CN113813397A - 一种药物-多肽自组装纳米颗粒及其制备方法 - Google Patents
一种药物-多肽自组装纳米颗粒及其制备方法 Download PDFInfo
- Publication number
- CN113813397A CN113813397A CN202010568258.7A CN202010568258A CN113813397A CN 113813397 A CN113813397 A CN 113813397A CN 202010568258 A CN202010568258 A CN 202010568258A CN 113813397 A CN113813397 A CN 113813397A
- Authority
- CN
- China
- Prior art keywords
- drug
- glucosamine
- preparation
- self
- phenylalanine dipeptide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/337—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/4738—Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
- A61K31/4745—Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/58—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
- A61K31/585—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin containing lactone rings, e.g. oxandrolone, bufalin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/704—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/549—Sugars, nucleosides, nucleotides or nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6925—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a microcapsule, nanocapsule, microbubble or nanobubble
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
Abstract
本发明提供了一种药物‑多肽自组装纳米颗粒及其制备方法。该颗粒由疏水性小分子药物、苯丙氨酸二肽和亲水性的糖胺基团合成前药分子后在疏水作用下自组装形成。对疏水性小分子原药进行成功的结构修饰后获得前药分子,前药分子自组装形成的致密球形结构将原药包裹在内部,使其具有较低的毒性和较高的水溶性。与其他负载药物的纳米载体相比,该纳米颗粒解决了药物负载量低与包封率低的问题,具有药物载量上的明显优势,可用于制备抗炎或抗肿瘤药物。
Description
技术领域
本发明涉及纳米医药领域,特别涉及一种药物-多肽自组装纳米颗粒及其制备方法。
背景技术
疏水性小分子药物,如雷公藤甲素、喜树碱、紫杉醇、阿霉素等,具有显著的免疫抑制、抗炎作用和抗肿瘤活性。一直以来,它们广泛用于治疗炎症和抗肿瘤治疗。近来的实验数据表明其中的有些药物(如雷公藤甲素)不仅具有广谱的抗肿瘤活性和肿瘤耐药性逆转作用,还能够增强其他疗法的抗肿瘤效应。但是以上所列举的疏水性小分子药物存在药物水溶性差的缺点,导致其抗炎或抗肿瘤药物的开发研究受到了很大的限制。
其中,雷公藤甲素(Triptolide,TP),又称作雷公藤内酯,是传统中药卫矛科雷公藤属雷公藤的主要活性成分之一,含有独特的三环氧合a,β-不饱和五元内酯环结构。研究发现,雷公藤甲素通过与XPB(RNA聚合酶II起始转录因子TFIIH的一个亚基)共价结合,抑制其ATP酶活性并引起RNA聚合酶II大亚基Rpb1的降解,从而抑制RNA聚合酶II的转录活性和核酸剪切修复,以上机制使雷公藤甲素具有强抗肿瘤和毒性特性;雷公藤甲素抑制肿瘤抗药性的分子机制还包括改变ATP结合盒转运蛋白、诱导凋亡通路、导致肿瘤抑制因子的增加和致癌因子的减少、能够靶向肿瘤干细胞和肿瘤微环境介导的耐药性等。雷公藤甲素除了具有水溶性差的缺点外,还对消化系统、泌尿生殖系统和血液系统等有严重毒副作用,治疗窗窄,这些缺点降低了其药物有效利用率,从而限制了其抗炎和抗肿瘤的应用。
现已开发和评价的雷公藤甲素类似物有结构修饰的(5R)-5-羟基雷公藤甲素(LLDT-8)、PG490-88和Minnelide,这些衍生物都是仅改善了毒性和水溶性的一个方面。目前报道较多的是脂质体、条件响应性纳米材料、聚合物的药物递送体系,一定程度上解决了药物靶向、生物相容性和安全性等问题,但是这些纳米制剂大多是将疏水性小分子药物包被/包载在内,结构稳定性不高,在血液中递送时经常出现泄漏或提前释放从而造成安全问题。因此,研发一种药物能够同时解决雷公藤甲素毒性高和水溶性低,且纳米药物结构不稳定等问题是非常必要的。
发明内容
针对现有技术中的缺陷,本发明提供了一种药物-多肽自组装纳米颗粒及其制备方法。该颗粒由疏水性小分子药物、苯丙氨酸二肽和亲水性的糖胺基团合成前药分子后在疏水作用下自组装形成。对疏水性小分子原药进行成功的结构修饰后获得前药分子,前药分子自组装形成的致密球形结构将原药包裹在内部,使其具有较低的毒性和较高的水溶性。与其他负载药物的纳米载体相比,该纳米颗粒解决了药物负载量低与包封率低的问题,具有药物载量上的明显优势,可用于制备抗炎或抗肿瘤药物。
一种药物-多肽自组装纳米颗粒,由药物、多肽、亲水基团合成,所述药物为疏水性小分子药物,所述多肽为苯丙氨酸二肽,所述亲水基团为亲水性的糖胺基团,所述纳米颗粒在疏水作用下自组装形成。
其中,苯丙氨酸二肽作为最简单的自组装模块,具有生物相容性和非免疫原性等显著优点。苯丙氨酸二肽是结构最简单的多肽,形成的纳米颗粒粒径更小,纳米药物粒径越小,药物效果更好。
进一步的,所述疏水性小分子药物选自雷公藤甲素、喜树碱、紫杉醇、阿霉素中的至少一种。这些药物都具有末端的羟基,因此可以与苯丙氨酸二肽形成酯键从而实现药物和多肽的连接。
进一步的,所述亲水集团为葡萄糖胺。葡萄糖胺除了增加亲水性,还可以作为靶向分子,靶向糖代谢剧烈的部位如肿瘤。
所述疏水性小分子药物均具有疏水性,所以都具有水溶性差的问题,雷公藤甲素不仅具有广谱的抗肿瘤活性和肿瘤耐药性逆转作用,还能够增强其他疗法的抗肿瘤效应。
进一步的,所述纳米颗粒呈规则的圆球状,直径为100-200nm。
所述药物还可以为光敏剂或探针,从而实现多种诊疗和多个治疗手段的联合。
本发明还提供一种药物-多肽自组装纳米颗粒的制备方法,包括如下步骤:
(1)合成前药,前药由疏水性小分子药物、苯丙氨酸二肽、亲水基团合成;
(2)将前药加入水溶液中,自组装得到纳米颗粒。
进一步的,步骤(1)中所述疏水性小分子药物为雷公藤甲素、喜树碱、紫杉醇、阿霉素中的至少一种,所述亲水基团为葡萄糖胺。
进一步的,所述步骤(1)中包括如下步骤:
a.制备氨基-苯丙氨酸二肽-葡萄糖胺;
b.制备羧基疏水性小分子药物;
c.获得产物疏水性小分子药物-苯丙氨酸二肽-葡萄糖胺。
进一步的,所述氨基-苯丙氨酸二肽-葡萄糖胺由叔丁氧羰基-苯丙氨酸二肽-葡萄糖胺、无水二氯甲烷、三氟乙酸合成。
进一步的,所述叔丁氧羰基-苯丙氨酸二肽-葡萄糖胺由叔丁氧羰基-苯丙氨酸二肽-羟基、1-乙基-3-(3-二甲基氨基丙基)碳二亚胺、N-羟基琥珀酰亚胺、葡糖糖胺合成。
进一步的,所述羧基疏水性小分子药物由疏水性小分子药物、琥珀酸酐、二甲基氨基吡啶合成。
进一步的,所述疏水性小分子药物-苯丙氨酸二肽-葡萄糖胺由羧基疏水性小分子药物、氨基-苯丙氨酸二肽-葡萄糖胺、二环己基碳二亚胺、1-羟基-5-吡咯烷二酮合成。
本发明还提供了所述的药物-多肽自组装纳米颗粒在制备抗肿瘤药物中的应用。
综上,与现有技术相比,本发明达到了以下技术效果:
(1)自组装疏水性小分子药物纳米颗粒对原药进行了成功的结构修饰,使其同时具有较低的毒性和较高的水溶性。
(2)与其他负载药物的纳米载体相比,该纳米颗粒是由疏水性小分子药物自身作为自组装诱导基团,理论上载药量是100%,解决了药物负载量与包封率的问题,具有药物载量上的优势,且自组装形成的致密结构更具稳定性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为雷公藤甲素前药的合成路径。
图2为雷公藤甲素纳米颗粒电镜图。
图3为雷公藤甲素纳米颗粒在PBS缓冲液中的稳定性。
图4为羧基雷公藤甲素(TP-COOH)、叔丁氧羰基-苯丙氨酸二肽-葡萄糖胺(BOC-FF-AG)、氨基-苯丙氨酸二肽-葡萄糖胺(NH2-FF-AG)、雷公藤甲素-苯丙氨酸二肽-葡萄糖胺(TP-FF-AG)的氢谱图。
图5为羧基雷公藤甲素(TP-COOH)、叔丁氧羰基-苯丙氨酸二肽-葡萄糖胺(BOC-FF-AG)、氨基-苯丙氨酸二肽-葡萄糖胺(NH2-FF-AG)、雷公藤甲素-苯丙氨酸二肽-葡萄糖胺(TP-FF-AG)的碳谱图。
图6为羧基雷公藤甲素(TP-COOH)、叔丁氧羰基-苯丙氨酸二肽-葡萄糖胺(BOC-FF-AG)、氨基-苯丙氨酸二肽-葡萄糖胺(NH2-FF-AG)、雷公藤甲素-苯丙氨酸二肽-葡萄糖胺(TP-FF-AG)的液相色谱图。
图7为雷公藤甲素纳米药物体内毒性检测(血常规)。
图8为雷公藤甲素纳米药物体内毒性检测(组织切片)。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明中疏水性小分子药物连接苯丙氨酸二肽和亲水性的糖胺基团,通过氨基和羧基的缩合反应形成疏水性小分子药物苯丙氨酸二肽亲水性的糖胺基团这个两亲性小分子前药,两亲性小分子前药通过疏水作用自组装成纳米颗粒。本发明的亲水性的糖胺基团,一方面是前药分子自组装的重要片段,还具有两个特性,一是极大改善了疏水性小分子药物的疏水性。二是作为靶向分子,靶向糖代谢剧烈的部位如肿瘤。疏水性小分子前药是一个两亲性小分子,将其溶于水时由于疏水作用力自组装成相对稳定的紧密球状结构,其中亲水性的基团在外,疏水性药物分子在内,故该纳米颗粒具有极高的水溶性和较低的毒性。
苯丙氨酸二肽(Phe Phe,FF)是结构最简单的多肽,具有生物相容性和非免疫原性等显著优点,在纳米材料,如纳米管、球形囊泡、纳米纤维和纳米线中有所应用,但是本申请中的将其作为包载药物的纳米颗粒的应用还鲜有报道,因其具有生物相容性和非免疫原性将其作为多肽自组装纳米颗粒的组分。利用苯丙氨酸二肽作为自组装模块形成的纳米颗粒粒径更小,纳米药物粒径越小,药物效果更好。
一种药物-多肽自组装纳米颗粒的制备方法,包括如下步骤:
(1)合成前药,前药由疏水性小分子药物、苯丙氨酸二肽、亲水基团合成,所述疏水性小分子药物为雷公藤甲素、喜树碱、紫杉醇、阿霉素中的至少一种,所述亲水基团为葡萄糖胺。
包括如下步骤:
a.制备氨基-苯丙氨酸二肽-葡萄糖胺;
b.制备羧基疏水性小分子药物;
c.获得产物疏水性小分子药物-苯丙氨酸二肽-葡萄糖胺。
(2)将前药加入水溶液中,自组装得到纳米颗粒。
以下实施例以雷公藤甲素为例,但是喜树碱、紫杉醇、阿霉素均具有疏水性,都具有水溶性差的问题,都具有末端的羟基,能够与苯丙氨酸二肽形成酯键,在结构和性质上相似,因此本领域技术人员能够推及喜树碱、紫杉醇、阿霉素均可适用以下的方案。
实施例1合成前药:雷公藤甲素-二苯丙氨酸-葡萄糖。
雷公藤甲素-二苯丙氨酸-葡萄糖的制备方法,包括如下步骤,如图1所示:
(1)用无水二甲基甲酰胺(DMF)将叔丁氧羰基-苯丙氨酸二肽-葡萄糖胺(Boc-Phe-Phe-OH)、1-乙基-3-(3-二甲基氨基丙基)碳二亚胺、N-羟基琥珀酰亚胺溶解在一起;
(2)将溶有葡糖糖胺和三乙胺(TEA)的无水二甲基甲酰胺(DMF)溶液逐滴加入上述溶液;
(3)将上述混合物减压蒸发20-28小时之后获得产物叔丁氧羰基-苯丙氨酸二肽-葡萄糖胺(BOC-FF-AG);
(4)将叔丁氧羰基-苯丙氨酸二肽-葡萄糖胺(BOC-FF-AG)溶解在等体积的无水二氯甲烷和三氟乙酸的混合物中,并在室温下搅拌3-6小时;
(5)上述溶液经过减压蒸发后通过二氯甲烷/甲醇硅胶柱色谱法纯化,获得产物氨基-苯丙氨酸二肽-葡萄糖胺(NH2-FF-AG);
(6)将雷公藤甲素、琥珀酸酐和二甲基氨基吡啶溶于吡啶中并搅拌过夜;
(7)将上述混合物用乙酸乙酯稀释后,用含有饱和硫酸铜、水和盐水的混合溶液洗涤,之后使用硫酸钠(Na2SO4)干燥浓缩后获得产物羧基雷公藤甲素(TP-COOH);
(8)将羧基雷公藤甲素(TP-COOH)、二环己基碳二亚胺(DCC)和1-羟基-5-吡咯烷二酮(NHS)溶解在无水二氯甲烷中搅拌过夜;
(9)将上述溶液与氨基-苯丙氨酸二肽-葡萄糖胺(NH2-FF-AG)反应过夜,获得最终产物前药分子雷公藤甲素-苯丙氨酸二肽-葡萄糖胺(TP-FF-AG),雷公藤甲素活性位点C14的羟基端作为反应位点;
(10)将溶于二甲基亚砜(DMSO)的TP-FF-AG滴加到磷酸盐缓冲液中,搅拌透析之后得到自组装的大小均匀的纳米颗粒。
用透射电子显微镜观察纳米颗粒形态和大小,图2中显示纳米颗粒呈规则的圆球状,测量其直径为100-200nm。将纳米药物置于磷酸盐缓冲液中观察其粒径的变化,如图3所示,横坐标为天数,纵坐标为纳米颗粒的直径,其中TPNs为阴性对照组,成分为磷酸缓冲液和红细胞膜囊泡,manRTPNs为实验组,成分为雷公藤甲素-多肽自组装纳米颗粒,由图中结果可以看出在5周内雷公藤甲素-多肽自组装纳米颗粒的大小无显著变化,说明其具有较好的结构稳定性。用Bruker VANCE III400光谱仪(400MHz)检测中间产物和最终产物的1HNMR和13CNMR光谱,如图4和图5所示,光谱数据验证了所得产物羧基雷公藤甲素(TP-COOH)、叔丁氧羰基-苯丙氨酸二肽-葡萄糖胺(BOC-FF-AG)、氨基-苯丙氨酸二肽-葡萄糖胺(NH2-FF-AG)、雷公藤甲素-苯丙氨酸二肽-葡萄糖胺(TP-FF-AG)的化学结构。通过液相色谱进行产物的纯度鉴定,如图6所示,产物纯度在80%以上。
实施例2雷公藤甲素纳米药物体内药物毒性分析
将雄性BALB/c小鼠随机分为四组,并分别以单剂量静脉内注射PBS缓冲液(PBS)、雷公藤甲素原药(triptolide)、雷公藤甲素纳米药物(TPNs)和红细胞膜仿生雷公藤甲素纳米药物(manRTPNs),本发明中的药物-多肽自组装纳米颗粒为图7中的膜仿生雷公藤甲素纳米药物(manRTPNs)。
连续注射一周后,对所有小鼠实施安乐死,收集血液以进行血液常规检查和生化参数测量,同时将心脏、肝脏、脾脏、肺和肾脏等主要器官切除并进行H&E染色以进行组织学检查和分析。结果如图7所示,雷公藤甲素原药处理后血细胞的数目,包括白细胞、红细胞和血小板都显著下降,说明其具有骨髓抑制的副作用;生化指标,包括血尿素氮(BUN)、天冬氨酸转氨酶(AST)、肌酐(Cr)和乳酸脱氢酶(LDH)显著升高,说明其严重的肝毒性和肾毒性,而膜仿生雷公藤甲素纳米药物组(manRTPNs)则显著改善了这些严重的毒副作用;分别对四组小鼠的不同器官组织(心、肝、肺、肾、脾)进行切片检查,结果如图8所示,膜仿生雷公藤甲素纳米药物组(manRTPNs)的小鼠组织切片可看到细胞形态正常,染色较浅,从组织学上显示出纳米药物减缓了原药对肝脏和肾脏的毒副作用。
实施例3
本发明的药物-多肽自组装纳米颗粒可以用于制备抗肿瘤药物,除了单一的雷公藤甲素前药,还可以与喜树碱、紫杉醇、阿霉素等形成两种或多种药物混杂自组装的多药物为一体的纳米药物,能够完成联合治疗中的多药物在同一时空的递送。制备步骤如下:
(1)合成前药,前药由疏水性小分子药物、苯丙氨酸二肽、亲水基团合成,所述疏水性小分子药物为雷公藤甲素、喜树碱、紫杉醇、阿霉素中的两种或多种,所述亲水基团为葡萄糖胺。
包括如下步骤:
a.制备氨基-苯丙氨酸二肽-葡萄糖胺;
b.制备羧基疏水性小分子药物,疏水性小分子药物为雷公藤甲素、喜树碱、紫杉醇、阿霉素中的两种或多种;
c.获得产物疏水性小分子药物-苯丙氨酸二肽-葡萄糖胺。
(2)将前药加入水溶液中,自组装得到纳米颗粒。
实施例4
除实施例3之外,多肽自组装纳米颗粒还可以连接或者自组装包载光敏剂或探针,实现多种诊疗和多个治疗手段的联合。
制备步骤如下:
(1)合成前体,前体由光敏剂或探针、苯丙氨酸二肽、亲水基团合成,所述亲水基团为葡萄糖胺。
包括如下步骤:
a.制备氨基-苯丙氨酸二肽-葡萄糖胺;
b.制备羧基光敏剂或探针。
c.获得产物光敏剂或探针-苯丙氨酸二肽-葡萄糖胺。
(2)将前体加入水溶液中,自组装得到光敏剂-多肽纳米颗粒或探针-多肽纳米颗粒。
综上所述,与现有技术相比,本发明达到了以下技术效果:
(1)自组装疏水性小分子药物纳米颗粒对原药进行了成功的结构修饰,使其具有较低的毒性和较高的水溶性。
(2)与其他负载药物的纳米载体相比,该纳米颗粒是由疏水性小分子药物自身作为自组装诱导基团,解决了药物负载量与包封率的问题,具有药物载量上的优势,且自组装形成的致密结构更具稳定性。
(3)因为疏水性小分子药物和苯丙氨酸二肽之间形成的是酯键,能够被酯酶水解,所以具有酯酶响应快速释放的效果,自组装疏水性小分子药物纳米颗粒能够实现载体颗粒携带药物长循环到达病变部位,进入细胞,到达细胞质后响应快速释放,发挥药效。
(4)N端的亲水性的糖胺基团葡萄糖胺除了增加亲水性,还可以作为靶向分子,靶向糖代谢剧烈的部位如肿瘤。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (13)
1.一种药物-多肽自组装纳米颗粒,其特征在于,由药物、多肽、亲水基团合成,所述药物为疏水性小分子药物,所述多肽为苯丙氨酸二肽,所述亲水基团为亲水性的糖胺基团,所述纳米颗粒在疏水作用下自组装形成。
2.根据权利要求1所述的药物-多肽自组装纳米颗粒,其特征在于,所述疏水性小分子药物选自雷公藤甲素、喜树碱、紫杉醇、阿霉素中的至少一种。
3.根据权利要求1所述的药物-多肽自组装纳米颗粒,其特征在于,所述亲水基团为葡萄糖胺。
4.根据权利要求1所述的药物-多肽自组装纳米颗粒,其特征在于,所述纳米颗粒呈规则的圆球状,直径为100-200nm。
5.根据权利要求1所述的药物-多肽自组装纳米颗粒,其特征在于,所述药物还可以为光敏剂或探针。
6.一种药物-多肽自组装纳米颗粒的制备方法,其特征在于,包括如下步骤:
(1)合成前药,前药由疏水性小分子药物、苯丙氨酸二肽、亲水基团合成;
(2)将前药加入水溶液中,自组装得到纳米颗粒。
7.根据权利要求6所述的制备方法,其特征在于,步骤(1)中所述疏水性小分子药物为雷公藤甲素、喜树碱、紫杉醇、阿霉素中的至少一种,所述亲水基团为葡萄糖胺。
8.根据权利要求6所述的制备方法,其特征在于,所述步骤(1)中包括如下步骤:
a.制备氨基-苯丙氨酸二肽-葡萄糖胺;
b.制备羧基疏水性小分子药物;
c.获得产物:疏水性小分子药物-苯丙氨酸二肽-葡萄糖胺。
9.根据权利要求8所述的制备方法,其特征在于,所述氨基-苯丙氨酸二肽-葡萄糖胺由叔丁氧羰基-苯丙氨酸二肽-葡萄糖胺、无水二氯甲烷、三氟乙酸合成。
10.根据权利要求9所述的制备方法,其特征在于,所述叔丁氧羰基-苯丙氨酸二肽-葡萄糖胺由叔丁氧羰基-苯丙氨酸二肽-羟基、1-乙基-3-(3-二甲基氨基丙基)碳二亚胺、N-羟基琥珀酰亚胺、葡糖糖胺合成。
11.根据权利要求8所述的制备方法,其特征在于,所述羧基疏水性小分子药物由疏水性小分子药物、琥珀酸酐、二甲基氨基吡啶合成。
12.根据权利要求8所述的制备方法,其特征在于,所述疏水性小分子药物-苯丙氨酸二肽-葡萄糖胺由羧基疏水性小分子药物、氨基-苯丙氨酸二肽-葡萄糖胺、二环己基碳二亚胺、1-羟基-5-吡咯烷二酮合成。
13.权利要求1-4任一项所述的药物-多肽自组装纳米颗粒在制备抗炎或抗肿瘤药物中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010568258.7A CN113813397A (zh) | 2020-06-19 | 2020-06-19 | 一种药物-多肽自组装纳米颗粒及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010568258.7A CN113813397A (zh) | 2020-06-19 | 2020-06-19 | 一种药物-多肽自组装纳米颗粒及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113813397A true CN113813397A (zh) | 2021-12-21 |
Family
ID=78912115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010568258.7A Pending CN113813397A (zh) | 2020-06-19 | 2020-06-19 | 一种药物-多肽自组装纳米颗粒及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113813397A (zh) |
-
2020
- 2020-06-19 CN CN202010568258.7A patent/CN113813397A/zh active Pending
Non-Patent Citations (1)
Title |
---|
JING LI等: "T cell/Macrophage Dual-Targeting Biomimetic Triptolide Self-Assembly Nanodrugs For Rheumatoid Arthritis Therapy by Inflammatory Microenvironment Remodeling", 《HTTPS://WWW.CHEMRXIV.ORG/ENGAGE/CHEMRXIV/ARTICLE-DETAILS/60C74E74BDBB8918E6A39BB4》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
She et al. | Dendronized heparin− doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy | |
Jia et al. | Construction of redox-responsive tumor targeted cisplatin nano-delivery system for effective cancer chemotherapy | |
Liu et al. | Bio-responsive Bletilla striata polysaccharide-based micelles for enhancing intracellular docetaxel delivery | |
Lin et al. | Doxorubicin loaded silica nanoparticles with dual modification as a tumor-targeted drug delivery system for colon cancer therapy | |
Sun et al. | Low molecular weight heparin-based reduction-sensitive nanoparticles for antitumor and anti-metastasis of orthotopic breast cancer | |
KR20180138113A (ko) | 표적 지향성 하이브리드 나노 시스템 및 그 제조 방법과 용도 | |
Wang et al. | Intracellular GSH-activated galactoside photosensitizers for targeted photodynamic therapy and chemotherapy | |
CN108670954B (zh) | 一种共载化疗药物的甘草次酸前药胶束及其制备方法 | |
CN111420068B (zh) | 聚乙二醇-树枝状聚赖氨酸/酸酐-顺铂复合物及其制备方法和应用 | |
CN112773766A (zh) | 一种用于肿瘤治疗的脂质体递送系统及其制备方法与应用 | |
Cai et al. | Toxicity-attenuated mesoporous silica Schiff-base bonded anticancer drug complexes for chemotherapy of drug resistant cancer | |
Goli et al. | Preparation and evaluation of gemcitabin and cisplatin-entrapped Folate-PEGylated liposomes as targeting co-drug delivery system in cancer therapy | |
CN106565825A (zh) | 稳定化a7r多肽及其在构建肿瘤靶向诊治递药系统中的用途 | |
Nie et al. | In vitro and in vivo evaluation of stimuli-responsive vesicle from PEGylated hyperbranched PAMAM-doxorubicin conjugate for gastric cancer therapy | |
Zhang et al. | GSH responsive nanomedicines self-assembled from small molecule prodrug alleviate the toxicity of cardiac glycosides as potent cancer drugs | |
CN110772645A (zh) | 功能化穿膜肽修饰的药物递送系统 | |
Nguyen et al. | Utilization of click chemistry to study the effect of poly (ethylene) glycol molecular weight on the self-assembly of PEGylated gambogic acid nanoparticles for the treatment of rheumatoid arthritis | |
Sun et al. | Acid-breakable TPGS-functionalized and diallyl disulfide-crosslinked nanogels for enhanced inhibition of MCF-7/ADR solid tumours | |
Zhang et al. | Zwitterionic choline phosphate conjugated folate-poly (ethylene glycol): A general decoration of erythrocyte membrane-coated nanoparticles for enhanced tumor-targeting drug delivery | |
Huang et al. | Development of curcumin-loaded galactosylated chitosan-coated nanoparticles for targeted delivery of hepatocellular carcinoma | |
Tan et al. | A mitochondria-targeted delivery system of doxorubicin and evodiamine for the treatment of metastatic breast cancer | |
Yu et al. | Balancing efficacy and safety of doxorubicin-loaded albumin nanoparticles utilizing pH-sensitive doxorubicin-fatty acid prodrugs | |
Dong et al. | The enhanced antitumor activity of the polymeric conjugate covalently coupled with docetaxel and docosahexaenoic acid | |
CN107441043B (zh) | 一种pH敏感性混合胶束及其制备方法与应用 | |
KR20120126356A (ko) | 양친성 저분자량 히알루론산 복합체를 포함하는 나노 입자 및 그의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20211221 |