CN113783637B - Radio astronomical signal receiving device with separated sidebands - Google Patents
Radio astronomical signal receiving device with separated sidebands Download PDFInfo
- Publication number
- CN113783637B CN113783637B CN202111084956.0A CN202111084956A CN113783637B CN 113783637 B CN113783637 B CN 113783637B CN 202111084956 A CN202111084956 A CN 202111084956A CN 113783637 B CN113783637 B CN 113783637B
- Authority
- CN
- China
- Prior art keywords
- intermediate frequency
- signals
- signal
- analog
- amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
- H04B17/21—Monitoring; Testing of receivers for calibration; for correcting measurements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/08—Constructional details, e.g. cabinet
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Superheterodyne Receivers (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种边带分离的射电天文信号接收装置,专门用于射电天文领域。The invention relates to a radio astronomy signal receiving device with sideband separation, which is specially used in the field of radio astronomy.
背景技术Background technique
提高射电望远镜的灵敏度一直是射电天文技术领域的研究重点和热点。信号接收装置是射电望远镜的重要组成部分,其性能是影响其灵敏度的一项重要因素。相较于单边带和双边带结构配置,射电天文外差接收机的优选结构是边带分离架构。在较宽的频率范围内,边带分离接收机非常适合用于复杂的天文观测,因此,它们被广泛地应用于射电天文观测领域。跟双边带接收机相比,它们的主要优点是避免了频谱混淆,并能够降低系统温度。随着相关技术的发展,低温外差接收机的噪声温度指标正在迅速接近基本极限,但是其中一个重要的指标——边带抑制率仍然具有可提升的空间。由于在较大的射频和中频带宽保持较低的幅度和相位不平衡是极其困难的,因此,传统模拟方法只能实现较低的边带抑制率,这远远不能满足天文观测的需要。Improving the sensitivity of radio telescopes has always been a research focus and hotspot in the field of radio astronomy. The signal receiving device is an important part of the radio telescope, and its performance is an important factor affecting its sensitivity. Compared with single-sideband and double-sideband configurations, the preferred structure of a radio astronomy heterodyne receiver is a sideband split architecture. In a wide frequency range, sideband separation receivers are very suitable for complex astronomical observations, so they are widely used in the field of radio astronomy observations. Their main advantages over double sideband receivers are the avoidance of spectral aliasing and the ability to reduce system temperature. With the development of related technologies, the noise temperature index of low-temperature heterodyne receivers is rapidly approaching the basic limit, but one of the important indexes - sideband suppression rate still has room for improvement. Since it is extremely difficult to maintain low amplitude and phase imbalance in a large radio frequency and intermediate frequency bandwidth, traditional simulation methods can only achieve a low sideband suppression rate, which is far from meeting the needs of astronomical observations.
此外,宽带和超宽带接收机需要经过多次混频调谐得到期望观测频率的信号,每一次变频都必须再经过滤波放大消除信号混叠和电平补偿,使得接收机非常庞大和复杂。传统模拟方式实现的边带分离架构的接收机装置,需要混频之后再连接一个电桥用于实现上下边带信号的分离。本发明所设计的一种边带分离的射电天文信号接收装置,通过在数字域对前端模拟电路产生的相位和幅度不平衡进行补偿校准,从而实现上下边带信号的分离,该方法大大提高了接收机的边带抑制比。同时,该设计通过在数字域实现上下边带的分离,减少了装置中前端模拟电路部分硬件器件的使用,这对于减小多波束和相控阵馈源接收机的体积具有非常重要的意义。In addition, broadband and ultra-wideband receivers need to undergo multiple frequency mixing and tuning to obtain the signal of the desired observation frequency. Each frequency conversion must be filtered and amplified to eliminate signal aliasing and level compensation, making the receiver very large and complex. The receiver device of the sideband separation architecture implemented in the traditional analog method needs to be connected to a bridge after frequency mixing to realize the separation of the upper and lower sideband signals. A radio astronomy signal receiving device with sideband separation designed in the present invention compensates and calibrates the phase and amplitude imbalance generated by the front-end analog circuit in the digital domain, thereby realizing the separation of the upper and lower sideband signals. This method greatly improves the The sideband suppression ratio of the receiver. At the same time, this design reduces the use of hardware components in the front-end analog circuit of the device by realizing the separation of upper and lower sidebands in the digital domain, which is of great significance for reducing the volume of multi-beam and phased array feed receivers.
发明内容Contents of the invention
本发明的目的在于,提供一种边带分离的射电天文信号接收装置,该装置是由馈源,放大器,电桥,第一和第二中频混频器,第一和第二中频放大器,第一和第二中频滤波器,本振、第一和第二中频模数转换器,基于FPGA的数字信号处理单元组成,射电天文信号经射电天文望远镜汇聚至馈源,经放大器、电桥,分为正交的两路信号,两路信号分别经过一次混频、放大、滤波,再经过模数转换器、基于FPGA的数字信号处理单元,输出两路上下边带分离的信号。该装置通过基于FPGA的信号处理单元校准补偿模拟电路部分相位和幅度的不平衡,提高信号接收装置的边带抑制率,优化接收装置的性能。能够解决传统的模拟边带分离架构的接收机系统面临的边带抑制率低,系统复杂庞大的缺点。The object of the present invention is to provide a radio astronomy signal receiving device with sideband separation, which device is composed of feed source, amplifier, electric bridge, first and second intermediate frequency mixer, first and second intermediate frequency amplifier, the first The first and second intermediate frequency filters, the local oscillator, the first and second intermediate frequency analog-to-digital converters, and the digital signal processing unit based on FPGA, the radio astronomy signal is converged to the feed source through the radio astronomy telescope, and then divided by the amplifier and the bridge. It is two orthogonal signals. The two signals are mixed, amplified, and filtered, and then passed through an analog-to-digital converter and an FPGA-based digital signal processing unit to output signals with separated upper and lower sidebands. The device calibrates and compensates the phase and amplitude imbalance of the analog circuit part through FPGA-based signal processing unit calibration, improves the sideband suppression rate of the signal receiving device, and optimizes the performance of the receiving device. It can solve the shortcomings of low sideband suppression rate and complex and huge system faced by the receiver system of the traditional analog sideband separation architecture.
本发明所述的一种边带分离的射电天文信号接收装置,该装置是由馈源,射频滤波器,射频放大器,电桥,第一和第二中频混频器,第一和第二中频放大器,第一和第二中频滤波器,本振,功分器,第一和第二模数转换器及基于FPGA的数字信号处理单元组成,馈源(1)、射频滤波器(2)、射频放大器(3)和电桥(4)依次串联,电桥(4)第一输出端与第一中频混频器(5)的输入端相连,电桥(4)的第二输出端与第二中频混频器(51)的输入端相连;第一中频混频器(5)的输出端依次与第一中频放大器(6)、第一中频滤波器(7)和第一模数转换器(8)的输入端串联,并与基于FPGA的信号处理单元(9)连接;第二中频混频器(51)的输出端依次与第二中频放大器(61)、第二中频滤波器(71)和第二模数转换器(81)输入端串联,并与基于FPGA的信号处理单元(9)连接;谐波抑制功分器(10)的输入端与本振(11)连接,谐波抑制功分器(10)第一输出端与第一中频混频器(5)的比较信号输入端连接,谐波抑制功分器(10)第二输出端与第二中频混频器(51)的比较信号输入端连接;基于FPGA的信号处理单元(9)包括第一多项滤波模块(12)、第二多项滤波模块(121)、内存(13)和校准处理模块(14),第一多项滤波模块(12)和第二多项滤波模块(121)分别由FIR滤波器和FFT变换组成;具体操作按下列步骤进行:A radio astronomy signal receiving device with sideband separation according to the present invention is composed of a feed source, a radio frequency filter, a radio frequency amplifier, an electric bridge, a first and a second intermediate frequency mixer, a first and a second intermediate frequency Amplifier, first and second intermediate frequency filter, local oscillator, power splitter, first and second analog-to-digital converter and digital signal processing unit based on FPGA, feed source (1), radio frequency filter (2), The radio frequency amplifier (3) and the electric bridge (4) are connected in series successively, the first output end of the electric bridge (4) is connected with the input end of the first intermediate frequency mixer (5), and the second output end of the electric bridge (4) is connected with the first intermediate frequency mixer (5). The input terminals of the two intermediate frequency mixers (51) are connected; the output terminals of the first intermediate frequency mixer (5) are successively connected with the first intermediate frequency amplifier (6), the first intermediate frequency filter (7) and the first analog-to-digital converter The input terminal of (8) is connected in series with the signal processing unit (9) based on FPGA; the output terminal of the second intermediate frequency mixer (51) is connected with the second intermediate frequency amplifier (61), the second intermediate frequency filter (71) successively ) and the second analog-to-digital converter (81) input end are connected in series, and are connected with the signal processing unit (9) based on FPGA; The input end of the harmonic suppression power splitter (10) is connected with the local oscillator (11), and the harmonic The first output end of the suppression power divider (10) is connected to the comparison signal input end of the first intermediate frequency mixer (5), and the second output end of the harmonic suppression power divider (10) is connected to the second intermediate frequency mixer (51 ) is connected to the comparison signal input terminal; FPGA-based signal processing unit (9) includes the first multinomial filtering module (12), the second multinomial filtering module (121), internal memory (13) and calibration processing module (14), The first polynomial filter module (12) and the second polynomial filter module (121) are made up of FIR filter and FFT transform respectively; Concrete operation is carried out according to the following steps:
a、射电天文信号经望远镜汇聚后进入馈源(1),再经射频滤波器(2),射频放大器(3)和电桥(4)后,分为两路正交信号;a. The radio astronomy signal enters the feed source (1) after being converged by the telescope, and then is divided into two orthogonal signals after passing through the radio frequency filter (2), the radio frequency amplifier (3) and the electric bridge (4);
b、将步骤a中的两路正交信号分别经第一混频器(5)和第二混频器(51)降频为两路正交中频信号;B. The two-way orthogonal signals in step a are down-converted into two-way orthogonal intermediate frequency signals through the first mixer (5) and the second mixer (51) respectively;
c、将步骤b中的两路正交中频信号分别经第一中频放大器(6)、第二中频放大器(61)、第一中频滤波器(7)和第二中频滤波器(71)后,进入第一模数转化器(8)和第二模数转化器(81)转化成两路正交的数字信号;c. After passing the two-way orthogonal intermediate frequency signals in step b respectively through the first intermediate frequency amplifier (6), the second intermediate frequency amplifier (61), the first intermediate frequency filter (7) and the second intermediate frequency filter (71), Enter the first analog-to-digital converter (8) and the second analog-to-digital converter (81) to convert into two orthogonal digital signals;
d、将步骤c中的两路正交的数字信号经过基于FPGA的信号处理单元(9)处理,基于FPGA的信号处理单元(9)中的第一多相滤波模块(12)和第二多相滤波模块(121)分别将两路正交数字信号各自划分为n个频率通道信号,并进行快速傅里叶转换,校准处理模块(14)对经快速傅里叶转化后的多通道信号进行幅度和相位的校准处理,分别计算输出边带分离的上边带信号和下边带信号。D, the two-way orthogonal digital signal in the step c is processed through the signal processing unit (9) based on FPGA, based on the first polyphase filter module (12) and the second polyphase filtering module (12) in the signal processing unit (9) based on FPGA The phase filter module (121) divides the two-way orthogonal digital signals into n frequency channel signals respectively, and performs fast Fourier transformation, and the calibration processing module (14) performs fast Fourier transformation on the multi-channel signals Calibration processing of amplitude and phase calculates the upper sideband signal and the lower sideband signal of the output sideband separation respectively.
步骤d中所述校准处理模块(14)读取内存模块(13)中的各个频率通道的校准系数,分别与对相应通道信号进行校准计算得到校准后的多通道信号;The calibration processing module (14) described in step d reads the calibration coefficients of each frequency channel in the memory module (13), and performs calibration calculations on corresponding channel signals respectively to obtain calibrated multi-channel signals;
所述校准系数是预先在射频滤波器(2)的输入端,依次注入n个频率通道的测试信号,经第一多项滤波模块(12)和第二多项滤波模块(121)处理后,获得两路正交信号各自在每个频率通道的信号复数值,再经计算得到每个频率通道的校准系数,并生成校准系数文件。The calibration coefficients are pre-injected into the test signals of n frequency channels at the input end of the radio frequency filter (2) in advance, after being processed by the first polynomial filtering module (12) and the second polynomial filtering module (121), Obtain the signal complex values of the two orthogonal signals in each frequency channel, and then calculate the calibration coefficient of each frequency channel, and generate the calibration coefficient file.
本发明所述的一种边带分离的射电天文信号接收装置,该装置中所述基于FPGA的信号处理单元(9)包括第一多相滤波模块(12)、第二多相滤波模块(121)、内存模块(13)和校准处理模块(14),其处理过程步骤:A radio astronomy signal receiving device with sideband separation according to the present invention, said FPGA-based signal processing unit (9) in the device includes a first polyphase filter module (12), a second polyphase filter module (121 ), memory module (13) and calibration processing module (14), its processing steps:
第一多相滤波模块(12)和第二多相滤波模块(121)分别将来自第一模数转化器(8)和第二模数转化器(81)的两路正交信号各自划分为n个频率通道信号,并经快速傅里叶转换,输出复数X1(i)和X2(i),其中i=0,1,2,...,n-1;The first polyphase filtering module (12) and the second polyphase filtering module (121) respectively divide the two-way quadrature signals from the first analog-to-digital converter (8) and the second analog-to-digital converter (81) into n frequency channel signals, and through fast Fourier transform, output complex numbers X 1 (i) and X 2 (i), wherein i=0, 1, 2, ..., n-1;
校准处理模块(14)从内存(13)中读取n个频率通道的校准系数C1(i),C2(i),C3(i)和C4(i),并分别经计算校准输出分离的上边带和下边带的信号数据:上边带信号数据=X1(i)c1(i)+X2(i)C2(i),下边带信号数据=X1(i)C3(i)+X2(i)C4(i);The calibration processing module (14) reads the calibration coefficients C 1 (i), C 2 (i), C 3 (i) and C 4 (i) of n frequency channels from the memory (13), and calculates and calibrates them respectively Output the separated upper and lower sideband signal data: upper sideband signal data=X 1 (i)c 1 (i)+X 2 (i)C 2 (i), lower sideband signal data=X 1 (i)C 3 (i)+ X2 (i) C4 (i);
所述校准系数的获得:在所述边带分离架构的射电天文信号接收装置的射频滤波器(2)的输入端,依次注入n个频率通道的测试信号;在第一多项滤波器(12)和第二多项滤波器(121)的输出端将分别得到两路正交信号在每个频率通道的信号复数值X1(i)=A1(i)+jB1(i)和X2(i)=A2(i)+jB2(i),其中i=0,1,2,...,n-1,经以下公式计算,The acquisition of the calibration coefficients: at the input end of the radio frequency filter (2) of the radio astronomy signal receiving device of the sideband separation architecture, sequentially inject test signals of n frequency channels; in the first polynomial filter (12 ) and the output terminals of the second polynomial filter (121) will obtain the signal complex value X 1 (i)=A 1 (i)+jB 1 (i) and X of the two-way quadrature signal in each frequency channel respectively 2 (i)=A 2 (i)+jB 2 (i), where i=0, 1, 2, ..., n-1, calculated by the following formula,
C1(i)=C4(i)=1+0j,即得到每个频率通道的校准系数C1(i),C2(i),C3(i)和C4(i)。 C 1 (i)=C 4 (i)=1+0j, that is, the calibration coefficients C 1 (i), C 2 (i), C 3 (i) and C 4 (i) of each frequency channel are obtained.
本发明与现有技术相比,其显著优点在于:通过在数字域校准补偿前端模拟电路部分产生的幅度和相位的不平衡,大大提高信号接收装置的边带抑制比,同时,由于减少了前端模拟部分器件的使用,能够减小接收装置的设计尺寸。Compared with the prior art, the present invention has the remarkable advantages that: by calibrating and compensating the amplitude and phase imbalance generated by the front-end analog circuit part in the digital domain, the sideband suppression ratio of the signal receiving device is greatly improved, and at the same time, due to the reduction of the front-end The use of analog parts can reduce the design size of the receiving device.
附图说明Description of drawings
图1为本发明整体结构示意图;Fig. 1 is a schematic diagram of the overall structure of the present invention;
图2为本发明基于FPGA的信号处理单元结构示意图。FIG. 2 is a schematic structural diagram of an FPGA-based signal processing unit of the present invention.
具体实施方式Detailed ways
本发明所述的一种边带分离的射电天文信号接收装置,该装置是由馈源,射频滤波器,射频放大器,电桥,第一和第二中频混频器,第一和第二中频放大器,第一和第二中频滤波器,本振,功分器,第一和第二模数转换器和基于FPGA的数字信号处理单元组成,馈源1、射频滤波器2、射频放大器3和电桥4依次串联,电桥4第一输出端与第一中频混频器5的输入端相连,电桥4的第二输出端与第二中频混频器51的输入端相连;第一中频混频器5的输出端依次与中第一中频放大器6、第一中频滤波器7和第一模数转换器8的输入端串联,并与基于FPGA的信号处理单元9连接;第二中频混频器51的输出端依次与第二中频放大器61、第二中频滤波器71和第二模数转换器81输入端串联,并与基于FPGA的信号处理单元9连接;谐波抑制功分器10的输入端与本振11连接,谐波抑制功分器10第一输出端与第一中频混频器5的比较信号输入端连接,谐波抑制功分器10第二输出端与第二中频混频器51的比较信号输入端连接;基于FPGA的信号处理单元9包括第一多项滤波模块12、第二多项滤波模块121、内存13和校准处理模块14,第一多项滤波模块12和第二多项滤波模块121分别由FIR滤波器和FFT变换组成;具体操作按下列步骤进行:A radio astronomy signal receiving device with sideband separation according to the present invention is composed of a feed source, a radio frequency filter, a radio frequency amplifier, an electric bridge, a first and a second intermediate frequency mixer, a first and a second intermediate frequency Amplifier, first and second intermediate frequency filter, local oscillator, power divider, first and second analog-to-digital converter and digital signal processing unit based on FPGA, feed source 1, radio frequency filter 2, radio frequency amplifier 3 and The electric bridge 4 is connected in series successively, the first output end of the electric bridge 4 is connected with the input end of the first intermediate frequency mixer 5, the second output end of the electric bridge 4 is connected with the input end of the second
a、射电天文信号经望远镜汇聚后进入馈源1,再经射频滤波器2,射频放大器3和电桥4后,分为两路正交信号;a. The radio astronomy signal enters the feed source 1 after being converged by the telescope, and then is divided into two orthogonal signals after passing through the radio frequency filter 2, the radio frequency amplifier 3 and the electric bridge 4;
b、将步骤a中的两路正交信号分别经第一混频器5和第二混频器51降频为两路正交中频信号;b. The two-way orthogonal signals in step a are down-converted into two-way orthogonal intermediate frequency signals through the first mixer 5 and the
c、将步骤b中的两路正交中频信号分别经第一中频放大器6、第二中频放大器61、第一中频滤波器7和第二中频滤波器71后,进入第一模数转化器8和第二模数转化器81转化成两路正交的数字信号;c. After passing the two-way orthogonal intermediate frequency signals in step b respectively through the first
d、将步骤c中的两路正交的数字信号经过基于FPGA的信号处理单元9处理,基于FPGA的信号处理单元9中的第一多相滤波模块12和第二多相滤波模块121分别将来自第一模数转化器8和第二模数转化器81的两路正交信号各自划分为n个频率通道信号,并进行快速傅里叶转换,校准处理模块14对经快速傅里叶转化后的多通道信号进行幅度和相位的校准处理,并分别经计算校准输出边带分离的上边带信号和下边带信号;D, the two-way orthogonal digital signals in step c are processed through the
步骤d中所述校准处理模块14读取内存模块13中的各个频率通道的校准系数,分别与对相应通道信号进行校准计算得到校准后的多通道信号;The
所述校准系数,是预先在射频滤波器2的输入端,依次注入n个频率通道的测试信号,经第一多项滤波模块12和第二多项滤波模块121处理后,获得两路正交信号各自在每个频率通道的信号复数值,再经计算得到每个频率通道的校准系数;The calibration coefficients are pre-injected into the test signals of n frequency channels at the input end of the radio frequency filter 2 in advance, and after being processed by the first
如图1所示,射电天文信号经望远镜汇聚后进入馈源1,经射频滤波器2,射频放大器3和电桥4后,分为两路正交信号;As shown in Figure 1, the radio astronomy signal enters the feed source 1 after being converged by the telescope, and is divided into two orthogonal signals after passing through the radio frequency filter 2, the radio frequency amplifier 3 and the electric bridge 4;
两路正交信号分别经第一中频混频器5和第二中频混频器51降频为两路正交中频信号;Two paths of orthogonal signals are respectively down-converted by the first intermediate frequency mixer 5 and the second
两路正交中频信号分别经第一中频放大器6和第二中频放大器61,第一中频滤波器7和第二中频放大器71后,进入第一模数转化器8和第二模数转化器81转化成两路正交的数字信号;Two paths of orthogonal intermediate frequency signals respectively pass through the first
两路正交的数字信号经过基于FPGA的信号处理单元9处理,基于FPGA的信号处理单元9中的第一多相滤波模块12和第二多相滤波模块121分别将来自第一模数转化器8和第二模数转化器81的两路正交信号各自划分为n个频率通道信号,并进行快速傅里叶转换,校准处理模块14对经快速傅里叶转化后的多通道信号进行幅度和相位的校准处理,并分别经计算校准输出边带分离的上边带信号和下边带信号;The two-way orthogonal digital signals are processed by the
参见图2,基于FPGA的信号处理单元9包括第一多相滤波模块12、第二多相滤波模块121、内存模块13和校准处理模块14;第一多相滤波模块12和第二多相滤波模块121分别由FIR滤波器和FFT变换组成,FIR滤波器将来自模数转换器的两路正交信号各自分别划分为n个通道;两路正交信号的各通道信号经FFT变换后的复数信号分别用X1(i)和X2(i)表示,其中i=0,1,2,...,n-1;校准处理模块14读取内存13中的各个频率通道的校准系数,对复数信号X1(i)和X2(i)进行计算校准处理,计算公式如公式(1)和(2):Referring to Fig. 2, the
上边带各通道信号=X1(i)×C1(i)+X2(i)×C2(i) (1)Each channel signal of the upper sideband = X 1 (i)×C 1 (i)+X 2 (i)×C 2 (i) (1)
下边带各通道信号=X1(i)×C3(i)+X2(i)×C4(i) (2)Signals of each channel in the lower sideband = X 1 (i)×C 3 (i)+X 2 (i)×C 4 (i) (2)
校准系数的获取,需要在图1所示的射频滤波器2输入端,依次注入n个频率通道的测试信号;在第一多项滤波模块12和第二多项滤波模块121的输出端将得到两路正交信号各自在每个频率通道上的信号复数值X1(i)=A1(i)+jB1(i)和X2(i)=A2(i)+jB2(i),i=0,1,2,...,n-1;通过公式(3)和(4)计算得到校准系数C1(i),C2(i),C3(i)和C4(i):The acquisition of the calibration coefficient needs to inject the test signals of n frequency channels into the input end of the radio frequency filter 2 shown in FIG. Signal complex values X 1 (i)=A 1 ( i)+jB 1 (i) and X 2 (i)=A 2 ( i )+jB 2 (i ), i=0, 1, 2, ..., n-1; the calibration coefficients C 1 (i), C 2 (i), C 3 (i) and C are calculated by formulas (3) and (4) 4 (i):
其中,C1(i)=C4(i)=1+0j,当接收装置本振11的频率和功率发生变化时,需要重新获取新的校准系数。Wherein, C 1 (i)=C 4 (i)=1+0j, When the frequency and power of the local oscillator 11 of the receiving device change, new calibration coefficients need to be acquired again.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111084956.0A CN113783637B (en) | 2021-09-16 | 2021-09-16 | Radio astronomical signal receiving device with separated sidebands |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111084956.0A CN113783637B (en) | 2021-09-16 | 2021-09-16 | Radio astronomical signal receiving device with separated sidebands |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113783637A CN113783637A (en) | 2021-12-10 |
CN113783637B true CN113783637B (en) | 2023-05-23 |
Family
ID=78844453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111084956.0A Active CN113783637B (en) | 2021-09-16 | 2021-09-16 | Radio astronomical signal receiving device with separated sidebands |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113783637B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114710175B (en) * | 2022-03-17 | 2023-08-15 | 中国科学院新疆天文台 | A radio astronomy normal temperature receiver device |
CN115308485A (en) * | 2022-07-29 | 2022-11-08 | 中国科学院紫金山天文台 | A digital sideband separation spectral line receiving device and using method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE0002418D0 (en) * | 2000-06-27 | 2000-06-27 | Ericsson Telefon Ab L M | Method and apparatus for transceivers |
EP1515429A2 (en) * | 2003-08-25 | 2005-03-16 | Nokia Corporation | Direct conversion receiver and receiving method |
CN105577197A (en) * | 2016-02-01 | 2016-05-11 | 中国科学院国家天文台 | High Speed Data Acquisition System for Radio Astronomy Telescope |
CN108802503A (en) * | 2018-07-24 | 2018-11-13 | 山东大学 | Data Compensation System and Method for Multi-channel Frequency Conversion of Solar Radio Observation System |
CN110455282A (en) * | 2019-08-15 | 2019-11-15 | 中国科学院新疆天文台 | A Digital Terminal System Applied to Pulsar Observation |
CN111464215A (en) * | 2020-04-02 | 2020-07-28 | 中国科学院新疆天文台 | Signal acquisition and processing system and method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030072393A1 (en) * | 2001-08-02 | 2003-04-17 | Jian Gu | Quadrature transceiver substantially free of adverse circuitry mismatch effects |
JP3742578B2 (en) * | 2001-10-24 | 2006-02-08 | 日本放送協会 | WIRELESS COMMUNICATION SYSTEM, ITS TRANSMITTING CIRCUIT, AND RECEIVING CIRCUIT |
US7949072B2 (en) * | 2005-10-11 | 2011-05-24 | St-Ericsson Sa | Local oscillator with injection pulling suppression and spurious products filtering |
WO2009045966A1 (en) * | 2007-10-01 | 2009-04-09 | Maxlinear, Inc. | I/q calibration techniques |
US9705477B2 (en) * | 2008-04-30 | 2017-07-11 | Innovation Digital, LLC | Compensator for removing nonlinear distortion |
JP5334318B2 (en) * | 2009-11-30 | 2013-11-06 | ルネサスエレクトロニクス株式会社 | Semiconductor integrated circuit for communication and operation method thereof |
-
2021
- 2021-09-16 CN CN202111084956.0A patent/CN113783637B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE0002418D0 (en) * | 2000-06-27 | 2000-06-27 | Ericsson Telefon Ab L M | Method and apparatus for transceivers |
EP1515429A2 (en) * | 2003-08-25 | 2005-03-16 | Nokia Corporation | Direct conversion receiver and receiving method |
CN105577197A (en) * | 2016-02-01 | 2016-05-11 | 中国科学院国家天文台 | High Speed Data Acquisition System for Radio Astronomy Telescope |
CN108802503A (en) * | 2018-07-24 | 2018-11-13 | 山东大学 | Data Compensation System and Method for Multi-channel Frequency Conversion of Solar Radio Observation System |
CN110455282A (en) * | 2019-08-15 | 2019-11-15 | 中国科学院新疆天文台 | A Digital Terminal System Applied to Pulsar Observation |
CN111464215A (en) * | 2020-04-02 | 2020-07-28 | 中国科学院新疆天文台 | Signal acquisition and processing system and method |
Non-Patent Citations (4)
Title |
---|
Phase array antenna design and characterization for next-generation radio telescopes;Kark F.Warnic.etc;2009 IEEE International Workshop on Antenna Technology;全文 * |
基于FPGA的软件无线电宽带多通道数字接收技术;黄欣;张平;童智勇;黄杰文;朱磊;;科学技术与工程(第12期);全文 * |
射电终端发展与110m射电望远镜终端系统;聂俊;裴鑫;王娜;陈卯蒸;张海龙;;中国科学:物理学 力学 天文学(第05期);全文 * |
频率可调带宽可选的VLBI多相数字基带转换器;陈岚;罗近涛;项英;张秀忠;;计算机工程与应用(第02期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113783637A (en) | 2021-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113783637B (en) | Radio astronomical signal receiving device with separated sidebands | |
CN101395798B (en) | Discrete time direct sampling circuit and receiver | |
CN103138845B (en) | Amplitude phase characteristic test method for down-conversion reception channel of ultra-wide band synthetic aperture radar (SAR) receiver | |
WO2020248584A1 (en) | Gain flatness compensation method for transceiver | |
US20080113628A1 (en) | Methods and apparatus to provide an auxiliary receive path to support transmitter functions | |
CN106017669B (en) | A kind of multi-functional reading circuit system of KID detector arrays | |
TW200832946A (en) | Frequency response correction for a receiver having a frequency translation device | |
CN105656834A (en) | Digital correction method for IQ channel mismatch of novel broadband receiver | |
CN115865115A (en) | System and method for suppressing mirror image interference in zero intermediate frequency architecture software radio | |
CN109470936B (en) | KIDs detector noise test circuit and test method based on active quadrature mixer | |
CN111697983A (en) | Linear frequency modulation continuous wave radar receiving and transmitting interference cancellation device and control algorithm thereof | |
CN205545224U (en) | Signal receiving device of solar radio frequency spectrograph | |
CN217159719U (en) | Third-order intercept point test circuit | |
CN112260979B (en) | Multichannel parallel segmented modulation method | |
CN116562381B (en) | A radio frequency system and implementation method of a quantum instrument control kit | |
WO2014132315A1 (en) | Receiver | |
CN114629441B (en) | Method for correcting harmonic suppression of passive down mixer of receiver | |
CN111030765A (en) | A Heterodyne Scanning Spectrum Analysis System That Can Identify Image Frequency Signals | |
US11722160B2 (en) | Radio frequency receiver for carrier aggregation | |
CN108696464A (en) | A kind of IQ and 4 channel TIADC Combine distortions blind estimates and modification method | |
CN112099809A (en) | FPGA firmware for a large-scale submillimeter wave detector reading system | |
Yao | Design of a High-speed Multi-channel Digital Receiver | |
CN115308485A (en) | A digital sideband separation spectral line receiving device and using method thereof | |
CN114062782B (en) | 2-bit sampling quantization system and method suitable for broadband radio frequency signal spectrum estimation | |
Folkesson et al. | Design of RF sampling receiver front-end |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |