CN113764339B - Semiconductor structure and method of forming the same - Google Patents
Semiconductor structure and method of forming the same Download PDFInfo
- Publication number
- CN113764339B CN113764339B CN202010492469.7A CN202010492469A CN113764339B CN 113764339 B CN113764339 B CN 113764339B CN 202010492469 A CN202010492469 A CN 202010492469A CN 113764339 B CN113764339 B CN 113764339B
- Authority
- CN
- China
- Prior art keywords
- region
- gate
- semiconductor substrate
- layer
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0135—Manufacturing their gate conductors
- H10D84/0142—Manufacturing their gate conductors the gate conductors having different shapes or dimensions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0144—Manufacturing their gate insulating layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及半导体技术领域,尤其涉及一种半导体结构及其形成方法。The present application relates to the field of semiconductor technology, and in particular to a semiconductor structure and a method for forming the same.
背景技术Background Art
当前,半导体技术已经渗透至生活中的各个领域,例如航天、医疗器戒、手机通讯都离不开半导体技术所制备出的芯片。在半导体集成电路中通常包含多种半导体器件,比如高压半导体器件、中压半导体器件和低压半导体器件。高压半导体器件的优点是符合成本效益且易相容于其它工艺,已广泛应用于显示器驱动IC元件、电源供应器、电力管理、通讯、车用电子或工业控制等领域。At present, semiconductor technology has penetrated into various fields of life. For example, aerospace, medical devices, and mobile communications are inseparable from chips made by semiconductor technology. Semiconductor integrated circuits usually contain a variety of semiconductor devices, such as high-voltage semiconductor devices, medium-voltage semiconductor devices, and low-voltage semiconductor devices. The advantages of high-voltage semiconductor devices are cost-effectiveness and compatibility with other processes. They have been widely used in display driver IC components, power supplies, power management, communications, automotive electronics, or industrial control.
然而,由于高压半导体器件具大沟道长度和宽度,位于沟道上方的栅极尺寸也较大,在使用化学机械研磨工艺研磨栅极表面的介质层时容易在栅极上出现凹陷,甚至研磨过量导致去除一部分栅极,影响器件性能,因此需要提供更有效或更可靠的技术方案。However, since high-voltage semiconductor devices have a large channel length and width, the gate size located above the channel is also large. When the dielectric layer on the gate surface is ground using a chemical mechanical polishing process, it is easy for a dent to appear on the gate, and even excessive polishing may cause a portion of the gate to be removed, affecting device performance. Therefore, a more effective or reliable technical solution needs to be provided.
发明内容Summary of the invention
本申请提供一种半导体结构及其形成方法,可以减少使用化学机械研磨工艺研磨栅极表面的介质层时凹陷的产生,提高器件性能。The present application provides a semiconductor structure and a method for forming the same, which can reduce the generation of recesses when a dielectric layer on a gate surface is polished using a chemical mechanical polishing process, thereby improving device performance.
本申请的一个方面提供一种半导体结构的形成方法,包括:提供半导体衬底,所述半导体衬底包括第一区域以及第四区域;分别在所述第一区域和第四区域的半导体衬底上形成栅极结构,所述第一区域的栅极结构沿沟道长度方向的尺寸大于所述第四区域的栅极结构沿沟道长度方向的尺寸;在所述第一区域的栅极结构上形成阻挡层,所述阻挡层包括贯穿所述阻挡层的若干沟槽。One aspect of the present application provides a method for forming a semiconductor structure, comprising: providing a semiconductor substrate, the semiconductor substrate comprising a first region and a fourth region; forming a gate structure on the semiconductor substrate in the first region and the fourth region, respectively, wherein a dimension of the gate structure in the first region along a channel length direction is greater than a dimension of the gate structure in the fourth region along the channel length direction; and forming a blocking layer on the gate structure in the first region, the blocking layer comprising a plurality of grooves penetrating the blocking layer.
在本申请的一些实施例中,所述栅极结构包括栅介电层以及伪栅极层,所述方法还包括:去除所述第一区域和第四区域的伪栅极层,在所述栅介电层表面形成金属栅。In some embodiments of the present application, the gate structure includes a gate dielectric layer and a dummy gate layer, and the method further includes: removing the dummy gate layer in the first region and the fourth region, and forming a metal gate on the surface of the gate dielectric layer.
在本申请的一些实施例中,在所述第一区域的栅极结构上形成阻挡层,所述阻挡层包括贯穿所述阻挡层的若干沟槽的方法包括:在所述第一区域以及第四区域的半导体衬底以及栅极结构的侧壁和顶部表面上形成阻挡材料层;刻蚀所述阻挡材料层,仅保留位于第一区域栅极结构顶部表面上的部分阻挡材料层,并在所述阻挡材料层中形成贯穿所述阻挡材料层的沟槽,形成所述阻挡层。In some embodiments of the present application, a method for forming a blocking layer on a gate structure in the first region, wherein the blocking layer includes a plurality of grooves penetrating the blocking layer, comprises: forming a blocking material layer on the sidewalls and top surfaces of a semiconductor substrate and a gate structure in the first region and a fourth region; etching the blocking material layer to retain only a portion of the blocking material layer located on the top surface of the gate structure in the first region, and forming grooves penetrating the blocking material layer in the blocking material layer to form the blocking layer.
在本申请的一些实施例中,所述第四区域包括第二区域和第三区域中的至少一个。In some embodiments of the present application, the fourth region includes at least one of the second region and the third region.
在本申请的一些实施例中,所述第一区域为高压器件区域,第二区域为中压器件区域,第三区域为低压器件区域。In some embodiments of the present application, the first region is a high voltage device region, the second region is a medium voltage device region, and the third region is a low voltage device region.
在本申请的一些实施例中,所述阻挡层的厚度为100埃至250埃。In some embodiments of the present application, the thickness of the barrier layer is 100 angstroms to 250 angstroms.
在本申请的一些实施例中,所述若干沟槽包括沿沟道长度方向分布的若干第一沟槽和沿沟道宽度方向分布的若干第二沟槽。In some embodiments of the present application, the plurality of grooves include a plurality of first grooves distributed along a channel length direction and a plurality of second grooves distributed along a channel width direction.
在本申请的一些实施例中,所述半导体结构的形成方法还包括:形成覆盖所述第一区域和第四区域的半导体衬底、所述栅极结构和所述阻挡层的介质层,所述介质层填满所述若干沟槽;去除高于所述第四区域栅极结构顶面的介质层。In some embodiments of the present application, the method for forming the semiconductor structure also includes: forming a dielectric layer covering the semiconductor substrate, the gate structure and the barrier layer in the first and fourth regions, wherein the dielectric layer fills the plurality of grooves; and removing the dielectric layer above the top surface of the gate structure in the fourth region.
本申请的另一个方面还提供一种半导体结构,包括:半导体衬底,所述半导体衬底包括第一区域以及第四区域;栅极结构,位于所述第一区域和第四区域的半导体衬底上,所述第一区域的栅极结构沿沟道长度方向的尺寸大于所述第四区域的栅极结构沿沟道长度方向的尺寸;阻挡层,位于所述第一区域的栅极结构上,所述阻挡层包括若干贯穿所述阻挡层的沟槽;介质层,位于所述半导体衬底上和所述栅极结构上并填充所述沟槽,所述介质层的上表面与所述阻挡层的上表面平齐。在本申请的一些实施例中,所述若干沟槽包括沿沟道长度方向分布的若干第一沟槽和沿沟道宽度方向分布的若干第二沟槽。Another aspect of the present application also provides a semiconductor structure, including: a semiconductor substrate, the semiconductor substrate including a first region and a fourth region; a gate structure, located on the semiconductor substrate in the first region and the fourth region, the size of the gate structure in the first region along the channel length direction is greater than the size of the gate structure in the fourth region along the channel length direction; a barrier layer, located on the gate structure in the first region, the barrier layer including a plurality of grooves penetrating the barrier layer; a dielectric layer, located on the semiconductor substrate and the gate structure and filling the grooves, the upper surface of the dielectric layer is flush with the upper surface of the barrier layer. In some embodiments of the present application, the plurality of grooves include a plurality of first grooves distributed along the channel length direction and a plurality of second grooves distributed along the channel width direction.
本申请所述的半导体结构及其形成方法,所述阻挡层以及位于所述沟槽中的介质层都被分成了若干份,每一份的尺寸变小,因此采用化学机械研磨工艺平坦化所述介质层时不容易凹陷,可以提高器件性能。The semiconductor structure and the method for forming the same described in the present application are such that the barrier layer and the dielectric layer in the groove are divided into several parts, each of which is smaller in size. Therefore, when the dielectric layer is flattened by a chemical mechanical polishing process, it is not easy to be concave, thereby improving device performance.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
以下附图详细描述了本申请中披露的示例性实施例。其中相同的附图标记在附图的若干视图中表示类似的结构。本领域的一般技术人员将理解这些实施例是非限制性的、示例性的实施例,附图仅用于说明和描述的目的,并不旨在限制本申请的范围,其他方式的实施例也可能同样的完成本申请中的发明意图。应当理解,附图未按比例绘制。其中:The following drawings describe in detail the exemplary embodiments disclosed in this application. The same reference numerals represent similar structures in several views of the drawings. Those skilled in the art will understand that these embodiments are non-limiting, exemplary embodiments, and the drawings are only for the purpose of illustration and description, and are not intended to limit the scope of this application. Other embodiments may also accomplish the inventive intent in this application. It should be understood that the drawings are not drawn to scale. Among them:
图1至图9为本申请实施例所述的半导体结构的形成方法中各步骤的结构示意图。1 to 9 are schematic structural diagrams of various steps in a method for forming a semiconductor structure according to an embodiment of the present application.
具体实施方式DETAILED DESCRIPTION
以下描述提供了本申请的特定应用场景和要求,目的是使本领域技术人员能够制造和使用本申请中的内容。对于本领域技术人员来说,对所公开的实施例的各种局部修改是显而易见的,并且在不脱离本申请的精神和范围的情况下,可以将这里定义的一般原理应用于其他实施例和应用。因此,本申请不限于所示的实施例,而是与权利要求一致的最宽范围。The following description provides specific application scenarios and requirements of the present application, with the purpose of enabling those skilled in the art to make and use the content in the present application. It will be apparent to those skilled in the art that various local modifications to the disclosed embodiments are apparent, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present application. Therefore, the present application is not limited to the embodiments shown, but to the widest scope consistent with the claims.
下面结合实施例和附图对本发明技术方案进行详细说明。The technical solution of the present invention is described in detail below in conjunction with the embodiments and drawings.
图1至图9为本申请实施例所述的半导体结构的形成方法中各步骤的结构示意图。1 to 9 are schematic structural diagrams of various steps in a method for forming a semiconductor structure according to an embodiment of the present application.
本申请的实施例提供一种半导体结构的形成方法,包括:提供半导体衬底100,所述半导体衬底100包括第一区域101以及第四区域104;分别在所述第一区域101和第四区域104的半导体衬底100上形成栅极结构,所述第一区域101的栅极结构沿沟道长度方向的尺寸大于所述第四区域104的栅极结构沿沟道长度方向的尺寸;在所述第一区域101的栅极结构上形成阻挡层150,所述阻挡层150包括贯穿所述阻挡层150的若干沟槽。An embodiment of the present application provides a method for forming a semiconductor structure, comprising: providing a semiconductor substrate 100, wherein the semiconductor substrate 100 includes a first region 101 and a fourth region 104; forming gate structures on the semiconductor substrate 100 in the first region 101 and the fourth region 104, respectively, wherein a size of the gate structure in the first region 101 along the channel length direction is greater than a size of the gate structure in the fourth region 104 along the channel length direction; and forming a blocking layer 150 on the gate structure in the first region 101, wherein the blocking layer 150 includes a plurality of grooves penetrating the blocking layer 150.
下面结附图对本申请所述半导体结构的形成方法进行详细描述。The method for forming the semiconductor structure described in the present application is described in detail below with reference to the accompanying drawings.
参考图1,提供半导体衬底100,所述半导体衬底100包括第一区域101和第四区域104,附图中的第一区域101以及第四区域104未严格按照比例绘制,仅仅做示意性表示。所述半导体衬底100还包括隔离结构110,所述隔离结构110分隔所述第一区域101和所述第四区域104。1 , a semiconductor substrate 100 is provided, the semiconductor substrate 100 includes a first region 101 and a fourth region 104, the first region 101 and the fourth region 104 in the figure are not drawn strictly according to scale, but are only schematically represented. The semiconductor substrate 100 also includes an isolation structure 110, the isolation structure 110 separates the first region 101 and the fourth region 104.
在本申请的一些实施例中,所述半导体衬底100的材料可以为硅(Si)、锗(Ge)、绝缘体上硅(SOI)或绝缘体上锗(GOI)等。所述半导体衬底100还可以是生长有外延层的结构。In some embodiments of the present application, the material of the semiconductor substrate 100 may be silicon (Si), germanium (Ge), silicon on insulator (SOI) or germanium on insulator (GOI), etc. The semiconductor substrate 100 may also be a structure with an epitaxial layer grown thereon.
所述第四区域104包括第二区域和第三区域中的至少一个,例如,所述半导体衬底100可以包括第一区域101和第二区域;所述半导体衬底100可以包括第一区域101和第三区域;所述半导体衬底100可以包括第一区域101和第二区域和第三区域。The fourth region 104 includes at least one of the second region and the third region. For example, the semiconductor substrate 100 may include the first region 101 and the second region; the semiconductor substrate 100 may include the first region 101 and the third region; the semiconductor substrate 100 may include the first region 101 and the second region and the third region.
在本申请的一些实施例中,定义所述第一区域101为高压器件区域;所述第二区域为中压器件区域,所述第三区域为低压器件区域。所述第一区域101中的沟道尺寸大于所述第二区域中的沟道尺寸,则所述第一区域101中的电子迁移路径比所述第二区域中的电子迁移路径要长,则所述第一区域101在工作时的电压高于所述第二区域在工作时的电压,同理,所述第二区域102的电压在工作时大于所述第三区域在工作时的电压,由此定义所述高压器件区域、中压器件区域和低压器件区域。In some embodiments of the present application, the first region 101 is defined as a high-voltage device region; the second region is defined as a medium-voltage device region, and the third region is defined as a low-voltage device region. If the channel size in the first region 101 is larger than the channel size in the second region, the electron migration path in the first region 101 is longer than the electron migration path in the second region, and the voltage of the first region 101 when working is higher than the voltage of the second region when working. Similarly, the voltage of the second region 102 when working is higher than the voltage of the third region when working, thereby defining the high-voltage device region, the medium-voltage device region, and the low-voltage device region.
在本申请的一些实施例中,所述隔离结构110可以由氧化硅或者氧化硅与氮化硅,氮氧化硅的复合层构成,利用所述隔离结构110可将所述半导体衬底100中的所述第一区域101和所述第四区域104分隔开。In some embodiments of the present application, the isolation structure 110 may be composed of silicon oxide or a composite layer of silicon oxide and silicon nitride or silicon oxynitride. The isolation structure 110 may be used to separate the first region 101 and the fourth region 104 in the semiconductor substrate 100.
参考图2,刻蚀所述第一区域101的半导体衬底100,使所述第一区域101的半导体衬底表面低于所述第四区域104的半导体衬底表面。所述第四区域104的栅介电层的厚度大于所述第一区域101的栅介电层厚度,因此可以刻蚀一部分所述第四区域104的半导体衬底100以容纳所述第四区域104的栅介电层。2 , the semiconductor substrate 100 in the first region 101 is etched so that the surface of the semiconductor substrate in the first region 101 is lower than the surface of the semiconductor substrate in the fourth region 104. The thickness of the gate dielectric layer in the fourth region 104 is greater than the thickness of the gate dielectric layer in the first region 101, so a portion of the semiconductor substrate 100 in the fourth region 104 may be etched to accommodate the gate dielectric layer in the fourth region 104.
在本申请的一些实施例中,可以采用干法或者湿法刻蚀工艺刻蚀所述第一区域101的半导体衬底100,根据刻蚀工艺以及刻蚀工艺所采用的刻蚀气体或者刻蚀溶液的不同,位于所述第一区域的隔离结构110也会有不同程度的刻蚀,在附图2中,示意性的给出所述第一区域的隔离结构110表面被刻蚀后与所述第一区域101半导体衬底100的表面平齐。In some embodiments of the present application, the semiconductor substrate 100 of the first region 101 can be etched by a dry or wet etching process. Depending on the etching process and the etching gas or etching solution used in the etching process, the isolation structure 110 located in the first region will also be etched to varying degrees. In Figure 2, the surface of the isolation structure 110 in the first region is schematically shown to be flush with the surface of the semiconductor substrate 100 in the first region 101 after being etched.
参考图3至图5,分别在所述第一区域101和第四区域104的半导体衬底100上形成栅极结构,所述第一区域101的栅极结构沿沟道长度方向的尺寸大于所述第四区域104的栅极结构沿沟道长度方向的尺寸。3 to 5 , gate structures are formed on the semiconductor substrate 100 in the first region 101 and the fourth region 104 , respectively. The size of the gate structure in the first region 101 along the channel length direction is greater than the size of the gate structure in the fourth region 104 along the channel length direction.
参考图3,分别在所述第一区域101和所述第四区域104的半导体衬底100表面形成栅介电材料层,所述第一区域栅介电材料层的顶面低于所述第四区域栅介电材料层的顶面,所述第一区域栅介电材料层的厚度大于所述第四区域栅介电材料层的厚度。例如,在所述第一区域101的半导体衬底100表面形成设计厚度的栅介电材料层120a,在所述第四区域104的半导体衬底100表面形成设计厚度的栅介电材料层120b。在本申请的实施例中,所述栅介电材料层120a的顶面低于所述栅介电材料层120b的顶面,所述栅介电材料层120a和栅介电材料层120b表面高度差的存在便于后续在所述栅介电材料层120b表面形成阻挡层以保护伪栅极材料层。本申请实施例中一般先形成第一区域栅介电材料层120a,后形成第四区域栅介电材料层120b。Referring to FIG. 3 , gate dielectric material layers are formed on the surface of the semiconductor substrate 100 in the first region 101 and the fourth region 104, respectively. The top surface of the gate dielectric material layer in the first region is lower than the top surface of the gate dielectric material layer in the fourth region, and the thickness of the gate dielectric material layer in the first region is greater than the thickness of the gate dielectric material layer in the fourth region. For example, a gate dielectric material layer 120a of designed thickness is formed on the surface of the semiconductor substrate 100 in the first region 101, and a gate dielectric material layer 120b of designed thickness is formed on the surface of the semiconductor substrate 100 in the fourth region 104. In an embodiment of the present application, the top surface of the gate dielectric material layer 120a is lower than the top surface of the gate dielectric material layer 120b, and the existence of the height difference between the gate dielectric material layer 120a and the gate dielectric material layer 120b facilitates the subsequent formation of a blocking layer on the surface of the gate dielectric material layer 120b to protect the pseudo gate material layer. In the embodiment of the present application, the gate dielectric material layer 120a of the first region is generally formed first, and then the gate dielectric material layer 120b of the fourth region is formed.
在本申请的一些实施例中,形成所述栅介电材料层120a和所述栅介电材料层120b的方法包括热氧化工艺、原子层沉积工艺、化学气相沉积工艺或物理气相沉积工艺等。In some embodiments of the present application, a method of forming the gate dielectric material layer 120 a and the gate dielectric material layer 120 b includes a thermal oxidation process, an atomic layer deposition process, a chemical vapor deposition process, a physical vapor deposition process, or the like.
参考图4,在所述栅介电材料层120a表面形成伪栅极材料层130a,以及在栅介电材料层120b表面形成伪栅极材料层130b,所述伪栅极材料层130a和伪栅极材料层130b可以同时形成,也可以分别形成。在本申请实施例中,同时形成所述伪栅极材料层130a和伪栅极材料层130b,所述伪栅极材料层130a和伪栅极材料层130b的厚度相同。Referring to FIG4 , a dummy gate material layer 130a is formed on the surface of the gate dielectric material layer 120a, and a dummy gate material layer 130b is formed on the surface of the gate dielectric material layer 120b. The dummy gate material layer 130a and the dummy gate material layer 130b can be formed simultaneously or separately. In the embodiment of the present application, the dummy gate material layer 130a and the dummy gate material layer 130b are formed simultaneously, and the thickness of the dummy gate material layer 130a and the dummy gate material layer 130b are the same.
所述伪栅极材料层130a和伪栅极材料层130b的材料例如为多晶硅,可以采用化学气相沉积工艺或者物理气相沉积工艺等工艺形成。The material of the dummy gate material layer 130 a and the dummy gate material layer 130 b is, for example, polysilicon, which can be formed by a chemical vapor deposition process or a physical vapor deposition process.
参考图5,刻蚀所述第一区域的伪栅极材料层130a,栅介电材料层120a至暴露半导体衬底形成伪栅极131a和栅介电层121a,并刻蚀所述第四区域的伪栅极材料层130b和栅介电材料层120b至暴露半导体衬底形成伪栅极131b和栅介电层121b,分别在所述第一区域和第四区域的有源区形成堆叠的伪栅极结构。Referring to Figure 5, the pseudo gate material layer 130a and the gate dielectric material layer 120a in the first region are etched to expose the semiconductor substrate to form a pseudo gate 131a and a gate dielectric layer 121a, and the pseudo gate material layer 130b and the gate dielectric material layer 120b in the fourth region are etched to expose the semiconductor substrate to form a pseudo gate 131b and a gate dielectric layer 121b, forming stacked pseudo gate structures in the active areas of the first region and the fourth region, respectively.
在本申请的一些实施例中,刻蚀所述栅介电材料层和所述伪栅极材料层的方法包括干法刻蚀或湿法刻蚀。In some embodiments of the present application, a method of etching the gate dielectric material layer and the dummy gate material layer includes dry etching or wet etching.
所述栅介电层121a和栅介电层121b包括高介电常数材料,例如,可以包括氧化硅、氧化铪、氧化镧、氧化钽、氧化钛以及氧化铝中的至少一种。The gate dielectric layer 121 a and the gate dielectric layer 121 b include a high dielectric constant material, for example, may include at least one of silicon oxide, hafnium oxide, lanthanum oxide, tantalum oxide, titanium oxide and aluminum oxide.
在本申请的一些实施例中,所述第一区域101上的伪栅极131a的长度范围为1微米至12微米。In some embodiments of the present application, the length of the dummy gate 131 a on the first region 101 ranges from 1 micrometer to 12 micrometers.
在本申请的一些实施例中,所述第四区域104上的伪栅极131b的长度范围为0.03微米至3微米。In some embodiments of the present application, the length of the dummy gate 131 b on the fourth region 104 is in a range of 0.03 micrometers to 3 micrometers.
本申请的实施例还包括在所述的第一区域和第四区域的伪栅极结构侧壁形成侧墙(未示出)以及在所述伪栅极结构两侧的半导体衬底中进行离子注入的工艺,形成源掺杂层和漏掺杂层(未示出)。Embodiments of the present application also include forming sidewalls (not shown) on the sidewalls of the pseudo gate structure in the first region and the fourth region and performing ion implantation in the semiconductor substrate on both sides of the pseudo gate structure to form a source doping layer and a drain doping layer (not shown).
参考图6,在所述第一区域101和所述第四区域104的半导体衬底以及栅极结构的侧壁和顶部表面上形成阻挡材料层(未示出);刻蚀所述阻挡材料层,仅保留位于第一区域101栅极结构顶部表面上的部分阻挡材料层,并在所述阻挡材料层中形成贯穿所述阻挡材料层的沟槽160,形成所述阻挡层150。Referring to Figure 6, a blocking material layer (not shown) is formed on the sidewalls and top surfaces of the semiconductor substrate and the gate structure in the first region 101 and the fourth region 104; the blocking material layer is etched to retain only a portion of the blocking material layer located on the top surface of the gate structure in the first region 101, and a groove 160 is formed in the blocking material layer that penetrates the blocking material layer to form the blocking layer 150.
在本申请的一些实施例中,所述阻挡层150的材料包括氮化硅。In some embodiments of the present application, the material of the barrier layer 150 includes silicon nitride.
在本申请的一些实施例中,形成所述阻挡层150的方法包括化学气相沉积工艺和物理气相沉积工艺等。In some embodiments of the present application, the method of forming the barrier layer 150 includes a chemical vapor deposition process and a physical vapor deposition process.
在本申请的一些实施例中,所述阻挡层150的厚度为100埃至250埃。所述阻挡层150的厚度相对于所述半导体结构来说较薄,即使所述阻挡层150一直保留在所述栅极结构上也不会影响半导体器件的性能。In some embodiments of the present application, the barrier layer 150 has a thickness of 100 angstroms to 250 angstroms. The barrier layer 150 is relatively thin relative to the semiconductor structure, and even if the barrier layer 150 remains on the gate structure, it will not affect the performance of the semiconductor device.
由于所述第一区域101为高压器件区域,所述高压器件区域的沟道尺寸较大,所述第一区域101上的伪栅极131a尺寸也较大,在后续进行化学机械研磨时容易所述在伪栅极131a上产生凹陷,因此在所述第一区域101上的阻挡层150中形成所述若干沟槽160利用所述沟槽160将阻挡层150分成若干份,每一份的尺寸变小,因此在后续进行化学机械研磨工艺时不容易产生凹陷,可以提高器件性能。Since the first region 101 is a high-voltage device region, the channel size of the high-voltage device region is relatively large, and the size of the pseudo gate 131a on the first region 101 is also relatively large. It is easy to produce a depression on the pseudo gate 131a during the subsequent chemical mechanical polishing. Therefore, the plurality of grooves 160 are formed in the barrier layer 150 on the first region 101. The barrier layer 150 is divided into several parts by the grooves 160, and the size of each part becomes smaller. Therefore, it is not easy to produce a depression during the subsequent chemical mechanical polishing process, which can improve the device performance.
在本申请的一些实施例中,刻蚀所述阻挡材料层,仅保留位于第一区域101栅极结构顶部表面上的部分阻挡材料层,并在所述阻挡材料层中形成贯穿所述阻挡材料层的沟槽160方法包括:在所述半导体衬底100上形成图案化的光刻胶;所述图案化的光刻胶定义所述若干沟槽160的位置并暴露所述第四区域104上的阻挡层150;以所述图案化的光刻胶为掩膜刻蚀所述阻挡层形成贯穿所述第一区域101上的阻挡层150的若干沟槽160并去除所述第四区域104上的阻挡层150。In some embodiments of the present application, the method for etching the blocking material layer to retain only a portion of the blocking material layer located on the top surface of the gate structure in the first region 101 and forming grooves 160 in the blocking material layer that penetrate the blocking material layer includes: forming a patterned photoresist on the semiconductor substrate 100; the patterned photoresist defines the positions of the plurality of grooves 160 and exposes the blocking layer 150 on the fourth region 104; etching the blocking layer using the patterned photoresist as a mask to form a plurality of grooves 160 that penetrate the blocking layer 150 on the first region 101 and remove the blocking layer 150 on the fourth region 104.
为了更完整更清楚地说明所述沟槽160,本申请实施例还提供了所述半导体衬底100的俯视图。In order to more completely and clearly illustrate the trench 160 , the embodiment of the present application also provides a top view of the semiconductor substrate 100 .
参考图7,图7为本申请实施例所述半导体结构的俯视图。为了简洁的说明所述若干沟槽160的结构以及分布情况,附图中省略了一部分结构,例如隔离结构和侧墙等。Referring to Fig. 7, Fig. 7 is a top view of the semiconductor structure according to an embodiment of the present application. In order to briefly illustrate the structure and distribution of the plurality of trenches 160, a part of the structure, such as the isolation structure and the sidewall, is omitted in the figure.
参考图7所示,定义方向A为沟道长度方向,定义方向B为沟道宽度方向。所述半导体衬底100包括第一区域101和第四区域104。所述第一区域101的栅极结构上形成有阻挡层150以及贯穿所述阻挡层150的若干沟槽160;所述第四区域104的栅极结构上的阻挡层150被去除,暴露出伪栅极131b。Referring to FIG7 , direction A is defined as the channel length direction, and direction B is defined as the channel width direction. The semiconductor substrate 100 includes a first region 101 and a fourth region 104. A barrier layer 150 and a plurality of trenches 160 penetrating the barrier layer 150 are formed on the gate structure of the first region 101; the barrier layer 150 on the gate structure of the fourth region 104 is removed to expose the dummy gate 131b.
在本申请的一些实施例中,所述若干沟槽160包括沿沟道长度方向A分布的若干第一沟槽161和沿沟道宽度B方向分布的若干第二沟槽162,需要说明的是,位于图7中最下方的第二沟槽162宽度较大,所述最下方的第二沟槽162是为了方便后续工艺中将此处的伪栅极刻蚀去除并替换为金属栅极,由于所述最下方的第二沟槽162下的伪栅极高度略高于其余部分的伪栅极的高度,因此不会影响所述金属栅极的形成。所述沟槽160将所述阻挡层150分成了若干份,每一份的尺寸变小,因此进行化学机械研磨工艺时不容易在伪栅极上产生凹陷,可以提高器件性能In some embodiments of the present application, the plurality of grooves 160 include a plurality of first grooves 161 distributed along the channel length direction A and a plurality of second grooves 162 distributed along the channel width direction B. It should be noted that the second groove 162 at the bottom in FIG. 7 is relatively wide. The second groove 162 at the bottom is to facilitate the etching and removal of the pseudo gate there and replace it with a metal gate in the subsequent process. Since the height of the pseudo gate under the second groove 162 at the bottom is slightly higher than the height of the pseudo gate of the remaining part, it will not affect the formation of the metal gate. The groove 160 divides the barrier layer 150 into several parts, and the size of each part becomes smaller. Therefore, it is not easy to produce a depression on the pseudo gate during the chemical mechanical polishing process, which can improve the device performance.
在本申请的另一些实施例中,所述若干沟槽160沿沟道长度方向分布。在本申请的还一些实施例中,所述若干沟槽160沿沟道宽度方向分布。具体地,所述若干沟槽160的结构以及分布方式可以根据实际工艺中所述伪栅极上产生凹陷的情况来设计。In some other embodiments of the present application, the plurality of grooves 160 are distributed along the channel length direction. In some other embodiments of the present application, the plurality of grooves 160 are distributed along the channel width direction. Specifically, the structure and distribution of the plurality of grooves 160 can be designed according to the situation of the recess generated on the pseudo gate in the actual process.
在本申请的一些实施例中,所述半导体结构的形成方法还包括:形成覆盖所述第一区域101和第四区域104的半导体衬底、所述栅极结构和所述阻挡层的介质层,所述介质层填满所述若干沟槽;去除高于所述第四区域104栅极结构顶面的介质层170。In some embodiments of the present application, the method for forming the semiconductor structure also includes: forming a dielectric layer covering the semiconductor substrate, the gate structure and the blocking layer of the first region 101 and the fourth region 104, wherein the dielectric layer fills the plurality of grooves; and removing the dielectric layer 170 that is higher than the top surface of the gate structure of the fourth region 104.
参考图8,在所述半导体衬底100、所述栅极结构上和所述阻挡层150上形成介质层170。8 , a dielectric layer 170 is formed on the semiconductor substrate 100 , the gate structure and the barrier layer 150 .
在本申请的一些实施例中,所述介质层170的材料包括氧化硅。In some embodiments of the present application, the material of the dielectric layer 170 includes silicon oxide.
在本申请的一些实施例中,形成所述介质层170的方法包括化学气相沉积工艺和物理气相沉积工艺等。In some embodiments of the present application, the method of forming the dielectric layer 170 includes a chemical vapor deposition process and a physical vapor deposition process.
参考图9,使用化学机械研磨工艺去除高于所述第四区域104栅极结构顶面的介质层170。9 , a chemical mechanical polishing process is used to remove the dielectric layer 170 above the top surface of the gate structure in the fourth region 104 .
在常规工艺中,由于没有所述阻挡层150,而所述第一区域101为高压器件区域,所述高压器件区域的沟道尺寸较大,所述第一区域101上的伪栅极尺寸也较大,在进行化学机械研磨时容易在所述伪栅极上产生凹陷。而本申请实施例所述的半导体结构形成方法中,在所述第一区域101上形成所述具有若干沟槽160的阻挡层150,所述阻挡层150以及位于所述沟槽160中的介质层170都被分成了若干份,每一份的尺寸变小,因此采用化学机械研磨工艺平坦化所述介质层170时不会在伪栅极131a上产生凹陷,可以提高器件性能。In conventional processes, since there is no barrier layer 150, and the first region 101 is a high-voltage device region, the channel size of the high-voltage device region is relatively large, and the size of the pseudo gate on the first region 101 is also relatively large, and it is easy to generate a depression on the pseudo gate during chemical mechanical polishing. In the semiconductor structure forming method described in the embodiment of the present application, the barrier layer 150 having a plurality of grooves 160 is formed on the first region 101, and the barrier layer 150 and the dielectric layer 170 located in the grooves 160 are divided into a plurality of parts, and the size of each part becomes smaller. Therefore, when the dielectric layer 170 is flattened by a chemical mechanical polishing process, no depression will be generated on the pseudo gate 131a, which can improve the device performance.
在本申请的一些实施例中,所述半导体结构的形成方法还包括:去除所述第一区域101的部分伪栅极层131a和第四区域104的伪栅极层131b,在所述栅介电层121a和栅介电层121b表面形成金属栅。In some embodiments of the present application, the method for forming the semiconductor structure further includes: removing part of the dummy gate layer 131a in the first region 101 and the dummy gate layer 131b in the fourth region 104, and forming a metal gate on the surface of the gate dielectric layer 121a and the gate dielectric layer 121b.
本申请所述的半导体结构的形成方法,在所述第一区域的栅极结构上形成阻挡层和贯穿所述阻挡层的若干沟槽,所述阻挡层以及位于所述沟槽中的介质层都被分成了若干份,每一份的尺寸变小,因此采用化学机械研磨工艺平坦化所述介质层时不容易凹陷,可以提高器件性能。The method for forming a semiconductor structure described in the present application forms a barrier layer and a plurality of grooves penetrating the barrier layer on the gate structure of the first region, and the barrier layer and the dielectric layer located in the grooves are divided into a plurality of parts, each of which is smaller in size. Therefore, when the dielectric layer is flattened by a chemical mechanical polishing process, it is not easy to be concave, thereby improving device performance.
本申请的实施例还提供一种半导体结构,参考图9,所述半导体结构包括:半导体衬底100,所述半导体衬底100包括第一区域101和第四区域104,且所述半导体衬底100包括隔离结构110,所述隔离结构110分隔所述第一区域101和所述第四区域104;栅极结构,位于所述第一区域101和第四区域104的半导体衬底上;阻挡层150,位于所述第一区域101的栅极结构上,所述阻挡层150包括若干贯穿所述阻挡层150的沟槽;介质层170,位于所述半导体衬底100上和所述栅极结构上并填充所述沟槽,所述介质层170的上表面与所述阻挡层150的上表面平齐。An embodiment of the present application also provides a semiconductor structure. Referring to Figure 9, the semiconductor structure includes: a semiconductor substrate 100, the semiconductor substrate 100 includes a first region 101 and a fourth region 104, and the semiconductor substrate 100 includes an isolation structure 110, the isolation structure 110 separates the first region 101 and the fourth region 104; a gate structure, located on the semiconductor substrate in the first region 101 and the fourth region 104; a blocking layer 150, located on the gate structure in the first region 101, the blocking layer 150 includes a plurality of grooves penetrating the blocking layer 150; a dielectric layer 170, located on the semiconductor substrate 100 and the gate structure and filling the grooves, the upper surface of the dielectric layer 170 is flush with the upper surface of the blocking layer 150.
参考图9,所述半导体衬底100的材料可以为硅(Si)、锗(Ge)、绝缘体上硅(SOI)或绝缘体上锗(GOI)等。所述半导体衬底100还可以是生长有外延层的结构。9 , the material of the semiconductor substrate 100 may be silicon (Si), germanium (Ge), silicon on insulator (SOI) or germanium on insulator (GOI), etc. The semiconductor substrate 100 may also be a structure with an epitaxial layer grown thereon.
所述第一区域101的半导体衬底表面低于所述第四区域104的半导体衬底表面。所述第四区域104包括第二区域和第三区域中的至少一个,例如,所述半导体衬底100可以包括第一区域101和第二区域;所述半导体衬底100可以包括第一区域101和第三区域;所述半导体衬底100可以包括第一区域101和第二区域和第三区域。The semiconductor substrate surface of the first region 101 is lower than the semiconductor substrate surface of the fourth region 104. The fourth region 104 includes at least one of the second region and the third region, for example, the semiconductor substrate 100 may include the first region 101 and the second region; the semiconductor substrate 100 may include the first region 101 and the third region; the semiconductor substrate 100 may include the first region 101, the second region and the third region.
在本申请的一些实施例中,定义所述第一区域101为高压器件区域;所述第二区域为中压器件区域,所述第三区域为低压器件区域。所述第一区域101中的沟道尺寸大于所述第二区域中的沟道尺寸,则所述第一区域101中的电子迁移路径比所述第二区域中的电子迁移路径要长,则所述第一区域101在工作时的电压高于所述第二区域在工作时的电压,同理,所述第二区域102的电压在工作时大于所述第三区域在工作时的电压,由此定义所述高压器件区域、中压器件区域和低压器件区域。In some embodiments of the present application, the first region 101 is defined as a high-voltage device region; the second region is defined as a medium-voltage device region, and the third region is defined as a low-voltage device region. If the channel size in the first region 101 is larger than the channel size in the second region, the electron migration path in the first region 101 is longer than the electron migration path in the second region, and the voltage of the first region 101 when working is higher than the voltage of the second region when working. Similarly, the voltage of the second region 102 when working is higher than the voltage of the third region when working, thereby defining the high-voltage device region, the medium-voltage device region, and the low-voltage device region.
在本申请的一些实施例中,所述隔离结构110可以由氧化硅或者氧化硅与氮化硅,氮氧化硅的复合层构成,利用所述隔离结构110可将所述半导体衬底100中的所述第一区域101和所述第四区域104分隔开。In some embodiments of the present application, the isolation structure 110 may be composed of silicon oxide or a composite layer of silicon oxide and silicon nitride or silicon oxynitride. The isolation structure 110 may be used to separate the first region 101 and the fourth region 104 in the semiconductor substrate 100.
继续参考图9,所述第一区域101的半导体衬底上形成有伪栅极131a和栅介电层121a,所述第四区域104的半导体衬底上形成有伪栅极131b和栅介电层121b。所述栅介电层121a的厚度大于所述栅介电层121b的厚度。所述伪栅极131a的长度大于所述伪栅极131b的长度(即所述伪栅极131a在沟道长度方向上的尺寸大于所述伪栅极131b在沟道长度方向上的尺寸)。Continuing to refer to FIG9 , a dummy gate 131a and a gate dielectric layer 121a are formed on the semiconductor substrate of the first region 101, and a dummy gate 131b and a gate dielectric layer 121b are formed on the semiconductor substrate of the fourth region 104. The thickness of the gate dielectric layer 121a is greater than the thickness of the gate dielectric layer 121b. The length of the dummy gate 131a is greater than the length of the dummy gate 131b (i.e., the size of the dummy gate 131a in the channel length direction is greater than the size of the dummy gate 131b in the channel length direction).
在本申请的一些实施例中,所述栅介电层121a的顶面低于所述栅介电层121b的顶面。In some embodiments of the present application, a top surface of the gate dielectric layer 121 a is lower than a top surface of the gate dielectric layer 121 b .
所述栅介电层121a和栅介电层121b包括高介电常数材料,例如,可以包括氧化硅、氧化铪、氧化镧、氧化钽、氧化钛以及氧化铝中的至少一种。The gate dielectric layer 121 a and the gate dielectric layer 121 b include a high dielectric constant material, for example, may include at least one of silicon oxide, hafnium oxide, lanthanum oxide, tantalum oxide, titanium oxide and aluminum oxide.
在本申请的一些实施例中,所述第一区域101上的伪栅极131a的厚度与所述第四区域104上的伪栅极131b的厚度相等。In some embodiments of the present application, the thickness of the dummy gate 131 a on the first region 101 is equal to the thickness of the dummy gate 131 b on the fourth region 104 .
在本申请的一些实施例中,所述第一区域101上的伪栅极131a的长度范围为1微米至12微米。In some embodiments of the present application, the length of the dummy gate 131 a on the first region 101 ranges from 1 micrometer to 12 micrometers.
在本申请的一些实施例中,所述第四区域104上的伪栅极131b的长度范围为0.03微米至3微米。In some embodiments of the present application, the length of the dummy gate 131 b on the fourth region 104 is in a range of 0.03 micrometers to 3 micrometers.
本申请的实施例还包括在所述的第一区域和第四区域的伪栅极结构侧壁形成的侧墙(未示出)以及在所述伪栅极结构两侧的半导体衬底中形成的源掺杂层和漏掺杂层(未示出)。The embodiments of the present application also include sidewalls (not shown) formed on the sidewalls of the dummy gate structure in the first region and the fourth region, and source doping layers and drain doping layers (not shown) formed in the semiconductor substrate on both sides of the dummy gate structure.
继续参考图9,在所述第一区域101的栅极结构上形成有阻挡层150,所述阻挡层150包括若干贯穿所述阻挡层150的沟槽。Continuing to refer to FIG. 9 , a barrier layer 150 is formed on the gate structure in the first region 101 , and the barrier layer 150 includes a plurality of trenches penetrating the barrier layer 150 .
在本申请的一些实施例中,所述阻挡层150的材料包括氮化硅。In some embodiments of the present application, the material of the barrier layer 150 includes silicon nitride.
在本申请的一些实施例中,所述阻挡层150的厚度为100埃至250埃。所述阻挡层150的厚度相对于所述半导体结构来说较薄,即使所述阻挡层150一直保留在所述栅极结构上也不会影响半导体器件的性能。In some embodiments of the present application, the barrier layer 150 has a thickness of 100 angstroms to 250 angstroms. The barrier layer 150 is relatively thin relative to the semiconductor structure, and even if the barrier layer 150 remains on the gate structure, it will not affect the performance of the semiconductor device.
由于所述第一区域101为高压器件区域,所述高压器件区域的沟道尺寸较大,所述第一区域101上的伪栅极131a尺寸也较大,在后续进行化学机械研磨时容易所述在伪栅极131a上产生凹陷,因此在所述第一区域101上的阻挡层150中形成所述若干沟槽160利用所述沟槽160将阻挡层150分成若干份,每一份的尺寸变小,因此在后续进行化学机械研磨工艺时不容易产生凹陷,可以提高器件性能。Since the first region 101 is a high-voltage device region, the channel size of the high-voltage device region is relatively large, and the size of the pseudo gate 131a on the first region 101 is also relatively large. It is easy to produce a depression on the pseudo gate 131a during the subsequent chemical mechanical polishing. Therefore, the plurality of grooves 160 are formed in the barrier layer 150 on the first region 101. The barrier layer 150 is divided into several parts by the grooves 160, and the size of each part becomes smaller. Therefore, it is not easy to produce a depression during the subsequent chemical mechanical polishing process, which can improve the device performance.
为了更完整更清楚地说明所述沟槽160,本申请实施例还提供了所述半导体衬底100的俯视图。In order to more completely and clearly illustrate the trench 160 , the embodiment of the present application also provides a top view of the semiconductor substrate 100 .
参考图7,图7为本申请实施例所述半导体结构的俯视图。为了简洁的说明所述若干沟槽160的结构以及分布情况,附图中省略了一部分结构,例如隔离结构和侧墙等。Referring to Fig. 7, Fig. 7 is a top view of the semiconductor structure according to an embodiment of the present application. In order to briefly illustrate the structure and distribution of the plurality of trenches 160, a part of the structure, such as the isolation structure and the sidewall, is omitted in the figure.
参考图7所示,定义方向A为沟道长度方向,定义方向B为沟道宽度方向。所述半导体衬底100包括第一区域101和第四区域104。所述第一区域101的栅极结构上形成有阻挡层150以及贯穿所述阻挡层150的若干沟槽160;所述第四区域104的栅极结构上的阻挡层150被去除,暴露出伪栅极131b。Referring to FIG7 , direction A is defined as the channel length direction, and direction B is defined as the channel width direction. The semiconductor substrate 100 includes a first region 101 and a fourth region 104. A barrier layer 150 and a plurality of trenches 160 penetrating the barrier layer 150 are formed on the gate structure of the first region 101; the barrier layer 150 on the gate structure of the fourth region 104 is removed to expose the dummy gate 131b.
在本申请的一些实施例中,所述若干沟槽160包括沿沟道长度方向A分布的若干第一沟槽161和沿沟道宽度B方向分布的若干第二沟槽162,需要说明的是,位于图7中最下方的第二沟槽162宽度较大,所述最下方的第二沟槽162是为了方便后续工艺中将此处的伪栅极刻蚀去除并替换为金属栅极,由于所述最下方的第二沟槽162下的伪栅极高度略高于其余部分的伪栅极的高度,因此不会影响所述金属栅极的形成。所述沟槽160将所述阻挡层150分成了若干份,每一份的尺寸变小,因此进行化学机械研磨工艺时不容易在伪栅极上产生凹陷,可以提高器件性能In some embodiments of the present application, the plurality of grooves 160 include a plurality of first grooves 161 distributed along the channel length direction A and a plurality of second grooves 162 distributed along the channel width direction B. It should be noted that the second groove 162 at the bottom in FIG. 7 is relatively wide. The second groove 162 at the bottom is to facilitate the etching and removal of the pseudo gate there and replace it with a metal gate in the subsequent process. Since the height of the pseudo gate under the second groove 162 at the bottom is slightly higher than the height of the pseudo gate of the remaining part, it will not affect the formation of the metal gate. The groove 160 divides the barrier layer 150 into several parts, and the size of each part becomes smaller. Therefore, it is not easy to produce a depression on the pseudo gate during the chemical mechanical polishing process, which can improve the device performance.
在本申请的另一些实施例中,所述若干沟槽160沿沟道长度方向分布。在本申请的还一些实施例中,所述若干沟槽160沿沟道宽度方向分布。具体地,所述若干沟槽160的结构以及分布方式可以根据实际工艺中所述伪栅极上产生凹陷的情况来设计。In some other embodiments of the present application, the plurality of grooves 160 are distributed along the channel length direction. In some other embodiments of the present application, the plurality of grooves 160 are distributed along the channel width direction. Specifically, the structure and distribution of the plurality of grooves 160 can be designed according to the situation of the recess generated on the pseudo gate in the actual process.
继续参考图9,在所述半导体衬底100、所述栅极结构上和所述阻挡层150上形成有介质层170,所述介质层170的顶面与所述阻挡层150的顶面共面,所述介质层170填充所述沟槽。9 , a dielectric layer 170 is formed on the semiconductor substrate 100 , the gate structure and the barrier layer 150 , the top surface of the dielectric layer 170 is coplanar with the top surface of the barrier layer 150 , and the dielectric layer 170 fills the trench.
在本申请的一些实施例中,所述介质层170的材料包括氧化硅。In some embodiments of the present application, the material of the dielectric layer 170 includes silicon oxide.
本申请所述的半导体结构,在所述第一区域的栅极结构上形成阻挡层和贯穿所述阻挡层的若干沟槽,所述若干沟槽被介质层填充,所述阻挡层以及位于所述沟槽中的介质层都被分成了若干份,每一份的尺寸变小,因此采用化学机械研磨工艺平坦化所述介质层时不容易凹陷,可以提高器件性能。The semiconductor structure described in the present application forms a barrier layer and a plurality of grooves penetrating the barrier layer on the gate structure of the first region, and the plurality of grooves are filled with a dielectric layer. The barrier layer and the dielectric layer located in the grooves are divided into a plurality of parts, and the size of each part becomes smaller. Therefore, when the dielectric layer is flattened by a chemical mechanical polishing process, it is not easy to be recessed, which can improve the device performance.
综上所述,在阅读本申请内容之后,本领域技术人员可以明白,前述申请内容可以仅以示例的方式呈现,并且可以不是限制性的。尽管这里没有明确说明,本领域技术人员可以理解本申请意图囊括对实施例的各种合理改变,改进和修改。这些改变,改进和修改都在本申请的示例性实施例的精神和范围内。In summary, after reading the contents of this application, those skilled in the art will appreciate that the aforementioned application contents may be presented only in an exemplary manner and may not be restrictive. Although not explicitly stated herein, those skilled in the art will appreciate that this application is intended to encompass various reasonable changes, improvements and modifications to the embodiments. These changes, improvements and modifications are within the spirit and scope of the exemplary embodiments of this application.
应当理解,本实施例使用的术语″和/或″包括相关联的列出项目中的一个或多个的任意或全部组合。应当理解,当一个元件被称作″连接″或″耦接″至另一个元件时,其可以直接地连接或耦接至另一个元件,或者也可以存在中间元件。It should be understood that the term "and/or" used in this embodiment includes any or all combinations of one or more of the associated listed items. It should be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element, or intermediate elements may also be present.
类似地,应当理解,当诸如层、区域或衬底之类的元件被称作在另一个元件″上″时,其可以直接在另一个元件上,或者也可以存在中间元件。与之相反,术语″直接地″表示没有中间元件。还应当理解,术语″包含″、″包含着″、″包括″或者″包括着″,在本申请文件中使用时,指明存在所记载的特征、整体、步骤、操作、元件和/或组件,但并不排除存在或附加一个或多个其他特征、整体、步骤、操作、元件、组件和/或它们的组。Similarly, it should be understood that when an element such as a layer, region, or substrate is referred to as being "on" another element, it can be directly on the other element or intervening elements may also be present. In contrast, the term "directly" means that there are no intervening elements. It should also be understood that the terms "comprising," "containing," "including," or "comprising," when used in this application document, indicate the presence of the recited features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
还应当理解,尽管术语第一、第二、第三等可以在此用于描述各种元件,但是这些元件不应当被这些术语所限制。这些术语仅用于将一个元件与另一个元件区分开。因此,在没有脱离本申请的教导的情况下,在一些实施例中的第一元件在其他实施例中可以被称为第二元件。相同的参考标号或相同的参考标记符在整个说明书中表示相同的元件。It should also be understood that although the terms first, second, third, etc. can be used to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another element. Therefore, without departing from the teachings of the present application, the first element in some embodiments can be referred to as the second element in other embodiments. The same reference numerals or the same reference signs represent the same elements throughout the specification.
此外,本申请说明书通过参考理想化的示例性截面图和/或平面图和/或立体图来描述示例性实施例。因此,由于例如制造技术和/或容差导致的与图示的形状的不同是可预见的。因此,不应当将示例性实施例解释为限于在此所示出的区域的形状,而是应当包括由例如制造所导致的形状中的偏差。例如,被示出为矩形的蚀刻区域通常会具有圆形的或弯曲的特征。因此,在图中示出的区域实质上是示意性的,其形状不是为了示出器件的区域的实际形状也不是为了限制示例性实施例的范围。In addition, the present specification describes exemplary embodiments by reference to idealized exemplary cross-sectional views and/or plan views and/or stereograms. Therefore, differences from the illustrated shapes due to, for example, manufacturing techniques and/or tolerances are foreseeable. Therefore, the exemplary embodiments should not be interpreted as being limited to the shapes of the regions shown herein, but should include deviations in shapes caused by, for example, manufacturing. For example, an etched region shown as a rectangle will typically have circular or curved features. Therefore, the region shown in the figure is schematic in nature, and its shape is not intended to illustrate the actual shape of the region of the device nor to limit the scope of the exemplary embodiments.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010492469.7A CN113764339B (en) | 2020-06-03 | 2020-06-03 | Semiconductor structure and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010492469.7A CN113764339B (en) | 2020-06-03 | 2020-06-03 | Semiconductor structure and method of forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113764339A CN113764339A (en) | 2021-12-07 |
CN113764339B true CN113764339B (en) | 2024-08-13 |
Family
ID=78783012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010492469.7A Active CN113764339B (en) | 2020-06-03 | 2020-06-03 | Semiconductor structure and method of forming the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113764339B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230260994A1 (en) * | 2022-02-17 | 2023-08-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Checkerboard dummy design for epitaxial open ratio |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102487048A (en) * | 2010-12-03 | 2012-06-06 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5125036B2 (en) * | 2006-09-06 | 2013-01-23 | 富士通セミコンダクター株式会社 | Manufacturing method of semiconductor device |
TW200924109A (en) * | 2007-11-21 | 2009-06-01 | Promos Technologies Inc | Method for forming shallow trench isolation structure and method for preparing recessed gate structure using the same |
US7888732B2 (en) * | 2008-04-11 | 2011-02-15 | Texas Instruments Incorporated | Lateral drain-extended MOSFET having channel along sidewall of drain extension dielectric |
US9368596B2 (en) * | 2012-06-14 | 2016-06-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for a field effect transistor |
US9041061B2 (en) * | 2013-07-25 | 2015-05-26 | International Business Machines Corporation | III-V device with overlapped extension regions using replacement gate |
CN105826242B (en) * | 2015-01-08 | 2019-01-22 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method of forming the same |
CN106206271B (en) * | 2015-04-29 | 2019-07-30 | 中芯国际集成电路制造(上海)有限公司 | The forming method of semiconductor structure |
US9722038B2 (en) * | 2015-09-11 | 2017-08-01 | International Business Machines Corporation | Metal cap protection layer for gate and contact metallization |
US10872953B2 (en) * | 2018-01-16 | 2020-12-22 | International Business Machines Corporation | Nanosheet substrate isolated source/drain epitaxy by counter-doped bottom epitaxy |
US11081356B2 (en) * | 2018-06-29 | 2021-08-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for metal gate cut and structure thereof |
-
2020
- 2020-06-03 CN CN202010492469.7A patent/CN113764339B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102487048A (en) * | 2010-12-03 | 2012-06-06 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN113764339A (en) | 2021-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI424528B (en) | Integrated circuit structure | |
US7402856B2 (en) | Non-planar microelectronic device having isolation element to mitigate fringe effects and method to fabricate same | |
CN109326561B (en) | Method for manufacturing fin field effect transistor | |
TWI616954B (en) | Fin field effect transistor and manufacturing method thereof | |
CN107424934A (en) | Fin formula field effect transistor(FINFET)In source/drain regions and forming method thereof | |
US8936979B2 (en) | Semiconductor devices having improved gate height uniformity and methods for fabricating same | |
CN111106010B (en) | Transistor with stacked semiconductor layers as channel | |
CN107046060A (en) | Semiconductor device with a plurality of semiconductor chips | |
US11810786B2 (en) | Method for fabricating semiconductor device | |
CN110164970B (en) | Semiconductor device and method of manufacturing the same | |
CN103779222A (en) | MOSFET manufacturing method | |
CN113764339B (en) | Semiconductor structure and method of forming the same | |
CN103367131A (en) | Fins and formation methods for fins and fin field effect transistor | |
US8395209B1 (en) | Single-sided access device and fabrication method thereof | |
CN108091611B (en) | Semiconductor device and method of manufacturing the same | |
CN116613105A (en) | Method for manufacturing SOI device by using bulk silicon substrate and SOI device | |
CN116913778A (en) | Semiconductor structures and methods of forming them | |
CN105405890B (en) | Semiconductor device including charged body sidewall and method of manufacturing the same | |
CN112802752A (en) | Method for manufacturing semiconductor device | |
KR100275484B1 (en) | Method for manufacturing a power device having a trench gate electrode | |
CN117529100B (en) | Semiconductor device and method of forming the same | |
CN113889433A (en) | Semiconductor device and method for manufacturing the same | |
CN116960153A (en) | Method for forming inter-gate oxide layer and method for forming shielded gate trench type device | |
WO2024049625A1 (en) | Methods for forming semiconductor devices with isolation structures | |
KR100521511B1 (en) | Semiconductor device and manufacturing method for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |