[go: up one dir, main page]

CN113786842B - 一种no氧化物合成氨的催化剂及其制备方法和应用 - Google Patents

一种no氧化物合成氨的催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN113786842B
CN113786842B CN202111069783.5A CN202111069783A CN113786842B CN 113786842 B CN113786842 B CN 113786842B CN 202111069783 A CN202111069783 A CN 202111069783A CN 113786842 B CN113786842 B CN 113786842B
Authority
CN
China
Prior art keywords
catalyst
solution
tio
supported
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111069783.5A
Other languages
English (en)
Other versions
CN113786842A (zh
Inventor
戴文新
程刚
陈旬
付贤智
员汝胜
张子重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202111069783.5A priority Critical patent/CN113786842B/zh
Publication of CN113786842A publication Critical patent/CN113786842A/zh
Application granted granted Critical
Publication of CN113786842B publication Critical patent/CN113786842B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8643Removing mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
    • B01D53/8646Simultaneous elimination of the components
    • B01D53/865Simultaneous elimination of the components characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/026Preparation of ammonia from inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种NO氧化物合成氨的催化剂及其制备方法和应用,其是将Pd纳米粒子负载在具有可见光吸收的Fe改性的TiO2半导体载体上,制得所述负载型Pd催化剂。通过在装有负载型Pd催化剂的催化转化器中引入柔性LED灯带,利用光热耦合作用不仅实现了在低温下高效催化去除CO和NO,同时可产生高附加值的NH3。与常规的热催化反应相比,此光热耦合方法可大大降低脱硝催化剂的使用温度,而且显著减少了传统合成氨反应所需的能耗。此外,反应过程产生的NH3也有助于下游NH3‑SCR反应的进行,可进一步减少氨水或尿素等喷淋原料的使用。该方法技术在尾气的脱硝净化以及新型合成氨催化体系的开发利用方面展现出极大的前景。

Description

一种NO氧化物合成氨的催化剂及其制备方法和应用
技术领域
本发明属于环境保护及光热协同催化合成NH3领域,具体涉及一种负载型Pd催化剂及其制备方法与应用,该负载型Pd催化剂不仅可通过光热协同作用提高对CO和NO的催化去除效果,同时反应体系存在的湿度促进了高工业附加值产品NH3的生成。
背景技术
随着社会经济的发展,氮氧化物(NOx)的过度排放给我们的生活环境和人体健康造成了极大的危害,而大气的自我净化能力已不足以降解工业固定源和移动源排放的NO,因此为持续推进污染防治,巩固扩大蓝天保卫战成果,控制NOx的排放量、不断开发和研究氮氧化物的脱除技术势在必行。目前针对NO的去除主要包括:1)燃烧前控制技术,即通过一系列的方法降低燃料中的含氮量,如提高汽油和燃气的品质以及清洁能源的使用,进而在源头上降低NOx 产生的可能;2)燃烧过程控制技术,这个方法主要是对燃烧区进行控制,即通过各种技术手段如减少燃料在高温燃烧区的停留时间、在燃烧区中创造还原区、适当减小燃烧区中的氧气浓度、降低燃烧区的温度等方法控制燃烧过程中NOx 的生成,而对移动源的发动机来说主要是改进其内部结构和工作方式;3)燃烧后处理技术,主要是在发动机或焚烧炉等机体外的某些方面进行处理,以达到降低NOx排放的目的。其中,燃烧后处理技术中的氨气选择性催化还原NO(NH3-SCR)因其快速高效的特点是目前使用最为广泛且成熟的技术手段,但NH3的生产运输成本较高且存在易泄露、腐蚀性管道的问题,更为重要的是该技术的操作温区窄、也仅针对固定源排放的NOx的处理。而近年来,由汽车尾气净化的三效催化技术衍生而来的CO-SCR反应也被广泛地研究和应用了,这是因为烟气管道中存在大量未燃烧完全的CO,它同样是一种对人体有害的污染性气体,采用CO还原NO不仅能同时消除这两种污染物,使它们分别转变为CO2和N2(CO + NO = CO2 + 1/2N2),同时该技术也弥补了NH3-SCR无法在移动源去除NOx 的缺点。 目前,催化CO还原NO的研究已日趋成熟,但其低温催化活性和N2的选择性仍有待提高。
而NH3作为一种工业原料,在染料、聚合物、肥料、炸药的生产制备方面具有重要的价值,同时也是高能量密度的碳中性载体,但传统的热催化合成氨(N2 + 3H2 = 2NH3)通常需要较高的温度和压力,这导致了过多的能量消耗。尽管近年来电催化合成NH3(N2 + H2O→ NH3 + O2)已经得到了广泛的关注和研究,但是其催化活性和NH3的选择性仍然较低,而且对于微量NH3的检测也存在较大的困难。然而和N2相比,NO具有更弱的键能,是一种化学性质活泼的极性分子,大量的研究已经证实当H2做还原剂时,在无氧条件和催化剂的作用下,可直接将NO还原为NH3(H2 + NO → NH3 + H2O)。而对于催化CO还原NO的反应,以往的研究主要聚焦于如何将NO还原为N2,并未研究将其直接还原为NH3。事实上,排放的烟气当中通常含有一定的水分,因此我们考虑在催化CO还原NO的基础上,进一步调控低温下CO和H2O之间发生的水煤气转化反应而产生H2(CO + H2O → H2 + CO2),随后利用H2进一步还原NO生成NH3。该技术方法或可显著提高脱硝反应的效率、减少传统合成氨反应所需的能耗,而且反应过程产生的NH3也将有助于下游NH3-SCR反应的进行,因此在理论研究和实际应用上都具有重要的意义。
发明内容
本发明为克服:1)单纯热催化去除CO/NO能力的不足,导致了低温催化性能较差的问题;2)传统的热催化合成氨的高耗能问题,提供了一种负载型Pd催化剂及其制备方法与应用,其通过将Pd负载在半导体载体上,以通过光热耦合作用提高Pd催化剂在含有一定湿度的条件下催化去除CO/NO的性能,并显著提升了反应产物NH3的选择性。不仅解决了常规的Pd负载型催化剂及单纯的载体需在较高温度下才能催化CO/NO反应的问题,而且促进了NH3的生成,有效降低了传统合成氨反应的能耗。该催化剂制备方法简单易行,有利于推广应用。
为实现上述目的,本发明采用如下技术方案:
一种负载型Pd催化剂,其是以Fe掺杂的TiO2(Fe-TiO2)为载体,Pd纳米粒子为活性组分构成的高分散负载型催化剂;其中,Fe的掺杂量为1.0 %-10.0 at.%,优选为5.0 at.%;催化剂中活性组分Pd的含量为1.0 wt.%;所述负载型Pd催化剂在引入可见光照的条件下,能够在较低温度下实现尾气中CO及NO的去除和NH3的产生。
所述负载型Pd催化剂的制备方法是先利用溶胶-凝胶法制备Fe掺杂的TiO2载体,再利用沉积-沉淀法在所得Fe-TiO2载体上负载活性组分Pd;其具体包括以下步骤:
(1)在冰水浴下,将钛酸异丙酯快速添加到冰醋酸当中并剧烈搅拌,随后逐滴滴入一定量的去离子水得到透明溶液A;按比例称取一定量的Fe(NO3)3·9H2O溶解于去离子水中,得到溶液B;将溶液B逐滴滴加至溶液A中得到混合溶液C,随后继续向其中添加去离子水作为平衡液,磁力搅拌6 h后静置陈化12 h,随后将陈化液在80 oC的油浴中缓慢烘干,最后在马弗炉中以2 oC/min的升温速率升至500 oC煅烧1 h得到Fe-TiO2载体,根据引入Fe的量不同,将样品定义为x%Fe-TiO2,x%代表Fe和Ti的理论摩尔比;
(2)在所得Fe-TiO2载体中加入PdCl2溶液及去离子水,搅拌30-60 min,超声15-30min,随后加入过量含NaOH的NaBH4溶液,室温下搅拌2-8 h,离心,去离子水洗涤,60-80 oC真空干燥,制得所述负载型Pd催化剂。
步骤(1)中钛酸异丙酯与冰醋酸的体积比为1:2。步骤(2)中PdCl2溶液的浓度为6.0 mg/mL,含NaOH的NaBH4溶液中,NaBH4和NaOH溶液的浓度均为0.1 mol/L。
所述负载型Pd催化剂在实现尾气中的NO + CO光热耦合转化的同时,也可促进NH3的生成。其应用方法是在装有负载型Pd催化剂的催化转化器中引入柔性LED灯带,从而通过光热耦合作用实现较低温度下CO/NO的去除以及NH3选择性的提高;LED灯带的引入方法是将其布置在反应管周围,或装填在反应管内部的催化剂床层中。反应温度为60-210 oC;湿度为50%-75%。
本发明的显著优点在于:
(1)本发明以Fe掺杂的TiO2(Fe-TiO2)为载体,充分发挥了其本身在低温下催化氧化去除CO和NO中的性能以及存在的大量氧空位对CO、NO和H2O吸附活化的促进作用的特点;同时,Fe掺杂后的TiO2可实现被可见光照激发而产生电子-空穴对,当Pd负载于此类载体上,光生电子会从费米能级高的半导体转移至费米能级低的Pd金属上,从而提高活性金属Pd表面的电子密度,进而有利于CO及NO的吸附和活化。
(2)与单纯热催化反应相比,本发明通过选择具有可见光响应的半导体作为载体来制备Pd负载型催化剂,并根据NO + CO、CO + H2O反应的特点,在反应过程中引入LED灯带进行可见光照,从而利用光热耦合作用显著提高催化剂催化去除CO、NO的性能和还原产物NH3的选择性,有效降低了反应温度,减少了能耗。
(3)本发明制备方法及应用操作简单易行,有望通过在工业固定源或移动源排放的尾气净化体系中添加一段光热耦合装置不仅能够实现高效催化净化NO的效果,而且能够实现废物利用而产生NH3,适于推广应用。
附图说明
图1为实施例1所得1.0 wt.% Pd/5%Fe-TiO2的透射电镜图。
图2为实施例1所得1.0 wt.% Pd/5%Fe-TiO2的XRD图。
图3为实施例1所得1.0 wt% Pd/5%Fe-TiO2的紫外-可见漫反射光谱图。
图4为催化剂性能评价反应体系构造简图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1 Pd/Fe-TiO2催化剂的制备
在冰水浴下,将18 mL的钛酸异丙酯前驱液快速添加到36 mL的冰醋酸当中并剧烈搅拌,随后逐滴滴入一定量的去离子水得到透明溶液A。按比例称取1.212 g的Fe(NO3)3·9H2O溶解于65 mL的去离子水中,得到溶液B。将B溶液逐滴滴加至A溶液中得到混合溶液C,随后继续向其中添加100 mL的去离子水作为平衡液。磁力搅拌6 h后静置陈化12 h,随后将陈化液在80 oC的油浴中缓慢烘干,最后在马弗炉中以2 oC/min的升温速率升至500 oC煅烧1 h得到Fe掺杂量为5%的Fe-TiO2载体。
称取1.2 g Fe-TiO2固体粉末,加入2.0 mL浓度为6.0 mg/mL的PdCl2溶液,并引入100 mL去离子水,搅拌30 min,超声15 min,调节溶液的pH值至10.0左右,然后缓慢滴加浓度均为0.1 mol/L的NaBH4和NaOH的混合溶液至过量,使Pd被充分还原,随后用去离子水离心洗涤至离子浓度低于10 ppm,最后在80 oC下真空烘干,得到Pd含量约为1.0 wt.%、Fe的掺杂量为5.0 at.%的Pd/Fe-TiO2催化剂。
图1为所得Pd/Fe-TiO2催化剂的透射电镜和元素分布的Mapping图。可以发现制备的样品呈现出不规则的散落颗粒形貌,该形貌特征可能有助于反应物的传质,对于NO和CO的吸附有一定的促进作用。样品的EDX谱图进一步验证了Pd、O、Ti、Fe元素的存在(见图1中a的插图),并且反映了样品表面Pd的实际负载量为0.86%。从图1中b所示的HRTEM图片中可以看到晶面间距分别为0.350和0.224 nm的晶格条纹,分别TiO2和Pd的(101)和(220)面。而晶面间距0.184 nm的晶格条纹则归属为Fe2O3的(024)面,表明Pd负载后催化剂表面有少量的氧化铁物种聚集。图1中c-g所示的EDX-Mapping图片也进一步证实了Pd/Fe-TiO2样品中Pd、Fe、Ti、O元素的均匀分布。
图2为所得TiO2、Pd/TiO2、Fe-TiO2、Pd/Fe-TiO2样品的XRD谱图。和载体TiO2和Fe-TiO2相比,Pd负载后的样品衍射峰并没有发生明显的改变,依然表现出典型的锐钛矿晶型。而且在负载后的样品中也并未观察到Pd、Fe及其氧化物的衍射峰,这可能是由于Pd及掺杂的Fe物种在载体中的高度分散。
图3为所得TiO2、Pd/TiO2、Fe-TiO2、Pd/Fe-TiO2催化剂的紫外-可见漫反射光谱。可以观察到Fe掺杂后,TiO2的吸收带边发生了明显的红移,使得催化剂样品在400-500 nm范围的光吸收有所增强。而且在贵金属Pd负载后,进一步促进了Pd/Fe-TiO2对可见光的吸收,说明负载后的催化剂能更好地利用可见光,发挥其光促作用。
实施例2 催化剂的性能评价
实施例1所得催化剂催化去除CO/NO以及产生NH3的性能评价在自行设计的常压连续流动反应装置上进行。该常压连续流动装置如图4所示,为一带有配气系统、光催化反应器、循环油浴控温系统、光源和分析系统组成。
其中,光催化反应器为双层石英玻璃,反应器的内层填充催化剂,外层可通入循环硅油控制反应过程的温度。所述的玻璃反应器周侧设置了可用于激发催化剂产生光响应的可见光发光装置(LED灯带),所述发光装置发出的可见光能够透过玻璃反应器到达催化剂表面。
另外,反应体系中的发光装置(特别是LED灯带)也可直接置于反应管内部的催化剂之间,发出的可见光可直接照射到催化剂表面、利用率高,而且柔性的LED灯带可随反应管变化外形、抗振动性好,灯带发出的热又可加热催化剂,减少反应所需温度的电加热。
反应条件:将0.3 g催化剂装填在如上所述的玻璃反应器中(长20 mm×宽20 mm×高1 mm),催化剂粒径约为0.2~0.3mm(60~80目)。反应气由进气口进入装有催化剂颗粒的玻璃反应器中,通过由程序升温控制的循环油浴给反应器提供所需温度,并对反应器施以可见光照。反应气中CO和NO的含量分别固定为0.30 vol.%及0.15 vol.%,N2作为平衡补充气,反应气总流速约100 mL/min(GHSV = 30,000 h-1),湿度控制在75%。可见光源采用10 W的LED灯带(10个1 W的小灯泡串在一起、发光主波长为450-550 nm),照在催化剂表面的光强度为182 mW/cm2。出气口气体采用GASERA One型光声光谱仪(PAS)在线分析气氛中CO、CO2、N2O、H2O、NH3的浓度,Testo 340型烟气分析仪分析在线检测NO的浓度变化,取反应2小时的结果计算CO/NO转化率及NH3的选择性。CO转化、NO转化和NH3选择性转化计算公式如下:
式(1-1)中[CO]in和[CO]out分别为进气和出气中的CO含量(V%),式(1-2)[NO]in和[NO]out分别为分别为进气和出气中的NO含量(V%),式(1-3)中[NH3]out为流出气中的NH3含量(V%)。
按照此方法,分别评价了催化剂在不同条件下催化去除CO/NO的性能及对NH3的选择性,其结果如表1所示。
表1 光照前后Pd/Fe-TiO2催化去除CO/NO的性能及对NH3的选择性
表1结果显示,相比于单纯的热反应条件,在同等条件下引入可见光后,CO和NO的转化率、NH3的选择性都有很大的提高。证明可见光照对该催化剂性能具有十分明显的促进效果。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (8)

1.一种负载型Pd催化剂的应用,其特征在于:在装有负载型Pd催化剂的催化转化器中引入柔性LED灯带,从而通过光热耦合作用实现较低温度下CO与NO的去除以及NH3的生成;反应温度为60-210 ℃;
所述催化剂是以Fe-TiO2为载体,Pd纳米粒子为活性组分构成的高分散负载型催化剂;其中,催化剂中活性组分Pd的含量为1.0 wt.%,载体中掺杂元素Fe的含量为1.0-10.0at.%。
2.根据权利要求1所述的应用,其特征在于:所述负载型Pd催化剂的制备方法:先利用溶胶-凝胶法合成Fe-TiO2载体;再利用沉积-沉淀法在所得Fe-TiO2载体上负载活性组分Pd。
3.根据权利要求2所述的应用,其特征在于:所述负载型Pd催化剂的制备方法,具体包括以下步骤:
(1)在冰水浴中,将钛酸异丙酯快速添加到冰醋酸中并剧烈搅拌,随后逐滴滴入一定量的去离子水直至得到透明的溶液A;按比例称取一定量的Fe(NO3)3·9H2O溶解于去离子水中,得到溶液B;将溶液B逐滴滴加至溶液A中得到混合溶液C,随后继续向溶液C中添加去离子水作为平衡液;磁力搅拌6 h后静置陈化12 h,随后将陈化液在80 ℃的油浴中缓慢烘干,最后在马弗炉中以2 ℃/min的升温速率升至500 ℃煅烧1 h得到Fe-TiO2载体,根据引入Fe的量不同,将样品定义为x%Fe-TiO2,x%代表Fe和Ti的理论摩尔比;
(2)在所得Fe-TiO2载体中加入PdCl2溶液及去离子水,搅拌30-60 min,超声15-30 min,随后加入过量含NaOH的NaBH4溶液,室温下搅拌2 h,离心,去离子水洗涤,60-80 ℃真空干燥,制得所述负载型Pd催化剂。
4.根据权利要求3所述的应用,其特征在于:步骤(1)中的钛酸异丙酯与冰醋酸的体积为1:2。
5.根据权利要求3所述的应用,其特征在于:步骤(2)中PdCl2溶液的浓度为6.0 mg/mL。
6.根据权利要求3所述的应用,其特征在于:步骤(2)中含NaOH的NaBH4溶液中,NaBH4和NaOH的浓度均为0.1 mol/L。
7.根据权利要求1所述的应用,其特征在于:引入的LED灯带布置在反应管周围,或装填在反应管内部的催化剂床层中。
8.根据权利要求1所述的应用,其特征在于:湿度为50%-75%。
CN202111069783.5A 2021-09-13 2021-09-13 一种no氧化物合成氨的催化剂及其制备方法和应用 Active CN113786842B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111069783.5A CN113786842B (zh) 2021-09-13 2021-09-13 一种no氧化物合成氨的催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111069783.5A CN113786842B (zh) 2021-09-13 2021-09-13 一种no氧化物合成氨的催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113786842A CN113786842A (zh) 2021-12-14
CN113786842B true CN113786842B (zh) 2023-08-04

Family

ID=78880101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111069783.5A Active CN113786842B (zh) 2021-09-13 2021-09-13 一种no氧化物合成氨的催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113786842B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210372B (zh) * 2022-01-19 2023-11-24 石河子大学 一种Fe基脱硝合成氨催化剂及其制备方法、应用
CN115301253B (zh) * 2022-08-15 2023-08-04 福州大学 一种光助NO生成氨的Pd/四氧化三铁催化剂及其制备方法和应用
CN115676850A (zh) * 2022-10-11 2023-02-03 电子科技大学 一种Fe(Ⅱ)EDTA辅助光催化NO合成氨的方法
CN116408079B (zh) * 2022-11-21 2024-10-22 石河子大学 一种负载型铜铁双金属合成氨催化剂及其制备方法和应用
CN117181237B (zh) * 2023-01-13 2024-06-11 昆明贵研催化剂有限责任公司 利用含CO和NOx的废气制氨的催化剂、制备方法及制氨的方法
CN116870932A (zh) * 2023-07-19 2023-10-13 福州大学 一种以二氧化钛为载体掺杂Fe负载Pd的双金属光催化剂及其制备方法和应用
CN119303564A (zh) * 2024-12-16 2025-01-14 电子科技大学长三角研究院(湖州) 负载铂纳米颗粒的二氧化钛光催化剂及其在光催化氮氧化物还原合成氨中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351811A (en) * 1977-07-20 1982-09-28 Hitachi, Ltd. Process for reducing an eliminating nitrogen oxides in an exhaust gas
CN103721710A (zh) * 2014-01-07 2014-04-16 福州大学 一种负载型Pt催化剂及其制备方法和应用
CN107020138A (zh) * 2017-05-09 2017-08-08 福州大学 一种负载型Pd催化剂及其制备方法和应用
CN107876063A (zh) * 2017-11-16 2018-04-06 华北理工大学 一种低温抗硫脱硝催化剂的制备方法
CN108722464A (zh) * 2018-05-29 2018-11-02 福州大学 一种以氮掺杂二氧化钛为载体的Pd三效低温催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351811A (en) * 1977-07-20 1982-09-28 Hitachi, Ltd. Process for reducing an eliminating nitrogen oxides in an exhaust gas
CN103721710A (zh) * 2014-01-07 2014-04-16 福州大学 一种负载型Pt催化剂及其制备方法和应用
CN107020138A (zh) * 2017-05-09 2017-08-08 福州大学 一种负载型Pd催化剂及其制备方法和应用
CN107876063A (zh) * 2017-11-16 2018-04-06 华北理工大学 一种低温抗硫脱硝催化剂的制备方法
CN108722464A (zh) * 2018-05-29 2018-11-02 福州大学 一种以氮掺杂二氧化钛为载体的Pd三效低温催化剂及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Understanding the promotional effect of 3d transition metals (Fe, Co, Cu) on Pd/TiO2 for H2-SCR;Zhun Hu等;《Catalysis Science & Technology》;第11卷;886-894 *

Also Published As

Publication number Publication date
CN113786842A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
CN113786842B (zh) 一种no氧化物合成氨的催化剂及其制备方法和应用
CN104495837B (zh) 一种马尾藻基活性炭及其制备方法和应用
CN108722464B (zh) 一种以氮掺杂二氧化钛为载体的Pd三效低温催化剂及其制备方法和应用
CN105642299A (zh) 一种镍掺杂的铁酸镧/粘土纳米结构复合材料及其制备方法和应用
CN110947394A (zh) 一种基于ZIF-67-Mn/Co的低温NO氧化催化剂及制备方法与应用
CN105195197A (zh) 一种大比表面积-可见光响应TiO2催化剂及其制备方法
CN108620113B (zh) 一种氮掺杂的碳-铈复合纳米片的制备方法
CN105498782A (zh) 一种立方形貌纳米复合金属氧化物催化剂CeO2-Co3O4的制备方法
CN105597769A (zh) 一种片状形貌纳米复合金属氧化物催化剂CeO2-Co3O4的制备方法
CN105668649A (zh) 一种立方形貌纳米Co3O4催化剂的制备方法及其应用
CN115301253B (zh) 一种光助NO生成氨的Pd/四氧化三铁催化剂及其制备方法和应用
CN106006582A (zh) 六方棒状Mo2N的制备和六方棒状Mo2N及应用
CN107020138B (zh) 一种负载型Pd催化剂及其制备方法和应用
CN101947439B (zh) 一种室内空气净化剂及其制备方法
CN103721710B (zh) 一种负载型Pt催化剂及其制备方法和应用
CN113731497B (zh) 一种CdS QDs负载在BPEI修饰的五氧化二铌催化剂及其制备方法和应用
CN107803193A (zh) 氧化铝负载改性纳米二氧化钛颗粒的复合材料及其制备方法和应用
Dan Microwave assisted synthesis of ZnO-TiO2 and its visible light catalytic denitrification activity
CN118892829A (zh) 一种带有核壳结构的Pd基催化剂的制备及其在低浓度甲烷催化燃烧中的应用
CN112844383B (zh) 一种金修饰锰基氧化物催化剂及其制备和应用
CN113731445B (zh) 一种以锡酸钡为载体负载硫化镉量子点的光催化剂及其制备方法和应用
CN111111641A (zh) 一种二氧化铈基催化剂及其制备方法和应用
CN112691661B (zh) 一种基于浸渍法制备氨氧化催化剂的方法
CN112246256B (zh) 一种压电催化降解、合成氨催化剂及其制备方法与应用
CN103406126A (zh) 三元金属改性二氧化钛催化剂及其制备方法和在脱除柴油机尾气中氮氧化物的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant