CN113809162B - Power element - Google Patents
Power element Download PDFInfo
- Publication number
- CN113809162B CN113809162B CN202110480080.5A CN202110480080A CN113809162B CN 113809162 B CN113809162 B CN 113809162B CN 202110480080 A CN202110480080 A CN 202110480080A CN 113809162 B CN113809162 B CN 113809162B
- Authority
- CN
- China
- Prior art keywords
- layer
- gate
- dielectric layer
- trench
- field plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002955 isolation Methods 0.000 claims abstract description 35
- 210000000746 body region Anatomy 0.000 claims description 25
- 238000000034 method Methods 0.000 description 81
- 239000004020 conductor Substances 0.000 description 60
- 239000002019 doping agent Substances 0.000 description 47
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 229910052814 silicon oxide Inorganic materials 0.000 description 15
- 238000005468 ion implantation Methods 0.000 description 14
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 11
- 229920005591 polysilicon Polymers 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 230000015556 catabolic process Effects 0.000 description 9
- 229910015900 BF3 Inorganic materials 0.000 description 8
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 238000001465 metallisation Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 101710150706 Inositol monophosphatase 3 Proteins 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 101710109188 Putative inositol monophosphatase 3 Proteins 0.000 description 5
- 229910052785 arsenic Inorganic materials 0.000 description 5
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 101100129500 Caenorhabditis elegans max-2 gene Proteins 0.000 description 3
- 101100083446 Danio rerio plekhh1 gene Proteins 0.000 description 3
- 101710150697 Inositol monophosphatase 1 Proteins 0.000 description 3
- 102100035679 Inositol monophosphatase 1 Human genes 0.000 description 3
- 101710150707 Inositol monophosphatase 2 Proteins 0.000 description 3
- 102100021608 Inositol monophosphatase 2 Human genes 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 101000599782 Homo sapiens Insulin-like growth factor 2 mRNA-binding protein 3 Proteins 0.000 description 1
- 101000702394 Homo sapiens Signal peptide peptidase-like 2A Proteins 0.000 description 1
- 101000960621 Homo sapiens U3 small nucleolar ribonucleoprotein protein IMP3 Proteins 0.000 description 1
- 102100030403 Signal peptide peptidase-like 2A Human genes 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/63—Vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/611—Insulated-gate field-effect transistors [IGFET] having multiple independently-addressable gate electrodes influencing the same channel
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
Landscapes
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明提供了一种功率元件,包括:外延层,具有沟渠,自所述外延层的第一表面向第二表面延伸;隔离场板,位于所述沟渠中;绝缘填充层,位于所述沟渠中,环绕所述隔离场板的下部的侧壁与底部;第一栅极与第二栅极,位于所述沟渠中且位于所述绝缘填充层上;以及介电层,环绕所述第一栅极与所述第二栅极的侧壁,其中所述介电层的下部具有所述介电层的最大宽度,且其中所述隔离场板包括第一部分与第二部分,所述第一部分与所述介电层的所述下部相邻,且其掺杂浓度大于第二部分。
The present invention provides a power element, comprising: an epitaxial layer having a trench extending from a first surface of the epitaxial layer to a second surface; an isolation field plate located in the trench; an insulating filling layer located in the trench wherein, surrounding the sidewall and bottom of the lower portion of the isolation field plate; a first gate and a second gate, located in the trench and on the insulating filling layer; and a dielectric layer surrounding the first sidewalls of the gate and the second gate, wherein the lower portion of the dielectric layer has a maximum width of the dielectric layer, and wherein the isolation field plate includes a first portion and a second portion, the first portion adjacent to the lower portion of the dielectric layer, and has a higher doping concentration than the second portion.
Description
技术领域technical field
本发明是有关于一种半导体元件技术领域,且特别是有关于一种功率元件。The present invention relates to a technical field of semiconductor elements, and in particular to a power element.
背景技术Background technique
功率金属氧化物半导体场效应晶体管(MOSFET)为电压型控制元件,其驱动电路简单、驱动的功率大且开关速度快,具有高的工作频率,是一种广泛用于各种电子应用元件的开关元件。Power Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is a voltage-type control element. Its driving circuit is simple, its driving power is large, its switching speed is fast, and it has a high operating frequency. It is a switch widely used in various electronic application components. element.
沟槽栅极金属氧化物半导体场效应晶体管是一种将栅极埋入在衬底或外延层中以使其具有垂直通道的功率金属氧化物半导体场效应晶体管。此种功率金属氧化物半导体场效应晶体管具有较小的单元尺寸与小的导通电阻,适合用于中低压的功率MOSFET。Trench gate MOSFET is a power MOSFET whose gate is buried in the substrate or epitaxial layer to have a vertical channel. The power metal-oxide-semiconductor field-effect transistor has a small unit size and a small on-resistance, and is suitable for a power MOSFET of a medium and low voltage.
分离栅极沟槽栅极(Split Gate Trench,SGT)金属氧化物半导体场效应晶体管则是将单一个栅极拆成两个栅极,并以隔离场板分隔两个栅极的一种功率MOSFET。深入外延层的隔离场板可增加横向耗尽区(lateral depletion),并使N漂移掺杂浓度(N-driftdoping concentration)增加。隔离场板还可以减少栅极和漏极的重叠,因此可以减小栅极到漏极的电容(gate-to-drain capacitance)。因此,该结构在静态和动态特性方面均具有优异的性能。A split gate trench gate (Split Gate Trench, SGT) metal oxide semiconductor field effect transistor is a power MOSFET that splits a single gate into two gates and separates the two gates with an isolation field plate. . The isolation field plate deep into the epitaxial layer can increase the lateral depletion and increase the N-driftdoping concentration. Isolating the field plates also reduces gate and drain overlap and therefore reduces gate-to-drain capacitance. Therefore, the structure has excellent performance in both static and dynamic characteristics.
然而,由于SGT MOSFET的工艺较为复杂,栅极与隔离场板之间容易产生漏电流,以致元件的击穿电压不足。另一方面,若为了降低栅极与隔离场板之间的漏电流而减少外延层的掺杂浓度,则会造成导通电阻(Ron)增加,栅极电荷量(gate charge,QG)增加,而影响元件的效能。However, due to the complex process of the SGT MOSFET, leakage current is easily generated between the gate and the isolation field plate, so that the breakdown voltage of the component is insufficient. On the other hand, if the doping concentration of the epitaxial layer is reduced in order to reduce the leakage current between the gate and the isolation field plate, the on-resistance (Ron) will increase, and the gate charge (QG) will increase. and affect the performance of the device.
发明内容Contents of the invention
本发明提出一种功率元件可以降低栅极与隔离场板之间的漏电流,提升元件的击穿电压,降低导通电阻,减少栅极电荷量(QG),改善品质因素(figure of merit,FOM),提升元件的效能。The present invention proposes a power element that can reduce the leakage current between the gate and the isolation field plate, increase the breakdown voltage of the element, reduce the on-resistance, reduce the charge of the gate (QG), and improve the figure of merit. FOM), to improve the performance of the device.
本发明的实施例的一种功率元件,包括一种功率元件,包括:外延层,具有沟渠,自所述外延层的第一表面向第二表面延伸;漏极掺杂层,位于所述外延层的所述第二表面上;第一基体区与第二基体区,位于所述沟渠两侧的所述外延层中;第一源极掺杂区与第二源极掺杂区,分别位于所述第一基体区与所述第二基体区中;隔离场板,位于所述沟渠中;绝缘填充层,位于所述沟渠中,环绕所述隔离场板的下部的侧壁与底部;第一栅极与第二栅极,位于所述沟渠中且位于所述绝缘填充层上,其中所述第一栅极位于所述隔离场板与所述第一基体区之间,所述第二栅极位于所述隔离场板与所述第二基体区之间;以及介电层,环绕所述第一栅极与所述第二栅极的侧壁,其中所述介电层的下部具有所述介电层的最大宽度,且其中所述隔离场板包括第一部分与第二部分,所述第一部分与所述介电层的所述下部相邻,且其掺杂浓度大于第二部分。A power element according to an embodiment of the present invention includes a power element, comprising: an epitaxial layer having a trench extending from a first surface of the epitaxial layer to a second surface; a doped drain layer located on the epitaxial layer on the second surface of the layer; the first body region and the second body region are located in the epitaxial layer on both sides of the trench; the first source doped region and the second source doped region are respectively located In the first body region and the second body region; the isolated field plate is located in the trench; the insulating filling layer is located in the trench and surrounds the sidewall and the bottom of the lower part of the isolated field plate; A gate and a second gate are located in the trench and on the insulating filling layer, wherein the first gate is located between the isolation field plate and the first base region, and the second a gate is located between the isolation field plate and the second base region; and a dielectric layer surrounds sidewalls of the first gate and the second gate, wherein a lower portion of the dielectric layer has The maximum width of the dielectric layer, and wherein the isolation field plate includes a first portion and a second portion, the first portion is adjacent to the lower portion of the dielectric layer and has a higher doping concentration than the second portion .
基于上述,栅极沟槽底角处具有足够厚的氧化层,因此可以降低栅极与隔离场板之间的漏电流,提升元件的击穿电压。在维持相同的击穿电压的前提下,可以增加外延层的浓度,以降低导通电阻(Ron),减少栅极电荷量(QG),改善品质因素(FOM),提升元件的效能。Based on the above, there is a sufficiently thick oxide layer at the bottom corner of the gate trench, so the leakage current between the gate and the isolation field plate can be reduced, and the breakdown voltage of the element can be increased. On the premise of maintaining the same breakdown voltage, the concentration of the epitaxial layer can be increased to reduce the on-resistance (Ron), reduce the gate charge (QG), improve the quality factor (FOM), and improve the performance of the device.
附图说明Description of drawings
图1A至图1J是依照本发明的第一实施例的一种功率元件的制造方法的剖面示意图。1A to 1J are schematic cross-sectional views of a method for manufacturing a power device according to a first embodiment of the present invention.
图2是图1J中区域R的放大示意图。FIG. 2 is an enlarged schematic view of region R in FIG. 1J .
图3A至图3E是依照本发明的第二实施例的一种功率元件的制造方法的剖面示意图。3A to 3E are schematic cross-sectional views of a manufacturing method of a power device according to a second embodiment of the present invention.
图4A至图4E是依照本发明的第三实施例的一种功率元件的制造方法的剖面示意图。4A to 4E are schematic cross-sectional views of a manufacturing method of a power device according to a third embodiment of the present invention.
图5A至图5D是依照本发明的第四实施例的一种功率元件的制造方法的剖面示意图。5A to 5D are schematic cross-sectional views of a manufacturing method of a power device according to a fourth embodiment of the present invention.
图6绘示出功率元件的两个单元的剖面示意图。FIG. 6 shows a schematic cross-sectional view of two units of the power device.
附图标记:Reference signs:
10:衬底10: Substrate
12:漏极掺杂层12: Drain doped layer
14:外延层14: epitaxial layer
14a:第一表面14a: first surface
14b:第二表面14b: Second surface
16:沟渠16: Ditch
18、18a:绝缘填充层18, 18a: insulating filling layer
20、20a、20a’、20c、31:导体层20, 20a, 20a', 20c, 31: conductor layer
20b:掺杂层、掺杂区20b: doped layer, doped region
20b’、20d:掺杂区20b', 20d: doped regions
22:第一栅极沟槽22: First gate trench
24:第二栅极沟槽24: Second gate trench
30、46:介电层30, 46: dielectric layer
30a:第一闸介电层30a: first gate dielectric layer
30b:第二闸介电层30b: second gate dielectric layer
30c:第一绝缘层30c: first insulating layer
30d:第二绝缘层30d: Second insulating layer
30L:下部30L: lower part
30U:上部30U: upper part
32、32’:第一栅极32, 32': the first grid
34、34’:第二栅极34, 34': the second gate
36:第一基体区36: First matrix area
38:第二基体区38: Second matrix area
42:第一源极掺杂区42: The first source doped region
44:第二源极掺杂区44: Second source doped region
52:第一接触窗开口52: First contact window opening
54:第二接触窗开口54: second contact window opening
62:第一掺杂区62: The first doped region
64、64’:第二掺杂区64, 64': the second doped region
72:第一接触窗72: First contact window
74、74’:第二接触窗74, 74': second contact window
C1、C1’:单元C1, C1': unit
PL:隔离场板PL: isolated field plate
P1:第一部分P1: Part I
P2:第二部分P2: Part Two
P3:第三部分P3: The third part
IMP 1、IMP 2、IMP3:离子植入工艺IMP 1, IMP 2, IMP3: ion implantation process
Tmin1、Tmin2:最小厚度T min1 , T min2 : minimum thickness
Tmax1、Tmax2:最大厚度T max1 , T max2 : maximum thickness
α1、α2、β1、β2:底角α1, α2, β1, β2: bottom angle
θ:夹角θ: included angle
具体实施方式Detailed ways
图1A至图1J是依照本发明的第一实施例的一种功率元件的制造方法的剖面示意图。功率元件例如是SGT MOSFET。1A to 1J are schematic cross-sectional views of a method for manufacturing a power device according to a first embodiment of the present invention. Power components are, for example, SGT MOSFETs.
请参照图1A,功率元件的制造方法包括在衬底10中形成漏极掺杂层12。衬底10可以是半导体衬底10,例如硅衬底。漏极掺杂层12可以在晶片制造时以原位(in-situ)掺质工艺形成。漏极掺杂层12具有第一导电型掺质。第一导电型掺质为N型掺质,例如是磷或是砷。接着,在漏极掺杂层12上形成外延层14。外延层14的形成方法例如是选择性外延生长工艺。外延层14具有第一导电型掺质。第一导电型掺质为N型掺质,例如是磷或是砷。外延层14的掺杂浓度例如是低于漏极掺杂层12的掺杂浓度。外延层14的掺质可以在进行选择性外延生长工艺时原位(in-situ)形成,或是在进行选择性外延生长工艺之后再通过离子植入工艺来形成之。Referring to FIG. 1A , the method for manufacturing a power device includes forming a
其后,在外延层14中形成沟渠16。沟渠16自外延层14的第一表面14a向第二表面14b延伸。沟渠16可以通过光刻与刻蚀工艺来形成。刻蚀工艺可以是非等向性刻蚀工艺、等向性刻蚀工艺或其组合。之后,在外延层14上以及沟渠16之中形成绝缘填充层18与导体层20。绝缘填充层18的材料例如是以化学气相沉积法形成的氧化硅、氮化硅或其组合。导体层20形成在绝缘填充层18上,并将沟渠16剩余的空间填满。导体层20可以是半导体材料,例如是以化学气相沉积法形成的未掺杂多晶硅或掺杂的多晶硅。Thereafter,
请参照图1B,对导体层20进行回刻蚀工艺,移除沟渠16以外的导体层20,以在沟渠16之中留下导体层20a。在一些实施例中,导体层20a的顶面低于外延层14的顶面。Referring to FIG. 1B , an etch-back process is performed on the
请参照图1C,在导体层20a上或是导体层20a中形成掺杂层(或称为掺杂区)20b。掺杂层/掺杂区20b与导体层20a具有相同的导电型的掺质,例如是第一导电型掺质。第一导电型掺质为N型掺质,例如是磷或是砷。掺杂层/掺杂区20b的掺杂浓度例如是高于导体层20a的掺杂浓度。在一些实施例中,掺杂层/掺杂区20b的掺杂浓度范围为5E18 1/cm3至5E20 1/cm3。掺杂层/掺杂区20b的厚度/深度大于1500埃可以有利于后续形成栅极沟槽的刻蚀工艺的控制。掺杂层/掺杂区20b的厚度/深度范围例如是1600埃至2500埃。Referring to FIG. 1C, a doped layer (or called a doped region) 20b is formed on or in the
在一实施例中,掺杂区20b位于导体层20a中。掺杂区20b的形成方法例如是对导体层20a进行离子植入工艺IMP 1。离子植入工艺IMP 1以垂直衬底10的表面的方式将掺质植入于导体层20a之中。在另一实施例中,掺杂层20b位于导体层20a上。掺杂层20b的形成方法例如是在形成导体层20a之后,以原位进行化学气相沉积工艺,以在导体层20a上形成浓度大于导体层20a的掺杂层20b。In one embodiment, the doped
之后,请参照图1D,在掺杂层/掺杂区20b上形成导体层20c。导体层20c的形成方法例如是在绝缘填充层18以及掺杂层/掺杂区20b上形成导体层后,再进行回刻蚀工艺,以移除沟渠16以外的导体层。导体层20c可以是半导体材料,例如是以化学气相沉积法形成的未掺杂多晶硅或掺杂的多晶硅。导体层20c的顶面可以与外延层14的第一表面14a共平面或低于外延层14的第一表面14a。Afterwards, referring to FIG. 1D , a
其后,请参照图1E,对绝缘填充层18进行回刻蚀工艺,移除沟渠16以外的绝缘填充层18,以在沟渠16之中留下绝缘填充层18a。绝缘填充层18a环绕导体层20a的侧壁与底面,且环绕部分的掺杂层/掺杂区20b的侧壁,并且绝缘填充层18a的顶面介于掺杂区20b的顶面与底面之间。换言之,绝缘填充层18a上具有第一栅极沟槽22与第二栅极沟槽24。第一栅极沟槽22与第二栅极沟槽24的侧壁裸露出外延层14、导体层20c与部分的掺杂区20b,且第一栅极沟槽22与第二栅极沟槽24的底面裸露出绝缘填充层18a的顶面。回刻蚀工艺例如是非等向性刻蚀工艺、等向性刻蚀工艺或组合。Thereafter, referring to FIG. 1E , an etch-back process is performed on the insulating
请参照图1F,在外延层14与导体层20c上以及第一栅极沟槽22与第二栅极沟槽24之中形成介电层30。介电层30可以是以热氧化法或是化学气相沉积法形成的氧化硅。在介电层30是以热氧化法形成的氧化硅层的一些实施例中,掺杂区20b的掺杂浓度大于外延层14的掺杂浓度,相较于外延层14,掺杂区20b较易于氧化。因此,在掺杂区20b表面所形成的介电层(氧化硅层)30的厚度大于在外延层14表面所形成的介电层(氧化硅层)30的厚度。此外,由于掺杂区20b的掺杂浓度大于导体层20c的掺杂浓度,相较于导体层20c,掺杂区20b较易于氧化。因此,在掺杂区20b表面所形成的介电层(氧化硅层)30的厚度大于在导体层20c表面所形成的介电层(氧化硅层)30的厚度,其后将参照图2详述之。Referring to FIG. 1F , a
请参照图1G,在介电层30上形成导体层31。导体层31将第一栅极沟槽22与第二栅极沟槽24剩余的空间填满。导体层31可以是半导体材料,例如是以化学气相沉积法形成的掺杂的多晶硅。Referring to FIG. 1G , a
请参照图1H,对导体层31进行回刻蚀,移除第一栅极沟槽22与第二栅极沟槽24以外的导体层31,以在第一栅极沟槽22与第二栅极沟槽24之中形成第一栅极32与第二栅极34。第一栅极32与第二栅极34的顶面可以与外延层14的第一表面14a共平面或低于外延层14的第一表面14a。Please refer to FIG. 1H, etch back the
请继续参照图1H,于沟渠16两侧的外延层14中形成第一基体区36与第二基体区38。第一基体区36与第二基体区38自外延层14的第一表面14a向第二表面14b延伸。第一基体区36与第二基体区38具有第二导电型掺质,例如是P型掺质。P型掺质例如是硼或是三氟化硼。第一基体区36与第二基体区38的形成方法例如是离子植入法。在另一实施例中,第一基体区36与第二基体区38可以在形成沟渠16之前形成。举例来说,第一基体区36与第二基体区38可以在形成外延层14的选择性外延生长工艺时原位(in-situ)形成,或是在进行选择性外延生长工艺之后再通过离子植入工艺来形成之。Please continue to refer to FIG. 1H , a
接着,于第一基体区36与第二基体区38中分别形成第一源极掺杂区42与第二源极掺杂区44。第一源极掺杂区42与第二源极掺杂区44。具有第一导电型掺质,例如是N型掺质。N型掺质,例如是磷或是砷。第一源极掺杂区42与第二源极掺杂区44形成方法例如是离子植入法。Next, a first
请参照图1I,于外延层14上形成介电层46,以覆盖第一源极掺杂区42、第二源极掺杂区44、第一栅极32、第二栅极34以及介电层30。介电层46例如是化学气相沉积法形成的硼磷硅酸盐玻璃(BPSG)、氧化硅、氮化硅或其组合。接着,进行光刻与刻蚀工艺,在介电层46中形成第一接触窗开口52与第二接触窗开口54,以分别裸露出第一源极掺杂区42与第二源极掺杂区44。其后,在第一基体区36与第二基体区38中分别形成第一掺杂区62与第二掺杂区64。第一掺杂区62与第二掺杂区64中具有第二导电型掺质。第二导电型掺质可以是P型掺质,例如是硼或是三氟化硼。第一掺杂区62与第二掺杂区64形成方法例如是离子植入法。1I, a
请参照图1J,之后,在第一接触窗开口52与第二接触窗开口54中分别形成与第一掺杂区62接触的第一接触窗72以及与第二掺杂区64接触的第二接触窗74,并且第一接触窗72与第二接触窗74彼此电连接。其后,进行后续的金属化工艺。后续的金属化工艺可以包括将第一栅极32与第二栅极34电连接等工艺。Please refer to FIG. 1J, after that, the
请参照图1J,在本实施例中,导体层20a、掺杂层/掺杂区20b以及导体层20c可合称为源极多晶硅层或隔离场板PL。隔离场板PL可以均匀第一基体区(p-body region)36与第二基体区38下方的外延层14的电场分布,使峰值的电场强度降低,因此可以提升击穿电压。从另一方面来说,在相同的击穿电压下,可以将外延层14的掺杂浓度提高,以降低导通电阻(Ron)。Referring to FIG. 1J , in this embodiment, the
此外,在本实施例中,隔离场板PL包括第一部分P1与第二部分P2。掺杂层/掺杂区20b为隔离场板PL的第一部分P1;导体层20a与导体层20c可以合称为隔离场板PL的第二部分P2。第一部分P1,被夹在第二部分P2之中,且第一部分P1的掺杂浓度大于第二部分P2的掺杂浓度。Furthermore, in this embodiment, the isolation field plate PL includes a first portion P1 and a second portion P2. The doped layer/doped
由于本实施例中具有较高浓度的隔离场板PL的第一部分P1被第一栅极沟槽22与第二栅极沟槽24暴露,且第一栅极沟槽22与第二栅极沟槽24的底部高于第一部分P1的底部(如图1E所示)。因此,后续在形成介电层30的热氧化工艺时,具有较高浓度的第一部分P1有助于较厚的氧化硅层的形成,因此,有较多的第一部分P1被氧化。故而,在形成介电层30之后,水平高度在第一栅极沟槽22与第二栅极沟槽24的顶面与底面之间的隔离场板PL中,第一部分P1为宽度最窄之处,如图1F与图2所示。Since the first portion P1 of the isolation field plate PL with higher concentration in this embodiment is exposed by the
图2示出图1J中区域R的放大示意图。请参照图2,在外延层14与第一栅极32之间的介电层30称为第一闸介电层30a。在外延层14与第二栅极34之间的介电层30称为第二闸介电层30b。在隔离场板PL与第一栅极32之间的介电层30称为第一绝缘层30c。在隔离场板PL与第二栅极34之间的介电层30称为第二绝缘层30d。FIG. 2 shows an enlarged schematic view of the region R in FIG. 1J. Referring to FIG. 2 , the
隔离场板PL的第一部分P1(掺杂层/掺杂区20b)与第一绝缘层30c以及第二绝缘层30d的下部30L相邻且接触。在隔离场板PL中,在第一部分P1上方的第二部分P2(导体层20c)与第一绝缘层30c以及第二绝缘层30d的上部30U相邻且接触。The first portion P1 (doped layer/doped
由于具有较高浓度的第一部分P1有助于形成较厚的氧化硅层,因此,第一绝缘层30c与第二绝缘层30d的下部30L为第一绝缘层30c与第二绝缘层30d中具有最大厚度Tmax1、Tmax2之处。此外,虽然在第一栅极32的底面与隔离场板PL的第一部分P1(掺杂层/掺杂区20b)之间的第一绝缘层30c与第二绝缘层30d具有最小厚度Tmin1、Tmin2,但是,此最小厚度Tmin1与第一绝缘层30c的平均厚度的比例,以及最小厚度Tmin2与第二绝缘层30d的平均厚度的比例仍大于0.8。在一实施例中,第一绝缘层30c与第二绝缘层30d的平均厚度约为900埃,其中下部30L的最大厚度Tmax1、Tmax2约为1600埃,下部30L的最小厚度Tmin1、Tmin2约为800埃。Since the first part P1 having a higher concentration helps to form a thicker silicon oxide layer, the
由于与第一栅极32与第二栅极34接触的介电层30(第一绝缘层30c与第二绝缘层30d)的下部30L具有较厚且足够厚的厚度,因此,可以降低第一栅极32与隔离场板PL之间以及第二栅极34与隔离场板PL之间的漏电流,提升元件的击穿电压。Since the
图3A至图3E是依照本发明的第二实施例的一种功率元件的制造方法的剖面示意图。3A to 3E are schematic cross-sectional views of a manufacturing method of a power device according to a second embodiment of the present invention.
请参照图3A,依照上述第一实施例所述的方法,在沟渠16之中形成导体层20a之后,在导体层20a中形成两个掺杂区20b’。掺杂区20b’形成在导体层20a的边缘区中,导体层20a的中心区并未形成掺杂区20b’。掺杂区20b’与导体层20a具有相同的导电型的掺质,例如是第一导电型掺质。第一导电型掺质为N型掺质,例如是磷或是砷。掺杂区20b’的掺杂浓度高于导体层20a的掺杂浓度。在一些实施例中,掺杂区20b’的掺杂浓度范围为5E18 1/cm3至5E20 1/cm3。掺杂区20b’的形成方法例如是对导体层20a进行倾斜离子植入工艺IMP 2。倾斜离子植入工艺IMP 2与衬底10的表面的法线方向的夹角θ范围例如是介于30度至60度。Referring to FIG. 3A , according to the method described in the above-mentioned first embodiment, after the
其后,请参照图3B,依照上述第一实施例所述的方法,在导体层20a与掺杂区20b’上形成导体层20c。在本实施例中,导体层20a、掺杂区20b’以及导体层20c可合称为源极多晶硅层或隔离场板PL。隔离场板PL可包括第一部分P1与第二部分P2。第一部分P1包括分离的两个不连接的掺杂区20b’。第二部分P2包括彼此连接的导体层20a与导体层20c,且将两个掺杂区20b’彼此分隔开。第一部分P1的掺杂浓度大于第二部分P2的掺杂浓度。Thereafter, referring to FIG. 3B , according to the method described in the first embodiment above, a
之后,请参照图3C,依照上述第一实施例所述的方法,对绝缘填充层18进行回刻蚀工艺,以在沟渠16之中留下绝缘填充层18a,并在绝缘填充层18a上形成第一栅极沟槽22与第二栅极沟槽24。第一栅极沟槽22与第二栅极沟槽24的底面的高度介于两个掺杂区20b’的顶面与底面之间。Afterwards, referring to FIG. 3C , according to the method described in the first embodiment above, the insulating
其后,请参照图3D,依照上述第一实施例所述的方法,在外延层14与导体层20c上以及第一栅极沟槽22与第二栅极沟槽24之中形成介电层30。同样地,由于掺杂区20b’的掺杂浓度大于导体层20c的掺杂浓度且大于外延层14的掺杂浓度,相较于导体层20c以及外延层14,掺杂区20b’较易于氧化。因此,在掺杂区20b’的表面所形成的介电层30的厚度大于在导体层20c的表面所形成的介电层30的厚度,且在导体层20c的表面所形成的介电层30的厚度大于在外延层14的表面所形成的介电层30的厚度。Thereafter, referring to FIG. 3D , according to the method described in the above-mentioned first embodiment, a dielectric layer is formed on the
之后,请参照图3E,依照上述第一实施例所述的方法进行后续的工艺直至形成第一接触窗72与第二接触窗74。其后,进行后续的金属化工艺。后续的金属化工艺可以包括将第一栅极32与第二栅极34电连接等工艺。Afterwards, referring to FIG. 3E , the subsequent processes are performed according to the method described in the above-mentioned first embodiment until the first contact holes 72 and the second contact holes 74 are formed. Thereafter, a subsequent metallization process is performed. The subsequent metallization process may include processes such as electrically connecting the
图4A至图4E是依照本发明的第三实施例的一种功率元件的制造方法的剖面示意图。4A to 4E are schematic cross-sectional views of a manufacturing method of a power device according to a third embodiment of the present invention.
请参照图4A,依照上述第一实施例所述形成导体层20a的方法,在沟渠16之中形成导体层20a’。但,在本实施例中,导体层20a’为具有较高浓度的掺杂的多晶硅。在一实施例中,导体层20a’的掺杂浓度范围为1E19 1/cm3至5E20 1/cm3。Referring to FIG. 4A , according to the method for forming the
之后,在导体层20a’的边缘区的表面上形成掩膜层19。掩膜层19裸露出导体层20a’的中心区的表面。掩膜层19可以是图案化的光阻层,其覆盖绝缘填充层19的表面与侧壁以及导体层20a’的边缘区的表面。掩膜层19具有开口,裸露出导体层20a’的中心区的表面。掩膜层19也可以是间隙壁,其仅覆盖在绝缘填充层19的侧壁以及导体层20a’的边缘区的表面。间隙壁的材料可以是氧化硅、氮化硅或其组合。间隙壁的形成方法可以先形成间隙壁材料层,然后再进行非等向性刻蚀工艺。After that, a
对导体层20a’进行离子植入工艺IMP 3,在导体层20a’中形成掺杂区20d。掺杂区20d与导体层20a’可以具有相同或相异导电型的掺质。An ion implantation process IMP 3 is performed on the
在掺杂区20d与导体层20a’具有相同导电型的掺质的实施例中,掺杂区20d的掺杂浓度低于导体层20a’的掺杂浓度。掺杂区20d可以采用离子植入工艺IMP 3将掺质以垂直于衬底10的表面的方式植入于导体层20a’之中。离子植入工艺IMP 3例如是将与导体层20a’的第一导电型掺质相异的第二导电型掺质植入于导体层20a’中,通过掺质相互补偿,以使得所形成的掺杂区20d的掺杂浓度低于导体层20a’的掺杂浓度。第二导电型掺质为P型掺质,例如是硼或是三氟化硼。掺杂区20d的掺杂浓度范围为5E18 1/cm3至1E20 1/cm3。In an embodiment where the
在掺杂区20d与导体层20a’具有相异导电型的掺质的实施例中,可以采用离子植入工艺IMP 3将掺质以垂直于衬底10的表面的方式植入于导体层20a’之中以形成掺杂区20d。离子植入工艺IMP 3例如是将与导体层20a’的第一导电型掺质相异且掺杂浓度高于导体层20a’的第二导电型掺质植入于导体层20a’中,通过掺质相互补偿,以使得所形成的掺杂区20d的掺质的导电型与导体层20a’的掺质的导电型相异。第二导电型掺质为P型掺质,例如是硼或是三氟化硼。掺杂区20d为具有导电型掺质的掺杂浓度范围例如是5E19 1/cm3至8E20 1/cm3。In an embodiment where the
请参照图4B,将掩膜层19移除。掩膜层19可以通过灰化法或刻蚀法移除。之后,依照上述第一实施例所述的方法,在掺杂区20d以及导体层20a’上形成导体层20c。在本实施例中,导体层20a’、掺杂区20d以及导体层20c可合称为源极多晶硅层或隔离场板PL。Referring to FIG. 4B , the
隔离场板PL可包括第一部分P1、第二部分P2与第三部分P3。第一部分P1的掺杂浓度大于第二部分P2的掺杂浓度,且大于第三部分P3的掺杂浓度。第一部分P1包括导体层20a’;第二部分P2包括掺杂区20d;第三部分包括导体层20c。第二部分P2的侧壁与底部被第一部分P1环绕包覆,且第三部分P3覆盖第一部分P1与第二部分P2的顶面。The isolation field plate PL may include a first part P1, a second part P2 and a third part P3. The doping concentration of the first portion P1 is greater than that of the second portion P2 and greater than that of the third portion P3. The first part P1 comprises the
之后,请参照图4C,依照上述第一实施例所述的方法,对绝缘填充层18进行回刻蚀工艺,以在沟渠16之中留下绝缘填充层18a,并在绝缘填充层18a上形成第一栅极沟槽22与第二栅极沟槽24。第一栅极沟槽22与第二栅极沟槽24的底面的高度低于导体层20a’的顶面,以使得第一栅极沟槽22与第二栅极沟槽24的侧壁裸露出导体层20c以及部分的导体层20a’。Afterwards, referring to FIG. 4C , according to the method described in the first embodiment above, the insulating
其后,请参照图4D,依照上述第一实施例所述的方法,在外延层14与导体层20c上以及第一栅极沟槽22与第二栅极沟槽24之中形成介电层30。由于导体层20a’的掺杂浓度大于导体层20c的掺杂浓度,相较于导体层20c,导体层20a’较易于氧化。因此,在导体层20a’表面所形成的介电层(氧化硅层)30的厚度大于在导体层20c表面所形成的介电层(氧化硅层)30的厚度。掺杂区20d的掺杂,相较于导体层20a’较不易氧化,因此,隔离场板PL可以维持足够的宽度,避免因为导体层20a’过度氧化变得太细造成阻值太高而影响功率元件的特性。此外,也可确保左右两侧的介电层不会因为导体层20a’过度氧化而彼此相连,若左右两侧的介电层(氧化层)30相连,将导致隔离场板PL的断路。Thereafter, referring to FIG. 4D , according to the method described in the above-mentioned first embodiment, a dielectric layer is formed on the
之后,请参照图4E,依照上述第一实施例所述的方法进行后续的工艺直至形成第一接触窗72与第二接触窗74。其后,进行后续的金属化工艺。后续的金属化工艺可以包括将第一栅极32与第二栅极34电连接等工艺。Afterwards, referring to FIG. 4E , the subsequent processes are performed according to the method described in the above-mentioned first embodiment until the first contact holes 72 and the second contact holes 74 are formed. Thereafter, a subsequent metallization process is performed. The subsequent metallization process may include processes such as electrically connecting the
图5A至图5D是依照本发明的第四实施例的一种功率元件的制造方法的剖面示意图。5A to 5D are schematic cross-sectional views of a manufacturing method of a power device according to a fourth embodiment of the present invention.
请参照图5A,依照上述第一实施例所述的形成导体层20a方法,在沟渠16之中形成导体层20a’,但在本实施例中,导体层20a’为具有较高浓度的掺杂的多晶硅。在一实施例中,导体层20a’的掺杂浓度范围为5E19 1/cm3至8E20 1/cm3。Please refer to FIG. 5A , according to the method for forming the
之后,依照上述第一实施例所述的方法,在导体层20a’上形成导体层20c。导体层20c与导体层20a’具有相同的导电型的掺质,例如是第一导电型掺质。导体层20c的掺杂浓度低于导体层20a’的掺杂浓度。导体层20c的形成方法例如是在形成导体层20a’之后,原位进行化学气相沉积工艺,但将掺杂的气体的浓度降低,以在导体层20a’上形成浓度低于导体层20a’的导体层20c。导体层20c的掺杂浓度例如是导体层20a’的掺杂浓度的2/3~1/2。After that, according to the method described in the first embodiment above, the
在本实施例中,导体层20a’以及导体层20c可合称为源极多晶硅层或隔离场板PL。导体层20a’为隔离场板PL的第一部分P1;导体层20c为隔离场板PL的第二部分P2。第一部分P1的掺杂浓度大于第二部分P2的掺杂浓度。第二部分P2覆盖第一部分P1的顶面。In this embodiment, the
请参照图5B,依照上述第一实施例所述的方法,对绝缘填充层18进行回刻蚀工艺,以在沟渠16之中留下绝缘填充层18a,并在绝缘填充层18a上形成第一栅极沟槽22与第二栅极沟槽24。第一栅极沟槽22与第二栅极沟槽24的底面的高度低于导体层20a’的顶面,以使得第一栅极沟槽22与第二栅极沟槽24的侧壁裸露出导体层20c以及部分的导体层20a’。Please refer to FIG. 5B. According to the method described in the first embodiment above, the insulating
请参照图5C,依照上述第一实施例所述的方法,在外延层14与导体层20c上以及第一栅极沟槽22与第二栅极沟槽24之中形成介电层30。由于导体层20a’的掺杂浓度大于导体层20c的掺杂浓度,相较于导体层20c,导体层20a’较易于氧化。因此,在导体层20a’表面所形成的介电层(氧化硅层)30的厚度大于在导体层20c表面所形成的介电层(氧化硅层)30的厚度。Referring to FIG. 5C , according to the method described in the first embodiment above, a
之后,请参照图5D,依照上述第一实施例所述的方法进行后续的工艺直至形成第一接触窗72与第二接触窗74。其后,进行后续的金属化工艺。后续的金属化工艺可以包括将第一栅极32与第二栅极34电连接等工艺。Afterwards, referring to FIG. 5D , the subsequent processes are performed according to the method described in the above-mentioned first embodiment until the first contact holes 72 and the second contact holes 74 are formed. Thereafter, a subsequent metallization process is performed. The subsequent metallization process may include processes such as electrically connecting the
以上图1J、图3E、图4E、图5D分别绘示出SGT MOSFET的一个单元。然而,本发明不以此为限。在一些实施例中,SGT MOSFET可以具有两个单元C1与C1’,如图6所示。在图6中是以图1J的单元为例来说明之,但本发明不以此为限。单元C1’与C1中相似或相同的构件的元件符号以相同的数字来表示,且在数字后加「’」“’”来表示。举例来说,第二掺杂区64’与第二掺杂区64相似,均是具有第二导电型的掺质。The above Figure 1J, Figure 3E, Figure 4E, and Figure 5D respectively depict a unit of the SGT MOSFET. However, the present invention is not limited thereto. In some embodiments, the SGT MOSFET may have two cells, C1 and C1', as shown in FIG. 6 . In FIG. 6 , the unit in FIG. 1J is taken as an example for illustration, but the present invention is not limited thereto. The element symbols of similar or identical components in unit C1' and C1 are represented by the same numbers, and "'" and "'" are added after the numbers. For example, the second doped region 64' is similar to the second
单元C1与C1’彼此相邻,第一基体区36与第一掺杂区62被单元C1与C1’共用。此外,第一掺杂区62、第二掺杂区64以及第二掺杂区64’通过第一接触窗72与第二接触窗74、74’彼此电连接。单元C1的第一栅极32与第二栅极34以及单元C1’的第一栅极32’与第二栅极34’可以彼此电连接。The cells C1 and C1' are adjacent to each other, and the
在另一些实施例中,SGT MOSFET可以具有更多个单元,而这一些单元可以排列成一个阵列。换言之,SGT MOSFET可具有多个栅极、多个源极掺杂区与多个漏极掺杂区。这一些多个栅极、多个源极与多个漏极可以分别排列成一个阵列,且这一些多个栅极、多个源极掺杂区与多个漏极掺杂区可以分别通过内连线而连接在一起而形成一个栅极端点、一个源极端点以及一个漏极端点In other embodiments, the SGT MOSFET can have more cells, and these cells can be arranged in an array. In other words, an SGT MOSFET can have multiple gates, multiple source doped regions, and multiple drain doped regions. These multiple gates, multiple sources and multiple drains can be arranged in an array respectively, and these multiple gates, multiple source doped regions and multiple drain doped regions can be respectively passed through the inner Wired together to form a gate terminal, a source terminal and a drain terminal
综上所述,本发明在栅极沟槽的下侧壁裸露出具有高掺杂浓度的隔离场板,因此,可以在栅极沟槽底角处形成厚的氧化层,故可以降低栅极与源极之间的漏电流,提升元件的击穿电压。在维持相同的击穿电压的前提下,可以增加外延层的浓度,以降低导通电阻(Ron),减少栅极电荷量(gate charge,QG),改善品质因素(figure of merit,FOM),提升元件的效能。In summary, the present invention exposes the isolation field plate with high doping concentration on the lower sidewall of the gate trench, therefore, a thick oxide layer can be formed at the bottom corner of the gate trench, so that the gate can be reduced. The leakage current between the source and the source increases the breakdown voltage of the component. Under the premise of maintaining the same breakdown voltage, the concentration of the epitaxial layer can be increased to reduce the on-resistance (Ron), reduce the gate charge (gate charge, QG), and improve the quality factor (figure of merit, FOM), Improve component performance.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109119789A TWI746007B (en) | 2020-06-12 | 2020-06-12 | Power device |
TW109119789 | 2020-06-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113809162A CN113809162A (en) | 2021-12-17 |
CN113809162B true CN113809162B (en) | 2023-05-05 |
Family
ID=78892933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110480080.5A Active CN113809162B (en) | 2020-06-12 | 2021-04-30 | Power element |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113809162B (en) |
TW (1) | TWI746007B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116525663B (en) * | 2023-07-05 | 2023-09-12 | 江苏应能微电子股份有限公司 | Trench power MOSFET device with gate-source terminal clamping structure and preparation method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4895810A (en) * | 1986-03-21 | 1990-01-23 | Advanced Power Technology, Inc. | Iopographic pattern delineated power mosfet with profile tailored recessed source |
US4992390A (en) * | 1989-07-06 | 1991-02-12 | General Electric Company | Trench gate structure with thick bottom oxide |
TW456049B (en) * | 2000-09-05 | 2001-09-21 | Ind Tech Res Inst | Trench-type metal oxide semiconductor stop structure |
DE69806484D1 (en) * | 1998-11-17 | 2002-08-14 | St Microelectronics Srl | Method of making a vertical channel MOSFET |
TW201023273A (en) * | 2008-12-05 | 2010-06-16 | Maxpower Semiconductor Inc | Power metal oxide semiconductor field effect transistor structure and manufacturing method thereof |
CN101840934A (en) * | 2009-03-17 | 2010-09-22 | 万国半导体有限公司 | Structure and Fabrication Method of Bottom Drain LDMOS Power MOSFET |
CN108878527A (en) * | 2017-05-12 | 2018-11-23 | 新唐科技股份有限公司 | U-shaped metal oxide semiconductor assembly and manufacturing method thereof |
TW201903956A (en) * | 2017-06-06 | 2019-01-16 | 馬克斯半導體股份有限公司 | Power element with polycrystalline silicon filled trenches with tapered oxide thickness doping nitrogen into the trench walls to form tapered oxide |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5283201A (en) * | 1988-05-17 | 1994-02-01 | Advanced Power Technology, Inc. | High density power device fabrication process |
US7183610B2 (en) * | 2004-04-30 | 2007-02-27 | Siliconix Incorporated | Super trench MOSFET including buried source electrode and method of fabricating the same |
US8067800B2 (en) * | 2009-12-28 | 2011-11-29 | Force Mos Technology Co., Ltd. | Super-junction trench MOSFET with resurf step oxide and the method to make the same |
US8373225B2 (en) * | 2009-12-28 | 2013-02-12 | Force Mos Technology Co., Ltd. | Super-junction trench MOSFET with Resurf stepped oxides and split gate electrodes |
US8969955B2 (en) * | 2012-06-01 | 2015-03-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Power MOSFET and methods for forming the same |
US8896060B2 (en) * | 2012-06-01 | 2014-11-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Trench power MOSFET |
-
2020
- 2020-06-12 TW TW109119789A patent/TWI746007B/en active
-
2021
- 2021-04-30 CN CN202110480080.5A patent/CN113809162B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4895810A (en) * | 1986-03-21 | 1990-01-23 | Advanced Power Technology, Inc. | Iopographic pattern delineated power mosfet with profile tailored recessed source |
US4992390A (en) * | 1989-07-06 | 1991-02-12 | General Electric Company | Trench gate structure with thick bottom oxide |
DE69806484D1 (en) * | 1998-11-17 | 2002-08-14 | St Microelectronics Srl | Method of making a vertical channel MOSFET |
TW456049B (en) * | 2000-09-05 | 2001-09-21 | Ind Tech Res Inst | Trench-type metal oxide semiconductor stop structure |
TW201023273A (en) * | 2008-12-05 | 2010-06-16 | Maxpower Semiconductor Inc | Power metal oxide semiconductor field effect transistor structure and manufacturing method thereof |
CN101840934A (en) * | 2009-03-17 | 2010-09-22 | 万国半导体有限公司 | Structure and Fabrication Method of Bottom Drain LDMOS Power MOSFET |
CN108878527A (en) * | 2017-05-12 | 2018-11-23 | 新唐科技股份有限公司 | U-shaped metal oxide semiconductor assembly and manufacturing method thereof |
TW201903956A (en) * | 2017-06-06 | 2019-01-16 | 馬克斯半導體股份有限公司 | Power element with polycrystalline silicon filled trenches with tapered oxide thickness doping nitrogen into the trench walls to form tapered oxide |
Also Published As
Publication number | Publication date |
---|---|
CN113809162A (en) | 2021-12-17 |
TW202147620A (en) | 2021-12-16 |
TWI746007B (en) | 2021-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7608510B2 (en) | Alignment of trench for MOS | |
CN101542738B (en) | Power metal oxide semiconductor field effect transistor component structure capable of being applied to high frequency | |
TWI475614B (en) | Ditch installation structure and manufacturing | |
US7417298B2 (en) | High voltage insulated-gate transistor | |
US8471331B2 (en) | Method of making an insulated gate semiconductor device with source-substrate connection and structure | |
TWI407564B (en) | Power semiconductor having trench bottom polycrystalline germanium structure and method of fabricating the same | |
JP2000252468A (en) | MOS gate device having buried gate and method of manufacturing the same | |
JP6170812B2 (en) | Manufacturing method of semiconductor device | |
KR20060111859A (en) | Semiconductor device and method with screening electrodes | |
US9991378B2 (en) | Trench power semiconductor device | |
CN111540785A (en) | LDMOS device and method of making the same | |
CN103021860A (en) | Trench transistor | |
CN111933716B (en) | LDMOS transistor and manufacturing method thereof | |
WO2007036793A2 (en) | Power mosfets and methods of making same | |
CN112331558A (en) | LDMOS transistor and manufacturing method thereof | |
KR19990050418A (en) | Power Device with Double Field Plate Structure | |
CN113809162B (en) | Power element | |
JP3354127B2 (en) | High voltage element and method of manufacturing the same | |
US20240136411A1 (en) | Transistor device and method of fabricating contacts to a semiconductor substrate | |
TWI731714B (en) | Power device and method of fabricating the same | |
CN114420749A (en) | Semiconductor device and method for manufacturing the same | |
US20240006530A1 (en) | High voltage device having multi-field plates and manufacturing method thereof | |
CN111490102B (en) | Trench gate semiconductor device and method of manufacturing the same | |
US6992352B2 (en) | Trenched DMOS devices and methods and processes for making same | |
CN117810263A (en) | Field effect semiconductor device and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |