[go: up one dir, main page]

CN113809162B - Power element - Google Patents

Power element Download PDF

Info

Publication number
CN113809162B
CN113809162B CN202110480080.5A CN202110480080A CN113809162B CN 113809162 B CN113809162 B CN 113809162B CN 202110480080 A CN202110480080 A CN 202110480080A CN 113809162 B CN113809162 B CN 113809162B
Authority
CN
China
Prior art keywords
layer
gate
dielectric layer
trench
field plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110480080.5A
Other languages
Chinese (zh)
Other versions
CN113809162A (en
Inventor
普佳·瑞凡卓·戴许曼
陈柏安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuvoton Technology Corp
Original Assignee
Nuvoton Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuvoton Technology Corp filed Critical Nuvoton Technology Corp
Publication of CN113809162A publication Critical patent/CN113809162A/en
Application granted granted Critical
Publication of CN113809162B publication Critical patent/CN113809162B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/63Vertical IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/611Insulated-gate field-effect transistors [IGFET] having multiple independently-addressable gate electrodes influencing the same channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/512Disposition of the gate electrodes, e.g. buried gates
    • H10D64/513Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/514Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供了一种功率元件,包括:外延层,具有沟渠,自所述外延层的第一表面向第二表面延伸;隔离场板,位于所述沟渠中;绝缘填充层,位于所述沟渠中,环绕所述隔离场板的下部的侧壁与底部;第一栅极与第二栅极,位于所述沟渠中且位于所述绝缘填充层上;以及介电层,环绕所述第一栅极与所述第二栅极的侧壁,其中所述介电层的下部具有所述介电层的最大宽度,且其中所述隔离场板包括第一部分与第二部分,所述第一部分与所述介电层的所述下部相邻,且其掺杂浓度大于第二部分。

Figure 202110480080

The present invention provides a power element, comprising: an epitaxial layer having a trench extending from a first surface of the epitaxial layer to a second surface; an isolation field plate located in the trench; an insulating filling layer located in the trench wherein, surrounding the sidewall and bottom of the lower portion of the isolation field plate; a first gate and a second gate, located in the trench and on the insulating filling layer; and a dielectric layer surrounding the first sidewalls of the gate and the second gate, wherein the lower portion of the dielectric layer has a maximum width of the dielectric layer, and wherein the isolation field plate includes a first portion and a second portion, the first portion adjacent to the lower portion of the dielectric layer, and has a higher doping concentration than the second portion.

Figure 202110480080

Description

功率元件power components

技术领域technical field

本发明是有关于一种半导体元件技术领域,且特别是有关于一种功率元件。The present invention relates to a technical field of semiconductor elements, and in particular to a power element.

背景技术Background technique

功率金属氧化物半导体场效应晶体管(MOSFET)为电压型控制元件,其驱动电路简单、驱动的功率大且开关速度快,具有高的工作频率,是一种广泛用于各种电子应用元件的开关元件。Power Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is a voltage-type control element. Its driving circuit is simple, its driving power is large, its switching speed is fast, and it has a high operating frequency. It is a switch widely used in various electronic application components. element.

沟槽栅极金属氧化物半导体场效应晶体管是一种将栅极埋入在衬底或外延层中以使其具有垂直通道的功率金属氧化物半导体场效应晶体管。此种功率金属氧化物半导体场效应晶体管具有较小的单元尺寸与小的导通电阻,适合用于中低压的功率MOSFET。Trench gate MOSFET is a power MOSFET whose gate is buried in the substrate or epitaxial layer to have a vertical channel. The power metal-oxide-semiconductor field-effect transistor has a small unit size and a small on-resistance, and is suitable for a power MOSFET of a medium and low voltage.

分离栅极沟槽栅极(Split Gate Trench,SGT)金属氧化物半导体场效应晶体管则是将单一个栅极拆成两个栅极,并以隔离场板分隔两个栅极的一种功率MOSFET。深入外延层的隔离场板可增加横向耗尽区(lateral depletion),并使N漂移掺杂浓度(N-driftdoping concentration)增加。隔离场板还可以减少栅极和漏极的重叠,因此可以减小栅极到漏极的电容(gate-to-drain capacitance)。因此,该结构在静态和动态特性方面均具有优异的性能。A split gate trench gate (Split Gate Trench, SGT) metal oxide semiconductor field effect transistor is a power MOSFET that splits a single gate into two gates and separates the two gates with an isolation field plate. . The isolation field plate deep into the epitaxial layer can increase the lateral depletion and increase the N-driftdoping concentration. Isolating the field plates also reduces gate and drain overlap and therefore reduces gate-to-drain capacitance. Therefore, the structure has excellent performance in both static and dynamic characteristics.

然而,由于SGT MOSFET的工艺较为复杂,栅极与隔离场板之间容易产生漏电流,以致元件的击穿电压不足。另一方面,若为了降低栅极与隔离场板之间的漏电流而减少外延层的掺杂浓度,则会造成导通电阻(Ron)增加,栅极电荷量(gate charge,QG)增加,而影响元件的效能。However, due to the complex process of the SGT MOSFET, leakage current is easily generated between the gate and the isolation field plate, so that the breakdown voltage of the component is insufficient. On the other hand, if the doping concentration of the epitaxial layer is reduced in order to reduce the leakage current between the gate and the isolation field plate, the on-resistance (Ron) will increase, and the gate charge (QG) will increase. and affect the performance of the device.

发明内容Contents of the invention

本发明提出一种功率元件可以降低栅极与隔离场板之间的漏电流,提升元件的击穿电压,降低导通电阻,减少栅极电荷量(QG),改善品质因素(figure of merit,FOM),提升元件的效能。The present invention proposes a power element that can reduce the leakage current between the gate and the isolation field plate, increase the breakdown voltage of the element, reduce the on-resistance, reduce the charge of the gate (QG), and improve the figure of merit. FOM), to improve the performance of the device.

本发明的实施例的一种功率元件,包括一种功率元件,包括:外延层,具有沟渠,自所述外延层的第一表面向第二表面延伸;漏极掺杂层,位于所述外延层的所述第二表面上;第一基体区与第二基体区,位于所述沟渠两侧的所述外延层中;第一源极掺杂区与第二源极掺杂区,分别位于所述第一基体区与所述第二基体区中;隔离场板,位于所述沟渠中;绝缘填充层,位于所述沟渠中,环绕所述隔离场板的下部的侧壁与底部;第一栅极与第二栅极,位于所述沟渠中且位于所述绝缘填充层上,其中所述第一栅极位于所述隔离场板与所述第一基体区之间,所述第二栅极位于所述隔离场板与所述第二基体区之间;以及介电层,环绕所述第一栅极与所述第二栅极的侧壁,其中所述介电层的下部具有所述介电层的最大宽度,且其中所述隔离场板包括第一部分与第二部分,所述第一部分与所述介电层的所述下部相邻,且其掺杂浓度大于第二部分。A power element according to an embodiment of the present invention includes a power element, comprising: an epitaxial layer having a trench extending from a first surface of the epitaxial layer to a second surface; a doped drain layer located on the epitaxial layer on the second surface of the layer; the first body region and the second body region are located in the epitaxial layer on both sides of the trench; the first source doped region and the second source doped region are respectively located In the first body region and the second body region; the isolated field plate is located in the trench; the insulating filling layer is located in the trench and surrounds the sidewall and the bottom of the lower part of the isolated field plate; A gate and a second gate are located in the trench and on the insulating filling layer, wherein the first gate is located between the isolation field plate and the first base region, and the second a gate is located between the isolation field plate and the second base region; and a dielectric layer surrounds sidewalls of the first gate and the second gate, wherein a lower portion of the dielectric layer has The maximum width of the dielectric layer, and wherein the isolation field plate includes a first portion and a second portion, the first portion is adjacent to the lower portion of the dielectric layer and has a higher doping concentration than the second portion .

基于上述,栅极沟槽底角处具有足够厚的氧化层,因此可以降低栅极与隔离场板之间的漏电流,提升元件的击穿电压。在维持相同的击穿电压的前提下,可以增加外延层的浓度,以降低导通电阻(Ron),减少栅极电荷量(QG),改善品质因素(FOM),提升元件的效能。Based on the above, there is a sufficiently thick oxide layer at the bottom corner of the gate trench, so the leakage current between the gate and the isolation field plate can be reduced, and the breakdown voltage of the element can be increased. On the premise of maintaining the same breakdown voltage, the concentration of the epitaxial layer can be increased to reduce the on-resistance (Ron), reduce the gate charge (QG), improve the quality factor (FOM), and improve the performance of the device.

附图说明Description of drawings

图1A至图1J是依照本发明的第一实施例的一种功率元件的制造方法的剖面示意图。1A to 1J are schematic cross-sectional views of a method for manufacturing a power device according to a first embodiment of the present invention.

图2是图1J中区域R的放大示意图。FIG. 2 is an enlarged schematic view of region R in FIG. 1J .

图3A至图3E是依照本发明的第二实施例的一种功率元件的制造方法的剖面示意图。3A to 3E are schematic cross-sectional views of a manufacturing method of a power device according to a second embodiment of the present invention.

图4A至图4E是依照本发明的第三实施例的一种功率元件的制造方法的剖面示意图。4A to 4E are schematic cross-sectional views of a manufacturing method of a power device according to a third embodiment of the present invention.

图5A至图5D是依照本发明的第四实施例的一种功率元件的制造方法的剖面示意图。5A to 5D are schematic cross-sectional views of a manufacturing method of a power device according to a fourth embodiment of the present invention.

图6绘示出功率元件的两个单元的剖面示意图。FIG. 6 shows a schematic cross-sectional view of two units of the power device.

附图标记:Reference signs:

10:衬底10: Substrate

12:漏极掺杂层12: Drain doped layer

14:外延层14: epitaxial layer

14a:第一表面14a: first surface

14b:第二表面14b: Second surface

16:沟渠16: Ditch

18、18a:绝缘填充层18, 18a: insulating filling layer

20、20a、20a’、20c、31:导体层20, 20a, 20a', 20c, 31: conductor layer

20b:掺杂层、掺杂区20b: doped layer, doped region

20b’、20d:掺杂区20b', 20d: doped regions

22:第一栅极沟槽22: First gate trench

24:第二栅极沟槽24: Second gate trench

30、46:介电层30, 46: dielectric layer

30a:第一闸介电层30a: first gate dielectric layer

30b:第二闸介电层30b: second gate dielectric layer

30c:第一绝缘层30c: first insulating layer

30d:第二绝缘层30d: Second insulating layer

30L:下部30L: lower part

30U:上部30U: upper part

32、32’:第一栅极32, 32': the first grid

34、34’:第二栅极34, 34': the second gate

36:第一基体区36: First matrix area

38:第二基体区38: Second matrix area

42:第一源极掺杂区42: The first source doped region

44:第二源极掺杂区44: Second source doped region

52:第一接触窗开口52: First contact window opening

54:第二接触窗开口54: second contact window opening

62:第一掺杂区62: The first doped region

64、64’:第二掺杂区64, 64': the second doped region

72:第一接触窗72: First contact window

74、74’:第二接触窗74, 74': second contact window

C1、C1’:单元C1, C1': unit

PL:隔离场板PL: isolated field plate

P1:第一部分P1: Part I

P2:第二部分P2: Part Two

P3:第三部分P3: The third part

IMP 1、IMP 2、IMP3:离子植入工艺IMP 1, IMP 2, IMP3: ion implantation process

Tmin1、Tmin2:最小厚度T min1 , T min2 : minimum thickness

Tmax1、Tmax2:最大厚度T max1 , T max2 : maximum thickness

α1、α2、β1、β2:底角α1, α2, β1, β2: bottom angle

θ:夹角θ: included angle

具体实施方式Detailed ways

图1A至图1J是依照本发明的第一实施例的一种功率元件的制造方法的剖面示意图。功率元件例如是SGT MOSFET。1A to 1J are schematic cross-sectional views of a method for manufacturing a power device according to a first embodiment of the present invention. Power components are, for example, SGT MOSFETs.

请参照图1A,功率元件的制造方法包括在衬底10中形成漏极掺杂层12。衬底10可以是半导体衬底10,例如硅衬底。漏极掺杂层12可以在晶片制造时以原位(in-situ)掺质工艺形成。漏极掺杂层12具有第一导电型掺质。第一导电型掺质为N型掺质,例如是磷或是砷。接着,在漏极掺杂层12上形成外延层14。外延层14的形成方法例如是选择性外延生长工艺。外延层14具有第一导电型掺质。第一导电型掺质为N型掺质,例如是磷或是砷。外延层14的掺杂浓度例如是低于漏极掺杂层12的掺杂浓度。外延层14的掺质可以在进行选择性外延生长工艺时原位(in-situ)形成,或是在进行选择性外延生长工艺之后再通过离子植入工艺来形成之。Referring to FIG. 1A , the method for manufacturing a power device includes forming a doped drain layer 12 in a substrate 10 . The substrate 10 may be a semiconductor substrate 10, such as a silicon substrate. The drain doped layer 12 can be formed by an in-situ doping process during wafer fabrication. The drain doped layer 12 has dopants of the first conductivity type. The dopant of the first conductivity type is an N-type dopant, such as phosphorus or arsenic. Next, an epitaxial layer 14 is formed on the drain doped layer 12 . The method for forming the epitaxial layer 14 is, for example, a selective epitaxial growth process. The epitaxial layer 14 has dopants of the first conductivity type. The dopant of the first conductivity type is an N-type dopant, such as phosphorus or arsenic. The doping concentration of the epitaxial layer 14 is, for example, lower than that of the drain doping layer 12 . The dopants of the epitaxial layer 14 can be formed in-situ during the selective epitaxial growth process, or formed by ion implantation after the selective epitaxial growth process.

其后,在外延层14中形成沟渠16。沟渠16自外延层14的第一表面14a向第二表面14b延伸。沟渠16可以通过光刻与刻蚀工艺来形成。刻蚀工艺可以是非等向性刻蚀工艺、等向性刻蚀工艺或其组合。之后,在外延层14上以及沟渠16之中形成绝缘填充层18与导体层20。绝缘填充层18的材料例如是以化学气相沉积法形成的氧化硅、氮化硅或其组合。导体层20形成在绝缘填充层18上,并将沟渠16剩余的空间填满。导体层20可以是半导体材料,例如是以化学气相沉积法形成的未掺杂多晶硅或掺杂的多晶硅。Thereafter, trenches 16 are formed in epitaxial layer 14 . The trench 16 extends from the first surface 14 a to the second surface 14 b of the epitaxial layer 14 . The trench 16 can be formed by photolithography and etching processes. The etching process may be an anisotropic etching process, an isotropic etching process or a combination thereof. Afterwards, an insulating filling layer 18 and a conductive layer 20 are formed on the epitaxial layer 14 and in the trench 16 . The material of the insulating filling layer 18 is, for example, silicon oxide, silicon nitride or a combination thereof formed by chemical vapor deposition. The conductive layer 20 is formed on the insulating filling layer 18 and fills up the remaining space of the trench 16 . The conductive layer 20 may be a semiconductor material, such as undoped polysilicon or doped polysilicon formed by chemical vapor deposition.

请参照图1B,对导体层20进行回刻蚀工艺,移除沟渠16以外的导体层20,以在沟渠16之中留下导体层20a。在一些实施例中,导体层20a的顶面低于外延层14的顶面。Referring to FIG. 1B , an etch-back process is performed on the conductive layer 20 to remove the conductive layer 20 outside the trench 16 to leave the conductive layer 20 a in the trench 16 . In some embodiments, the top surface of conductor layer 20 a is lower than the top surface of epitaxial layer 14 .

请参照图1C,在导体层20a上或是导体层20a中形成掺杂层(或称为掺杂区)20b。掺杂层/掺杂区20b与导体层20a具有相同的导电型的掺质,例如是第一导电型掺质。第一导电型掺质为N型掺质,例如是磷或是砷。掺杂层/掺杂区20b的掺杂浓度例如是高于导体层20a的掺杂浓度。在一些实施例中,掺杂层/掺杂区20b的掺杂浓度范围为5E18 1/cm3至5E20 1/cm3。掺杂层/掺杂区20b的厚度/深度大于1500埃可以有利于后续形成栅极沟槽的刻蚀工艺的控制。掺杂层/掺杂区20b的厚度/深度范围例如是1600埃至2500埃。Referring to FIG. 1C, a doped layer (or called a doped region) 20b is formed on or in the conductive layer 20a. The doped layer/doped region 20b has the same conductivity type dopant as the conductor layer 20a, for example, the first conductivity type dopant. The dopant of the first conductivity type is an N-type dopant, such as phosphorus or arsenic. The doping concentration of the doped layer/doped region 20b is, for example, higher than that of the conductive layer 20a. In some embodiments, the doping concentration of the doped layer/region 20 b ranges from 5E18 1/cm 3 to 5E20 1/cm 3 . The thickness/depth of the doped layer/doped region 20b greater than 1500 angstroms can facilitate the control of the subsequent etching process for forming the gate trench. The thickness/depth range of the doped layer/doped region 20b is, for example, 1600 angstroms to 2500 angstroms.

在一实施例中,掺杂区20b位于导体层20a中。掺杂区20b的形成方法例如是对导体层20a进行离子植入工艺IMP 1。离子植入工艺IMP 1以垂直衬底10的表面的方式将掺质植入于导体层20a之中。在另一实施例中,掺杂层20b位于导体层20a上。掺杂层20b的形成方法例如是在形成导体层20a之后,以原位进行化学气相沉积工艺,以在导体层20a上形成浓度大于导体层20a的掺杂层20b。In one embodiment, the doped region 20b is located in the conductive layer 20a. The method for forming the doped region 20b is, for example, performing an ion implantation process IMP 1 on the conductor layer 20a. The ion implantation process IMP 1 implants dopants into the conductor layer 20a in a manner perpendicular to the surface of the substrate 10 . In another embodiment, the doped layer 20b is located on the conductive layer 20a. The method of forming the doped layer 20b is, for example, to perform an in-situ chemical vapor deposition process after the conductive layer 20a is formed, so as to form the doped layer 20b on the conductive layer 20a with a concentration higher than that of the conductive layer 20a.

之后,请参照图1D,在掺杂层/掺杂区20b上形成导体层20c。导体层20c的形成方法例如是在绝缘填充层18以及掺杂层/掺杂区20b上形成导体层后,再进行回刻蚀工艺,以移除沟渠16以外的导体层。导体层20c可以是半导体材料,例如是以化学气相沉积法形成的未掺杂多晶硅或掺杂的多晶硅。导体层20c的顶面可以与外延层14的第一表面14a共平面或低于外延层14的第一表面14a。Afterwards, referring to FIG. 1D , a conductive layer 20 c is formed on the doped layer/doped region 20 b. The method for forming the conductive layer 20 c is, for example, to perform an etch-back process after forming the conductive layer on the insulating filling layer 18 and the doped layer/doped region 20 b to remove the conductive layer outside the trench 16 . The conductive layer 20c may be a semiconductor material, such as undoped polysilicon or doped polysilicon formed by chemical vapor deposition. The top surface of the conductor layer 20 c may be coplanar with or lower than the first surface 14 a of the epitaxial layer 14 .

其后,请参照图1E,对绝缘填充层18进行回刻蚀工艺,移除沟渠16以外的绝缘填充层18,以在沟渠16之中留下绝缘填充层18a。绝缘填充层18a环绕导体层20a的侧壁与底面,且环绕部分的掺杂层/掺杂区20b的侧壁,并且绝缘填充层18a的顶面介于掺杂区20b的顶面与底面之间。换言之,绝缘填充层18a上具有第一栅极沟槽22与第二栅极沟槽24。第一栅极沟槽22与第二栅极沟槽24的侧壁裸露出外延层14、导体层20c与部分的掺杂区20b,且第一栅极沟槽22与第二栅极沟槽24的底面裸露出绝缘填充层18a的顶面。回刻蚀工艺例如是非等向性刻蚀工艺、等向性刻蚀工艺或组合。Thereafter, referring to FIG. 1E , an etch-back process is performed on the insulating filling layer 18 to remove the insulating filling layer 18 outside the trench 16 to leave the insulating filling layer 18 a in the trench 16 . The insulating filling layer 18a surrounds the sidewall and bottom surface of the conductor layer 20a, and surrounds the sidewall of a part of the doped layer/doped region 20b, and the top surface of the insulating filling layer 18a is between the top surface and the bottom surface of the doped region 20b. between. In other words, the insulating filling layer 18a has a first gate trench 22 and a second gate trench 24 thereon. The sidewalls of the first gate trench 22 and the second gate trench 24 expose the epitaxial layer 14, the conductor layer 20c and part of the doped region 20b, and the first gate trench 22 and the second gate trench The bottom surface of 24 exposes the top surface of insulating filling layer 18a. The etch back process is, for example, an anisotropic etch process, an isotropic etch process or a combination thereof.

请参照图1F,在外延层14与导体层20c上以及第一栅极沟槽22与第二栅极沟槽24之中形成介电层30。介电层30可以是以热氧化法或是化学气相沉积法形成的氧化硅。在介电层30是以热氧化法形成的氧化硅层的一些实施例中,掺杂区20b的掺杂浓度大于外延层14的掺杂浓度,相较于外延层14,掺杂区20b较易于氧化。因此,在掺杂区20b表面所形成的介电层(氧化硅层)30的厚度大于在外延层14表面所形成的介电层(氧化硅层)30的厚度。此外,由于掺杂区20b的掺杂浓度大于导体层20c的掺杂浓度,相较于导体层20c,掺杂区20b较易于氧化。因此,在掺杂区20b表面所形成的介电层(氧化硅层)30的厚度大于在导体层20c表面所形成的介电层(氧化硅层)30的厚度,其后将参照图2详述之。Referring to FIG. 1F , a dielectric layer 30 is formed on the epitaxial layer 14 and the conductive layer 20 c and in the first gate trench 22 and the second gate trench 24 . The dielectric layer 30 may be silicon oxide formed by thermal oxidation or chemical vapor deposition. In some embodiments where the dielectric layer 30 is a silicon oxide layer formed by thermal oxidation, the doping concentration of the doped region 20b is greater than that of the epitaxial layer 14, and compared with the epitaxial layer 14, the doped region 20b is denser. prone to oxidation. Therefore, the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the doped region 20 b is greater than the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the epitaxial layer 14 . In addition, since the doping concentration of the doped region 20b is greater than that of the conductive layer 20c, the doped region 20b is easier to oxidize than the conductive layer 20c. Therefore, the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the doped region 20b is greater than the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the conductor layer 20c. Describe it.

请参照图1G,在介电层30上形成导体层31。导体层31将第一栅极沟槽22与第二栅极沟槽24剩余的空间填满。导体层31可以是半导体材料,例如是以化学气相沉积法形成的掺杂的多晶硅。Referring to FIG. 1G , a conductive layer 31 is formed on the dielectric layer 30 . The conductive layer 31 fills up the remaining space between the first gate trench 22 and the second gate trench 24 . The conductive layer 31 may be a semiconductor material, such as doped polysilicon formed by chemical vapor deposition.

请参照图1H,对导体层31进行回刻蚀,移除第一栅极沟槽22与第二栅极沟槽24以外的导体层31,以在第一栅极沟槽22与第二栅极沟槽24之中形成第一栅极32与第二栅极34。第一栅极32与第二栅极34的顶面可以与外延层14的第一表面14a共平面或低于外延层14的第一表面14a。Please refer to FIG. 1H, etch back the conductive layer 31, and remove the conductive layer 31 except the first gate trench 22 and the second gate trench 24, so that the first gate trench 22 and the second gate A first gate 32 and a second gate 34 are formed in the trench 24 . Top surfaces of the first gate 32 and the second gate 34 may be coplanar with the first surface 14 a of the epitaxial layer 14 or lower than the first surface 14 a of the epitaxial layer 14 .

请继续参照图1H,于沟渠16两侧的外延层14中形成第一基体区36与第二基体区38。第一基体区36与第二基体区38自外延层14的第一表面14a向第二表面14b延伸。第一基体区36与第二基体区38具有第二导电型掺质,例如是P型掺质。P型掺质例如是硼或是三氟化硼。第一基体区36与第二基体区38的形成方法例如是离子植入法。在另一实施例中,第一基体区36与第二基体区38可以在形成沟渠16之前形成。举例来说,第一基体区36与第二基体区38可以在形成外延层14的选择性外延生长工艺时原位(in-situ)形成,或是在进行选择性外延生长工艺之后再通过离子植入工艺来形成之。Please continue to refer to FIG. 1H , a first body region 36 and a second body region 38 are formed in the epitaxial layer 14 on both sides of the trench 16 . The first body region 36 and the second body region 38 extend from the first surface 14 a to the second surface 14 b of the epitaxial layer 14 . The first body region 36 and the second body region 38 have dopants of the second conductivity type, such as P-type dopants. The P-type dopant is, for example, boron or boron trifluoride. The formation method of the first body region 36 and the second body region 38 is, for example, an ion implantation method. In another embodiment, the first body region 36 and the second body region 38 may be formed before the trench 16 is formed. For example, the first body region 36 and the second body region 38 can be formed in-situ during the selective epitaxial growth process for forming the epitaxial layer 14, or can be formed by ions after the selective epitaxial growth process. Implantation process to form it.

接着,于第一基体区36与第二基体区38中分别形成第一源极掺杂区42与第二源极掺杂区44。第一源极掺杂区42与第二源极掺杂区44。具有第一导电型掺质,例如是N型掺质。N型掺质,例如是磷或是砷。第一源极掺杂区42与第二源极掺杂区44形成方法例如是离子植入法。Next, a first doped source region 42 and a second doped source region 44 are respectively formed in the first body region 36 and the second body region 38 . The first doped source region 42 and the second doped source region 44 . It has a dopant of the first conductivity type, such as an N-type dopant. N-type dopant, such as phosphorus or arsenic. A method for forming the first doped source region 42 and the second doped source region 44 is, for example, an ion implantation method.

请参照图1I,于外延层14上形成介电层46,以覆盖第一源极掺杂区42、第二源极掺杂区44、第一栅极32、第二栅极34以及介电层30。介电层46例如是化学气相沉积法形成的硼磷硅酸盐玻璃(BPSG)、氧化硅、氮化硅或其组合。接着,进行光刻与刻蚀工艺,在介电层46中形成第一接触窗开口52与第二接触窗开口54,以分别裸露出第一源极掺杂区42与第二源极掺杂区44。其后,在第一基体区36与第二基体区38中分别形成第一掺杂区62与第二掺杂区64。第一掺杂区62与第二掺杂区64中具有第二导电型掺质。第二导电型掺质可以是P型掺质,例如是硼或是三氟化硼。第一掺杂区62与第二掺杂区64形成方法例如是离子植入法。1I, a dielectric layer 46 is formed on the epitaxial layer 14 to cover the first source doped region 42, the second source doped region 44, the first gate 32, the second gate 34 and the dielectric Layer 30. The dielectric layer 46 is, for example, borophosphosilicate glass (BPSG), silicon oxide, silicon nitride or a combination thereof formed by chemical vapor deposition. Next, photolithography and etching processes are performed to form a first contact opening 52 and a second contact opening 54 in the dielectric layer 46 to expose the first doped source region 42 and the second doped source region respectively. District 44. Thereafter, a first doped region 62 and a second doped region 64 are respectively formed in the first body region 36 and the second body region 38 . There are dopants of the second conductivity type in the first doped region 62 and the second doped region 64 . The dopant of the second conductivity type can be a P-type dopant, such as boron or boron trifluoride. The method for forming the first doped region 62 and the second doped region 64 is, for example, an ion implantation method.

请参照图1J,之后,在第一接触窗开口52与第二接触窗开口54中分别形成与第一掺杂区62接触的第一接触窗72以及与第二掺杂区64接触的第二接触窗74,并且第一接触窗72与第二接触窗74彼此电连接。其后,进行后续的金属化工艺。后续的金属化工艺可以包括将第一栅极32与第二栅极34电连接等工艺。Please refer to FIG. 1J, after that, the first contact window 72 contacting the first doped region 62 and the second contact window contacting the second doped region 64 are respectively formed in the first contact opening 52 and the second contact opening 54. The contact window 74, and the first contact window 72 and the second contact window 74 are electrically connected to each other. Thereafter, a subsequent metallization process is performed. The subsequent metallization process may include processes such as electrically connecting the first gate 32 to the second gate 34 .

请参照图1J,在本实施例中,导体层20a、掺杂层/掺杂区20b以及导体层20c可合称为源极多晶硅层或隔离场板PL。隔离场板PL可以均匀第一基体区(p-body region)36与第二基体区38下方的外延层14的电场分布,使峰值的电场强度降低,因此可以提升击穿电压。从另一方面来说,在相同的击穿电压下,可以将外延层14的掺杂浓度提高,以降低导通电阻(Ron)。Referring to FIG. 1J , in this embodiment, the conductive layer 20 a , the doped layer/doped region 20 b and the conductive layer 20 c may be collectively referred to as a source polysilicon layer or an isolation field plate PL. The isolated field plate PL can even out the electric field distribution of the epitaxial layer 14 below the first p-body region 36 and the second p-body region 38 , so that the peak electric field strength can be reduced, and thus the breakdown voltage can be increased. On the other hand, under the same breakdown voltage, the doping concentration of the epitaxial layer 14 can be increased to reduce the on-resistance (Ron).

此外,在本实施例中,隔离场板PL包括第一部分P1与第二部分P2。掺杂层/掺杂区20b为隔离场板PL的第一部分P1;导体层20a与导体层20c可以合称为隔离场板PL的第二部分P2。第一部分P1,被夹在第二部分P2之中,且第一部分P1的掺杂浓度大于第二部分P2的掺杂浓度。Furthermore, in this embodiment, the isolation field plate PL includes a first portion P1 and a second portion P2. The doped layer/doped region 20b is the first part P1 of the isolated field plate PL; the conductive layer 20a and the conductive layer 20c can be collectively referred to as the second part P2 of the isolated field plate PL. The first portion P1 is sandwiched by the second portion P2, and the doping concentration of the first portion P1 is greater than that of the second portion P2.

由于本实施例中具有较高浓度的隔离场板PL的第一部分P1被第一栅极沟槽22与第二栅极沟槽24暴露,且第一栅极沟槽22与第二栅极沟槽24的底部高于第一部分P1的底部(如图1E所示)。因此,后续在形成介电层30的热氧化工艺时,具有较高浓度的第一部分P1有助于较厚的氧化硅层的形成,因此,有较多的第一部分P1被氧化。故而,在形成介电层30之后,水平高度在第一栅极沟槽22与第二栅极沟槽24的顶面与底面之间的隔离场板PL中,第一部分P1为宽度最窄之处,如图1F与图2所示。Since the first portion P1 of the isolation field plate PL with higher concentration in this embodiment is exposed by the first gate trench 22 and the second gate trench 24, and the first gate trench 22 and the second gate trench The bottom of the groove 24 is higher than the bottom of the first portion P1 (as shown in FIG. 1E ). Therefore, during the subsequent thermal oxidation process for forming the dielectric layer 30 , the first portion P1 with a higher concentration contributes to the formation of a thicker silicon oxide layer, and therefore, more of the first portion P1 is oxidized. Therefore, after the dielectric layer 30 is formed, in the isolation field plate PL between the top and bottom surfaces of the first gate trench 22 and the second gate trench 24, the first portion P1 is the narrowest width. , as shown in Figure 1F and Figure 2.

图2示出图1J中区域R的放大示意图。请参照图2,在外延层14与第一栅极32之间的介电层30称为第一闸介电层30a。在外延层14与第二栅极34之间的介电层30称为第二闸介电层30b。在隔离场板PL与第一栅极32之间的介电层30称为第一绝缘层30c。在隔离场板PL与第二栅极34之间的介电层30称为第二绝缘层30d。FIG. 2 shows an enlarged schematic view of the region R in FIG. 1J. Referring to FIG. 2 , the dielectric layer 30 between the epitaxial layer 14 and the first gate 32 is called a first gate dielectric layer 30 a. The dielectric layer 30 between the epitaxial layer 14 and the second gate 34 is called a second gate dielectric layer 30b. The dielectric layer 30 between the isolated field plate PL and the first gate 32 is referred to as a first insulating layer 30c. The dielectric layer 30 between the isolated field plate PL and the second gate 34 is referred to as a second insulating layer 30d.

隔离场板PL的第一部分P1(掺杂层/掺杂区20b)与第一绝缘层30c以及第二绝缘层30d的下部30L相邻且接触。在隔离场板PL中,在第一部分P1上方的第二部分P2(导体层20c)与第一绝缘层30c以及第二绝缘层30d的上部30U相邻且接触。The first portion P1 (doped layer/doped region 20b ) of the isolation field plate PL is adjacent to and in contact with the first insulating layer 30c and the lower portion 30L of the second insulating layer 30d. In the isolated field plate PL, the second portion P2 (conductor layer 20 c ) above the first portion P1 is adjacent to and in contact with the first insulating layer 30 c and the upper portion 30U of the second insulating layer 30 d.

由于具有较高浓度的第一部分P1有助于形成较厚的氧化硅层,因此,第一绝缘层30c与第二绝缘层30d的下部30L为第一绝缘层30c与第二绝缘层30d中具有最大厚度Tmax1、Tmax2之处。此外,虽然在第一栅极32的底面与隔离场板PL的第一部分P1(掺杂层/掺杂区20b)之间的第一绝缘层30c与第二绝缘层30d具有最小厚度Tmin1、Tmin2,但是,此最小厚度Tmin1与第一绝缘层30c的平均厚度的比例,以及最小厚度Tmin2与第二绝缘层30d的平均厚度的比例仍大于0.8。在一实施例中,第一绝缘层30c与第二绝缘层30d的平均厚度约为900埃,其中下部30L的最大厚度Tmax1、Tmax2约为1600埃,下部30L的最小厚度Tmin1、Tmin2约为800埃。Since the first part P1 having a higher concentration helps to form a thicker silicon oxide layer, the lower part 30L of the first insulating layer 30c and the second insulating layer 30d is the part of the first insulating layer 30c and the second insulating layer 30d. The maximum thickness T max1 , T max2 . In addition, although the first insulating layer 30c and the second insulating layer 30d between the bottom surface of the first gate 32 and the first portion P1 (doped layer/doped region 20b) of the isolated field plate PL have a minimum thickness T min1 , T min2 , however, the ratio of the minimum thickness T min1 to the average thickness of the first insulating layer 30c and the ratio of the minimum thickness T min2 to the average thickness of the second insulating layer 30d are still greater than 0.8. In one embodiment, the average thickness of the first insulating layer 30c and the second insulating layer 30d is about 900 angstroms, wherein the maximum thicknesses T max1 and T max2 of the lower part 30L are about 1600 angstroms, and the minimum thicknesses T min1 and T of the lower part 30L are about 1600 angstroms. min2 is about 800 Angstroms.

由于与第一栅极32与第二栅极34接触的介电层30(第一绝缘层30c与第二绝缘层30d)的下部30L具有较厚且足够厚的厚度,因此,可以降低第一栅极32与隔离场板PL之间以及第二栅极34与隔离场板PL之间的漏电流,提升元件的击穿电压。Since the lower portion 30L of the dielectric layer 30 (the first insulating layer 30c and the second insulating layer 30d) in contact with the first gate 32 and the second gate 34 has a thick and sufficiently thick thickness, the first gate can be reduced. The leakage current between the gate 32 and the isolation field plate PL and between the second gate 34 and the isolation field plate PL increases the breakdown voltage of the device.

图3A至图3E是依照本发明的第二实施例的一种功率元件的制造方法的剖面示意图。3A to 3E are schematic cross-sectional views of a manufacturing method of a power device according to a second embodiment of the present invention.

请参照图3A,依照上述第一实施例所述的方法,在沟渠16之中形成导体层20a之后,在导体层20a中形成两个掺杂区20b’。掺杂区20b’形成在导体层20a的边缘区中,导体层20a的中心区并未形成掺杂区20b’。掺杂区20b’与导体层20a具有相同的导电型的掺质,例如是第一导电型掺质。第一导电型掺质为N型掺质,例如是磷或是砷。掺杂区20b’的掺杂浓度高于导体层20a的掺杂浓度。在一些实施例中,掺杂区20b’的掺杂浓度范围为5E18 1/cm3至5E20 1/cm3。掺杂区20b’的形成方法例如是对导体层20a进行倾斜离子植入工艺IMP 2。倾斜离子植入工艺IMP 2与衬底10的表面的法线方向的夹角θ范围例如是介于30度至60度。Referring to FIG. 3A , according to the method described in the above-mentioned first embodiment, after the conductive layer 20 a is formed in the trench 16 , two doped regions 20 b ′ are formed in the conductive layer 20 a. The doped region 20b' is formed in the edge region of the conductor layer 20a, and the doped region 20b' is not formed in the central region of the conductor layer 20a. The doped region 20 b ′ has the same conductivity type dopant as that of the conductor layer 20 a , for example, the first conductivity type dopant. The dopant of the first conductivity type is an N-type dopant, such as phosphorus or arsenic. The doping concentration of the doping region 20b' is higher than that of the conductor layer 20a. In some embodiments, the doping concentration of the doping region 20b′ ranges from 5E18 1/cm 3 to 5E20 1/cm 3 . The method for forming the doped region 20 b ′ is, for example, performing an oblique ion implantation process IMP 2 on the conductor layer 20 a. The included angle θ between the inclined ion implantation process IMP 2 and the normal direction of the surface of the substrate 10 ranges from 30 degrees to 60 degrees, for example.

其后,请参照图3B,依照上述第一实施例所述的方法,在导体层20a与掺杂区20b’上形成导体层20c。在本实施例中,导体层20a、掺杂区20b’以及导体层20c可合称为源极多晶硅层或隔离场板PL。隔离场板PL可包括第一部分P1与第二部分P2。第一部分P1包括分离的两个不连接的掺杂区20b’。第二部分P2包括彼此连接的导体层20a与导体层20c,且将两个掺杂区20b’彼此分隔开。第一部分P1的掺杂浓度大于第二部分P2的掺杂浓度。Thereafter, referring to FIG. 3B , according to the method described in the first embodiment above, a conductive layer 20c is formed on the conductive layer 20a and the doped region 20b'. In this embodiment, the conductive layer 20a, the doped region 20b' and the conductive layer 20c may be collectively referred to as a source polysilicon layer or an isolation field plate PL. The isolation field plate PL may include a first portion P1 and a second portion P2. The first part P1 comprises two separate doped regions 20b' which are not connected. The second portion P2 includes the conductive layer 20a and the conductive layer 20c connected to each other, and separates the two doped regions 20b' from each other. The doping concentration of the first portion P1 is greater than the doping concentration of the second portion P2.

之后,请参照图3C,依照上述第一实施例所述的方法,对绝缘填充层18进行回刻蚀工艺,以在沟渠16之中留下绝缘填充层18a,并在绝缘填充层18a上形成第一栅极沟槽22与第二栅极沟槽24。第一栅极沟槽22与第二栅极沟槽24的底面的高度介于两个掺杂区20b’的顶面与底面之间。Afterwards, referring to FIG. 3C , according to the method described in the first embodiment above, the insulating filling layer 18 is etched back to leave the insulating filling layer 18a in the trench 16, and an insulating filling layer 18a is formed on the insulating filling layer 18a. The first gate trench 22 and the second gate trench 24 . The heights of the bottom surfaces of the first gate trench 22 and the second gate trench 24 are between the top and bottom surfaces of the two doped regions 20b'.

其后,请参照图3D,依照上述第一实施例所述的方法,在外延层14与导体层20c上以及第一栅极沟槽22与第二栅极沟槽24之中形成介电层30。同样地,由于掺杂区20b’的掺杂浓度大于导体层20c的掺杂浓度且大于外延层14的掺杂浓度,相较于导体层20c以及外延层14,掺杂区20b’较易于氧化。因此,在掺杂区20b’的表面所形成的介电层30的厚度大于在导体层20c的表面所形成的介电层30的厚度,且在导体层20c的表面所形成的介电层30的厚度大于在外延层14的表面所形成的介电层30的厚度。Thereafter, referring to FIG. 3D , according to the method described in the above-mentioned first embodiment, a dielectric layer is formed on the epitaxial layer 14 and the conductor layer 20c and in the first gate trench 22 and the second gate trench 24 30. Similarly, since the doping concentration of the doped region 20b' is greater than the doping concentration of the conductive layer 20c and greater than the doping concentration of the epitaxial layer 14, compared with the conductive layer 20c and the epitaxial layer 14, the doped region 20b' is easier to oxidize . Therefore, the thickness of the dielectric layer 30 formed on the surface of the doped region 20b' is greater than the thickness of the dielectric layer 30 formed on the surface of the conductive layer 20c, and the dielectric layer 30 formed on the surface of the conductive layer 20c The thickness is greater than the thickness of the dielectric layer 30 formed on the surface of the epitaxial layer 14 .

之后,请参照图3E,依照上述第一实施例所述的方法进行后续的工艺直至形成第一接触窗72与第二接触窗74。其后,进行后续的金属化工艺。后续的金属化工艺可以包括将第一栅极32与第二栅极34电连接等工艺。Afterwards, referring to FIG. 3E , the subsequent processes are performed according to the method described in the above-mentioned first embodiment until the first contact holes 72 and the second contact holes 74 are formed. Thereafter, a subsequent metallization process is performed. The subsequent metallization process may include processes such as electrically connecting the first gate 32 to the second gate 34 .

图4A至图4E是依照本发明的第三实施例的一种功率元件的制造方法的剖面示意图。4A to 4E are schematic cross-sectional views of a manufacturing method of a power device according to a third embodiment of the present invention.

请参照图4A,依照上述第一实施例所述形成导体层20a的方法,在沟渠16之中形成导体层20a’。但,在本实施例中,导体层20a’为具有较高浓度的掺杂的多晶硅。在一实施例中,导体层20a’的掺杂浓度范围为1E19 1/cm3至5E20 1/cm3Referring to FIG. 4A , according to the method for forming the conductive layer 20a described in the first embodiment above, the conductive layer 20a ′ is formed in the trench 16 . However, in this embodiment, the conductive layer 20a' is polysilicon doped with relatively high concentration. In one embodiment, the doping concentration of the conductive layer 20 a ′ ranges from 1E19 1/cm 3 to 5E20 1/cm 3 .

之后,在导体层20a’的边缘区的表面上形成掩膜层19。掩膜层19裸露出导体层20a’的中心区的表面。掩膜层19可以是图案化的光阻层,其覆盖绝缘填充层19的表面与侧壁以及导体层20a’的边缘区的表面。掩膜层19具有开口,裸露出导体层20a’的中心区的表面。掩膜层19也可以是间隙壁,其仅覆盖在绝缘填充层19的侧壁以及导体层20a’的边缘区的表面。间隙壁的材料可以是氧化硅、氮化硅或其组合。间隙壁的形成方法可以先形成间隙壁材料层,然后再进行非等向性刻蚀工艺。After that, a mask layer 19 is formed on the surface of the edge region of the conductor layer 20a'. The mask layer 19 exposes the surface of the central region of the conductor layer 20a'. The mask layer 19 can be a patterned photoresist layer, which covers the surface and sidewalls of the insulating filling layer 19 and the surface of the edge region of the conductive layer 20a'. The mask layer 19 has an opening exposing the surface of the central region of the conductor layer 20a'. The mask layer 19 can also be a spacer, which only covers the sidewall of the insulating filling layer 19 and the surface of the edge region of the conductor layer 20a'. The material of the spacer can be silicon oxide, silicon nitride or a combination thereof. The method for forming the spacer may firstly form a material layer of the spacer, and then perform an anisotropic etching process.

对导体层20a’进行离子植入工艺IMP 3,在导体层20a’中形成掺杂区20d。掺杂区20d与导体层20a’可以具有相同或相异导电型的掺质。An ion implantation process IMP 3 is performed on the conductor layer 20a' to form a doped region 20d in the conductor layer 20a'. The doped region 20d and the conductive layer 20a' may have dopants of the same or different conductivity types.

在掺杂区20d与导体层20a’具有相同导电型的掺质的实施例中,掺杂区20d的掺杂浓度低于导体层20a’的掺杂浓度。掺杂区20d可以采用离子植入工艺IMP 3将掺质以垂直于衬底10的表面的方式植入于导体层20a’之中。离子植入工艺IMP 3例如是将与导体层20a’的第一导电型掺质相异的第二导电型掺质植入于导体层20a’中,通过掺质相互补偿,以使得所形成的掺杂区20d的掺杂浓度低于导体层20a’的掺杂浓度。第二导电型掺质为P型掺质,例如是硼或是三氟化硼。掺杂区20d的掺杂浓度范围为5E18 1/cm3至1E20 1/cm3In an embodiment where the doping region 20d has the same conductivity type dopant as the conductive layer 20a', the doping concentration of the doping region 20d is lower than that of the conductive layer 20a'. The dopant region 20d can be implanted into the conductor layer 20a' vertically to the surface of the substrate 10 by using the ion implantation process IMP 3 . The ion implantation process IMP 3 is, for example, implanting dopants of the second conductivity type different from the dopants of the first conductivity type in the conductor layer 20a' into the conductor layer 20a', and the dopants compensate each other, so that the formed The doping concentration of the doped region 20d is lower than that of the conductor layer 20a'. The second conductive dopant is a P-type dopant, such as boron or boron trifluoride. The doping concentration of the doped region 20d ranges from 5E18 1/cm 3 to 1E20 1/cm 3 .

在掺杂区20d与导体层20a’具有相异导电型的掺质的实施例中,可以采用离子植入工艺IMP 3将掺质以垂直于衬底10的表面的方式植入于导体层20a’之中以形成掺杂区20d。离子植入工艺IMP 3例如是将与导体层20a’的第一导电型掺质相异且掺杂浓度高于导体层20a’的第二导电型掺质植入于导体层20a’中,通过掺质相互补偿,以使得所形成的掺杂区20d的掺质的导电型与导体层20a’的掺质的导电型相异。第二导电型掺质为P型掺质,例如是硼或是三氟化硼。掺杂区20d为具有导电型掺质的掺杂浓度范围例如是5E19 1/cm3至8E20 1/cm3In an embodiment where the dopant region 20d and the conductor layer 20a' have dopants of different conductivity types, the dopant can be implanted in the conductor layer 20a in a manner perpendicular to the surface of the substrate 10 by using the ion implantation process IMP 3 'In order to form the doped region 20d. The ion implantation process IMP 3 is, for example, implanting a second conductivity type dopant different from the first conductivity type dopant of the conductor layer 20a' and having a higher doping concentration than the conductor layer 20a' into the conductor layer 20a', by The dopants compensate each other, so that the conductivity type of the dopant in the formed doped region 20d is different from the conductivity type of the dopant in the conductor layer 20a'. The second conductive dopant is a P-type dopant, such as boron or boron trifluoride. The doped region 20 d has a dopant concentration range of conductivity type, for example, 5E19 1/cm 3 to 8E20 1/cm 3 .

请参照图4B,将掩膜层19移除。掩膜层19可以通过灰化法或刻蚀法移除。之后,依照上述第一实施例所述的方法,在掺杂区20d以及导体层20a’上形成导体层20c。在本实施例中,导体层20a’、掺杂区20d以及导体层20c可合称为源极多晶硅层或隔离场板PL。Referring to FIG. 4B , the mask layer 19 is removed. The mask layer 19 can be removed by ashing or etching. Afterwards, according to the method described in the above-mentioned first embodiment, the conductive layer 20c is formed on the doped region 20d and the conductive layer 20a'. In this embodiment, the conductive layer 20a', the doped region 20d and the conductive layer 20c may be collectively referred to as a source polysilicon layer or an isolation field plate PL.

隔离场板PL可包括第一部分P1、第二部分P2与第三部分P3。第一部分P1的掺杂浓度大于第二部分P2的掺杂浓度,且大于第三部分P3的掺杂浓度。第一部分P1包括导体层20a’;第二部分P2包括掺杂区20d;第三部分包括导体层20c。第二部分P2的侧壁与底部被第一部分P1环绕包覆,且第三部分P3覆盖第一部分P1与第二部分P2的顶面。The isolation field plate PL may include a first part P1, a second part P2 and a third part P3. The doping concentration of the first portion P1 is greater than that of the second portion P2 and greater than that of the third portion P3. The first part P1 comprises the conductor layer 20a'; the second part P2 comprises the doped region 20d; the third part comprises the conductor layer 20c. The sidewall and the bottom of the second part P2 are surrounded by the first part P1, and the third part P3 covers the top surfaces of the first part P1 and the second part P2.

之后,请参照图4C,依照上述第一实施例所述的方法,对绝缘填充层18进行回刻蚀工艺,以在沟渠16之中留下绝缘填充层18a,并在绝缘填充层18a上形成第一栅极沟槽22与第二栅极沟槽24。第一栅极沟槽22与第二栅极沟槽24的底面的高度低于导体层20a’的顶面,以使得第一栅极沟槽22与第二栅极沟槽24的侧壁裸露出导体层20c以及部分的导体层20a’。Afterwards, referring to FIG. 4C , according to the method described in the first embodiment above, the insulating filling layer 18 is etched back to leave the insulating filling layer 18a in the trench 16, and an insulating filling layer 18a is formed on the insulating filling layer 18a. The first gate trench 22 and the second gate trench 24 . The height of the bottom surface of the first gate trench 22 and the second gate trench 24 is lower than the top surface of the conductive layer 20a', so that the sidewalls of the first gate trench 22 and the second gate trench 24 are exposed The conductor layer 20c and part of the conductor layer 20a' are exposed.

其后,请参照图4D,依照上述第一实施例所述的方法,在外延层14与导体层20c上以及第一栅极沟槽22与第二栅极沟槽24之中形成介电层30。由于导体层20a’的掺杂浓度大于导体层20c的掺杂浓度,相较于导体层20c,导体层20a’较易于氧化。因此,在导体层20a’表面所形成的介电层(氧化硅层)30的厚度大于在导体层20c表面所形成的介电层(氧化硅层)30的厚度。掺杂区20d的掺杂,相较于导体层20a’较不易氧化,因此,隔离场板PL可以维持足够的宽度,避免因为导体层20a’过度氧化变得太细造成阻值太高而影响功率元件的特性。此外,也可确保左右两侧的介电层不会因为导体层20a’过度氧化而彼此相连,若左右两侧的介电层(氧化层)30相连,将导致隔离场板PL的断路。Thereafter, referring to FIG. 4D , according to the method described in the above-mentioned first embodiment, a dielectric layer is formed on the epitaxial layer 14 and the conductor layer 20c and in the first gate trench 22 and the second gate trench 24 30. Since the doping concentration of the conductive layer 20a' is greater than that of the conductive layer 20c, the conductive layer 20a' is easier to oxidize than the conductive layer 20c. Therefore, the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the conductor layer 20a' is greater than the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the conductor layer 20c. The doping of the doped region 20d is less likely to be oxidized than the conductor layer 20a'. Therefore, the isolation field plate PL can maintain a sufficient width to avoid the influence of too high a resistance value caused by excessive oxidation of the conductor layer 20a'. Characteristics of power components. In addition, it can also ensure that the dielectric layers on the left and right sides will not be connected to each other due to excessive oxidation of the conductor layer 20a'. If the dielectric layers (oxidized layers) 30 on the left and right sides are connected, it will cause disconnection of the isolation field plate PL.

之后,请参照图4E,依照上述第一实施例所述的方法进行后续的工艺直至形成第一接触窗72与第二接触窗74。其后,进行后续的金属化工艺。后续的金属化工艺可以包括将第一栅极32与第二栅极34电连接等工艺。Afterwards, referring to FIG. 4E , the subsequent processes are performed according to the method described in the above-mentioned first embodiment until the first contact holes 72 and the second contact holes 74 are formed. Thereafter, a subsequent metallization process is performed. The subsequent metallization process may include processes such as electrically connecting the first gate 32 to the second gate 34 .

图5A至图5D是依照本发明的第四实施例的一种功率元件的制造方法的剖面示意图。5A to 5D are schematic cross-sectional views of a manufacturing method of a power device according to a fourth embodiment of the present invention.

请参照图5A,依照上述第一实施例所述的形成导体层20a方法,在沟渠16之中形成导体层20a’,但在本实施例中,导体层20a’为具有较高浓度的掺杂的多晶硅。在一实施例中,导体层20a’的掺杂浓度范围为5E19 1/cm3至8E20 1/cm3Please refer to FIG. 5A , according to the method for forming the conductive layer 20a described in the above-mentioned first embodiment, the conductive layer 20a' is formed in the trench 16, but in this embodiment, the conductive layer 20a' is doped with a relatively high concentration. of polysilicon. In one embodiment, the doping concentration of the conductive layer 20 a ′ ranges from 5E19 1/cm 3 to 8E20 1/cm 3 .

之后,依照上述第一实施例所述的方法,在导体层20a’上形成导体层20c。导体层20c与导体层20a’具有相同的导电型的掺质,例如是第一导电型掺质。导体层20c的掺杂浓度低于导体层20a’的掺杂浓度。导体层20c的形成方法例如是在形成导体层20a’之后,原位进行化学气相沉积工艺,但将掺杂的气体的浓度降低,以在导体层20a’上形成浓度低于导体层20a’的导体层20c。导体层20c的掺杂浓度例如是导体层20a’的掺杂浓度的2/3~1/2。After that, according to the method described in the first embodiment above, the conductor layer 20c is formed on the conductor layer 20a'. The conductive layer 20c and the conductive layer 20a' have the same conductivity type dopant, for example, the first conductivity type dopant. The doping concentration of the conductor layer 20c is lower than that of the conductor layer 20a'. The formation method of the conductor layer 20c is, for example, to perform a chemical vapor deposition process in situ after forming the conductor layer 20a', but reduce the concentration of the doping gas to form a gas with a concentration lower than that of the conductor layer 20a' on the conductor layer 20a'. conductor layer 20c. The doping concentration of the conductor layer 20c is, for example, 2/3 to 1/2 of the doping concentration of the conductor layer 20a'.

在本实施例中,导体层20a’以及导体层20c可合称为源极多晶硅层或隔离场板PL。导体层20a’为隔离场板PL的第一部分P1;导体层20c为隔离场板PL的第二部分P2。第一部分P1的掺杂浓度大于第二部分P2的掺杂浓度。第二部分P2覆盖第一部分P1的顶面。In this embodiment, the conductive layer 20a' and the conductive layer 20c may be collectively referred to as a source polysilicon layer or an isolation field plate PL. The conductor layer 20a' is to isolate the first part P1 of the field plate PL; the conductor layer 20c is to isolate the second part P2 of the field plate PL. The doping concentration of the first portion P1 is greater than the doping concentration of the second portion P2. The second part P2 covers the top surface of the first part P1.

请参照图5B,依照上述第一实施例所述的方法,对绝缘填充层18进行回刻蚀工艺,以在沟渠16之中留下绝缘填充层18a,并在绝缘填充层18a上形成第一栅极沟槽22与第二栅极沟槽24。第一栅极沟槽22与第二栅极沟槽24的底面的高度低于导体层20a’的顶面,以使得第一栅极沟槽22与第二栅极沟槽24的侧壁裸露出导体层20c以及部分的导体层20a’。Please refer to FIG. 5B. According to the method described in the first embodiment above, the insulating filling layer 18 is etched back to leave the insulating filling layer 18a in the trench 16, and the first insulating filling layer 18a is formed on the insulating filling layer 18a. The gate trench 22 and the second gate trench 24 . The height of the bottom surface of the first gate trench 22 and the second gate trench 24 is lower than the top surface of the conductive layer 20a', so that the sidewalls of the first gate trench 22 and the second gate trench 24 are exposed The conductor layer 20c and part of the conductor layer 20a' are exposed.

请参照图5C,依照上述第一实施例所述的方法,在外延层14与导体层20c上以及第一栅极沟槽22与第二栅极沟槽24之中形成介电层30。由于导体层20a’的掺杂浓度大于导体层20c的掺杂浓度,相较于导体层20c,导体层20a’较易于氧化。因此,在导体层20a’表面所形成的介电层(氧化硅层)30的厚度大于在导体层20c表面所形成的介电层(氧化硅层)30的厚度。Referring to FIG. 5C , according to the method described in the first embodiment above, a dielectric layer 30 is formed on the epitaxial layer 14 and the conductor layer 20 c and in the first gate trench 22 and the second gate trench 24 . Since the doping concentration of the conductive layer 20a' is greater than that of the conductive layer 20c, the conductive layer 20a' is easier to oxidize than the conductive layer 20c. Therefore, the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the conductor layer 20a' is greater than the thickness of the dielectric layer (silicon oxide layer) 30 formed on the surface of the conductor layer 20c.

之后,请参照图5D,依照上述第一实施例所述的方法进行后续的工艺直至形成第一接触窗72与第二接触窗74。其后,进行后续的金属化工艺。后续的金属化工艺可以包括将第一栅极32与第二栅极34电连接等工艺。Afterwards, referring to FIG. 5D , the subsequent processes are performed according to the method described in the above-mentioned first embodiment until the first contact holes 72 and the second contact holes 74 are formed. Thereafter, a subsequent metallization process is performed. The subsequent metallization process may include processes such as electrically connecting the first gate 32 to the second gate 34 .

以上图1J、图3E、图4E、图5D分别绘示出SGT MOSFET的一个单元。然而,本发明不以此为限。在一些实施例中,SGT MOSFET可以具有两个单元C1与C1’,如图6所示。在图6中是以图1J的单元为例来说明之,但本发明不以此为限。单元C1’与C1中相似或相同的构件的元件符号以相同的数字来表示,且在数字后加「’」“’”来表示。举例来说,第二掺杂区64’与第二掺杂区64相似,均是具有第二导电型的掺质。The above Figure 1J, Figure 3E, Figure 4E, and Figure 5D respectively depict a unit of the SGT MOSFET. However, the present invention is not limited thereto. In some embodiments, the SGT MOSFET may have two cells, C1 and C1', as shown in FIG. 6 . In FIG. 6 , the unit in FIG. 1J is taken as an example for illustration, but the present invention is not limited thereto. The element symbols of similar or identical components in unit C1' and C1 are represented by the same numbers, and "'" and "'" are added after the numbers. For example, the second doped region 64' is similar to the second doped region 64, both of which are dopants of the second conductivity type.

单元C1与C1’彼此相邻,第一基体区36与第一掺杂区62被单元C1与C1’共用。此外,第一掺杂区62、第二掺杂区64以及第二掺杂区64’通过第一接触窗72与第二接触窗74、74’彼此电连接。单元C1的第一栅极32与第二栅极34以及单元C1’的第一栅极32’与第二栅极34’可以彼此电连接。The cells C1 and C1' are adjacent to each other, and the first base region 36 and the first doped region 62 are shared by the cells C1 and C1'. In addition, the first doped region 62, the second doped region 64 and the second doped region 64' are electrically connected to each other through the first contact window 72 and the second contact windows 74, 74'. The first gate 32 and the second gate 34 of the cell C1 and the first gate 32' and the second gate 34' of the cell C1' may be electrically connected to each other.

在另一些实施例中,SGT MOSFET可以具有更多个单元,而这一些单元可以排列成一个阵列。换言之,SGT MOSFET可具有多个栅极、多个源极掺杂区与多个漏极掺杂区。这一些多个栅极、多个源极与多个漏极可以分别排列成一个阵列,且这一些多个栅极、多个源极掺杂区与多个漏极掺杂区可以分别通过内连线而连接在一起而形成一个栅极端点、一个源极端点以及一个漏极端点In other embodiments, the SGT MOSFET can have more cells, and these cells can be arranged in an array. In other words, an SGT MOSFET can have multiple gates, multiple source doped regions, and multiple drain doped regions. These multiple gates, multiple sources and multiple drains can be arranged in an array respectively, and these multiple gates, multiple source doped regions and multiple drain doped regions can be respectively passed through the inner Wired together to form a gate terminal, a source terminal and a drain terminal

综上所述,本发明在栅极沟槽的下侧壁裸露出具有高掺杂浓度的隔离场板,因此,可以在栅极沟槽底角处形成厚的氧化层,故可以降低栅极与源极之间的漏电流,提升元件的击穿电压。在维持相同的击穿电压的前提下,可以增加外延层的浓度,以降低导通电阻(Ron),减少栅极电荷量(gate charge,QG),改善品质因素(figure of merit,FOM),提升元件的效能。In summary, the present invention exposes the isolation field plate with high doping concentration on the lower sidewall of the gate trench, therefore, a thick oxide layer can be formed at the bottom corner of the gate trench, so that the gate can be reduced. The leakage current between the source and the source increases the breakdown voltage of the component. Under the premise of maintaining the same breakdown voltage, the concentration of the epitaxial layer can be increased to reduce the on-resistance (Ron), reduce the gate charge (gate charge, QG), and improve the quality factor (figure of merit, FOM), Improve component performance.

Claims (10)

1.一种功率元件,其特征在于,包括:1. A power element, characterized in that, comprising: 外延层,具有沟渠,自所述外延层的第一表面向第二表面延伸;an epitaxial layer having a trench extending from a first surface of the epitaxial layer to a second surface; 漏极掺杂层,位于所述外延层的所述第二表面上;a drain doped layer on the second surface of the epitaxial layer; 第一基体区与第二基体区,位于所述沟渠两侧的所述外延层中;a first body region and a second body region, located in the epitaxial layer on both sides of the trench; 第一源极掺杂区与第二源极掺杂区,分别位于所述第一基体区与所述第二基体区中;A first doped source region and a second doped source region are respectively located in the first body region and the second body region; 隔离场板,位于所述沟渠中;an isolation field plate located in the trench; 绝缘填充层,位于所述沟渠中,环绕所述隔离场板的下部的侧壁与底部;an insulating filling layer, located in the trench, surrounding the sidewall and bottom of the lower portion of the isolation field plate; 第一栅极与第二栅极,位于所述沟渠中且位于所述绝缘填充层上,其中所述第一栅极位于所述隔离场板与所述第一基体区之间,所述第二栅极位于所述隔离场板与所述第二基体区之间;以及A first gate and a second gate are located in the trench and on the insulating filling layer, wherein the first gate is located between the isolation field plate and the first base region, and the first gate is located between the isolation field plate and the first base region. a second gate is located between the isolation field plate and the second body region; and 介电层,环绕所述第一栅极与所述第二栅极的侧壁,其中所述介电层的下部具有所述介电层的最大宽度,且a dielectric layer surrounding sidewalls of the first gate and the second gate, wherein a lower portion of the dielectric layer has a maximum width of the dielectric layer, and 其中所述隔离场板包括第一部分与第二部分,所述第一部分与所述介电层的所述下部相邻,且其掺杂浓度大于第二部分。Wherein the isolation field plate includes a first portion and a second portion, the first portion is adjacent to the lower portion of the dielectric layer, and its doping concentration is greater than that of the second portion. 2.如权利要求1所述的功率元件,其特征在于,所述第一部分为掺杂层,被夹在所述第二部分之中。2. The power device according to claim 1, wherein the first portion is a doped layer sandwiched in the second portion. 3.如权利要求1所述的功率元件,其特征在于,所述第一部分包括被所述第二部分分离的两个不连接的掺杂区。3. The power device of claim 1, wherein the first portion comprises two disconnected doped regions separated by the second portion. 4.如权利要求1所述的功率元件,其特征在于,所述隔离场板更包括第三部分,其掺杂浓度低于所述第一部分且覆盖所述第一部分与所述第二部分的顶面,并且所述第二部分的侧壁与底部被所述第一部分环绕包覆。4. The power device according to claim 1, wherein the isolation field plate further comprises a third portion, the doping concentration of which is lower than that of the first portion and covers the gap between the first portion and the second portion The top surface, and the sidewall and bottom of the second part are surrounded by the first part. 5.如权利要求1所述的功率元件,其特征在于,所述第二部分位于所述第一部分上且覆盖所述第一部分的顶面。5. The power device according to claim 1, wherein the second portion is located on the first portion and covers a top surface of the first portion. 6.如权利要求1所述的功率元件,其特征在于,所述第一部分的底面高于所述介电层的底面。6. The power device according to claim 1, wherein a bottom surface of the first portion is higher than a bottom surface of the dielectric layer. 7.如权利要求1所述的功率元件,其特征在于,所述第一部分的顶面高于所述介电层的底面。7. The power device of claim 1, wherein a top surface of the first portion is higher than a bottom surface of the dielectric layer. 8.如权利要求1所述的功率元件,其特征在于,所述介电层的所述最大宽度大于所述介电层的平均宽度。8. The power device according to claim 1, wherein the maximum width of the dielectric layer is greater than an average width of the dielectric layer. 9.如权利要求1所述的功率元件,其特征在于,所述隔离场板在对应所述介电层的所述下部之处具有介电层的最小宽度。9. The power device of claim 1, wherein the isolation field plate has a minimum width of the dielectric layer at a location corresponding to the lower portion of the dielectric layer. 10.如权利要求9所述的功率元件,其特征在于,所述介电层的所述最小宽度与所述介电层的平均宽度的比值为0.8以上。10. The power device according to claim 9, wherein the ratio of the minimum width of the dielectric layer to the average width of the dielectric layer is greater than 0.8.
CN202110480080.5A 2020-06-12 2021-04-30 Power element Active CN113809162B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW109119789A TWI746007B (en) 2020-06-12 2020-06-12 Power device
TW109119789 2020-06-12

Publications (2)

Publication Number Publication Date
CN113809162A CN113809162A (en) 2021-12-17
CN113809162B true CN113809162B (en) 2023-05-05

Family

ID=78892933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110480080.5A Active CN113809162B (en) 2020-06-12 2021-04-30 Power element

Country Status (2)

Country Link
CN (1) CN113809162B (en)
TW (1) TWI746007B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116525663B (en) * 2023-07-05 2023-09-12 江苏应能微电子股份有限公司 Trench power MOSFET device with gate-source terminal clamping structure and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895810A (en) * 1986-03-21 1990-01-23 Advanced Power Technology, Inc. Iopographic pattern delineated power mosfet with profile tailored recessed source
US4992390A (en) * 1989-07-06 1991-02-12 General Electric Company Trench gate structure with thick bottom oxide
TW456049B (en) * 2000-09-05 2001-09-21 Ind Tech Res Inst Trench-type metal oxide semiconductor stop structure
DE69806484D1 (en) * 1998-11-17 2002-08-14 St Microelectronics Srl Method of making a vertical channel MOSFET
TW201023273A (en) * 2008-12-05 2010-06-16 Maxpower Semiconductor Inc Power metal oxide semiconductor field effect transistor structure and manufacturing method thereof
CN101840934A (en) * 2009-03-17 2010-09-22 万国半导体有限公司 Structure and Fabrication Method of Bottom Drain LDMOS Power MOSFET
CN108878527A (en) * 2017-05-12 2018-11-23 新唐科技股份有限公司 U-shaped metal oxide semiconductor assembly and manufacturing method thereof
TW201903956A (en) * 2017-06-06 2019-01-16 馬克斯半導體股份有限公司 Power element with polycrystalline silicon filled trenches with tapered oxide thickness doping nitrogen into the trench walls to form tapered oxide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5283201A (en) * 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
US7183610B2 (en) * 2004-04-30 2007-02-27 Siliconix Incorporated Super trench MOSFET including buried source electrode and method of fabricating the same
US8067800B2 (en) * 2009-12-28 2011-11-29 Force Mos Technology Co., Ltd. Super-junction trench MOSFET with resurf step oxide and the method to make the same
US8373225B2 (en) * 2009-12-28 2013-02-12 Force Mos Technology Co., Ltd. Super-junction trench MOSFET with Resurf stepped oxides and split gate electrodes
US8969955B2 (en) * 2012-06-01 2015-03-03 Taiwan Semiconductor Manufacturing Company, Ltd. Power MOSFET and methods for forming the same
US8896060B2 (en) * 2012-06-01 2014-11-25 Taiwan Semiconductor Manufacturing Company, Ltd. Trench power MOSFET

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895810A (en) * 1986-03-21 1990-01-23 Advanced Power Technology, Inc. Iopographic pattern delineated power mosfet with profile tailored recessed source
US4992390A (en) * 1989-07-06 1991-02-12 General Electric Company Trench gate structure with thick bottom oxide
DE69806484D1 (en) * 1998-11-17 2002-08-14 St Microelectronics Srl Method of making a vertical channel MOSFET
TW456049B (en) * 2000-09-05 2001-09-21 Ind Tech Res Inst Trench-type metal oxide semiconductor stop structure
TW201023273A (en) * 2008-12-05 2010-06-16 Maxpower Semiconductor Inc Power metal oxide semiconductor field effect transistor structure and manufacturing method thereof
CN101840934A (en) * 2009-03-17 2010-09-22 万国半导体有限公司 Structure and Fabrication Method of Bottom Drain LDMOS Power MOSFET
CN108878527A (en) * 2017-05-12 2018-11-23 新唐科技股份有限公司 U-shaped metal oxide semiconductor assembly and manufacturing method thereof
TW201903956A (en) * 2017-06-06 2019-01-16 馬克斯半導體股份有限公司 Power element with polycrystalline silicon filled trenches with tapered oxide thickness doping nitrogen into the trench walls to form tapered oxide

Also Published As

Publication number Publication date
CN113809162A (en) 2021-12-17
TW202147620A (en) 2021-12-16
TWI746007B (en) 2021-11-11

Similar Documents

Publication Publication Date Title
US7608510B2 (en) Alignment of trench for MOS
CN101542738B (en) Power metal oxide semiconductor field effect transistor component structure capable of being applied to high frequency
TWI475614B (en) Ditch installation structure and manufacturing
US7417298B2 (en) High voltage insulated-gate transistor
US8471331B2 (en) Method of making an insulated gate semiconductor device with source-substrate connection and structure
TWI407564B (en) Power semiconductor having trench bottom polycrystalline germanium structure and method of fabricating the same
JP2000252468A (en) MOS gate device having buried gate and method of manufacturing the same
JP6170812B2 (en) Manufacturing method of semiconductor device
KR20060111859A (en) Semiconductor device and method with screening electrodes
US9991378B2 (en) Trench power semiconductor device
CN111540785A (en) LDMOS device and method of making the same
CN103021860A (en) Trench transistor
CN111933716B (en) LDMOS transistor and manufacturing method thereof
WO2007036793A2 (en) Power mosfets and methods of making same
CN112331558A (en) LDMOS transistor and manufacturing method thereof
KR19990050418A (en) Power Device with Double Field Plate Structure
CN113809162B (en) Power element
JP3354127B2 (en) High voltage element and method of manufacturing the same
US20240136411A1 (en) Transistor device and method of fabricating contacts to a semiconductor substrate
TWI731714B (en) Power device and method of fabricating the same
CN114420749A (en) Semiconductor device and method for manufacturing the same
US20240006530A1 (en) High voltage device having multi-field plates and manufacturing method thereof
CN111490102B (en) Trench gate semiconductor device and method of manufacturing the same
US6992352B2 (en) Trenched DMOS devices and methods and processes for making same
CN117810263A (en) Field effect semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant