CN113796849A - A device for image data acquisition across cardiac cycles - Google Patents
A device for image data acquisition across cardiac cycles Download PDFInfo
- Publication number
- CN113796849A CN113796849A CN202010555684.7A CN202010555684A CN113796849A CN 113796849 A CN113796849 A CN 113796849A CN 202010555684 A CN202010555684 A CN 202010555684A CN 113796849 A CN113796849 A CN 113796849A
- Authority
- CN
- China
- Prior art keywords
- time
- heart rate
- cycle
- image data
- acquisition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2503/00—Evaluating a particular growth phase or type of persons or animals
- A61B2503/04—Babies, e.g. for SIDS detection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2503/00—Evaluating a particular growth phase or type of persons or animals
- A61B2503/04—Babies, e.g. for SIDS detection
- A61B2503/045—Newborns, e.g. premature baby monitoring
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Cardiology (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- High Energy & Nuclear Physics (AREA)
- Physiology (AREA)
- Radiology & Medical Imaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
本发明公开了一种跨心动周期的图像数据采集设备,其中设备包括:比较装置,确定实际心率与心率阈值的比较结果,基于比较结果确定进行图像数据采集时的周期系数;周期确定装置,基于周期系数确定进行图像数据采集时的每个采集周期所包括的心动周期的数量,并基于实际心率确定进行图像数据采集时的每个心动周期的时间长度;延迟确定装置,根据实际心率、调整因子和反转时间确定脉冲准备时间,基于反转时间和脉冲准备时间确定触发延迟时间;时刻确定装置,根据采集周期的周期起始时刻和触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻;以及采集装置,基于采集起始时刻和持续时间以跨心动周期的方式在心率波形中进行图像数据采集。
The invention discloses an image data acquisition device across cardiac cycles, wherein the device comprises: a comparison device, which determines a comparison result between an actual heart rate and a heart rate threshold, and determines a cycle coefficient when image data acquisition is performed based on the comparison result; a cycle determination device, based on The period coefficient determines the number of cardiac cycles included in each acquisition cycle when the image data is acquired, and determines the time length of each cardiac cycle when the image data is acquired based on the actual heart rate; the delay determination means, according to the actual heart rate, the adjustment factor and the reversal time to determine the pulse preparation time, and determine the trigger delay time based on the inversion time and the pulse preparation time; the time determination device determines the start of image data acquisition in the acquisition cycle according to the cycle start time of the acquisition cycle and the trigger delay time. a start time; and an acquisition device that performs image data acquisition in the heart rate waveform in a cross-cardiac cycle based on the acquisition start time and duration.
Description
技术领域technical field
本发明涉及图像数据采集技术领域,并且更具体地,涉及一种跨心动周期的图像数据采集设备。The present invention relates to the technical field of image data acquisition, and more particularly, to an image data acquisition device across cardiac cycles.
背景技术Background technique
新生儿心肌疾病主要包括炎症性心肌疾病及心肌病(例如,肥厚型心肌病)。临床研究发现,在非结构性心脏病的新生儿中,经过积极治疗后, 53.1%的新生儿在离院时,心肌肌钙蛋白I(cardiac TroponinI,cTnI)高于正常值,36.7%的新生儿的cTnI水平呈进行性升高,而超声心动图及心电图均未见明显异常。此外,既往研究发现,在肌小节基因突变的肥厚型心肌病(Hypertrophic CardioMyopathy,HCM)家系中,11.5%新生儿在出生后2周内即可检测到心肌增厚。根据相关的研究报道,新生儿期的HCM多在1岁以内死亡。因此,更为准确地评估患儿的心肌病变情况,从而更好地制定治疗决策是临床亟待解决的问题之一。Neonatal cardiomyopathy mainly includes inflammatory cardiomyopathy and cardiomyopathy (eg, hypertrophic cardiomyopathy). A clinical study found that among neonates with non-structural heart disease, after active treatment, 53.1% of neonates had cardiac Troponin I (cTnI) higher than normal at discharge, and 36.7% of neonates The cTnI level of the children increased progressively, and no obvious abnormality was found in the echocardiogram and electrocardiogram. In addition, previous studies have found that in families with hypertrophic cardiomyopathy (HCM) with mutations in the sarcomere gene, myocardial thickening can be detected within 2 weeks of birth in 11.5% of neonates. According to relevant research reports, most HCMs in the neonatal period die within 1 year of age. Therefore, it is one of the urgent clinical problems to evaluate the cardiomyopathy of children more accurately, so as to make better treatment decisions.
心脏磁共振成像(Cardiac Magnetic Resonance imaging,CMR)技术在评估心肌病变中的作用毋庸置疑。目前,CMR技术已经越来越广泛地被应用于各种心肌疾病的评估及诊断中。通过多种序列组合从组织学水平对心肌病变进行定量评估和定性评估,能够直观地观测心肌水肿、心肌纤维化等改变。CMR技术是心肌疾病,尤其是心肌病诊断的“金标准”,并且目前是任何其它无创检查难以替代的。The role of Cardiac Magnetic Resonance imaging (CMR) in the assessment of cardiomyopathy is beyond doubt. At present, CMR technology has been more and more widely used in the assessment and diagnosis of various myocardial diseases. Quantitative and qualitative evaluation of myocardial lesions from the histological level can be carried out through various sequence combinations, and changes such as myocardial edema and myocardial fibrosis can be visually observed. CMR technology is the "gold standard" for the diagnosis of myocardial disease, especially cardiomyopathy, and it is currently difficult to replace by any other non-invasive examination.
在常规的CMR检查的扫描过程中,需要患者配合屏气、限制胸廓运动,并且要求患者处于较低的心率(例如,90次/分钟以下)才能取得比较好的信噪比,从而减少伪影以获得清晰的图像。但是,这些要求对于婴幼儿 (例如,3岁以下的婴幼儿)或新生儿来说是难以完成的。婴幼儿或新生儿无法屏气,尤其是新生儿的心率可高达120-160次/分钟,几乎达到常规检测时所要求的心率的2倍,因此难以满足常规CMR技术的检测或扫描要求。During the scanning process of conventional CMR examination, the patient is required to cooperate with breath-holding, limit thoracic movement, and require the patient to be at a low heart rate (for example, below 90 beats/min) to achieve a better signal-to-noise ratio, thereby reducing artifacts and preventing Get clear images. However, these requirements are difficult for infants (eg, infants under 3 years of age) or newborns. Infants or newborns cannot hold their breath, especially the heart rate of newborns can be as high as 120-160 beats/min, almost twice the heart rate required for conventional detection, so it is difficult to meet the detection or scanning requirements of conventional CMR technology.
目前,对于心率偏快的成年人和儿童,在进行心脏磁共振检查时主要通过药物(例如,美托洛尔)或深度麻醉来降低心率至90次/分钟左右,从而能够进行扫描。通常,新生儿正常心率在120-160次/分钟之间,如果心率降至90次/分钟,则会影响全身各脏器的血液灌注,造成脏器损伤。因此,新生儿不能通过降低心率的方式进行扫描。Currently, in adults and children with a rapid heart rate, cardiac MRI is mainly performed with drugs (eg, metoprolol) or deep anesthesia to lower the heart rate to around 90 beats per minute, so that the scan can be performed. Usually, the normal heart rate of newborns is between 120-160 beats/min. If the heart rate drops to 90 beats/min, it will affect the blood perfusion of various organs in the body and cause organ damage. Therefore, newborns cannot be scanned by reducing their heart rate.
发明内容SUMMARY OF THE INVENTION
为了解决上述问题,本发明突破了现有技术中认为的只能在单心动周期内进行数据采集的固有思维模式。现有技术无法完成新生儿或婴幼儿心脏磁共振扫描,无法采集到有效图像,而使用本发明的多心动周期或跨心动周期的图像数据采集方法能够完成新生儿心脏磁共振扫描,并且能够得到高质量图像。In order to solve the above problems, the present invention breaks through the inherent thinking mode that data collection can only be performed in a single cardiac cycle considered in the prior art. The existing technology cannot complete the neonatal or infant cardiac magnetic resonance scan, and cannot acquire effective images, but the multi-cardiac cycle or cross-cardiac cycle image data acquisition method of the present invention can complete the neonatal cardiac magnetic resonance scan, and can obtain High quality images.
根据本发明的一个方面,提供一种跨心动周期的图像数据采集方法,所述方法包括:According to one aspect of the present invention, there is provided a method for acquiring image data across cardiac cycles, the method comprising:
获取由心率检测仪器所确定的实际心率,确定所述实际心率与心率阈值的比较结果,基于所述比较结果确定进行图像数据采集时的周期系数;Obtaining the actual heart rate determined by the heart rate detection instrument, determining the comparison result between the actual heart rate and the heart rate threshold, and determining the period coefficient during image data acquisition based on the comparison result;
基于所述周期系数确定进行图像数据采集时的每个采集周期所包括的心动周期的数量,并基于所述实际心率确定进行图像数据采集时的每个心动周期的时间长度;Determine the number of cardiac cycles included in each acquisition cycle when image data acquisition is performed based on the period coefficient, and determine the time length of each cardiac cycle when image data acquisition is performed based on the actual heart rate;
获取预先确定的反转时间,根据所述实际心率、调整因子和反转时间确定脉冲准备时间,基于反转时间和脉冲准备时间确定触发延迟时间;obtaining a predetermined reversal time, determining the pulse preparation time according to the actual heart rate, the adjustment factor and the reversal time, and determining the trigger delay time based on the reversal time and the pulse preparation time;
根据采集周期的周期起始时刻和所述触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻;以及determining the acquisition start time of image data acquisition in the acquisition cycle according to the cycle start time of the acquisition cycle and the trigger delay time; and
确定进行图像数据采集的持续时间,并且基于采集起始时刻和持续时间以跨心动周期的方式在心率波形图中进行图像数据采集。The duration of image data acquisition is determined, and the image data acquisition is performed on the heart rate waveform map in a cross-cardiac cycle based on the acquisition start time and duration.
所述心率检测仪器用于检测目标对象的心率值。The heart rate detection instrument is used to detect the heart rate value of the target object.
所述心率检测仪器对目标对象进行多次检测以获得多个心率值;The heart rate detection instrument performs multiple detections on the target object to obtain multiple heart rate values;
将多个心率值中的任意一个心率值确定为目标对象的实际心率;或者,Determining any one heart rate value among the plurality of heart rate values as the actual heart rate of the target object; or,
将多个心率值的平均值确定为目标对象的实际心率。The average value of the plurality of heart rate values is determined as the actual heart rate of the target subject.
其中基于所述比较结果确定进行图像数据采集时的周期系数包括:Wherein, determining the period coefficient during image data acquisition based on the comparison result includes:
当所述比较结果为所述实际心率大于心率阈值时,将进行图像数据采集时的周期系数设置为2。When the comparison result is that the actual heart rate is greater than the heart rate threshold, the period coefficient during image data acquisition is set to 2.
基于所述周期系数确定进行图像数据采集时的每个采集周期所包括的心动周期的数量包括:Determining, based on the period coefficient, the number of cardiac cycles included in each acquisition period during image data acquisition includes:
将进行图像数据采集时的每个采集周期所包括的心动周期的数量设置为等于所述周期系数。The number of cardiac cycles included in each acquisition cycle when image data acquisition is performed is set equal to the period coefficient.
基于所述实际心率确定进行图像数据采集时的每个心动周期的时间长度包括:Determining, based on the actual heart rate, the time length of each cardiac cycle during image data acquisition includes:
将单位时间与实际心率的比值作为进行图像数据采集时的每个心动周期的时间长度。The ratio of the unit time to the actual heart rate was taken as the time length of each cardiac cycle during image data acquisition.
所述根据实际心率、调整因子和反转时间确定脉冲准备时间包括:The determining of the pulse preparation time according to the actual heart rate, the adjustment factor and the reversal time includes:
确定单位时间T,并根据以下公式来计算脉冲准备时间P:Determine the unit time T, and calculate the pulse preparation time P according to the following formula:
其中,T为单位时间,R为实际心率,α为调整因子,TI为反转时间。Among them, T is the unit time, R is the actual heart rate, α is the adjustment factor, and TI is the reversal time.
所述基于反转时间和脉冲准备时间确定触发延迟时间包括:The determining of the trigger delay time based on the reversal time and the pulse preparation time includes:
将所述反转时间和脉冲准备时间的和作为触发延迟时间。The sum of the inversion time and the pulse preparation time is taken as the trigger delay time.
所述根据采集周期的周期起始时刻和所述触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻包括:The determining of the acquisition start time for image data acquisition in the acquisition cycle according to the cycle start time of the acquisition cycle and the trigger delay time includes:
在心率波形中,以所述采集周期的第一心动周期的周期起始时刻作为第一时刻,将从第一时刻开始并经过所述触发延迟时间后的位于第二心动周期中的第二时刻作为进行图像数据采集的采集起始时刻;In the heart rate waveform, taking the cycle start time of the first cardiac cycle of the acquisition cycle as the first time, the second time in the second cardiac cycle after the trigger delay time starts from the first time As the acquisition start time of image data acquisition;
其中所述采集周期的周期起始时刻和第一心动周期的周期起始时刻相同。The cycle start time of the acquisition cycle is the same as the cycle start time of the first cardiac cycle.
所述基于采集起始时刻和持续时间以跨心动周期的方式在心率波形中进行图像数据采集包括:The image data acquisition in the heart rate waveform in a cross-cardiac cycle based on the acquisition start time and duration includes:
在心率波形中以跨心动周期的方式,从位于所述采集周期的第二心动周期而非第一心动周期的采集起始时刻开始,对持续时间的时间长度内的图像数据进行采集。Image data for a duration of time is acquired in the heart rate waveform in a cross-cardiac cycle, starting from an acquisition start time located in a second cardiac cycle of the acquisition period rather than the first cardiac cycle.
根据本发明的一个方面,提供一种跨心动周期的图像数据采集设备,所述设备包括:According to one aspect of the present invention, there is provided a device for acquiring image data across cardiac cycles, the device comprising:
比较装置,获取由心率检测仪器所确定的实际心率,确定所述实际心率与心率阈值的比较结果,基于所述比较结果确定进行图像数据采集时的周期系数;a comparison device, which obtains the actual heart rate determined by the heart rate detection instrument, determines the comparison result between the actual heart rate and the heart rate threshold, and determines the period coefficient when image data collection is performed based on the comparison result;
周期确定装置,基于所述周期系数确定进行图像数据采集时的每个采集周期所包括的心动周期的数量,并基于所述实际心率确定进行图像数据采集时的每个心动周期的时间长度;a cycle determination device, which determines, based on the cycle coefficient, the number of cardiac cycles included in each acquisition cycle during image data acquisition, and determines the time length of each cardiac cycle during image data acquisition based on the actual heart rate;
延迟确定装置,获取预先确定的反转时间,根据所述实际心率、调整因子和反转时间确定脉冲准备时间,基于反转时间和脉冲准备时间确定触发延迟时间;a delay determination device that acquires a predetermined reversal time, determines the pulse preparation time according to the actual heart rate, the adjustment factor and the reversal time, and determines the trigger delay time based on the reversal time and the pulse preparation time;
时刻确定装置,根据采集周期的周期起始时刻和所述触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻;以及a time determination device, which determines the acquisition start time of image data acquisition in the acquisition cycle according to the cycle start time of the acquisition cycle and the trigger delay time; and
采集装置,确定进行图像数据采集的持续时间,并且基于采集起始时刻和持续时间以跨心动周期的方式在心率波形中进行图像数据采集。The acquisition device determines the duration of image data acquisition, and based on the acquisition start time and duration, performs image data acquisition in the heart rate waveform in a cross-cardiac cycle manner.
所述心率检测仪器用于检测目标对象的心率值。The heart rate detection instrument is used to detect the heart rate value of the target object.
所述心率检测仪器对目标对象进行多次检测以获得多个心率值;The heart rate detection instrument performs multiple detections on the target object to obtain multiple heart rate values;
将多个心率值中的任意一个心率值确定为目标对象的实际心率;Determining any one of the multiple heart rate values as the actual heart rate of the target object;
或者,or,
将多个心率值的平均值确定为目标对象的实际心率。The average value of the plurality of heart rate values is determined as the actual heart rate of the target subject.
其中比较装置基于所述比较结果确定进行图像数据采集时的周期系数包括:Wherein the comparison device determines, based on the comparison result, the period coefficient during image data acquisition including:
当比较装置所确定的比较结果为所述实际心率大于心率阈值时,比较装置将进行图像数据采集时的周期系数设置为2。When the comparison result determined by the comparison device is that the actual heart rate is greater than the heart rate threshold, the comparison device sets the period coefficient for image data acquisition to 2.
其中周期确定装置基于所述周期系数确定进行图像数据采集时的每个采集周期所包括的心动周期的数量包括:Wherein, the number of cardiac cycles included in each acquisition cycle when the image data acquisition is performed by the period determining device based on the period coefficient includes:
所述周期确定装置将进行图像数据采集时的每个采集周期所包括的心动周期的数量设置为等于所述周期系数。The period determination means sets the number of cardiac cycles included in each acquisition period when image data acquisition is performed to be equal to the period coefficient.
所述周期确定装置基于所述实际心率确定进行图像数据采集时的每个心动周期的时间长度包括:The period determining device determines, based on the actual heart rate, the time length of each cardiac cycle during image data acquisition, including:
所述周期确定装置将单位时间与实际心率的比值作为进行图像数据采集时的每个心动周期的时间长度。The cycle determination means takes the ratio of the unit time to the actual heart rate as the time length of each cardiac cycle during image data acquisition.
所述延迟确定装置根据实际心率、调整因子和反转时间确定脉冲准备时间包括:The delay determination device determining the pulse preparation time according to the actual heart rate, the adjustment factor and the reversal time includes:
所述延迟确定装置确定单位时间T,并根据以下公式来计算脉冲准备时间P:The delay determination device determines the unit time T, and calculates the pulse preparation time P according to the following formula:
其中,T为单位时间,R为实际心率,α为调整因子,TI为反转时间。Among them, T is the unit time, R is the actual heart rate, α is the adjustment factor, and TI is the reversal time.
所述延迟确定装置基于反转时间和脉冲准备时间确定触发延迟时间包括:The delay determination means determining the trigger delay time based on the reversal time and the pulse preparation time includes:
所述延迟确定装置将所述反转时间和脉冲准备时间的和作为触发延迟时间。The delay determination means uses the sum of the inversion time and the pulse preparation time as a trigger delay time.
所述时刻确定装置根据采集周期的周期起始时刻和所述触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻包括:The time determining device determines, according to the cycle start time of the capture cycle and the trigger delay time, the capture start time for image data capture in the capture cycle, including:
在心率波形中,所述时刻确定装置以所述采集周期的第一心动周期的周期起始时刻作为第一时刻,将从第一时刻开始并经过所述触发延迟时间后的位于第二心动周期中的第二时刻作为进行图像数据采集的采集起始时刻;In the heart rate waveform, the time determining means takes the cycle start time of the first cardiac cycle of the acquisition cycle as the first time, and starts from the first time and passes the trigger delay time at the second cardiac cycle. The second time in the image data collection is taken as the start time of image data collection;
其中所述采集周期的周期起始时刻和第一心动周期的周期起始时刻相同。The cycle start time of the acquisition cycle is the same as the cycle start time of the first cardiac cycle.
所述采集装置基于采集起始时刻和持续时间以跨心动周期的方式在心率波形中进行图像数据采集包括:The acquisition device performs image data acquisition in the heart rate waveform in a cross-cardiac cycle based on the acquisition start time and duration, including:
所述采集装置在心率波形中以跨心动周期的方式,从位于所述采集周期的第二心动周期而非第一心动周期的采集起始时刻开始,对持续时间的时间长度内的图像数据进行采集。The acquisition device, in the heart rate waveform, in a cross-cardiac cycle, starts from the acquisition start time in the second cardiac cycle of the acquisition period, rather than the first cardiac cycle, on the image data for the duration of the time length. collection.
根据本发明的一个方面,提供一种以跨周期的方式进行图像数据采集的方法,所述方法包括:According to one aspect of the present invention, there is provided a method for image data acquisition in a cross-cycle manner, the method comprising:
获取由检测仪器所确定的动态频率,确定所述动态频率与频率阈值的比较结果,基于所述比较结果确定进行图像数据采集时的周期系数;Obtaining the dynamic frequency determined by the detection instrument, determining the comparison result between the dynamic frequency and the frequency threshold, and determining the period coefficient during image data acquisition based on the comparison result;
基于所述周期系数确定进行图像数据采集时的每个采集周期所包括的波形周期的数量,并基于所述动态频率确定进行图像数据采集时的每个波形周期的时间长度;Determine the number of waveform periods included in each acquisition period when image data acquisition is performed based on the period coefficient, and determine the time length of each waveform period when image data acquisition is performed based on the dynamic frequency;
获取预先确定的反转时间,根据所述动态频率、调整因子和反转时间确定脉冲准备时间,基于反转时间和脉冲准备时间确定触发延迟时间;Obtaining a predetermined inversion time, determining the pulse preparation time according to the dynamic frequency, the adjustment factor and the inversion time, and determining the trigger delay time based on the inversion time and the pulse preparation time;
根据采集周期的周期起始时刻和所述触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻;以及determining the acquisition start time of image data acquisition in the acquisition cycle according to the cycle start time of the acquisition cycle and the trigger delay time; and
确定进行图像数据采集的持续时间,并且基于采集起始时刻和持续时间以跨周期的方式在目标波形中进行图像数据采集。The duration of image data acquisition is determined, and image data acquisition is performed in the target waveform in a cross-cycle manner based on the acquisition start time and duration.
所述检测仪器用于检测目标波形的频率值。The detection instrument is used to detect the frequency value of the target waveform.
所述检测仪器对目标波形进行多次检测以获得多个频率值;The detection instrument performs multiple detections on the target waveform to obtain multiple frequency values;
将多个频率值中的任意一个频率值确定为目标波形的动态频率;或者,Determine any one of the multiple frequency values as the dynamic frequency of the target waveform; or,
将多个频率值的平均值确定为目标波形的动态频率。The average value of multiple frequency values is determined as the dynamic frequency of the target waveform.
其中基于所述比较结果确定进行图像数据采集时的周期系数包括:Wherein, determining the period coefficient during image data acquisition based on the comparison result includes:
当所述比较结果为所述动态频率大于频率阈值时,将进行图像数据采集时的周期系数设置为2。When the comparison result is that the dynamic frequency is greater than the frequency threshold, the period coefficient during image data acquisition is set to 2.
基于所述周期系数确定进行图像数据采集时的每个采集周期所包括的波形周期的数量包括:Determining the number of waveform periods included in each acquisition period during image data acquisition based on the period coefficient includes:
将进行图像数据采集时的每个采集周期所包括的波形周期的数量设置为等于所述周期系数。The number of waveform periods included in each acquisition period when image data acquisition is performed is set equal to the period coefficient.
基于所述动态频率确定进行图像数据采集时的每个波形周期的时间长度包括:Determining the time length of each waveform cycle during image data acquisition based on the dynamic frequency includes:
将单位时间与动态频率的比值作为进行图像数据采集时的每个波形周期的时间长度。The ratio of unit time to dynamic frequency is taken as the time length of each waveform cycle during image data acquisition.
所述根据动态频率、调整因子和反转时间确定脉冲准备时间包括:The determining of the pulse preparation time according to the dynamic frequency, the adjustment factor and the reversal time includes:
确定单位时间T,并根据以下公式来计算脉冲准备时间P:Determine the unit time T, and calculate the pulse preparation time P according to the following formula:
其中,T为单位时间,R为动态频率,α为调整因子,TI为反转时间。Among them, T is the unit time, R is the dynamic frequency, α is the adjustment factor, and TI is the inversion time.
所述基于反转时间和脉冲准备时间确定触发延迟时间包括:The determining of the trigger delay time based on the reversal time and the pulse preparation time includes:
将所述反转时间和脉冲准备时间的和作为触发延迟时间。The sum of the inversion time and the pulse preparation time is taken as the trigger delay time.
所述根据采集周期的周期起始时刻和所述触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻包括:The determining of the acquisition start time for image data acquisition in the acquisition cycle according to the cycle start time of the acquisition cycle and the trigger delay time includes:
在目标波形中,以所述采集周期的第一波形周期的周期起始时刻作为第一时刻,将从第一时刻开始并经过所述触发延迟时间后的位于第二波形周期中的第二时刻作为进行图像数据采集的采集起始时刻;In the target waveform, taking the cycle start time of the first waveform cycle of the acquisition cycle as the first time, the second time in the second waveform cycle after the trigger delay time starts from the first time As the acquisition start time of image data acquisition;
其中所述采集周期的周期起始时刻和第一波形周期的周期起始时刻相同。The cycle start time of the acquisition cycle is the same as the cycle start time of the first waveform cycle.
所述基于采集起始时刻和持续时间以跨波形周期的方式在目标波形中进行图像数据采集包括:The image data acquisition in the target waveform in the manner of spanning waveform cycles based on the acquisition start time and duration includes:
在目标波形中以跨波形周期的方式,从位于所述采集周期的第二波形周期而非第一波形周期的采集起始时刻开始,对持续时间的时间长度内的图像数据进行采集。In the target waveform, the image data within the time length of the duration is acquired in a manner of spanning waveform periods, starting from the acquisition start time located in the second waveform period of the acquisition period rather than the first waveform period.
根据本发明的一个方面,提供一种以跨周期的方式进行图像数据采集的设备,所述设备包括:According to one aspect of the present invention, there is provided a device for acquiring image data in a cross-cycle manner, the device comprising:
比较装置,获取由检测仪器所确定的动态频率,确定所述动态频率与频率阈值的比较结果,基于所述比较结果确定进行图像数据采集时的周期系数;a comparison device, which acquires the dynamic frequency determined by the detection instrument, determines the comparison result between the dynamic frequency and the frequency threshold, and determines the period coefficient during image data acquisition based on the comparison result;
周期确定装置,基于所述周期系数确定进行图像数据采集时的每个采集周期所包括的波形周期的数量,并基于所述动态频率确定进行图像数据采集时的每个波形周期的时间长度;a period determination device, which determines, based on the period coefficient, the number of waveform periods included in each acquisition period during image data acquisition, and determines the time length of each waveform period when image data acquisition is performed based on the dynamic frequency;
延迟确定装置,获取预先确定的反转时间,根据所述动态频率、调整因子和反转时间确定脉冲准备时间,基于反转时间和脉冲准备时间确定触发延迟时间;a delay determination device that acquires a predetermined reversal time, determines the pulse preparation time according to the dynamic frequency, the adjustment factor and the inversion time, and determines the trigger delay time based on the inversion time and the pulse preparation time;
时刻确定装置,根据采集周期的周期起始时刻和所述触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻;以及a time determination device, which determines the acquisition start time of image data acquisition in the acquisition cycle according to the cycle start time of the acquisition cycle and the trigger delay time; and
采集装置,确定进行图像数据采集的持续时间,并且基于采集起始时刻和持续时间以跨周期的方式在目标波形中进行图像数据采集。The acquisition device determines the duration of image data acquisition, and performs image data acquisition in the target waveform in a cross-cycle manner based on the acquisition start time and duration.
所述检测仪器用于检测目标波形的频率值。The detection instrument is used to detect the frequency value of the target waveform.
所述检测仪器对目标波形进行多次检测以获得多个频率值;The detection instrument performs multiple detections on the target waveform to obtain multiple frequency values;
将多个频率值中的任意一个频率值确定为目标波形的动态频率;Determine any one of the multiple frequency values as the dynamic frequency of the target waveform;
或者,or,
将多个频率值的平均值确定为目标波形的动态频率。The average value of multiple frequency values is determined as the dynamic frequency of the target waveform.
其中比较装置基于所述比较结果确定进行图像数据采集时的周期系数包括:Wherein the comparison device determines, based on the comparison result, the period coefficient during image data acquisition including:
当比较装置所述比较结果为所述动态频率大于频率阈值时,将进行图像数据采集时的周期系数设置为2。When the comparison result of the comparison device is that the dynamic frequency is greater than the frequency threshold, the period coefficient during image data acquisition is set to 2.
其中周期确定装置基于所述周期系数确定进行图像数据采集时的每个采集周期所包括的波形周期的数量包括:Wherein the period determining means determines, based on the period coefficient, the number of waveform periods included in each acquisition period during image data acquisition, including:
所述周期确定装置将进行图像数据采集时的每个采集周期所包括的波形周期的数量设置为等于所述周期系数。The period determination means sets the number of waveform periods included in each acquisition period when image data acquisition is performed to be equal to the period coefficient.
其中周期确定装置基于所述动态频率确定进行图像数据采集时的每个波形周期的时间长度包括:Wherein, the period determining means determines, based on the dynamic frequency, the time length of each waveform period during image data acquisition, including:
所述周期确定装置将单位时间与动态频率的比值作为进行图像数据采集时的每个波形周期的时间长度。The period determining means takes the ratio of the unit time to the dynamic frequency as the time length of each waveform period during image data acquisition.
所述延迟确定装置根据动态频率、调整因子和反转时间确定脉冲准备时间包括:The delay determination device determining the pulse preparation time according to the dynamic frequency, the adjustment factor and the reversal time includes:
确定单位时间T,并根据以下公式来计算脉冲准备时间P:Determine the unit time T, and calculate the pulse preparation time P according to the following formula:
其中,T为单位时间,R为动态频率,α为调整因子,TI为反转时间。Among them, T is the unit time, R is the dynamic frequency, α is the adjustment factor, and TI is the inversion time.
所述延迟确定装置基于反转时间和脉冲准备时间确定触发延迟时间包括:The delay determination means determining the trigger delay time based on the reversal time and the pulse preparation time includes:
所述延迟确定装置将所述反转时间和脉冲准备时间的和作为触发延迟时间。The delay determination means uses the sum of the inversion time and the pulse preparation time as a trigger delay time.
所述时刻确定装置根据采集周期的周期起始时刻和所述触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻包括:The time determining device determines, according to the cycle start time of the capture cycle and the trigger delay time, the capture start time for image data capture in the capture cycle, including:
在目标波形中,所述时刻确定装置以所述采集周期的第一波形周期的周期起始时刻作为第一时刻,将从第一时刻开始并经过所述触发延迟时间后的位于第二波形周期中的第二时刻作为进行图像数据采集的采集起始时刻;In the target waveform, the time determining device takes the cycle start time of the first waveform cycle of the acquisition cycle as the first time, and starts from the first time and after the trigger delay time elapses in the second waveform cycle The second time in the image data collection is taken as the start time of image data collection;
其中所述采集周期的周期起始时刻和第一波形周期的周期起始时刻相同。The cycle start time of the acquisition cycle is the same as the cycle start time of the first waveform cycle.
所述采集装置基于采集起始时刻和持续时间以跨波形周期的方式在目标波形中进行图像数据采集包括:The acquisition device performs image data acquisition in the target waveform in a manner of spanning waveform cycles based on the acquisition start time and duration, including:
所述采集装置在目标波形中以跨波形周期的方式,从位于所述采集周期的第二波形周期而非第一波形周期的采集起始时刻开始,对持续时间的时间长度内的图像数据进行采集。The acquisition device, in the target waveform, starts from the acquisition start time located in the second waveform period of the acquisition period rather than the first waveform period in a manner of crossing the waveform period, and performs the image data within the time length of the duration. collection.
本发明所提出的多心动周期的数据采集技术,不用降低新生儿或婴幼儿的心率,在新生儿或婴幼儿正常的心跳状态下进行检查,避免了因为低心率导致其它脏器损伤的风险。此外,本发明所提出的多心动周期的数据采集技术在进行新生儿或婴幼儿扫描时,可不用对新生儿或婴幼儿进行深度麻醉,大大降低了患儿的深度麻醉的风险和不良后果。The multi-cardiac cycle data acquisition technology proposed by the present invention does not need to reduce the heart rate of the newborn or infant, and performs inspection under the normal heart rate of the newborn or infant, avoiding the risk of damage to other organs due to low heart rate. In addition, the multi-cardiac cycle data acquisition technology proposed in the present invention does not need to perform deep anesthesia on the newborn or infant when scanning the newborn or infant, which greatly reduces the risk and adverse consequences of the infant's deep anesthesia.
附图说明Description of drawings
通过参考下面的附图,可以更为完整地理解本发明的示例性实施方式:Exemplary embodiments of the present invention may be more fully understood by reference to the following drawings:
图1为根据单心动周期进行图像数据采集的示意图;1 is a schematic diagram of image data acquisition according to a single cardiac cycle;
图2为根据本发明的跨心动周期的图像数据采集方法的流程图;2 is a flow chart of a method for acquiring image data across cardiac cycles according to the present invention;
图3为根据本发明的跨心动周期的图像数据采集的示意图;3 is a schematic diagram of image data acquisition across cardiac cycles according to the present invention;
图4为根据本发明的跨心动周期的图像数据采集设备的结构示意图;4 is a schematic structural diagram of an image data acquisition device across cardiac cycles according to the present invention;
图5为根据本发明的以跨周期的方式进行图像数据采集的方法的流程图;以及5 is a flowchart of a method for image data acquisition in a cross-cycle manner according to the present invention; and
图6为根据本发明的以跨周期的方式进行图像数据采集的设备的结构示意图。FIG. 6 is a schematic structural diagram of a device for acquiring image data in a cross-cycle manner according to the present invention.
具体实施方式Detailed ways
现在参考附图介绍本发明的示例性实施方式,然而,本发明可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本发明,并且向所属技术领域的技术人员充分传达本发明的范围。对于表示在附图中的示例性实施方式中的术语并不是对本发明的限定。在附图中,相同的单元/元件使用相同的附图标记。Exemplary embodiments of the present invention will now be described with reference to the accompanying drawings, however, the present invention may be embodied in many different forms and is not limited to the embodiments described herein, which are provided for the purpose of this thorough and complete disclosure invention, and fully convey the scope of the invention to those skilled in the art. The terms used in the exemplary embodiments shown in the drawings are not intended to limit the invention. In the drawings, the same elements/elements are given the same reference numerals.
除非另有说明,此处使用的术语(包括科技术语)对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。Unless otherwise defined, terms (including scientific and technical terms) used herein have the commonly understood meanings to those skilled in the art. In addition, it is to be understood that terms defined in commonly used dictionaries should be construed as having meanings consistent with the context in the related art, and should not be construed as idealized or overly formal meanings.
图1为根据单心动周期进行图像数据采集的示意图。通常,CMR检测或扫描采用的是单心动周期的采集方式,即通过前瞻性心电门控,由每个心动周期的QRS(心室的除极的全过程)波群中向上的波R波触发脉冲,并在随后的图形中采集图像。由于技术限制,R波触发脉冲后至开始扫描的时刻之间存在脉冲准备的时间长度。此外,为了进行相应数据或内容的检测,CMR检测或扫描需保持反转时间TI(Inversion Time)。在反转时间 TI的时间长度内,CMR可以例如进行其它常规检测或扫描。通常,TI值在 250-300ms的区间内时,所采集的图像数据提供的病变心肌和非病变心肌的对比效果最好。R波触发脉冲至开始采集图像的时刻之间的时间为触发延迟(trigger delay),即触发延迟的时间长度等于脉冲准备的时间长度(例如大于或等于15ms)和反转时间TI的和。对于心率在60-90次/分之间的成年人或青少年,由于R-R间期足够长,因此在配合良好的情况下基本都能够采集到的清晰的图像(如图1所示)。在图1中,举例来说,目标对象的心率为90次/分钟,R-R周期为666ms。图像采集的持续时间位于 300-400ms的区间内通常是最佳的。此外,触发延迟(trigger delay)285ms、脉冲准备为15ms、TI为270ms并且采集时间或持续时间为100ms。FIG. 1 is a schematic diagram of image data acquisition according to a single cardiac cycle. Usually, CMR detection or scanning adopts a single cardiac cycle acquisition method, that is, through prospective ECG gating, triggered by the upward R wave in the QRS (full process of ventricular depolarization) complex of each cardiac cycle Pulse and acquire images in subsequent graphs. Due to technical limitations, there is a length of time for pulse preparation between the moment the R-wave triggers the pulse and the moment the scan begins. In addition, in order to detect the corresponding data or content, the CMR detection or scanning needs to keep the inversion time TI (Inversion Time). During the length of the inversion time TI, the CMR may, for example, perform other conventional detections or scans. Typically, the acquired image data provides the best contrast between diseased myocardium and non-diseased myocardium when the TI value is in the interval of 250-300ms. The time between the R-wave trigger pulse and the moment when the image starts to be acquired is the trigger delay, that is, the trigger delay time length is equal to the sum of the pulse preparation time length (eg greater than or equal to 15ms) and the inversion time TI. For adults or adolescents with a heart rate between 60-90 beats/min, since the R-R interval is long enough, clear images can basically be collected with good coordination (as shown in Figure 1). In Figure 1, for example, the target subject's heart rate is 90 beats/min, and the R-R period is 666 ms. Image acquisition durations in the interval 300-400ms are usually optimal. In addition, the trigger delay was 285ms, the pulse preparation was 15ms, the TI was 270ms and the acquisition time or duration was 100ms.
图2为根据本发明的跨心动周期的图像数据采集方法200的流程图。方法200采用多心动周期的数据采集技术,在不用降低大于心率阈值的实际心率的情况下,能够在目标对象的自然或常规或正常的心跳状态下进行图像数据采集,避免了因为人为降低心率所导致其它脏器损伤的风险。FIG. 2 is a flow chart of a method 200 of image data acquisition across cardiac cycles in accordance with the present invention. The method 200 adopts the data acquisition technology of multiple cardiac cycles, without reducing the actual heart rate greater than the heart rate threshold, the image data acquisition can be performed in the natural or normal or normal heartbeat state of the target object, avoiding the need for artificially reducing the heart rate. Risk of damage to other organs.
方法200从步骤201处开始。在步骤201,获取由心率检测仪器所确定的实际心率,确定实际心率与心率阈值的比较结果,基于比较结果确定进行图像数据采集时的周期系数。Method 200 begins at
其中,心率检测仪器用于以不介入人体或不产生创伤的方式来检测目标对象的心率值。其中心率值是指正常人安静状态下每分钟心跳的次数。心率检测仪器可以是任何能够以不介入人体或不产生创伤的方式来检测目标对象的心率或心率值的仪器。心率或心率值的单位为次数/分钟。Among them, the heart rate detection instrument is used to detect the heart rate value of the target object in a way that does not involve in the human body or cause no trauma. The heart rate value refers to the number of heartbeats per minute in a normal person's resting state. The heart rate detection instrument can be any instrument capable of detecting the heart rate or heart rate value of the target subject in a manner that does not involve human body or cause trauma. The unit of heart rate or heart rate value is beats/minute.
心率检测仪器对目标对象进行多次检测以获得多个心率值。例如,心率检测仪器以固定的间隔时间(例如2分钟、3分钟或5分钟)对目标对象进行多次检测。其中每次检测的时间为2分钟、1分钟、30秒或20秒等任意合理数值。通过这种方式,心率检测仪器可以通过检测获得多个心率值。The heart rate detection instrument performs multiple detections on the target object to obtain multiple heart rate values. For example, a heart rate detection instrument detects a target object multiple times at fixed intervals (eg, 2 minutes, 3 minutes, or 5 minutes). The time for each detection is any reasonable value such as 2 minutes, 1 minute, 30 seconds or 20 seconds. In this way, the heart rate detection instrument can obtain multiple heart rate values through detection.
在本申请中,心率检测仪器可以将多个心率值中的任意一个心率值确定为目标对象的实际心率。例如,心率检测仪器可以将多个心率值中的最大值或最小值确定为目标对象的实际心率。或者,心率检测仪器可以将多个心率值中与中位数值最近的心率值确定为目标对象的实际心率。或者,心率检测仪器可以将多个心率值中随机选择的一个心率值确定为目标对象的实际心率。In the present application, the heart rate detection instrument may determine any one heart rate value among the plurality of heart rate values as the actual heart rate of the target object. For example, the heart rate detection apparatus may determine the maximum or minimum value among the plurality of heart rate values as the actual heart rate of the target subject. Alternatively, the heart rate detection apparatus may determine the heart rate value closest to the median value among the plurality of heart rate values as the actual heart rate of the target subject. Alternatively, the heart rate detection apparatus may determine a heart rate value randomly selected from a plurality of heart rate values as the actual heart rate of the target subject.
此外,心率检测仪器将多个心率值的平均值确定为目标对象的实际心率。优选地,可以将平均值向上取整或向下取整所获得的整数值确定为目标对象的实际心率。可替换地,例如,心率检测仪器通过检测获得多个心率值H1、H2、H3、……、Hn,那么可以通过下列方式来确定实际心率Hact:In addition, the heart rate detection apparatus determines the average value of the plurality of heart rate values as the actual heart rate of the target subject. Preferably, an integer value obtained by rounding up or down the average value may be determined as the actual heart rate of the target subject. Alternatively, for example, the heart rate detection instrument obtains a plurality of heart rate values H 1 , H 2 , H 3 , . . . , H n through detection, then the actual heart rate H act can be determined in the following manner:
其中,t为心率检测仪器对目标对象进行多次检测时,每次检测之间的间隔时间并且t为大于2的自然数,单位为分钟;Among them, t is the interval time between each detection when the heart rate detection instrument performs multiple detections on the target object, and t is a natural number greater than 2, in minutes;
Hmax为多个心率值H1、H2、H3、……、Hn中的最大心率值;H max is the maximum heart rate value among the multiple heart rate values H 1 , H 2 , H 3 , ..., H n ;
Hmin为多个心率值H1、H2、H3、……、Hn中的最小心率值;H min is the minimum heart rate value among the multiple heart rate values H 1 , H 2 , H 3 , ..., H n ;
μ为经过调整的心率值μ is the adjusted heart rate value
Hi为多个心率值H1、H2、H3、……、Hn中的第i个心率值H i is the i-th heart rate value among the plurality of heart rate values H 1 , H 2 , H 3 , ..., H n
n为多个心率值H1、H2、H3、……、Hn的数量;n is the number of multiple heart rate values H 1 , H 2 , H 3 , ..., H n ;
为多个心率值H1、H2、H3、……、Hn的平均值。 is the average value of a plurality of heart rate values H 1 , H 2 , H 3 , ..., H n .
心率阈值可以是预先设定的,并且可以根据实际运行或实际检测情况进行动态调整。例如,心率阈值为105次/分钟、110次/分钟、115次/分钟、120次/分钟、125次/分钟、130次/分钟或135次/分钟。Heart rate thresholds can be preset and dynamically adjusted based on actual operation or actual detection. For example, the heart rate threshold is 105/min, 110/min, 115/min, 120/min, 125/min, 130/min or 135/min.
其中基于比较结果确定进行图像数据采集时的周期系数包括:当比较结果为实际心率大于心率阈值时,将进行图像数据采集时的周期系数设置为2。即,在进行实际检测时,将2个心动周期构成一个采集周期,从而能够在具有延迟触发的情况下采集到的较好的图像数据。应当了解的是,周期系数可以是任意合理的数值,例如3、4、5等。Wherein, determining the period coefficient for image data acquisition based on the comparison result includes: when the comparison result is that the actual heart rate is greater than the heart rate threshold, setting the period coefficient for image data acquisition to 2. That is, when performing actual detection, two cardiac cycles constitute one acquisition cycle, so that better image data can be acquired under the condition of delayed triggering. It should be understood that the period factor can be any reasonable value, such as 3, 4, 5, etc.
此外,当比较结果为实际心率小于或等于心率阈值时,将进行图像数据采集时的周期系数设置为1。即,在进行实际检测时,将1个心动周期构成一个采集周期,如图1所示。In addition, when the comparison result is that the actual heart rate is less than or equal to the heart rate threshold, the period coefficient when image data acquisition is performed is set to 1. That is, during actual detection, one cardiac cycle constitutes one acquisition cycle, as shown in FIG. 1 .
在步骤202,基于周期系数确定进行图像数据采集时的每个采集周期所包括的心动周期的数量,并基于实际心率确定进行图像数据采集时的每个心动周期的时间长度。基于周期系数确定进行图像数据采集时的每个采集周期所包括的心动周期的数量包括:将进行图像数据采集时的每个采集周期所包括的心动周期的数量设置为等于周期系数。例如,当周期系数为 2时,则将进行图像数据采集时的每个采集周期所包括的心动周期的数量设置为2。即,每个采集周期包括两个心动周期。In
基于实际心率确定进行图像数据采集时的每个心动周期的时间长度包括:将单位时间与实际心率的比值作为进行图像数据采集时的每个心动周期的时间长度。在本申请中,单位时间可以被设置为1分钟,也可以等于60000毫秒(ms),即6×104ms。应当了解的是,单位时间可以是任何合理数值,例如,2分钟、30秒或20秒等。例如,当目标对象的实际心率为 150次/分钟时,每个心动周期的时间长度为6×104ms/150=400ms。那么,由于每个采集周期包括两个心动周期,则每个采集周期为400ms×2= 800ms。Determining the time length of each cardiac cycle during image data acquisition based on the actual heart rate includes: taking the ratio of the unit time to the actual heart rate as the time length of each cardiac cycle during image data acquisition. In this application, the unit time may be set to 1 minute, or it may be equal to 60000 milliseconds (ms), ie 6×10 4 ms. It should be understood that the unit time can be any reasonable value, for example, 2 minutes, 30 seconds, or 20 seconds, and the like. For example, when the actual heart rate of the target subject is 150 beats/min, the time length of each cardiac cycle is 6×10 4 ms/150=400 ms. Then, since each acquisition cycle includes two cardiac cycles, each acquisition cycle is 400ms×2=800ms.
在步骤203,获取预先确定的反转时间,根据实际心率、调整因子和反转时间确定脉冲准备时间,基于反转时间和脉冲准备时间确定触发延迟时间。通常,可以预先设置心脏磁共振成像的反转恢复序列的反转时间。心脏磁共振成像是多模式的成像技术,可评估包括心血管解剖结构及功能在内的多种参数。扫描过程或成像过程中,选择恰当的TI时间可以提高图像的信噪比,并减少呼吸伪影。实际上,在TI时间内,心脏磁共振成像设备需要针对心率波形进行其它扫描或成像动作。为此,TI时间可以优选地设置为250至300ms。应当了解的是,在本申请中,可以根据实际运行情况,例如根据在初始TI时间的情况下进行成像或扫描的是否满足要求,来动态修改初始TI时间,以实现更好的信噪比。In
其中根据实际心率、调整因子和反转时间确定脉冲准备时间包括:通过T为单位时间,R为实际心率,α为调整因子和TI为反转时间来计算脉冲准备时间。具体地址,确定单位时间T,并根据以下公式来计算脉冲准备时间P:Determining the pulse preparation time according to the actual heart rate, adjustment factor and reversal time includes: calculating the pulse preparation time by using T as the unit time, R as the actual heart rate, α as the adjustment factor and TI as the reversal time. For the specific address, determine the unit time T, and calculate the pulse preparation time P according to the following formula:
其中,T为单位时间,R为实际心率,α为调整因子,TI为反转时间。其中单位时间例如是1分钟、2分钟、30秒或20秒等。实际心率的单位为次/分钟。α为调整因子并且α的取值优选为0.375至0.5。反转时间TI优选地为250ms至300ms。Among them, T is the unit time, R is the actual heart rate, α is the adjustment factor, and TI is the reversal time. The unit time is, for example, 1 minute, 2 minutes, 30 seconds, or 20 seconds. The actual heart rate is in beats/minute. α is an adjustment factor and the value of α is preferably 0.375 to 0.5. The inversion time TI is preferably 250ms to 300ms.
其中,基于反转时间和脉冲准备时间确定触发延迟时间包括:将反转时间和脉冲准备时间的和作为触发延迟时间。如上,触发延迟时间可以是P+TI。优选地,触发延迟时间也可以与反转时间和脉冲准备时间的和呈线性比例关系。例如,触发延迟时间可以是(P+TI)×β。Wherein, determining the trigger delay time based on the inversion time and the pulse preparation time includes: taking the sum of the inversion time and the pulse preparation time as the trigger delay time. As above, the trigger delay time may be P+TI. Preferably, the trigger delay time can also be linearly proportional to the sum of the inversion time and the pulse preparation time. For example, the trigger delay time may be (P+TI)×β.
在步骤204,根据采集周期的周期起始时刻和触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻。其中根据采集周期的周期起始时刻和触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻包括:在心率波形中,以采集周期的第一心动周期的周期起始时刻作为第一时刻,将从第一时刻开始并经过触发延迟时间后的位于第二心动周期中的第二时刻作为进行图像数据采集的采集起始时刻。其中采集周期的周期起始时刻和第一心动周期的周期起始时刻相同。In
应当了解的是,在心率波形中,存在多个QRS波群。本申请以当前 QRS波群中向上的波R波触发脉冲为起始点,并且以后一个QRS波群中向上的波R波触发脉冲为结束点来确定一个心动周期。如图3所示,两个R 波之间为一个心动周期,即与心脏的一次完整跳动相关联的波形。如上,根据本申请的技术方案,在待测目标的心率波形中,以当前采集周期的第一心动周期的R波峰值点所在的时刻作为第一时刻,将从第一时刻开始并经过触发延迟时间(P+TI)后的位于第二心动周期中的第二时刻(第二时刻位于第二心动周期的R波峰值点所在的时刻和第三心动周期的R波峰值点所在的时刻之间)作为进行图像数据采集的采集起始时刻。其中采集周期的周期起始时刻是第一心动周期的R波峰值点所在的时刻。It should be appreciated that in the heart rate waveform, there are multiple QRS complexes. In the present application, the trigger pulse of the upward wave R wave in the current QRS complex is used as the starting point, and the trigger pulse of the upward wave R wave in the next QRS complex is used as the end point to determine a cardiac cycle. As shown in Figure 3, between two R waves is a cardiac cycle, a waveform associated with one complete beat of the heart. As above, according to the technical solution of the present application, in the heart rate waveform of the target to be measured, the moment at which the R wave peak point of the first cardiac cycle of the current acquisition cycle is located is taken as the first moment, which will start from the first moment and go through a trigger delay. The second time in the second cardiac cycle after time (P+TI) (the second time is between the time at which the peak point of the R wave of the second cardiac cycle is located and the time when the peak point of the R wave in the third cardiac cycle is located) ) as the acquisition start time for image data acquisition. The cycle start time of the acquisition cycle is the time at which the peak point of the R wave of the first cardiac cycle is located.
在步骤205,确定进行图像数据采集的持续时间,并且基于采集起始时刻和持续时间以跨心动周期的方式在心率波形图中进行图像数据采集。其中基于采集起始时刻和持续时间以跨心动周期的方式在心率波形图中进行图像数据采集包括:在心率波形中以跨心动周期的方式,从位于采集周期的第二心动周期而非第一心动周期的采集起始时刻(采集起始时刻位于第二心动周期的R波峰值点所在的时刻和第三心动周期的R波峰值点所在的时刻之间)开始,对持续时间的时间长度内的图像数据进行采集。由于根据本申请的技术方案,采集周期从第一心动周期开始,但是对图像数据进行采集在第二心动周期(或第一心动周期之后的心动周期,特定情况下在第三心动周期)内进行,因此本申请提供了以跨心动周期的方式进行图像数据采集的技术方案。At
图3为根据本发明的跨心动周期的图像数据采集示意图。常规磁共振成像或扫描的单心动周期采集方式采集图像时间过短或无法采集到有效图像,因此本申请提供多心动周期或跨心动周期采集的方式。3 is a schematic diagram of image data acquisition across cardiac cycles according to the present invention. The single cardiac cycle acquisition method of conventional magnetic resonance imaging or scanning takes too short an image acquisition time or cannot acquire an effective image, so the present application provides a multi-cardiac cycle or cross-cardiac cycle acquisition method.
如图3所示,多心动周期或跨心动周期采集方式是根据实际心率设定调整的R-R间期(例如,待测对象的实际心率为150次/分钟,则仪器设定心率为实际心率的一半,即75次/分钟,从而由两个R-R间期构成个采集周期)。为此,R波触发由仪器的设定心率所决定,即调整设定心率后,每2 个心动周期触发一次扫描。通过设定脉冲准备时间,在R波触发后采集第二个心动周期内的图像数据,并且由此通过充分的数据采集时间获得清晰的图像。As shown in Figure 3, the multi-cardiac cycle or cross-cardiac cycle acquisition method is based on the R-R interval adjusted according to the actual heart rate setting (for example, if the actual heart rate of the object to be measured is 150 beats/min, the instrument sets the heart rate to be equal to the actual heart rate half, i.e. 75 times/min, thus making up an acquisition cycle from two R-R intervals). For this reason, the R-wave trigger is determined by the set heart rate of the instrument, that is, after adjusting the set heart rate, a scan is triggered every 2 cardiac cycles. By setting the pulse preparation time, image data in the second cardiac cycle is acquired after R-wave triggering, and thus clear images are obtained with sufficient data acquisition time.
其中,多心动周期或跨心动周期的数据采集中主要参数的设置包括:设定仪器心率为实际心率的1/2,并且由此确定脉冲延迟时间设定公式为: (6×104ms/实际心率)+(6×104ms/实际心率×α)-TI值。其中TI值为250 至300ms中的任意数值。优选地,TI值可以取任意合理数值。α为调整因子并且α的取值范围优选地是0.375至0.5。应当了解的是,α的取值范围可以是任意合理范围。Among them, the setting of the main parameters in the multi-cardiac cycle or cross-cardiac cycle data acquisition includes: setting the heart rate of the instrument to be 1/2 of the actual heart rate, and thus determining the pulse delay time setting formula as: (6×10 4 ms/ Actual heart rate)+(6×10 4 ms/actual heart rate×α)-TI value. where the TI value is any value between 250 and 300ms. Preferably, the TI value can take any reasonable value. α is an adjustment factor and the value range of α is preferably 0.375 to 0.5. It should be understood that the value range of α can be any reasonable range.
图3以实际心率为150次/分钟进行举例说明。当实际心率为150次/ 分钟时,仪器设定心率为75次,单个实际R-R间期(即心动周期)为400ms。由于,仪器设定心率为75次,则仪器计算的R-R间期(即2个心动周期) 为800ms。最佳采集时相为R1及R2后的150-300ms。由于R1后最佳采集时相时间太短或无法获取,因此脉冲准备时间(的时间长度)设置为285ms,并且将TI时间(的时间长度)设置为270ms。由R1触发脉冲后,采集R2 后的最佳采集时相中的图像数据,采集时间或持续时间70-80ms。采集时间或持续时间如图3的方向向下的箭头所示。Figure 3 illustrates with an actual heart rate of 150 beats/min. When the actual heart rate is 150 beats/min, the instrument sets the heart rate to 75 beats, and a single actual R-R interval (ie, cardiac cycle) is 400 ms. Since the instrument sets the heart rate to 75 beats, the R-R interval (ie, 2 cardiac cycles) calculated by the instrument is 800 ms. The best acquisition phase is 150-300ms after R1 and R2. Since the optimal acquisition phase time after R1 is too short or cannot be obtained, the pulse preparation time (time length) is set to 285ms, and the TI time (time length) is set to 270ms. After the pulse is triggered by R1, the image data in the best acquisition phase after R2 is acquired, and the acquisition time or duration is 70-80ms. The acquisition time or duration is indicated by the downward-directed arrow in FIG. 3 .
因此,基于多心动周期或跨心动周期数据采集的理念,确定了婴幼儿或新生儿的多心动周期或跨心动周期采集序列。本申请能够在监测心率和不断改变的TI时间的情况下进行自动调整,使数据采集时间、加速技术、憋气时间多方面达到理想平衡,并且针对不同心率进行调整设定从而变相延长R-R间期,以采集R波触发后第二或第三心动周期的数据。本申请与传统单心动周期采集技术及快速扫描技术进行对比,比较各技术采集图像的成功率及图像质量,为婴幼儿或新生儿心肌扫描提供新方法。Therefore, based on the concept of multi-cardiac or trans-cardiac data acquisition, a multi-cardiac or trans-cardiac acquisition sequence for infants or neonates is determined. The application can automatically adjust under the condition of monitoring heart rate and changing TI time, so as to achieve an ideal balance in data acquisition time, acceleration technology, and breath holding time, and adjust settings for different heart rates to extend the R-R interval in disguised form. To collect data of the second or third cardiac cycle after R-wave triggering. This application compares the traditional single cardiac cycle acquisition technology and the rapid scanning technology, compares the success rate and image quality of the images acquired by each technology, and provides a new method for infant or neonatal myocardial scanning.
图4为根据本发明的跨心动周期的图像数据采集设备400的结构示意图。设备400包括:比较装置401、周期确定装置402、延迟确定装置403、延迟确定装置404以及采集装置405。设备400采用多心动周期的数据采集技术,在不用降低大于心率阈值的实际心率的情况下,能够在目标对象的自然或常规或正常的心跳状态下进行图像数据采集,避免了因为人为降低心率所导致其它脏器损伤的风险。FIG. 4 is a schematic structural diagram of an image data acquisition device 400 across cardiac cycles according to the present invention. The device 400 includes: a
获取由心率检测仪器所确定的实际心率,比较装置401确定实际心率与心率阈值的比较结果,基于比较结果确定进行图像数据采集时的周期系数。The actual heart rate determined by the heart rate detection instrument is acquired, the
其中,心率检测仪器用于以不介入人体或不产生创伤的方式来检测目标对象的心率值。其中心率值是指正常人安静状态下每分钟心跳的次数。心率检测仪器可以是任何能够以不介入人体或不产生创伤的方式来检测目标对象的心率或心率值的仪器。心率或心率值的单位为次数/分钟。Among them, the heart rate detection instrument is used to detect the heart rate value of the target object in a way that does not involve in the human body or cause no trauma. The heart rate value refers to the number of heartbeats per minute in a normal person's resting state. The heart rate detection instrument can be any instrument capable of detecting the heart rate or heart rate value of the target subject in a manner that does not involve human body or cause trauma. The unit of heart rate or heart rate value is beats/minute.
心率检测仪器对目标对象进行多次检测以获得多个心率值。例如,心率检测仪器以固定的间隔时间(例如2分钟、3分钟或5分钟)对目标对象进行多次检测。其中每次检测的时间为2分钟、1分钟、30秒或20秒等任意合理数值。通过这种方式,心率检测仪器可以通过检测获得多个心率值。The heart rate detection instrument performs multiple detections on the target object to obtain multiple heart rate values. For example, a heart rate detection instrument detects a target object multiple times at fixed intervals (eg, 2 minutes, 3 minutes, or 5 minutes). The time for each detection is any reasonable value such as 2 minutes, 1 minute, 30 seconds or 20 seconds. In this way, the heart rate detection instrument can obtain multiple heart rate values through detection.
在本申请中,心率检测仪器可以将多个心率值中的任意一个心率值确定为目标对象的实际心率。例如,心率检测仪器可以将多个心率值中的最大值或最小值确定为目标对象的实际心率。或者,心率检测仪器可以将多个心率值中与中位数值最近的心率值确定为目标对象的实际心率。或者,心率检测仪器可以将多个心率值中随机选择的一个心率值确定为目标对象的实际心率。In the present application, the heart rate detection instrument may determine any one heart rate value among the plurality of heart rate values as the actual heart rate of the target object. For example, the heart rate detection apparatus may determine the maximum or minimum value among the plurality of heart rate values as the actual heart rate of the target subject. Alternatively, the heart rate detection apparatus may determine the heart rate value closest to the median value among the plurality of heart rate values as the actual heart rate of the target subject. Alternatively, the heart rate detection apparatus may determine a heart rate value randomly selected from a plurality of heart rate values as the actual heart rate of the target subject.
此外,心率检测仪器将多个心率值的平均值确定为目标对象的实际心率。优选地,可以将平均值向上取整或向下取整所获得的整数值确定为目标对象的实际心率。可替换地,例如,心率检测仪器通过检测获得多个心率值H1、H2、H3、……、Hn,那么可以通过下列方式来确定实际心率Hact:In addition, the heart rate detection apparatus determines the average value of the plurality of heart rate values as the actual heart rate of the target subject. Preferably, an integer value obtained by rounding up or down the average value may be determined as the actual heart rate of the target subject. Alternatively, for example, the heart rate detection instrument obtains a plurality of heart rate values H 1 , H 2 , H 3 , . . . , H n through detection, then the actual heart rate H act can be determined in the following manner:
其中,t为心率检测仪器对目标对象进行多次检测时,每次检测之间的间隔时间并且t为大于2的自然数,单位为分钟;Among them, t is the interval time between each detection when the heart rate detection instrument performs multiple detections on the target object, and t is a natural number greater than 2, in minutes;
Hmax为多个心率值H1、H2、H3、……、Hn中的最大心率值;H max is the maximum heart rate value among the multiple heart rate values H 1 , H 2 , H 3 , ..., H n ;
Hmin为多个心率值H1、H2、H3、……、Hn中的最小心率值;H min is the minimum heart rate value among the multiple heart rate values H 1 , H 2 , H 3 , ..., H n ;
μ为经过调整的心率值μ is the adjusted heart rate value
Hi为多个心率值H1、H2、H3、……、Hn中的第i个心率值H i is the i-th heart rate value among the plurality of heart rate values H 1 , H 2 , H 3 , ..., H n
n为多个心率值H1、H2、H3、……、Hn的数量;n is the number of multiple heart rate values H 1 , H 2 , H 3 , ..., H n ;
为多个心率值H1、H2、H3、……、Hn的平均值。 is the average value of a plurality of heart rate values H 1 , H 2 , H 3 , ..., H n .
心率阈值可以是预先设定的,并且可以根据实际运行或实际检测情况进行动态调整。例如,心率阈值为105次/分钟、110次/分钟、115次/分钟、120次/分钟、125次/分钟、130次/分钟或135次/分钟。Heart rate thresholds can be preset and dynamically adjusted based on actual operation or actual detection. For example, the heart rate threshold is 105/min, 110/min, 115/min, 120/min, 125/min, 130/min or 135/min.
其中基于比较结果确定进行图像数据采集时的周期系数包括:当比较结果为实际心率大于心率阈值时,将进行图像数据采集时的周期系数设置为2。即,在进行实际检测时,将2个心动周期构成一个采集周期,从而能够在具有延迟触发的情况下采集到的较好的图像数据。应当了解的是,周期系数可以是任意合理的数值,例如3、4、5等。Wherein, determining the period coefficient for image data acquisition based on the comparison result includes: when the comparison result is that the actual heart rate is greater than the heart rate threshold, setting the period coefficient for image data acquisition to 2. That is, when performing actual detection, two cardiac cycles constitute one acquisition cycle, so that better image data can be acquired under the condition of delayed triggering. It should be understood that the period factor can be any reasonable value, such as 3, 4, 5, etc.
此外,当比较结果为实际心率小于或等于心率阈值时,将进行图像数据采集时的周期系数设置为1。即,在进行实际检测时,将1个心动周期构成一个采集周期,如图1所示。In addition, when the comparison result is that the actual heart rate is less than or equal to the heart rate threshold, the period coefficient when image data acquisition is performed is set to 1. That is, during actual detection, one cardiac cycle constitutes one acquisition cycle, as shown in FIG. 1 .
周期确定装置402,基于周期系数确定进行图像数据采集时的每个采集周期所包括的心动周期的数量,并基于实际心率确定进行图像数据采集时的每个心动周期的时间长度。基于周期系数确定进行图像数据采集时的每个采集周期所包括的心动周期的数量包括:将进行图像数据采集时的每个采集周期所包括的心动周期的数量设置为等于周期系数。例如,当周期系数为2时,则将进行图像数据采集时的每个采集周期所包括的心动周期的数量设置为2。即,每个采集周期包括两个心动周期。The cycle determination device 402 determines, based on the cycle coefficient, the number of cardiac cycles included in each acquisition cycle during image data acquisition, and determines the time length of each cardiac cycle during image data acquisition based on the actual heart rate. Determining the number of cardiac cycles included in each acquisition period when image data acquisition is performed based on the period coefficient includes setting the number of cardiac cycles included in each acquisition period when image data acquisition is performed to be equal to the period coefficient. For example, when the period coefficient is 2, the number of cardiac cycles included in each acquisition period during image data acquisition is set to 2. That is, each acquisition cycle includes two cardiac cycles.
基于实际心率确定进行图像数据采集时的每个心动周期的时间长度包括:将单位时间与实际心率的比值作为进行图像数据采集时的每个心动周期的时间长度。在本申请中,单位时间可以被设置为1分钟,也可以等于 60000毫秒(ms),即6×104ms。应当了解的是,单位时间可以是任何合理数值,例如,2分钟、30秒或20秒等。例如,当目标对象的实际心率为 150次/分钟时,每个心动周期的时间长度为6×104ms/150=400ms。那么,由于每个采集周期包括两个心动周期,则每个采集周期为400ms×2= 800ms。Determining the time length of each cardiac cycle during image data acquisition based on the actual heart rate includes: taking the ratio of the unit time to the actual heart rate as the time length of each cardiac cycle during image data acquisition. In this application, the unit time may be set to 1 minute, or it may be equal to 60000 milliseconds (ms), ie 6×10 4 ms. It should be understood that the unit time can be any reasonable value, for example, 2 minutes, 30 seconds, or 20 seconds, and the like. For example, when the actual heart rate of the target subject is 150 beats/min, the time length of each cardiac cycle is 6×10 4 ms/150=400 ms. Then, since each acquisition cycle includes two cardiac cycles, each acquisition cycle is 400ms×2=800ms.
延迟确定装置403,获取预先确定的反转时间,根据实际心率、调整因子和反转时间确定脉冲准备时间,基于反转时间和脉冲准备时间确定触发延迟时间。通常,可以预先设置心脏磁共振成像的反转恢复序列的反转时间。心脏磁共振成像是多模式的成像技术,可评估包括心血管解剖结构及功能在内的多种参数。扫描过程或成像过程中,选择恰当的TI时间可以提高图像的信噪比,并减少呼吸伪影。实际上,在TI时间内,心脏磁共振成像设备需要针对心率波形进行其它扫描或成像动作。为此,TI时间可以优选地设置为250至300ms。应当了解的是,在本申请中,可以根据实际运行情况,例如根据在初始TI时间的情况下进行成像或扫描的是否满足要求,来动态修改初始TI时间,以实现更好的信噪比。The delay determination device 403 obtains a predetermined inversion time, determines the pulse preparation time according to the actual heart rate, the adjustment factor and the inversion time, and determines the trigger delay time based on the inversion time and the pulse preparation time. Generally, the inversion time of the inversion recovery sequence of cardiac magnetic resonance imaging can be preset. Cardiac magnetic resonance imaging is a multimodal imaging technique that assesses various parameters including cardiovascular anatomy and function. During scanning or imaging, choosing an appropriate TI time can improve the signal-to-noise ratio of the image and reduce breathing artifacts. In fact, during the TI time, the cardiac magnetic resonance imaging device needs to perform other scanning or imaging actions for the heart rate waveform. For this reason, the TI time may preferably be set to 250 to 300 ms. It should be understood that in the present application, the initial TI time can be dynamically modified according to the actual operation situation, for example, according to whether the imaging or scanning under the initial TI time meets the requirements, so as to achieve a better signal-to-noise ratio.
其中根据实际心率、调整因子和反转时间确定脉冲准备时间包括:通过T为单位时间,R为实际心率,α为调整因子和TI为反转时间来计算脉冲准备时间。具体地址,确定单位时间T,并根据以下公式来计算脉冲准备时间P:Determining the pulse preparation time according to the actual heart rate, adjustment factor and reversal time includes: calculating the pulse preparation time by using T as the unit time, R as the actual heart rate, α as the adjustment factor and TI as the reversal time. For the specific address, determine the unit time T, and calculate the pulse preparation time P according to the following formula:
其中,T为单位时间,R为实际心率,α为调整因子,TI为反转时间。其中单位时间例如是1分钟、2分钟、30秒或20秒等。实际心率的单位为次/分钟。α为调整因子并且α的取值优选为0.375至0.5。反转时间TI优选地为250ms至300ms。Among them, T is the unit time, R is the actual heart rate, α is the adjustment factor, and TI is the reversal time. The unit time is, for example, 1 minute, 2 minutes, 30 seconds, or 20 seconds. The actual heart rate is in beats/minute. α is an adjustment factor and the value of α is preferably 0.375 to 0.5. The inversion time TI is preferably 250ms to 300ms.
其中,基于反转时间和脉冲准备时间确定触发延迟时间包括:将反转时间和脉冲准备时间的和作为触发延迟时间。如上,触发延迟时间可以是 P+TI。优选地,触发延迟时间也可以与反转时间和脉冲准备时间的和呈线性比例关系。例如,触发延迟时间可以是(P+TI)×β。Wherein, determining the trigger delay time based on the inversion time and the pulse preparation time includes: taking the sum of the inversion time and the pulse preparation time as the trigger delay time. As above, the trigger delay time can be P+TI. Preferably, the trigger delay time can also be linearly proportional to the sum of the inversion time and the pulse preparation time. For example, the trigger delay time may be (P+TI)×β.
时刻确定装置404,根据采集周期的周期起始时刻和触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻。其中根据采集周期的周期起始时刻和触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻包括:在心率波形中,以采集周期的第一心动周期的周期起始时刻作为第一时刻,将从第一时刻开始并经过触发延迟时间后的位于第二心动周期中的第二时刻作为进行图像数据采集的采集起始时刻。其中采集周期的周期起始时刻和第一心动周期的周期起始时刻相同。The time determining device 404 determines, according to the cycle start time of the capture cycle and the trigger delay time, the capture start time of image data capture in the capture cycle. Wherein, determining the acquisition start time of image data acquisition in the acquisition cycle according to the cycle start time of the acquisition cycle and the trigger delay time includes: in the heart rate waveform, taking the cycle start time of the first cardiac cycle of the acquisition cycle as the first At the time, the second time in the second cardiac cycle after the trigger delay time has elapsed from the first time as the acquisition start time for image data acquisition. The cycle start time of the acquisition cycle is the same as the cycle start time of the first cardiac cycle.
应当了解的是,在心率波形中,存在多个QRS波群。本申请以当前 QRS波群中向上的波R波触发脉冲为起始点,并且以后一个QRS波群中向上的波R波触发脉冲为结束点来确定一个心动周期。如图3所示,两个R 波之间为一个心动周期,即与心脏的一次完整跳动相关联的波形。如上,根据本申请的技术方案,在待测目标的心率波形中,以当前采集周期的第一心动周期的R波峰值点所在的时刻作为第一时刻,将从第一时刻开始并经过触发延迟时间(P+TI)后的位于第二心动周期中的第二时刻(第二时刻位于第二心动周期的R波峰值点所在的时刻和第三心动周期的R波峰值点所在的时刻之间)作为进行图像数据采集的采集起始时刻。其中采集周期的周期起始时刻是第一心动周期的R波峰值点所在的时刻。It should be appreciated that in the heart rate waveform, there are multiple QRS complexes. In the present application, the trigger pulse of the upward wave R wave in the current QRS complex is used as the starting point, and the trigger pulse of the upward wave R wave in the next QRS complex is used as the end point to determine a cardiac cycle. As shown in Figure 3, between two R waves is a cardiac cycle, a waveform associated with one complete beat of the heart. As above, according to the technical solution of the present application, in the heart rate waveform of the target to be measured, the moment at which the R wave peak point of the first cardiac cycle of the current acquisition cycle is located is taken as the first moment, which will start from the first moment and go through a trigger delay. The second time in the second cardiac cycle after time (P+TI) (the second time is between the time at which the peak point of the R wave of the second cardiac cycle is located and the time when the peak point of the R wave in the third cardiac cycle is located) ) as the acquisition start time for image data acquisition. The cycle start time of the acquisition cycle is the time at which the peak point of the R wave of the first cardiac cycle is located.
采集装置405,确定进行图像数据采集的持续时间,并且基于采集起始时刻和持续时间以跨心动周期的方式在心率波形图中进行图像数据采集。其中基于采集起始时刻和持续时间以跨心动周期的方式在心率波形图中进行图像数据采集包括:在心率波形中以跨心动周期的方式,从位于采集周期的第二心动周期而非第一心动周期的采集起始时刻(采集起始时刻位于第二心动周期的R波峰值点所在的时刻和第三心动周期的R波峰值点所在的时刻之间)开始,对持续时间的时间长度内的图像数据进行采集。由于根据本申请的技术方案,采集周期从第一心动周期开始,但是对图像数据进行采集在第二心动周期(或第一心动周期之后的心动周期,特定情况下在第三心动周期)内进行,因此本申请提供了以跨心动周期的方式进行图像数据采集的技术方案。The
应当了解的是,本发明的技术方案并不限于对心率波形进行图像数据采集,而是可以对其它波形进行图像数据采集。其它波形例如是振动波形、检测波形、电压波形、电流波形、脉冲波形等各种类型的合适波形。It should be understood that the technical solution of the present invention is not limited to image data acquisition for the heart rate waveform, but can be image data acquisition for other waveforms. Other waveforms are, for example, various types of suitable waveforms such as vibration waveforms, detection waveforms, voltage waveforms, current waveforms, and pulse waveforms.
图5为根据本发明的以跨周期的方式进行图像数据采集的方法的流程图。方法500采用多周期或跨周期的数据采集技术,能够在待测波形或目标波形的频率较高或波形周期较短的情况下进行图像数据采集。方法500 从步骤501处开始。在步骤501,获取由检测仪器所确定的动态频率,确定动态频率与频率阈值的比较结果,基于比较结果确定进行图像数据采集时的周期系数。FIG. 5 is a flowchart of a method for image data acquisition in a cross-cycle manner according to the present invention. The method 500 adopts a multi-cycle or cross-cycle data collection technology, and can collect image data when the frequency of the waveform to be measured or the target waveform is relatively high or the waveform period is relatively short. Method 500 begins at
其中,检测仪器用于来检测目标波形或待测波形的频率值。其中频率值是待测波形或目标波形的每个波形单元在单位时间内的重复次数。检测仪器可以是任何能够检测待测波形或目标波形的频率或频率值的仪器。频率或频率值的单位为次数/分钟、次数/秒、次数/毫秒等。Among them, the detection instrument is used to detect the frequency value of the target waveform or the waveform to be measured. The frequency value is the number of repetitions of each waveform unit of the waveform to be measured or the target waveform per unit time. The detection instrument can be any instrument capable of detecting the frequency or frequency value of the waveform to be measured or the target waveform. The unit of frequency or frequency value is counts/minute, counts/second, counts/millisecond, etc.
检测仪器对待测波形或目标波形进行多次检测以获得多个频率值。例如,检测仪器以固定的间隔时间(例如2分钟、3分钟或5分钟)对待测波形或目标波形进行多次检测。其中每次检测的时间为2分钟、1分钟、 30秒或20秒等任意合理数值。通过这种方式,检测仪器可以通过检测获得多个频率值。The detection instrument performs multiple detections on the waveform to be tested or the target waveform to obtain multiple frequency values. For example, the detection instrument performs multiple detections of the waveform to be measured or the target waveform at a fixed interval (eg, 2 minutes, 3 minutes, or 5 minutes). The time for each detection is any reasonable value such as 2 minutes, 1 minute, 30 seconds or 20 seconds. In this way, the detection instrument can obtain multiple frequency values through detection.
在本申请中,检测仪器可以将多个频率值中的任意一个频率值确定为待测波形或目标波形的动态频率。例如,检测仪器可以将多个频率值中的最大值或最小值确定为待测波形或目标波形的动态频率。或者,检测仪器可以将多个频率值中与中位数值最近的频率值确定为待测波形或目标波形的动态频率。或者,检测仪器可以将多个频率值中随机选择的一个频率值确定为待测波形或目标波形的动态频率。In the present application, the detection instrument may determine any one of the multiple frequency values as the dynamic frequency of the waveform to be measured or the target waveform. For example, the detection instrument can determine the maximum value or the minimum value among the plurality of frequency values as the dynamic frequency of the waveform to be measured or the target waveform. Alternatively, the detection instrument may determine the frequency value closest to the median value among the multiple frequency values as the dynamic frequency of the waveform to be measured or the target waveform. Alternatively, the detection instrument may determine a frequency value randomly selected from a plurality of frequency values as the dynamic frequency of the waveform to be measured or the target waveform.
此外,检测仪器将多个频率值的平均值确定为待测波形或目标波形的动态频率。优选地,可以将平均值向上取整或向下取整所获得的整数值确定为待测波形或目标波形的动态频率。可替换地,例如,检测仪器通过检测获得多个频率值H1、H2、H3、……、Hn,那么可以通过下列方式来确定动态频率Hact:In addition, the testing instrument determines the average value of multiple frequency values as the dynamic frequency of the waveform to be measured or the target waveform. Preferably, the integer value obtained by rounding up or down the average value may be determined as the dynamic frequency of the waveform to be measured or the target waveform. Alternatively, for example, the detection instrument obtains a plurality of frequency values H 1 , H 2 , H 3 , . . . , H n through detection, then the dynamic frequency H act can be determined in the following manner:
其中,t为检测仪器对待测波形或目标波形进行多次检测时,每次检测之间的间隔时间并且t为大于2的自然数,单位为分钟;Among them, t is the interval time between each detection when the detection instrument performs multiple detections of the waveform to be measured or the target waveform, and t is a natural number greater than 2, in minutes;
Hmax为多个频率值H1、H2、H3、……、Hn中的最大频率值;H max is the maximum frequency value among the multiple frequency values H 1 , H 2 , H 3 , ..., H n ;
Hmin为多个频率值H1、H2、H3、……、Hn中的最小频率值;H min is the minimum frequency value among the multiple frequency values H 1 , H 2 , H 3 , ..., H n ;
μ为经过调整的频率值μ is the adjusted frequency value
Hi为多个频率值H1、H2、H3、……、Hn中的第i个频率值H i is the ith frequency value among the plurality of frequency values H 1 , H 2 , H 3 , ..., H n
n为多个频率值H1、H2、H3、……、Hn的数量;n is the number of multiple frequency values H 1 , H 2 , H 3 , ..., H n ;
为多个频率值H1、H2、H3、……、Hn的平均值。 It is the average value of a plurality of frequency values H 1 , H 2 , H 3 , ..., H n .
频率阈值可以是预先设定的,并且可以根据实际运行或实际检测情况进行动态调整。例如,频率阈值为105次/分钟、110次/分钟、115次/分钟、120次/分钟、125次/分钟、130次/分钟或135次/分钟。The frequency threshold can be preset and can be dynamically adjusted according to actual operation or actual detection conditions. For example, the frequency threshold is 105 times/minute, 110 times/minute, 115 times/minute, 120 times/minute, 125 times/minute, 130 times/minute, or 135 times/minute.
其中基于比较结果确定进行图像数据采集时的周期系数包括:当比较结果为动态频率大于频率阈值时,将进行图像数据采集时的周期系数设置为2。即,在进行实际检测时,将2个心动周期构成一个采集周期,从而能够在具有延迟触发的情况下采集到的较好的图像数据。应当了解的是,周期系数可以是任意合理的数值,例如3、4、5等。Wherein, determining the period coefficient when performing image data acquisition based on the comparison result includes: when the comparison result is that the dynamic frequency is greater than the frequency threshold, setting the period coefficient when performing image data acquisition to 2. That is, when performing actual detection, two cardiac cycles constitute one acquisition cycle, so that better image data can be acquired under the condition of delayed triggering. It should be understood that the period factor can be any reasonable value, such as 3, 4, 5, etc.
此外,当比较结果为动态频率小于或等于频率阈值时,将进行图像数据采集时的周期系数设置为1。即,在进行实际检测时,将1个心动周期构成一个采集周期,如图1所示。In addition, when the comparison result is that the dynamic frequency is less than or equal to the frequency threshold, the period coefficient during image data acquisition is set to 1. That is, during actual detection, one cardiac cycle constitutes one acquisition cycle, as shown in FIG. 1 .
在步骤502,基于周期系数确定进行图像数据采集时的每个采集周期所包括的波形周期的数量,并基于动态频率确定进行图像数据采集时的每个波形周期的时间长度。基于周期系数确定进行图像数据采集时的每个采集周期所包括的波形周期的数量包括:将进行图像数据采集时的每个采集周期所包括的波形周期的数量设置为等于周期系数。例如,当周期系数为 2时,则将进行图像数据采集时的每个采集周期所包括的波形周期的数量设置为2。即,每个采集周期包括两个波形周期。In
基于动态频率确定进行图像数据采集时的每个波形周期的时间长度包括:将单位时间与动态频率的比值作为进行图像数据采集时的每个波形周期的时间长度。在本申请中,单位时间可以被设置为1分钟,也可以等于 60000毫秒(ms),即6×104ms。应当了解的是,单位时间可以是任何合理数值,例如,2分钟、30秒或20秒等。例如,当目标波形的动态频率为 150次/分钟时,每个波形周期的时间长度为6×104ms/150=400ms。那么,由于每个采集周期包括两个波形周期,则每个采集周期为400ms×2= 800ms。Determining the time length of each waveform period during image data acquisition based on the dynamic frequency includes: taking the ratio of the unit time to the dynamic frequency as the time length of each waveform period during image data acquisition. In this application, the unit time may be set to 1 minute, or it may be equal to 60000 milliseconds (ms), ie 6×10 4 ms. It should be understood that the unit time can be any reasonable value, for example, 2 minutes, 30 seconds, or 20 seconds, and the like. For example, when the dynamic frequency of the target waveform is 150 times/min, the time length of each waveform cycle is 6×10 4 ms/150=400 ms. Then, since each acquisition period includes two waveform periods, each acquisition period is 400ms×2=800ms.
在步骤503,获取预先确定的反转时间,根据动态频率、调整因子和反转时间确定脉冲准备时间,基于反转时间和脉冲准备时间确定触发延迟时间。通常,可以预先设置反转时间TI。实际上,在TI时间内,成像设备需要针对频率波形进行其它扫描或成像动作。为此,TI时间可以优选地设置为250至300ms。应当了解的是,在本申请中,可以根据实际运行情况,例如根据在初始TI时间的情况下进行成像或扫描的是否满足要求,来动态修改初始TI时间,以实现更好的信噪比。In
其中根据动态频率、调整因子和反转时间确定脉冲准备时间包括:通过T为单位时间,R为动态频率,α为调整因子和TI为反转时间来计算脉冲准备时间。具体地址,确定单位时间T,并根据以下公式来计算脉冲准备时间P:The determination of the pulse preparation time according to the dynamic frequency, the adjustment factor and the inversion time includes: calculating the pulse preparation time by using T as the unit time, R as the dynamic frequency, α as the adjustment factor and TI as the inversion time. For the specific address, determine the unit time T, and calculate the pulse preparation time P according to the following formula:
其中,T为单位时间,R为动态频率,α为调整因子,TI为反转时间。其中单位时间例如是1分钟、2分钟、30秒或20秒等。动态频率的单位为次/分钟。α为调整因子并且α的取值优选为0.375至0.5。反转时间TI优选地为250ms至300ms。Among them, T is the unit time, R is the dynamic frequency, α is the adjustment factor, and TI is the inversion time. The unit time is, for example, 1 minute, 2 minutes, 30 seconds, or 20 seconds. The unit of dynamic frequency is times/minute. α is an adjustment factor and the value of α is preferably 0.375 to 0.5. The inversion time TI is preferably 250ms to 300ms.
其中,基于反转时间和脉冲准备时间确定触发延迟时间包括:将反转时间和脉冲准备时间的和作为触发延迟时间。如上,触发延迟时间可以是 P+TI。优选地,触发延迟时间也可以与反转时间和脉冲准备时间的和呈线性比例关系。例如,触发延迟时间可以是(P+TI)×β。Wherein, determining the trigger delay time based on the inversion time and the pulse preparation time includes: taking the sum of the inversion time and the pulse preparation time as the trigger delay time. As above, the trigger delay time can be P+TI. Preferably, the trigger delay time can also be linearly proportional to the sum of the inversion time and the pulse preparation time. For example, the trigger delay time may be (P+TI)×β.
在步骤504,根据采集周期的周期起始时刻和触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻。其中根据采集周期的周期起始时刻和触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻包括:在目标波形中,以采集周期的第一波形周期的周期起始时刻作为第一时刻,将从第一时刻开始并经过触发延迟时间后的位于第二波形周期中的第二时刻作为进行图像数据采集的采集起始时刻。其中采集周期的周期起始时刻和第一波形周期的周期起始时刻相同。In
应当了解的是,在频率波形中,可能存在波峰和波谷。本申请以当前波形周期中波峰或波谷为起始点,并且以后一个波形周期中波峰或波谷为结束点来确定一个波形周期。如图3所示,两个波峰或波谷之间为一个波形周期。如上,根据本申请的技术方案,在待测波形或目标波形中,以当前采集周期的第一波形周期的波峰或波谷所在的时刻作为第一时刻,将从第一时刻开始并经过触发延迟时间(P+TI)后的位于第二波形周期中的第二时刻(第二时刻位于第二波形周期的波峰或波谷所在的时刻和第三波形周期的波峰或波谷所在的时刻之间)作为进行图像数据采集的采集起始时刻。其中采集周期的周期起始时刻是第一波形周期的波峰或波谷所在的时刻。It should be appreciated that in a frequency waveform, there may be peaks and valleys. In the present application, a waveform cycle is determined by taking the peak or trough in the current waveform cycle as the starting point, and the peak or trough in the next waveform cycle as the ending point. As shown in Figure 3, there is one waveform cycle between two peaks or troughs. As above, according to the technical solution of the present application, in the waveform to be measured or the target waveform, the moment at which the peak or trough of the first waveform cycle of the current acquisition cycle is located is taken as the first moment, and the trigger delay time will start from the first moment and pass the trigger delay time. The second time in the second waveform period after (P+TI) (the second time is between the time when the peak or trough of the second waveform cycle is located and the time when the peak or trough of the third waveform cycle is located) is used as the The acquisition start time of image data acquisition. The cycle start time of the acquisition cycle is the time when the peak or trough of the first waveform cycle is located.
在步骤505,确定进行图像数据采集的持续时间,并且基于采集起始时刻和持续时间以跨波形周期的方式在频率波形图或目标波形中进行图像数据采集。其中基于采集起始时刻和持续时间以跨波形周期的方式在频率波形图或目标波形中进行图像数据采集包括:在频率波形图或目标波形中以跨波形周期的方式,从位于采集周期的第二波形周期而非第一波形周期的采集起始时刻(采集起始时刻位于第二波形周期的波峰或波谷所在的时刻和第三波形周期的波峰或波谷所在的时刻之间)开始,对持续时间的时间长度内的图像数据进行采集。由于根据本申请的技术方案,采集周期从第一波形周期开始,但是对图像数据进行采集在第二波形周期(或第一波形周期之后的波形周期,特定情况下在第三波形周期)内进行,因此本申请提供了以跨波形周期的方式进行图像数据采集的技术方案。At
图6为根据本发明的以跨周期的方式进行图像数据采集的设备600的结构示意图。设备600包括:比较装置601、周期确定装置602、延迟确定装置603、延迟确定装置604以及采集装置605。设备600采用多周期或跨周期的数据采集技术,能够在待测波形或目标波形的频率较高或波形周期较短的情况下进行图像数据采集。FIG. 6 is a schematic structural diagram of a device 600 for collecting image data in a cross-cycle manner according to the present invention. The device 600 includes: a
获取由检测仪器所确定的动态频率,比较装置601确定动态频率与频率阈值的比较结果,基于比较结果确定进行图像数据采集时的周期系数。The dynamic frequency determined by the detection instrument is acquired, and the
其中,检测仪器用于来检测目标波形或待测波形的频率值。其中频率值是待测波形或目标波形的每个波形单元在单位时间内的重复次数。检测仪器可以是任何能够检测待测波形或目标波形的频率或频率值的仪器。频率或频率值的单位为次数/分钟、次数/秒、次数/毫秒等。Among them, the detection instrument is used to detect the frequency value of the target waveform or the waveform to be measured. The frequency value is the number of repetitions of each waveform unit of the waveform to be measured or the target waveform per unit time. The detection instrument can be any instrument capable of detecting the frequency or frequency value of the waveform to be measured or the target waveform. The unit of frequency or frequency value is counts/minute, counts/second, counts/millisecond, etc.
检测仪器对待测波形或目标波形进行多次检测以获得多个频率值。例如,检测仪器以固定的间隔时间(例如2分钟、3分钟或5分钟)对待测波形或目标波形进行多次检测。其中每次检测的时间为2分钟、1分钟、 30秒或20秒等任意合理数值。通过这种方式,检测仪器可以通过检测获得多个频率值。The detection instrument performs multiple detections on the waveform to be tested or the target waveform to obtain multiple frequency values. For example, the detection instrument performs multiple detections of the waveform to be measured or the target waveform at a fixed interval (eg, 2 minutes, 3 minutes, or 5 minutes). The time for each detection is any reasonable value such as 2 minutes, 1 minute, 30 seconds or 20 seconds. In this way, the detection instrument can obtain multiple frequency values through detection.
在本申请中,检测仪器可以将多个频率值中的任意一个频率值确定为待测波形或目标波形的动态频率。例如,检测仪器可以将多个频率值中的最大值或最小值确定为待测波形或目标波形的动态频率。或者,检测仪器可以将多个频率值中与中位数值最近的频率值确定为待测波形或目标波形的动态频率。或者,检测仪器可以将多个频率值中随机选择的一个频率值确定为待测波形或目标波形的动态频率。In the present application, the detection instrument may determine any one of the multiple frequency values as the dynamic frequency of the waveform to be measured or the target waveform. For example, the detection instrument can determine the maximum value or the minimum value among the plurality of frequency values as the dynamic frequency of the waveform to be measured or the target waveform. Alternatively, the detection instrument may determine the frequency value closest to the median value among the multiple frequency values as the dynamic frequency of the waveform to be measured or the target waveform. Alternatively, the detection instrument may determine a frequency value randomly selected from a plurality of frequency values as the dynamic frequency of the waveform to be measured or the target waveform.
此外,检测仪器将多个频率值的平均值确定为待测波形或目标波形的动态频率。优选地,可以将平均值向上取整或向下取整所获得的整数值确定为待测波形或目标波形的动态频率。可替换地,例如,检测仪器通过检测获得多个频率值H1、H2、H3、……、Hn,那么可以通过下列方式来确定动态频率Hact:In addition, the testing instrument determines the average value of multiple frequency values as the dynamic frequency of the waveform to be measured or the target waveform. Preferably, the integer value obtained by rounding up or down the average value may be determined as the dynamic frequency of the waveform to be measured or the target waveform. Alternatively, for example, the detection instrument obtains a plurality of frequency values H 1 , H 2 , H 3 , . . . , H n through detection, then the dynamic frequency H act can be determined in the following manner:
其中,t为检测仪器对待测波形或目标波形进行多次检测时,每次检测之间的间隔时间并且t为大于2的自然数,单位为分钟;Among them, t is the interval time between each detection when the detection instrument performs multiple detections of the waveform to be measured or the target waveform, and t is a natural number greater than 2, in minutes;
Hmax为多个频率值H1、H2、H3、……、Hn中的最大频率值;H max is the maximum frequency value among the multiple frequency values H 1 , H 2 , H 3 , ..., H n ;
Hmin为多个频率值H1、H2、H3、……、Hn中的最小频率值;H min is the minimum frequency value among the multiple frequency values H 1 , H 2 , H 3 , ..., H n ;
μ为经过调整的频率值μ is the adjusted frequency value
Hi为多个频率值H1、H2、H3、……、Hn中的第i个频率值H i is the ith frequency value among the plurality of frequency values H 1 , H 2 , H 3 , ..., H n
n为多个频率值H1、H2、H3、……、Hn的数量;n is the number of multiple frequency values H 1 , H 2 , H 3 , ..., H n ;
为多个频率值H1、H2、H3、……、Hn的平均值。 It is the average value of a plurality of frequency values H 1 , H 2 , H 3 , ..., H n .
频率阈值可以是预先设定的,并且可以根据实际运行或实际检测情况进行动态调整。例如,频率阈值为105次/分钟、110次/分钟、115次/分钟、120次/分钟、125次/分钟、130次/分钟或135次/分钟。The frequency threshold can be preset and can be dynamically adjusted according to actual operation or actual detection conditions. For example, the frequency threshold is 105 times/minute, 110 times/minute, 115 times/minute, 120 times/minute, 125 times/minute, 130 times/minute, or 135 times/minute.
其中基于比较结果确定进行图像数据采集时的周期系数包括:当比较结果为动态频率大于频率阈值时,将进行图像数据采集时的周期系数设置为2。即,在进行实际检测时,将2个心动周期构成一个采集周期,从而能够在具有延迟触发的情况下采集到的较好的图像数据。应当了解的是,周期系数可以是任意合理的数值,例如3、4、5等。Wherein, determining the period coefficient when performing image data acquisition based on the comparison result includes: when the comparison result is that the dynamic frequency is greater than the frequency threshold, setting the period coefficient when performing image data acquisition to 2. That is, when performing actual detection, two cardiac cycles constitute one acquisition cycle, so that better image data can be acquired under the condition of delayed triggering. It should be understood that the period factor can be any reasonable value, such as 3, 4, 5, etc.
此外,当比较结果为动态频率小于或等于频率阈值时,将进行图像数据采集时的周期系数设置为1。即,在进行实际检测时,将1个心动周期构成一个采集周期,如图1所示。In addition, when the comparison result is that the dynamic frequency is less than or equal to the frequency threshold, the period coefficient during image data acquisition is set to 1. That is, during actual detection, one cardiac cycle constitutes one acquisition cycle, as shown in FIG. 1 .
周期确定装置602,基于周期系数确定进行图像数据采集时的每个采集周期所包括的波形周期的数量,并基于动态频率确定进行图像数据采集时的每个波形周期的时间长度。基于周期系数确定进行图像数据采集时的每个采集周期所包括的波形周期的数量包括:将进行图像数据采集时的每个采集周期所包括的波形周期的数量设置为等于周期系数。例如,当周期系数为2时,则将进行图像数据采集时的每个采集周期所包括的波形周期的数量设置为2。即,每个采集周期包括两个波形周期。The
基于动态频率确定进行图像数据采集时的每个波形周期的时间长度包括:将单位时间与动态频率的比值作为进行图像数据采集时的每个波形周期的时间长度。在本申请中,单位时间可以被设置为1分钟,也可以等于 60000毫秒(ms),即6×104ms。应当了解的是,单位时间可以是任何合理数值,例如,2分钟、30秒或20秒等。例如,当目标波形的动态频率为 150次/分钟时,每个波形周期的时间长度为6×104ms/150=400ms。那么,由于每个采集周期包括两个波形周期,则每个采集周期为400ms×2= 800ms。Determining the time length of each waveform period during image data acquisition based on the dynamic frequency includes: taking the ratio of the unit time to the dynamic frequency as the time length of each waveform period during image data acquisition. In this application, the unit time may be set to 1 minute, or it may be equal to 60000 milliseconds (ms), ie 6×10 4 ms. It should be understood that the unit time can be any reasonable value, for example, 2 minutes, 30 seconds, or 20 seconds, and the like. For example, when the dynamic frequency of the target waveform is 150 times/min, the time length of each waveform cycle is 6×10 4 ms/150=400 ms. Then, since each acquisition period includes two waveform periods, each acquisition period is 400ms×2=800ms.
延迟确定装置603,获取预先确定的反转时间,根据动态频率、调整因子和反转时间确定脉冲准备时间,基于反转时间和脉冲准备时间确定触发延迟时间。通常,可以预先设置反转时间TI。实际上,在TI时间内,成像设备需要针对频率波形进行其它扫描或成像动作。为此,TI时间可以优选地设置为250至300ms。应当了解的是,在本申请中,可以根据实际运行情况,例如根据在初始TI时间的情况下进行成像或扫描的是否满足要求,来动态修改初始TI时间,以实现更好的信噪比。The delay determination device 603 obtains a predetermined inversion time, determines the pulse preparation time according to the dynamic frequency, the adjustment factor and the inversion time, and determines the trigger delay time based on the inversion time and the pulse preparation time. Generally, the inversion time TI can be set in advance. In fact, during the TI time, the imaging device needs to perform other scanning or imaging actions for the frequency waveform. For this reason, the TI time may preferably be set to 250 to 300 ms. It should be understood that in the present application, the initial TI time can be dynamically modified according to the actual operation situation, for example, according to whether the imaging or scanning under the initial TI time meets the requirements, so as to achieve a better signal-to-noise ratio.
其中根据动态频率、调整因子和反转时间确定脉冲准备时间包括:通过T为单位时间,R为动态频率,α为调整因子和TI为反转时间来计算脉冲准备时间。具体地址,确定单位时间T,并根据以下公式来计算脉冲准备时间P:The determination of the pulse preparation time according to the dynamic frequency, the adjustment factor and the inversion time includes: calculating the pulse preparation time by using T as the unit time, R as the dynamic frequency, α as the adjustment factor and TI as the inversion time. For the specific address, determine the unit time T, and calculate the pulse preparation time P according to the following formula:
其中,T为单位时间,R为动态频率,α为调整因子,TI为反转时间。其中单位时间例如是1分钟、2分钟、30秒或20秒等。动态频率的单位为次/分钟。α为调整因子并且α的取值优选为0.375至0.5。反转时间TI优选地为250ms至300ms。Among them, T is the unit time, R is the dynamic frequency, α is the adjustment factor, and TI is the inversion time. The unit time is, for example, 1 minute, 2 minutes, 30 seconds, or 20 seconds. The unit of dynamic frequency is times/minute. α is an adjustment factor and the value of α is preferably 0.375 to 0.5. The inversion time TI is preferably 250ms to 300ms.
其中,基于反转时间和脉冲准备时间确定触发延迟时间包括:将反转时间和脉冲准备时间的和作为触发延迟时间。如上,触发延迟时间可以是 P+TI。优选地,触发延迟时间也可以与反转时间和脉冲准备时间的和呈线性比例关系。例如,触发延迟时间可以是(P+TI)×β。Wherein, determining the trigger delay time based on the inversion time and the pulse preparation time includes: taking the sum of the inversion time and the pulse preparation time as the trigger delay time. As above, the trigger delay time can be P+TI. Preferably, the trigger delay time can also be linearly proportional to the sum of the inversion time and the pulse preparation time. For example, the trigger delay time may be (P+TI)×β.
延迟确定装置604,根据采集周期的周期起始时刻和触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻。其中根据采集周期的周期起始时刻和触发延迟时间确定在采集周期中进行图像数据采集的采集起始时刻包括:在目标波形中,以采集周期的第一波形周期的周期起始时刻作为第一时刻,将从第一时刻开始并经过触发延迟时间后的位于第二波形周期中的第二时刻作为进行图像数据采集的采集起始时刻。其中采集周期的周期起始时刻和第一波形周期的周期起始时刻相同。The delay determination device 604 determines the acquisition start time of image data acquisition in the acquisition period according to the period start time of the acquisition period and the trigger delay time. Wherein, determining the acquisition start time of image data acquisition in the acquisition cycle according to the cycle start time of the acquisition cycle and the trigger delay time includes: in the target waveform, taking the cycle start time of the first waveform cycle of the acquisition cycle as the first time, starting from the first time and after the trigger delay time has elapsed, the second time in the second waveform cycle is taken as the acquisition start time for image data acquisition. The cycle start time of the acquisition cycle is the same as the cycle start time of the first waveform cycle.
应当了解的是,在频率波形中,可能存在波峰和波谷。本申请以当前波形周期中波峰或波谷为起始点,并且以后一个波形周期中波峰或波谷为结束点来确定一个波形周期。如图3所示,两个波峰或波谷之间为一个波形周期。如上,根据本申请的技术方案,在待测波形或目标波形中,以当前采集周期的第一波形周期的波峰或波谷所在的时刻作为第一时刻,将从第一时刻开始并经过触发延迟时间(P+TI)后的位于第二波形周期中的第二时刻(第二时刻位于第二波形周期的波峰或波谷所在的时刻和第三波形周期的波峰或波谷所在的时刻之间)作为进行图像数据采集的采集起始时刻。其中采集周期的周期起始时刻是第一波形周期的波峰或波谷所在的时刻。It should be appreciated that in a frequency waveform, there may be peaks and valleys. In the present application, a waveform cycle is determined by taking the peak or trough in the current waveform cycle as the starting point, and the peak or trough in the next waveform cycle as the ending point. As shown in Figure 3, there is one waveform cycle between two peaks or troughs. As above, according to the technical solution of the present application, in the waveform to be measured or the target waveform, the moment at which the peak or trough of the first waveform cycle of the current acquisition cycle is located is taken as the first moment, and the trigger delay time will start from the first moment and pass the trigger delay time. The second time in the second waveform period after (P+TI) (the second time is between the time when the peak or trough of the second waveform cycle is located and the time when the peak or trough of the third waveform cycle is located) is used as the The acquisition start time of image data acquisition. The cycle start time of the acquisition cycle is the time when the peak or trough of the first waveform cycle is located.
采集装置605,确定进行图像数据采集的持续时间,并且基于采集起始时刻和持续时间以跨波形周期的方式在频率波形图或目标波形中进行图像数据采集。其中基于采集起始时刻和持续时间以跨波形周期的方式在频率波形图或目标波形中进行图像数据采集包括:在在频率波形图或目标波形中中以跨波形周期的方式,从位于采集周期的第二波形周期而非第一波形周期的采集起始时刻(采集起始时刻位于第二波形周期的波峰或波谷所在的时刻和第三波形周期的波峰或波谷所在的时刻之间)开始,对持续时间的时间长度内的图像数据进行采集。由于根据本申请的技术方案,采集周期从第一波形周期开始,但是对图像数据进行采集在第二波形周期(或第一波形周期之后的波形周期,特定情况下在第三波形周期)内进行,因此本申请提供了以跨波形周期的方式进行图像数据采集的技术方案。The
已经通过参考少量实施方式描述了本发明。然而,本领域技术人员所公知的,正如附带的专利权利要求所限定的,除了本发明以上公开的其他的实施例等同地落在本发明的范围内。The present invention has been described with reference to a few embodiments. However, as is known to those skilled in the art, other embodiments than the above disclosed invention are equally within the scope of the invention, as defined by the appended patent claims.
通常地,在权利要求中使用的所有术语都根据他们在技术领域的通常含义被解释,除非在其中被另外明确地定义。所有的参考“一个//该[装置、组件等]”都被开放地解释为装置、组件等中的至少一个实例,除非另外明确地说明。这里公开的任何方法的步骤都没必要以公开的准确的顺序运行,除非明确地说明。Generally, all terms used in the claims are to be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. All references to "a//the [means, component, etc.]" are open to interpretation as at least one instance of a means, component, etc., unless expressly stated otherwise. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010555684.7A CN113796849A (en) | 2020-06-17 | 2020-06-17 | A device for image data acquisition across cardiac cycles |
PCT/CN2021/092149 WO2021254017A1 (en) | 2020-06-17 | 2021-05-07 | Device for collecting image data across cardiac cycles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010555684.7A CN113796849A (en) | 2020-06-17 | 2020-06-17 | A device for image data acquisition across cardiac cycles |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113796849A true CN113796849A (en) | 2021-12-17 |
Family
ID=78892631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010555684.7A Pending CN113796849A (en) | 2020-06-17 | 2020-06-17 | A device for image data acquisition across cardiac cycles |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113796849A (en) |
WO (1) | WO2021254017A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1923137A (en) * | 2005-08-30 | 2007-03-07 | 株式会社东芝 | Magnetic resonance imaging device and controlling means thereof |
CN108765513A (en) * | 2018-06-05 | 2018-11-06 | 上海交通大学 | A kind of cardiac blood pool inhibition relaxation parameter imaging method |
CN213758222U (en) * | 2020-06-17 | 2021-07-23 | 首都医科大学附属北京安贞医院 | A device for image data acquisition across cardiac cycles |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005278919A (en) * | 2004-03-30 | 2005-10-13 | Hitachi Medical Corp | Magnetic resonance imaging apparatus |
JP2011092678A (en) * | 2009-09-30 | 2011-05-12 | Toshiba Corp | Magnetic resonance imaging apparatus |
US9081073B2 (en) * | 2011-01-27 | 2015-07-14 | Siemens Medical Solutions Usa, Inc. | System for suppression of artifacts in MR imaging |
US20130274592A1 (en) * | 2012-02-29 | 2013-10-17 | Taehoon SHIN | Time-resolved early-to-late gadolinium enhancement magnetic resonance imaging |
US10531812B2 (en) * | 2013-01-16 | 2020-01-14 | Beth Israel Deaconess Medical Center, Inc. | System and method for improved cardiac imaging of subjects with adverse cardiac conditions |
EP3448253B1 (en) * | 2016-04-27 | 2024-06-12 | Myocardial Solutions, Inc. | Rapid quantitative evaluations of heart function with strain measurements from mri |
-
2020
- 2020-06-17 CN CN202010555684.7A patent/CN113796849A/en active Pending
-
2021
- 2021-05-07 WO PCT/CN2021/092149 patent/WO2021254017A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1923137A (en) * | 2005-08-30 | 2007-03-07 | 株式会社东芝 | Magnetic resonance imaging device and controlling means thereof |
CN108765513A (en) * | 2018-06-05 | 2018-11-06 | 上海交通大学 | A kind of cardiac blood pool inhibition relaxation parameter imaging method |
CN213758222U (en) * | 2020-06-17 | 2021-07-23 | 首都医科大学附属北京安贞医院 | A device for image data acquisition across cardiac cycles |
Also Published As
Publication number | Publication date |
---|---|
WO2021254017A1 (en) | 2021-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6501979B1 (en) | Methods and devices for combined ECG and PPU controlled magnetic resonance imaging | |
US7697982B2 (en) | Synchronization to a heartbeat | |
US8172763B2 (en) | Imaging and analysis of movement of erythrocytes in blood vessels in relation to the cardiac cycle | |
CN106539584B (en) | Magnetic resonance imaging method and system | |
JP2004237109A (en) | Method for synchronizing magnetic resonance (mr) imaging data to body motion | |
JP2023502854A (en) | Cardiopulmonary function monitoring method and system using electrical impedance tomography | |
DE102010014761B4 (en) | Method for determining vital parameters | |
CN112568925B (en) | System and method for cardiac imaging | |
JP3732476B2 (en) | Biological measuring device | |
Jayawardhana et al. | Enhanced detection of sleep apnoea using heart-rate, respiration effort and oxygen saturation derived from a photoplethysmography sensor | |
JP2003524468A (en) | Method and apparatus for evaluating myoelectric signals and identifying artifacts | |
CN114929102A (en) | Assessment of hemodynamics using electrical impedance measurements | |
Hsu et al. | Heart rate and respiratory rate monitoring using seismocardiography | |
JP5283381B2 (en) | Method for processing a series of cardiac rhythm signals (RR) and its use for analyzing heart rhythm variability, particularly for assessing biological pain or stress | |
CN213758222U (en) | A device for image data acquisition across cardiac cycles | |
WO2021254017A1 (en) | Device for collecting image data across cardiac cycles | |
JP4500929B2 (en) | X-ray computed tomography apparatus and its projection data collection method | |
US20160228014A1 (en) | Assessment of Hemodynamic Function In Arrhythmia Patients | |
Sasaki et al. | Left recumbent position decreases heart rate without alterations in cardiac autonomic nervous system activity in healthy young adults | |
Liu et al. | A modified approach of peak extraction from BCG for heart rate estimation | |
JP2003265464A (en) | X-ray ct device | |
TW200803792A (en) | Detecting atrial fibrillation, method of and apparatus for | |
Simon et al. | Synchronization of Radiography for Newborns Heart Study Using Electrocardiogram Analysis | |
Holleboom | Respiratory muscle physiology during assisted mechanical ventilation from a technological view | |
CN119423735A (en) | Respiratory signal reliability determination method, device and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |