response of gradient bioceramic coating ontitanium alloy fabricated by laser cladding[J].Applied Surface Science 255(2008)426–428.]以CaHPO4·2H2O和CaCO3混合粉末为原始涂层粉末,采用CO2激光在Ti合金表面原位合成梯度活性涂层,并通过添加稀土元素进一步细化组织和提高涂层的生物活性。In recent years, the laser cladding method has attracted extensive attention due to its simple and flexible processing, and its ability to achieve metallurgical bonding of substrates and coatings. It uses a high-energy laser beam as a heating source, and clads the required material on the surface of the substrate by pre-powder or synchronous powder feeding, which is a promising coating preparation process. Literature [F. J.Pou,M.Boutinguiza,et al.Main characteristics of calcium phosphatecoatings obtained by laser cladding[J].Applied Surface Science 247(2005)486–492.] The hydroxyapatite cladding on the The surface of titanium alloy was successfully modified. However, hydroxyapatite powder is expensive, and using it directly as the original coating powder will increase the production cost, so the mixed powder of CaHPO 4 ·2H 2 O and CaCO 3 can be used instead of hydroxyapatite as the original coating powder. Under the action of high-energy laser beam, CaHPO 4 ·2H 2 O and CaCO 3 can react in situ to generate active materials such as hydroxyapatite. Literature [Deng Chi, Zhang Yaping, Gao Jiacheng. Study on Laser Cladding Bioceramic Coatings and Interfaces [J]. Applied Laser, 26(1)(2006) 21-28.] Mixing CaHPO 4 ·2H 2 O and CaCO 3 The powder is the original coating powder, and a coating with good biological activity was synthesized in situ on the surface of titanium alloy by CO2 laser, which improved the surface properties of titanium alloy. Literature [M.Zheng,D.Fan,XKLi,etal.Microstructure and osteoblast response of gradient bioceramic coating ontitanium alloy fabricated by laser cladding[J].Applied Surface Science 255(2008)426–428.] with CaHPO 4 2H 2 The mixed powder of O and CaCO3 is the original coating powder, and the gradient active coating was synthesized in situ on the surface of Ti alloy by CO2 laser, and the structure was further refined and the biological activity of the coating was improved by adding rare earth elements.
为了能够进一步提高激光熔覆涂层的成型质量,需要合理地控制预置涂层的厚度和均匀性。为此,文献[R.R.Behera,A.Hasan,M.R.Sankar,et al.Laser cladding with HAand functionally graded TiO2-HA precursors on Ti–6Al–4V alloy for enhancingbioactivity and cyto-compatibility[J].Surface&Coatings Technology 352(2018)420-436.]将原始涂层粉末制成浆料铺覆在基板表面,随后进行激光熔覆,这可以很好地确保预置涂层的均匀性。然而,浆料的制备及铺覆后的烘干处理无疑会使实验环节更加冗长,浪费人力和物力。此外,陶瓷基板和金属基板相比,本身的高熔点和脆硬性增加了涂层的制备难度。由于陶瓷基板熔点高,熔覆时所需输入的激光能量密度大。但是其本身脆性大,在极大的热冲击下容易出现基板开裂和变形等问题。因此,文献[O.Carvalho,F.Sousa,S.Madeira,et al.HAp-functionalized zirconia surfaces via hybrid laser processfor dental applications[J].Optics and Laser Technology 106(2018)157–167.]通过激光烧结法在氧化锆陶瓷表面制备了羟基磷灰石涂层。激光烧结法和激光熔覆法相比,前者所使用的激光能量密度更低,不会对陶瓷基板造成大的热冲击,可避免陶瓷基板开裂和变形的问题,但是会带来涂层与基板结合不牢固的问题。In order to further improve the molding quality of the laser cladding coating, it is necessary to reasonably control the thickness and uniformity of the preset coating. To this end, the literature [RRBehera,A.Hasan,MRSankar,et al.Laser cladding with HA and functionally graded TiO 2 -HA precursors on Ti–6Al–4V alloy for enhancingbioactivity and cyto-compatibility[J].Surface&Coatings Technology 352(2018) 420-436.] The original coating powder is made into slurry and spread on the surface of the substrate, followed by laser cladding, which can well ensure the uniformity of the pre-coating. However, the preparation of the slurry and the drying treatment after coating will undoubtedly make the experimental link more lengthy and waste manpower and material resources. In addition, compared with the metal substrate, the high melting point and brittleness of the ceramic substrate increase the difficulty of preparing the coating. Due to the high melting point of the ceramic substrate, the required input laser energy density during cladding is high. However, it is brittle and prone to cracking and deformation of the substrate under great thermal shock. Therefore, the literature [O.Carvalho,F.Sousa,S.Madeira,et al.HAp-functionalized zirconia surfaces via hybrid laser processfor dental applications[J].Optics and Laser Technology 106(2018)157–167.]by laser sintering The hydroxyapatite coating was prepared on the surface of zirconia ceramics by the method. Compared with the laser cladding method, the laser sintering method uses a lower laser energy density and does not cause a large thermal shock to the ceramic substrate, which can avoid the problem of cracking and deformation of the ceramic substrate, but it will cause the coating to be combined with the substrate. Unstable problem.
发明内容SUMMARY OF THE INVENTION
为了克服现有技术中涂层与基板结合性差和原始涂层粉末流动性差的问题,本发明提供了一种改善氧化铝-氧化锆复合陶瓷表面活性的方法。In order to overcome the problems of poor bonding between the coating and the substrate and poor fluidity of the original coating powder in the prior art, the present invention provides a method for improving the surface activity of the alumina-zirconia composite ceramic.
本发明的具体过程是:The concrete process of the present invention is:
步骤1,制备球形粉末:
在制备球形粉末时,配制CaHPO4·2H2O与CaCO3的混合粉末;向该混合粉末中加入溶液,球磨后得到混合浆料。所述CaHPO4·2H2O的质量百分比为78~82%、CaCO3的质量百分比为18~22%When preparing spherical powder, a mixed powder of CaHPO 4 ·2H 2 O and CaCO 3 is prepared; a solution is added to the mixed powder, and a mixed slurry is obtained after ball milling. The mass percentage of CaHPO 4 ·2H 2 O is 78-82%, and the mass percentage of CaCO 3 is 18-22%
得到的混合浆料干燥后得到原始涂层粉末。所述原始涂层粉末的质量为200~250g;The resulting mixed slurry was dried to obtain the original coating powder. The mass of the original coating powder is 200-250g;
向得到的原始涂层粉末中加入蒸馏水,搅拌均匀,得到混合浆料。所述原始涂层粉末与蒸馏水的质量百分比为40~50:60~50。Distilled water is added to the obtained original coating powder, and the mixture is uniformly stirred to obtain a mixed slurry. The mass percentage of the original coating powder and distilled water is 40-50:60-50.
通过离心喷雾造粒机制得粒径分布范围为21.9~122.5μm的球形粉末。A spherical powder with a particle size distribution range of 21.9-122.5 μm was obtained by a centrifugal spray granulator.
在喷雾造粒时,所述离心喷雾造粒机的进风温度和出风温度分别为350~400℃和140~160℃。给料泵的转速为10~15r/min。During spray granulation, the inlet air temperature and the outlet air temperature of the centrifugal spray granulator are respectively 350-400°C and 140-160°C. The rotation speed of the feed pump is 10-15r/min.
步骤2,铺覆球形粉末层:
将得到的球形粉末铺覆在氧化铝-氧化锆复合陶瓷基板表面,获得铺覆均匀的球形粉末层;所述球形粉末层的厚度为200~250μm。The obtained spherical powder is spread on the surface of the alumina-zirconia composite ceramic substrate to obtain a uniformly spread spherical powder layer; the thickness of the spherical powder layer is 200-250 μm.
所述氧化铝-氧化锆复合陶瓷基板中,氧化铝为55~70%,氧化锆为30~45%,所述的百分比为摩尔百分比。In the alumina-zirconia composite ceramic substrate, alumina is 55-70%, zirconia is 30-45%, and the percentages are mole percentages.
步骤3,制备氧化铝-氧化锆复合陶瓷:
通过激光熔覆法,使铺覆在氧化铝-氧化锆复合陶瓷基板表面的球形粉末熔化凝固,在该基板表面获得活性涂层,具体过程为:Through the laser cladding method, the spherical powder coated on the surface of the alumina-zirconia composite ceramic substrate is melted and solidified, and an active coating is obtained on the surface of the substrate. The specific process is as follows:
第一步,预热基板。The first step is to preheat the substrate.
将铺覆有球形粉末的氧化铝-氧化锆复合陶瓷基板放置在加热台上进行预热,加热温度为150~300℃。The alumina-zirconia composite ceramic substrate covered with spherical powder is placed on a heating table for preheating, and the heating temperature is 150-300°C.
第二步,设置加工参数。The second step is to set the processing parameters.
将激光喷头移动到氧化铝-氧化锆复合陶瓷基板宽度方向的对称轴线上,并使该激光喷头距基板起始端10mm的位置。激光喷头与基板的垂直距离为15mm。设定激光扫描功率为600~800W,扫描速度为650~750mm/min,扫描路径为单道直线扫描,扫描距离为30~60mm。Move the laser nozzle to the axis of symmetry in the width direction of the alumina-zirconia composite ceramic substrate, and make the laser nozzle 10 mm away from the starting end of the substrate. The vertical distance between the laser nozzle and the substrate is 15mm. Set the laser scanning power to be 600-800W, the scanning speed to be 650-750mm/min, the scanning path to be single-track linear scanning, and the scanning distance to be 30-60mm.
第三步,利用激光熔覆法在氧化铝-氧化锆复合陶瓷基板表面获得熔凝的活性涂层。In the third step, a fused active coating is obtained on the surface of the alumina-zirconia composite ceramic substrate by using a laser cladding method.
开启激光器,激光熔覆所述铺覆在氧化铝-氧化锆复合陶瓷基板表面的球形粉末;该球形粉末吸收激光能量熔化,在氧化铝-氧化锆复合陶瓷基板表面形成熔凝后的活性涂层。自然冷却,得到表面改性后的氧化铝-氧化锆复合陶瓷。Turn on the laser, and laser clad the spherical powder coated on the surface of the alumina-zirconia composite ceramic substrate; the spherical powder absorbs laser energy to melt, and forms a fused active coating on the surface of the alumina-zirconia composite ceramic substrate . Natural cooling to obtain surface-modified alumina-zirconia composite ceramics.
所述激光熔覆中,手套箱中的水含量维持在0.5ppm,氧含量为34~39ppm,箱压为2~3mbar。激光熔覆的保护气为纯氩气。In the laser cladding, the water content in the glove box is maintained at 0.5 ppm, the oxygen content is 34-39 ppm, and the box pressure is 2-3 mbar. The shielding gas for laser cladding is pure argon.
本发明利用激光熔覆法在氧化铝-氧化锆复合陶瓷表面原位合成羟基磷灰石,改善了氧化铝-氧化锆复合陶瓷的表面活性,实现涂层与基板间的冶金结合,同时简化了实验工艺和节约了实验成本。The invention utilizes the laser cladding method to synthesize hydroxyapatite on the surface of the alumina-zirconia composite ceramic in situ, improves the surface activity of the alumina-zirconia composite ceramic, realizes the metallurgical bonding between the coating and the substrate, and simplifies the The experimental technology and the experimental cost are saved.
与现有技术相比,本发明具有以下突出特点:Compared with the prior art, the present invention has the following outstanding features:
1、与传统的浆料铺覆方法相比,本发明在铺覆时所使用的是由CaHPO4·2H2O和CaCO3组成的球形粉末,如附图1所示。传统的浆料铺覆方法是将CaHPO4·2H2O和CaCO3粉末与粘结剂按一定比例混合,制成浆料后铺覆在基板表面,随后烘干浆料,对浆料预置层进行激光熔覆。而本发明是将CaHPO4·2H2O和CaCO3粉末制成浆料后,造粒使其变为球形粉末,随后铺覆在基板表面,对球形粉末进行激光熔覆。相比而言,铺覆球形粉末能够避免铺覆浆料后烘干所带来的预置层龟裂、起皮等问题,提高熔覆后涂层的成型质量。同时,由于激光熔覆是在密闭的手套箱中进行的,对于传统的浆料铺覆法来说,若要进行多次铺覆,则需要每次都将基板从手套箱中取出,重新铺覆浆料并烘干后再次放入手套箱中进行激光熔覆;而本发明所使用的球形粉末铺覆则可以在手套箱中直接完成多次铺覆并熔覆的过程。1. Compared with the traditional slurry coating method, the present invention uses spherical powder composed of CaHPO 4 ·2H 2 O and CaCO 3 during coating, as shown in FIG. 1 . The traditional slurry coating method is to mix CaHPO 4 2H 2 O and CaCO 3 powder with a binder in a certain proportion, make a slurry and then spread it on the surface of the substrate, then dry the slurry, and pre-set the slurry. The layer is laser clad. In the present invention, the CaHPO 4 ·2H 2 O and CaCO 3 powders are made into slurry, granulated to turn them into spherical powders, and then spread on the surface of the substrate to perform laser cladding on the spherical powders. In contrast, the coating of spherical powder can avoid the problems of cracking and peeling of the preset layer caused by drying after coating the slurry, and improve the molding quality of the coating after cladding. At the same time, since the laser cladding is carried out in a closed glove box, for the traditional slurry laying method, if multiple layings are required, the substrate needs to be taken out of the glove box every time, and the substrate is re-laid. After the slurry is coated and dried, it is put into the glove box again for laser cladding; and the spherical powder coating used in the present invention can directly complete the process of multiple coating and cladding in the glove box.
2、本发明利用高能激光束熔化由CaHPO4·2H2O和CaCO3组成的球形粉末,在氧化铝-氧化锆复合陶瓷基板表面直接原位反应合成类似于人体骨成分的羟基磷灰石(Ca10(PO4)6(OH)2)等磷酸钙类活性材料,如附图2所示。从涂层表面的物相分析结果可以看出,涂层中含有大量的磷酸钙类活性相,分别为晶面指数为(-234)、(144)、(006)、(106)的Ca10(PO4)6(OH)2相1、晶面指数为(-222)、(105)的Ca4P2O9相2、晶面指数为(220)、(342)、(526)Ca3(PO4)2相3、晶面指数为(132)、(121)、(541)、(-622)、(242)的Ca2P2O7相4、晶面指数为(112)、(032)、(-241)的Ca(PO3)2相5、晶面指数为(033)、(-236)的CaP4O11相6,这些磷酸钙盐会使人体体液中的PO4 3-、Ca2+在涂层表面吸附,进而诱导类骨磷酸盐在涂层表面形成。由此可以判定,本发明通过激光熔覆法制备的涂层具有生物活性,使氧化铝-氧化锆复合陶瓷的表面活性得到改善。2. The present invention utilizes a high-energy laser beam to melt spherical powder composed of CaHPO 4 ·2H 2 O and CaCO 3 , and directly in situ reacts on the surface of an alumina-zirconia composite ceramic substrate to synthesize hydroxyapatite (hydroxyapatite) that is similar to human bone components. Ca 10 (PO 4 ) 6 (OH) 2 ) and other calcium phosphate active materials, as shown in FIG. 2 . From the phase analysis results of the coating surface, it can be seen that the coating contains a large number of calcium phosphate active phases, which are Ca 10 with crystal plane indices (-234), (144), (006) and (106) respectively. (PO 4 ) 6 (OH) 2
3、工艺简单,成型速度快。相比于溶胶凝胶法、电化学法和电泳沉积法,整个过程没有冗长的化学反应周期,从而缩短了制备时长,简化了加工工序。3. The process is simple and the molding speed is fast. Compared with the sol-gel method, electrochemical method and electrophoretic deposition method, the whole process does not have a lengthy chemical reaction cycle, thereby shortening the preparation time and simplifying the processing procedure.
4、涂层与基板界面结合牢固。在激光束的作用下,涂层与基板上表层均发生了熔化,在熔融状态会发生局部相互扩散,导致涂层和基板之间产生了化学冶金结合。与文献[O.Carvalho,F.Sousa,S.Madeira,et al.HAp-functionalized zirconia surfaces viahybrid laser process for dental applications[J].Optics and Laser Technology106(2018)157–167.]采用激光烧结法在氧化锆基板表面制备的羟基磷灰石涂层和文献采用[A.Jemat,M.J.Ghazalia,M.Razali,et al.Influence of the nano hydroxyapatitepowder on thermally sprayed HA coatings onto stainless steel[J].Surface&Coatings Technology 306(2016)181–186.]采用热喷涂法在不锈钢基板制备的羟基磷灰石涂层相比,本发明制备的涂层与基板之间不存在裂纹和间隙,结合牢固,如附图3所示。4. The interface between the coating and the substrate is firmly bonded. Under the action of the laser beam, both the coating and the upper surface of the substrate are melted, and local mutual diffusion occurs in the molten state, resulting in a chemical metallurgical bond between the coating and the substrate. Similar to the literature [O.Carvalho,F.Sousa,S.Madeira,et al.HAp-functionalized zirconia surfaces viahybrid laser process for dental applications[J].Optics and Laser Technology106(2018)157–167.] using laser sintering method in Hydroxyapatite coatings prepared on the surface of zirconia substrates and literatures [A.Jemat,M.J.Ghazalia,M.Razali,et al.Influence of the nano hydroxyapatitepowder on thermally sprayed HA coatings onto stainless steel[J].Surface&Coatings Technology 306 (2016) 181–186.] Compared with the hydroxyapatite coating prepared on the stainless steel substrate by the thermal spraying method, there is no crack and gap between the coating prepared by the present invention and the substrate, and the combination is firm, as shown in Figure 3 Show.
附图说明Description of drawings
图1是本发明造粒后粉末的形貌图。Fig. 1 is the topography of the powder after granulation of the present invention.
图2是本发明制备活性涂层表面的物相分析图谱。Fig. 2 is the phase analysis spectrum of the surface of the active coating prepared by the present invention.
图3是本发明制备的活性涂层与基板界面处的微观组织图和激光烧结法和热喷涂法制备的活性涂层与基板界面处微观组织图。3 is a microstructure diagram at the interface between the active coating prepared by the present invention and the substrate, and a microstructure diagram at the interface between the active coating prepared by the laser sintering method and the thermal spraying method and the substrate.
图中:1.晶面指数为(-234)、(144)、(006)、(106)的Ca10(PO4)6(OH)2相;2.晶面指数为(-222)、(105)的Ca4P2O9相;3.晶面指数为(220)、(342)、(526)Ca3(PO4)2相;4.晶面指数为(132)、(121)、(541)、(-622)、(242)的Ca2P2O7相;5.晶面指数为(112)、(032)、(-241)的Ca(PO3)2相;6.晶面指数为(033)、(-236)的CaP4O11相;7.本发明制备的涂层与基板的结合界面。虚线以上为涂层区域,虚线一下为基板区域。8.激光烧结法制备的涂层与基板的结合界面。9.热喷涂法制备的涂层与基板的结合界面。In the figure: 1. Ca 10 (PO 4 ) 6 (OH) 2 phase with crystal plane indices of (-234), (144), (006), (106); 2. Crystal plane indices of (-222), (105) Ca 4 P 2 O 9 phase; 3. The crystal plane index is (220), (342), (526) Ca 3 (PO 4 ) 2 phase; 4. The crystal plane index is (132), (121 ), (541), (-622), (242) Ca 2 P 2 O 7 phases; 5. Ca(PO 3 ) 2 phases with crystal plane indices (112), (032), (-241); 6. The CaP 4 O 11 phase with crystal plane indices of (033) and (-236); 7. The bonding interface between the coating prepared by the present invention and the substrate. Above the dotted line is the coating area, and below the dotted line is the substrate area. 8. The bonding interface between the coating prepared by the laser sintering method and the substrate. 9. The bonding interface between the coating prepared by thermal spraying and the substrate.
图4是本发明的流程图。。Figure 4 is a flow chart of the present invention. .
具体实施方式Detailed ways
本发明是一种改善氧化铝-氧化锆复合陶瓷基板表面活性的方法,将通过五个实施例具体描述其过程。The present invention is a method for improving the surface activity of an alumina-zirconia composite ceramic substrate, and its process will be specifically described through five embodiments.
本发明的具体过程是:The concrete process of the present invention is:
步骤1,制备球形粉末。
第一步,配制原始涂层粉末。The first step is to formulate the original coating powder.
取80%的CaHPO4·2H2O和20%的CaCO3,所述百分比为质量百分比。配制200g的混合粉末。Take 80% CaHPO 4 ·2H 2 O and 20% CaCO 3 , and the percentages are mass percentages. 200 g of mixed powder was prepared.
向所述混合粉末中加入20ml的聚乙烯醇溶液和100ml的无水乙醇,以550r/min的转速球磨4h后,得到混合浆料。20 ml of polyvinyl alcohol solution and 100 ml of absolute ethanol were added to the mixed powder, and the mixed slurry was obtained after ball milling at a speed of 550 r/min for 4 hours.
将得到的混合浆料在室温下干燥24h,得到原始涂层粉末。The obtained mixed slurry was dried at room temperature for 24 h to obtain the original coating powder.
第二步,制备浆料。The second step is to prepare the slurry.
向步骤1得到的原始涂层粉末中加入蒸馏水,搅拌均匀,得到混合浆料。所述原始涂层粉末与蒸馏水的质量百分比为40~50:60~50。Distilled water is added to the original coating powder obtained in
第三步,喷雾造粒。The third step is spray granulation.
开启离心喷雾造粒机,设置该离心喷雾造粒机的进风温度和出风温度分别为350℃和140℃。依次开启离心分机、空气加热器、开启电机和给料泵。将得到的浆料送入离心喷头内。所述给料泵的转速为10~15r/min。待浆料全部传送结束后,关闭加热器和离心风机,从喷雾干燥机底部的集粉器中收集球形粉末。所述球形粉末的粒径分布范围为21.9μm~122.5μm。Turn on the centrifugal spray granulator, and set the inlet air temperature and outlet air temperature of the centrifugal spray granulator to 350°C and 140°C, respectively. Turn on the centrifuge, air heater, turn on the motor and feed pump in sequence. The resulting slurry is fed into a centrifugal nozzle. The rotational speed of the feed pump is 10-15 r/min. After the slurry is all conveyed, turn off the heater and centrifugal fan, and collect spherical powder from the powder collector at the bottom of the spray dryer. The particle size distribution of the spherical powder ranges from 21.9 μm to 122.5 μm.
步骤2,在氧化铝-氧化锆复合陶瓷基板表面铺覆球形粉末层。
采用刮刀片将步骤1得到球形粉末铺覆于氧化铝-氧化锆复合陶瓷基板表面,获得铺覆均匀的球形粉末层;所述球形粉末层的厚度为200μm。The spherical powder obtained in
所述氧化铝-氧化锆复合陶瓷基板由氧化铝和氧化锆组成,其中氧化铝为55%,氧化锆为45%,所述的百分比为摩尔百分比。The alumina-zirconia composite ceramic substrate is composed of alumina and zirconia, wherein the alumina is 55% and the zirconia is 45%, and the percentages are mole percentages.
所述基板的尺寸为70mm×12mm×4mm。The size of the substrate is 70mm×12mm×4mm.
步骤3,激光熔覆氧化铝-氧化锆复合陶瓷基板表面的球形粉末。
通过激光熔覆法,将步骤2铺覆好的球形粉末进一步熔化凝固,使基板表面获得活性涂层,具体制备过程为:Through the laser cladding method, the spherical powder coated in
第一步,预热基板。The first step is to preheat the substrate.
将铺覆有球形粉末的氧化铝-氧化锆复合陶瓷基板放置在加热台上进行预热,加热温度为150℃。The alumina-zirconia composite ceramic substrate covered with spherical powder was placed on a heating table for preheating, and the heating temperature was 150°C.
第二步,设置加工参数。The second step is to set the processing parameters.
将激光喷头移动到氧化铝-氧化锆复合陶瓷基板宽度方向的对称轴线上,并使该激光喷头距基板起始端10mm的位置。调整激光喷头与基板的垂直距离为15mm。设定激光扫描功率为600~800W,扫描速度为650~750mm/min,扫描路径为单道直线扫描,扫描距离为30mm。Move the laser nozzle to the axis of symmetry in the width direction of the alumina-zirconia composite ceramic substrate, and make the laser nozzle 10 mm away from the starting end of the substrate. Adjust the vertical distance between the laser nozzle and the substrate to be 15mm. Set the laser scanning power to be 600-800W, the scanning speed to be 650-750mm/min, the scanning path to be single-track linear scanning, and the scanning distance to be 30mm.
设定扫描时激光喷头的路径为,以激光喷头当前所在位置为起点,沿平行于基板长度方向直线扫描。The path of the laser nozzle during scanning is set to take the current position of the laser nozzle as the starting point, and scan in a straight line parallel to the length of the substrate.
第三步,利用激光熔覆法在氧化铝-氧化锆复合陶瓷基板表面获得熔凝的活性涂层。In the third step, a fused active coating is obtained on the surface of the alumina-zirconia composite ceramic substrate by using a laser cladding method.
开启激光器,通过激光熔覆所述铺覆在氧化铝-氧化锆复合陶瓷基板表面的球形粉末。Turn on the laser, and clad the spherical powder coated on the surface of the alumina-zirconia composite ceramic substrate by laser cladding.
所述激光熔覆时,激光束经激光喷头输出并照射在铺覆的球形粉末表面;该球形粉末吸收激光能量熔化形成熔池。激光喷头按设定的路径移动至距离起始位置30mm处停止。During the laser cladding, a laser beam is outputted by a laser nozzle and irradiated on the surface of the spherical powder covered; the spherical powder absorbs laser energy and melts to form a molten pool. The laser nozzle moves according to the set path and stops at a distance of 30mm from the starting position.
扫描过程中,随着激光喷头的移动,铺覆在氧化铝-氧化锆复合陶瓷基板表面的球形粉末被不断熔化。当激光束离开后,在氧化铝-氧化锆复合陶瓷基板表面形成熔凝后的活性涂层。During the scanning process, with the movement of the laser nozzle, the spherical powder coated on the surface of the alumina-zirconia composite ceramic substrate is continuously melted. When the laser beam leaves, a fused active coating is formed on the surface of the alumina-zirconia composite ceramic substrate.
在激光熔覆过程中,所述激光喷头的移动速度为设定的扫描速度。During the laser cladding process, the moving speed of the laser nozzle is the set scanning speed.
所述激光熔覆过程是在以纯氩气为保护气氛的手套箱中完成的,手套箱中的水含量维持在0.5ppm,氧含量为34~39ppm,箱压为2~3mbar。所述激光器为CO2激光器,型号为Rofin DC-015。The laser cladding process is completed in a glove box with pure argon as a protective atmosphere. The water content in the glove box is maintained at 0.5 ppm, the oxygen content is 34-39 ppm, and the box pressure is 2-3 mbar. The laser is a CO 2 laser, the model is Rofin DC-015.
当激光扫描结束后,关闭激光器,关闭加热炉,基板及熔凝后的活性涂层一起自然冷却,得到表面改性后氧化铝-氧化锆复合陶瓷。When the laser scanning is completed, the laser is turned off, the heating furnace is turned off, the substrate and the fused active coating are cooled naturally together, and the surface-modified alumina-zirconia composite ceramic is obtained.
本发明通过五个实施案例详细描述其具体过程,各实施例的涂层组分与制备过程均相同,不同之处在于各实施例的工艺参数。The present invention describes its specific process in detail through five implementation cases. The coating components and preparation process of each embodiment are the same, and the difference lies in the process parameters of each embodiment.
表1各实施例的工艺参数The process parameters of each embodiment of table 1
注:表1中CaHPO4·2H2O与CaCO3的含量均为质量百分比;原始涂层粉末与蒸馏水的含量均为质量百分比,氧化锆与氧化铝的含量均为摩尔百分比。Note: The contents of CaHPO 4 ·2H 2 O and CaCO 3 in Table 1 are all mass percentages; the contents of original coating powder and distilled water are all mass percentages, and the contents of zirconia and alumina are all molar percentages.
本发明通过调控整个过程中的工艺参数,确保基板表面球形粉末得到完全熔化,并保证基板上表层的部分熔化,获得了具有活性涂层,且该涂层与基板间无裂纹和间隙。By adjusting the process parameters in the whole process, the invention ensures that the spherical powder on the surface of the substrate is completely melted and part of the upper surface layer of the substrate is melted to obtain an active coating without cracks and gaps between the coating and the substrate.
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110711513 | 2021-06-25 | ||
CN2021107115133 | 2021-06-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113816770A CN113816770A (en) | 2021-12-21 |
CN113816770B true CN113816770B (en) | 2022-10-04 |
Family
ID=78921847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111058276.1A Active CN113816770B (en) | 2021-06-25 | 2021-09-09 | Preparation method for improving surface activity of aluminum oxide-zirconium oxide composite ceramic |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113816770B (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100457972C (en) * | 2005-09-29 | 2009-02-04 | 上海交通大学 | Production of composite biological ceramic coating by laser coating home position |
KR100751505B1 (en) * | 2006-09-28 | 2007-08-23 | 한국기계연구원 | Hydroxyapatite coating layer excellent in biocompatibility and manufacturing method thereof |
US8206843B2 (en) * | 2007-05-16 | 2012-06-26 | Guizhou University | Bioceramic coating, method of making and use thereof |
EP2359873A1 (en) * | 2010-02-12 | 2011-08-24 | Straumann Holding AG | Process for preparing a body having an osteointegrative surface |
CN102031518A (en) * | 2010-12-30 | 2011-04-27 | 同济大学 | method for preparing material with biological ceramic composite coating laser-clad on surface of titanium alloy |
-
2021
- 2021-09-09 CN CN202111058276.1A patent/CN113816770B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113816770A (en) | 2021-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sharifianjazi et al. | Hydroxyapatite consolidated by zirconia: applications for dental implant | |
US8703294B2 (en) | Bioactive graded zirconia-based structures | |
Khor et al. | Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti–6Al–4V composite coatings | |
JP4712028B2 (en) | X-ray opaque glass, manufacturing method thereof, and use thereof | |
Yi et al. | Preparation and in vitro evaluation of plasma-sprayed bioactive akermanite coatings | |
KR101826967B1 (en) | Implant comprising Bioactive color glass and preparing method thereof | |
CN108285343A (en) | A kind of preparation method of bioactivity glass coating modification zirconium oxide dental porcelain | |
Singh et al. | Mechanical properties of vacuum plasma sprayed reinforced hydroxyapatite coatings on Ti-6Al-4V alloy | |
Su et al. | Ca-P bioactive coating prepared by combining microwave-hydrothermal and supersonic atmospheric plasma spraying methods | |
Safi et al. | Effects of long durations of RF–magnetron sputtering deposition of hydroxyapatite on titanium dental implants | |
CN102851664B (en) | Method for preparing hydroxy apatite biological ceramic coating containing fluorine | |
Azari et al. | Deposition of crystalline hydroxyapatite nano-particle on zirconia ceramic: a potential solution for the poor bonding characteristic of zirconia ceramics to resin cement | |
CN113816770B (en) | Preparation method for improving surface activity of aluminum oxide-zirconium oxide composite ceramic | |
Su et al. | In-situ synthesis and characterization of calcium phosphate coatings on rapidly solidified zirconia toughened alumina eutectic bioceramics by laser cladding | |
JP3860726B2 (en) | Low temperature sintered apatite glass ceramic | |
KR101311979B1 (en) | Method for preparing bio materials using coating of hydroxyapatite/zirconia composites and bio materials prepared therefrom | |
CN104152840A (en) | A method for preparing TiO2/Ta2O5 composite coating with special micro-nano structure | |
CN101254315B (en) | Bone replacement material and preparation method of CaO-ZrO2-SiO2 coating and titanium alloy | |
CN100544777C (en) | Coating material, preparation method and application of gradient bioactive ceramics containing dilanthanum trioxide | |
KR101951343B1 (en) | Implant comprising Bioactive color glass and preparing method thereof | |
CN113730654B (en) | Gradient porous bioactive ceramic coating material and preparation method thereof | |
CN102000358A (en) | Gradient bioactive ceramic coating material containing Nd2O3 and its preparation method | |
EP1609441B1 (en) | Biocompatible material | |
Morks | Plasma spraying of zirconia–titania–silica bio-ceramic composite coating for implant application | |
CN101991877B (en) | Preparation method of a three-phase CaP-glass coating/porous Al2O3 scaffold biocomposite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |