CN113733115A - Heterogeneous redundant robot for high-temperature furnace slag leveling and slag leveling method - Google Patents
Heterogeneous redundant robot for high-temperature furnace slag leveling and slag leveling method Download PDFInfo
- Publication number
- CN113733115A CN113733115A CN202111040020.8A CN202111040020A CN113733115A CN 113733115 A CN113733115 A CN 113733115A CN 202111040020 A CN202111040020 A CN 202111040020A CN 113733115 A CN113733115 A CN 113733115A
- Authority
- CN
- China
- Prior art keywords
- rake
- temperature furnace
- redundant
- robot
- working path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002893 slag Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000003818 cinder Substances 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 17
- 239000003245 coal Substances 0.000 claims abstract description 13
- 230000002068 genetic effect Effects 0.000 claims description 25
- 230000001133 acceleration Effects 0.000 claims description 20
- 238000005457 optimization Methods 0.000 claims description 20
- 238000010586 diagram Methods 0.000 description 12
- 239000002994 raw material Substances 0.000 description 7
- 230000003044 adaptive effect Effects 0.000 description 5
- 239000000428 dust Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
- B25J5/02—Manipulators mounted on wheels or on carriages travelling along a guideway
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
- B25J9/1605—Simulation of manipulator lay-out, design, modelling of manipulator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J1/00—Removing ash, clinker, or slag from combustion chambers
- F23J1/06—Mechanically-operated devices, e.g. clinker pushers
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
Abstract
Description
技术领域technical field
本申请涉及冶金技术领域,特别涉及一种用于高温炉平渣的异构冗余机器人及平渣方法。The present application relates to the field of metallurgical technology, and in particular, to a heterogeneous redundant robot and a slag leveling method for high-temperature furnace slag leveling.
背景技术Background technique
对于冶金业来说,钢、铁等金属的冶炼多采用高温煤炉来进行煤料的充分燃烧,而高温煤炉燃烧会产生大量的煤渣,这些煤渣需要进行及时的推平来保证煤炉的正常工作。目前,煤料平渣大多是人工进行,工业煤炉的燃烧需要工人不断的进行给料、推料以及平渣作业,许多推料平渣作业都是在高温炉炉口位置进行的,工作环境极差,工人长时间处于高温环境中,且受到粉尘的侵害,有时还会直接受到有毒气体和化工材料的腐蚀,对身体健康造成很大危害。For the metallurgical industry, high-temperature coal furnaces are often used for the smelting of steel, iron and other metals to fully combust the coal, and the combustion of high-temperature coal furnaces will produce a large amount of cinder, which needs to be leveled in time to ensure that the coal furnace is fully burnt. normal work. At present, coal slag leveling is mostly carried out manually. The combustion of industrial coal furnaces requires workers to continuously perform feeding, pushing and slag leveling operations. Extremely poor, workers are exposed to high temperature for a long time, and are attacked by dust, sometimes directly corroded by toxic gases and chemical materials, causing great harm to their health.
因此,需要提供一种针对上述现有技术不足的改进技术方案。Therefore, it is necessary to provide an improved technical solution for the deficiencies of the above-mentioned prior art.
发明内容SUMMARY OF THE INVENTION
本申请的目的在于提供一种用于高温炉平渣的异构冗余机器人及平渣方法,以解决或缓解上述现有技术中存在的问题。The purpose of the present application is to provide a heterogeneous redundant robot and a slag leveling method for high-temperature furnace slag leveling, so as to solve or alleviate the above-mentioned problems in the prior art.
为了实现上述目的,本申请提供如下技术方案:In order to achieve the above purpose, the application provides the following technical solutions:
本申请提供了一种用于高温炉平渣的异构冗余机器人,包括:地轨、六轴机械臂、平渣耙子和耙子支架,所述地轨沿第一方向铺设;其中,所述第一方向为所述高温炉的中心与所述高温炉的推料口连线的延伸方向;所述六轴机械臂滑动安装于所述地轨上,能够在所述地轨上沿所述第一方向移动;所述耙子支架位于所述地轨和所述高温炉之间,所述耙子支架包括:滑轨和滑移组件,所述滑轨沿第二方向设置,所述滑移组件与所述滑轨相适配,能够在所述滑轨上沿所述第二方向往返移动;其中,所述第二方向为水平面上与所述第一方向垂直的方向;所述耙子的耙头伸入所述高温炉的工作腔内,所述耙子的杆部与所述滑移组件活动连接,能够在所述滑移组件的带动下沿所述第二方向移动;所述耙子的尾部与所述六轴机械臂的执行末端连接,能够在所述六轴机械臂的带动下将所述高温炉的工作腔中的煤渣耙平。The present application provides a heterogeneous redundant robot for slag leveling in a high-temperature furnace, comprising: a ground rail, a six-axis robotic arm, a slag leveling rake and a rake bracket, wherein the ground rail is laid along a first direction; wherein, the The first direction is the extension direction of the line connecting the center of the high-temperature furnace and the feed opening of the high-temperature furnace; the six-axis robotic arm is slidably installed on the ground rail, and can move along the Move in the first direction; the rake bracket is located between the ground rail and the high-temperature furnace, the rake bracket includes: a sliding rail and a sliding assembly, the sliding rail is arranged along the second direction, and the sliding assembly It is adapted to the sliding rail and can move back and forth along the second direction on the sliding rail; wherein, the second direction is a direction perpendicular to the first direction on the horizontal plane; the rake of the rake The head extends into the working cavity of the high-temperature furnace, the rod part of the rake is movably connected with the sliding assembly, and can move along the second direction under the driving of the sliding assembly; the tail of the rake It is connected with the execution end of the six-axis mechanical arm, and can rake the cinder in the working chamber of the high-temperature furnace under the driving of the six-axis mechanical arm.
优选的,所述滑移组件包括滑移底座和固定框,所述滑移底座滑动安装于所述滑轨上,所述固定框固定连接于所述滑移底座上,所述固定框的高度与所述推料口的高度持平,以使所述固定框正对所述推料口。Preferably, the sliding assembly includes a sliding base and a fixing frame, the sliding base is slidably installed on the sliding rail, the fixing frame is fixedly connected to the sliding base, and the height of the fixing frame is The height is the same as the height of the ejection opening, so that the fixed frame faces the ejection opening.
优选的,所述固定框上沿所述第一方向设有通孔,以由所述耙尾穿过所述通孔后与所述六轴机械臂的执行末端连接;相应的,所述耙杆与所述通孔活动连接。Preferably, the fixing frame is provided with a through hole along the first direction, so that the rake tail is connected to the execution end of the six-axis robotic arm after passing through the through hole; correspondingly, the rake tail The rod is movably connected with the through hole.
优选的,所述固定框沿所述第二方向往返移动的中心位于所述第一方向上。Preferably, the center of the reciprocating movement of the fixed frame along the second direction is located in the first direction.
优选的,所述通孔的内侧壁包覆柔性耐磨体。Preferably, the inner sidewall of the through hole is covered with a flexible wear-resistant body.
本申请实施例还提供一种高温炉平渣方法,采用上述任一实施例所述的异构冗余机器人对所述高温炉的工作腔内的煤渣进行耙平,所述高温炉平渣方法包括:An embodiment of the present application further provides a method for leveling slag in a high-temperature furnace. The heterogeneous redundant robot described in any of the above embodiments is used to rak the slag in the working chamber of the high-temperature furnace. The method for leveling slag in a high-temperature furnace include:
建立所述冗余异构机器人工作时的约束模型,其中,所述约束模型为:Establish a constraint model when the redundant heterogeneous robot works, wherein the constraint model is:
其中, in,
L表示所述冗余异构机器人的耙子的耙杆的长度;G0表示所述冗余异构机器人的六轴机械臂的承重;p表示所述冗余异构机器人的耙杆的内侧杆长所占比例的导数;j表示所述耙杆的直径;α表示所述高温炉的工作腔的圆心角;θ1表示所述工作腔的推料口的圆心角;d1所述六轴机械臂的中心与所述高温炉的中心的距离;d2表示所述高温炉的耙子支架距离所述推料口的距离;d3表示所述高温炉的耙子支架中的滑移组件在滑轨上的移动距离;r1表示所述高温炉的内圆半径;r2表示所述高温炉的外圆半径;L represents the length of the rake bar of the rake of the redundant heterogeneous robot; G 0 represents the load-bearing capacity of the six-axis robotic arm of the redundant heterogeneous robot; p represents the derivative of the ratio of the inner bar length of the rake bar of the redundant heterogeneous robot ; j represents the diameter of the rake bar; α represents the central angle of the working chamber of the high-temperature furnace; θ 1 represents the central angle of the ejection opening of the working chamber; The distance from the center of the high-temperature furnace; d2 represents the distance between the rake bracket of the high-temperature furnace and the feed opening; d3 represents the moving distance of the sliding component in the rake bracket of the high-temperature furnace on the sliding rail; r 1 represents the inner radius of the high temperature furnace; r 2 represents the outer radius of the high temperature furnace;
Xmax表示所述六轴机械臂距离所述高温炉的中心的最远距离;Ymax表示所述滑移组件在所述滑轨上的移动的最远距离;Ymin=-Ymax;X max represents the farthest distance of the six-axis robot arm from the center of the high-temperature furnace; Y max represents the farthest distance of the movement of the sliding assembly on the slide rail; Y min =-Y max ;
xb表示所述滑移组件在所述滑轨上的移动到最远距离时所述耙杆与所述推料口的交点到所述六轴机械臂的中心的距离,yb所述滑移组件在所述滑轨上的移动到最远距离时所述耙杆与所述推料口的交点到中心线的距离,所述中心线为所述六轴机械臂的中心与所述高温炉的中心的连线;x b represents the distance from the intersection of the rake bar and the pushing port to the center of the six-axis mechanical arm when the sliding assembly moves to the farthest distance on the sliding rail, y b the sliding The distance from the intersection of the rake bar and the push port to the center line when the moving assembly moves to the farthest distance on the slide rail, and the center line is the center of the six-axis robotic arm and the high temperature the connection to the center of the furnace;
基于多目标优化算法,根据所述约束模型,计算所述冗余异构机器人的结构参数,其中,所述结构参数包括:所述六轴机械臂的承重G0、所述耙杆的内侧杆长所占比例的导数p、所述耙杆的直径j、所述耙杆的长度L、所述六轴机械臂的中心与所述高温炉的中心的距离d1、所述高温炉的耙子支架距离所述推料口的距离d2、所述高温炉的耙子支架中的滑移组件在滑轨上的移动距离d3、所述六轴机械臂距离所述高温炉的中心的最远距离Xmax、所述滑移组件在所述滑轨上的移动的最远距离Ymax;Based on a multi-objective optimization algorithm, according to the constraint model, the structural parameters of the redundant heterogeneous robot are calculated, wherein the structural parameters include: the load-bearing G 0 of the six-axis robotic arm, the length of the inner rod of the rake bar. The derivative p of the ratio, the diameter j of the rake bar, the length L of the rake bar, the distance d 1 between the center of the six-axis robot arm and the center of the high-temperature furnace, the distance between the rake bracket of the high-temperature furnace The distance d 2 of the pushing port, the moving distance d 3 of the sliding component in the rake bracket of the high temperature furnace on the slide rail, the farthest distance X of the six-axis robot arm from the center of the high temperature furnace max , the farthest distance Y max of the movement of the sliding component on the sliding rail;
基于遗传算法,根据所述冗余异构机器人的结构参数,生成所述冗余异构机器人的运动轨迹,以由所述冗余异构机器人根据所述运动轨迹对所述煤渣进行耙平。Based on the genetic algorithm, according to the structural parameters of the redundant heterogeneous robot, the motion trajectory of the redundant heterogeneous robot is generated, so that the cinder is leveled by the redundant heterogeneous robot according to the motion trajectory.
优选的,所述基于遗传算法,根据所述冗余异构机器人的结构参数,生成所述冗余异构机器人的运动轨迹,以由所述冗余异构机器人根据所述运动轨迹对所述煤渣进行耙平,包括:根据所述冗余异构机器人的结构参数和所述耙头的预设工作路径的起始点的轨迹坐标,得到所述滑移组件的工作路径的起始点的轨迹坐标和所述执行末端的工作路径的起始点的轨迹坐标;根据所述执行末端的工作路径的起始点的轨迹坐标、所述执行末端的工作参数、所述耙头的预设工作路径的轨迹坐标和所述冗余机器人的结构参数,基于遗传算法,获取所述滑移组件的工作路径的轨迹坐标和所述执行末端的工作路径的轨迹坐标,生成所述冗余异构机器人的运动轨迹,以由所述冗余异构机器人根据所述运动轨迹对所述煤渣进行耙平;其中,所述工作参数包括所述执行末端的最大速度和最大加速度。Preferably, based on a genetic algorithm, the motion trajectory of the redundant heterogeneous robot is generated according to the structural parameters of the redundant heterogeneous robot, so that the redundant heterogeneous robot can rak the cinder according to the motion trajectory, including: : According to the structural parameters of the redundant heterogeneous robot and the trajectory coordinates of the starting point of the preset working path of the drag head, obtain the trajectory coordinates of the starting point of the working path of the sliding assembly and the working path of the execution end The trajectory coordinates of the starting point of the rake head; according to the trajectory coordinates of the starting point of the working path of the execution end, the working parameters of the execution end, the trajectory coordinates of the preset working path of the drag head and the structure of the redundant robot parameters, based on the genetic algorithm, obtain the trajectory coordinates of the working path of the sliding component and the trajectory coordinates of the working path of the execution end, and generate the motion trajectory of the redundant heterogeneous robot, so that the redundant heterogeneous robot can be used by the redundant heterogeneous robot according to the The motion trajectory is used to rak the cinder; wherein, the working parameters include the maximum speed and the maximum acceleration of the execution end.
优选的,所述根据所述冗余异构机器人的结构参数和所述耙头的预设工作路径的起始点的轨迹坐标,得到所述滑移组件的工作路径的起始点的轨迹坐标和所述执行末端的工作路径的起始点的轨迹坐标,包括:根据所述耙头的预设工作路径的起始点的轨迹坐标和所述冗余异构机器人的结构参数,生成所述滑移组件的工作路径的起始点的轨迹坐标;根据所述滑移组件的工作路径的起始点的轨迹坐标和所述冗余异构机器人的结构参数,生成所述执行末端的工作路径的起始点的轨迹坐标。Preferably, according to the structural parameters of the redundant heterogeneous robot and the trajectory coordinates of the starting point of the preset working path of the drag head, the trajectory coordinates of the starting point of the working path of the sliding assembly and the execution The trajectory coordinates of the starting point of the working path at the end include: generating the starting point of the working path of the sliding assembly according to the trajectory coordinates of the starting point of the preset working path of the drag head and the structural parameters of the redundant heterogeneous robot. The trajectory coordinates of the starting point; the trajectory coordinates of the starting point of the working path of the execution end are generated according to the trajectory coordinates of the starting point of the working path of the sliding component and the structural parameters of the redundant heterogeneous robot.
优选的,所述根据所述执行末端的工作路径的起始点的轨迹坐标、所述执行末端的工作参数、所述耙头的预设工作路径的轨迹坐标和所述冗余机器人的结构参数,基于遗传算法,获取所述滑移组件的工作路径的轨迹坐标和所述执行末端的工作路径的轨迹坐标,包括:根据所述执行末端的工作路径的起始点的轨迹坐标和所述六轴机械臂的执行末端的工作参数,得到所述六轴机械臂的执行末端的工作路径的下一工作位置的轨迹坐标集合;根据所述六轴机械臂的执行末端的工作路径的下一工作位置的轨迹坐标集合和所述滑移组件的工作路径的下一工作位置的轨迹坐标,得到所述六轴机械臂的滑移组件的工作路径的下一工作位置的轨迹坐标集合;基于预设的适应度函数,根据所述六轴机械臂的滑移组件的工作路径的下一工作位置的轨迹坐标集合,获得所述六轴机械臂的滑移组件的工作路径的下一工作位置的轨迹坐标;根据所述六轴机械臂的滑移组件的工作路径的下一工作位置的轨迹坐标和所述冗余异构机器人的结构参数,获得所述六轴机械臂的执行末端的工作路径的下一工作位置的轨迹坐标。Preferably, according to the trajectory coordinates of the starting point of the working path of the execution end, the working parameters of the execution end, the trajectory coordinates of the preset working path of the drag head, and the structural parameters of the redundant robot, Based on the genetic algorithm, acquiring the trajectory coordinates of the working path of the sliding component and the trajectory coordinates of the working path of the execution end includes: according to the trajectory coordinates of the starting point of the working path of the execution end and the six-axis machine The working parameters of the execution end of the arm are obtained, and the trajectory coordinate set of the next working position of the working path of the execution end of the six-axis robotic arm is obtained; The trajectory coordinate set and the trajectory coordinates of the next working position of the working path of the sliding component are obtained, and the trajectory coordinate set of the next working position of the working path of the sliding component of the six-axis robot arm is obtained; based on the preset adaptation a degree function, obtaining the trajectory coordinates of the next working position of the working path of the sliding assembly of the six-axis mechanical arm according to the set of trajectory coordinates of the next working position of the working path of the sliding assembly of the six-axis mechanical arm; According to the trajectory coordinates of the next working position of the working path of the sliding component of the six-axis robotic arm and the structural parameters of the redundant heterogeneous robot, the next working position of the working path of the execution end of the six-axis robotic arm is obtained track coordinates.
优选的,所述高温炉平渣方法还包括:基于建立的所述冗余异构机器人的正运动学模型,对所述冗余异构机器人的结构参数进行验证。Preferably, the method for leveling slag in a high temperature furnace further comprises: verifying the structural parameters of the redundant heterogeneous robot based on the established positive kinematic model of the redundant heterogeneous robot.
与最接近的现有技术相比,本申请实施例的技术方案具有如下有益效果:Compared with the closest prior art, the technical solutions of the embodiments of the present application have the following beneficial effects:
本申请实施例提供的技术方案中,一方面,耙子的耙头深入高温炉的工作腔中,耙子的杆部与耙子支架的滑移组件活动连接,在滑移组件的带动下能够沿第二方向往返移动;耙子的尾部与位于地轨上的六轴机械臂的执行末端连接,为耙子的工作提供动力,将高温炉工作腔中的煤渣耙平;六轴机械臂能够在地轨上往返移动,调整六轴机械臂底座至高温炉中心的距离,六轴机械臂自身具有多个自由度可以调整耙子尾部的姿态;耙子支架为耙杆提供支撑,且通过滑移组件调整耙杆支撑点的位置;籍此,通过多个自由度的协调配合,有效提高耙子在高温炉工作腔中的工作范围,满足高温炉工作腔中煤渣耙平的工作需求,完美的代替人工实现对高温炉的平渣,将人员从高温、粉尘、腐蚀、有害气体的环境中解放出来,保护人员健康。In the technical solutions provided by the embodiments of the present application, on the one hand, the rake head of the rake is deeply inserted into the working cavity of the high-temperature furnace, and the rod part of the rake is movably connected with the sliding component of the rake bracket, and can be driven along the second sliding component by the sliding component. The direction moves back and forth; the tail of the rake is connected to the execution end of the six-axis mechanical arm located on the ground rail, which provides power for the work of the rake and rakes the cinder in the working chamber of the high-temperature furnace; the six-axis mechanical arm can go back and forth on the ground rail Move and adjust the distance from the base of the six-axis robotic arm to the center of the high-temperature furnace. The six-axis robotic arm itself has multiple degrees of freedom to adjust the posture of the tail of the rake; the rake bracket provides support for the rake bar, and the support point of the rake bar is adjusted through the sliding component Therefore, through the coordination and cooperation of multiple degrees of freedom, the working range of the rake in the working chamber of the high temperature furnace can be effectively improved, so as to meet the working requirements of cinder raking in the working chamber of the high temperature furnace, and perfectly replace the manual realization of the high temperature furnace. Slag leveling frees personnel from the environment of high temperature, dust, corrosion and harmful gases, and protects personnel health.
另一方面,基于多目标优化算法,根据建立冗余异构机器人工作时的约束模型,计算出冗余异构机器人的结构参数;进而,基于遗传算法,根据冗余异构机器人的结构参数,生成冗余异构机器人的运动轨迹,由冗余异构机器人根据运动轨迹对煤渣进行耙平。籍此,通过冗余异构机器人系统来代替人工进行推料平渣工作,并通过冗余异构机器人的各约束关系,通过最优化求得其机构参数;然后,针对冗余系统进行运动学分析,基于改进的遗传算法,舍弃全局优化,采用一种基于速度平滑性为主要目标的步进点种群自适应轨迹优化方法,根据六轴机器人的抓手的每个轨迹点的位置和速度,自适应的生成初始种群,通过遗传算法进行择优,舍弃全局加速的整体稳定性,解决传统遗传算法在转折点出现的速度和加速度突变等问题,提高了转折点等特殊轨迹的优化效率,防止速度、加速度的跳变,使得机械臂抓手的轨迹连续平滑,速度平稳,且无较大加速度跃变。On the other hand, based on the multi-objective optimization algorithm, the structural parameters of the redundant heterogeneous robot are calculated according to the constraint model when the redundant heterogeneous robot is established; further, based on the genetic algorithm, the motion of the redundant heterogeneous robot is generated according to the structural parameters of the redundant heterogeneous robot. The cinder is raked and leveled by the redundant heterogeneous robot according to the motion trajectory. In this way, the redundant heterogeneous robot system is used to replace the manual work of pushing material and slag leveling, and through the constraints of the redundant heterogeneous robots, the mechanism parameters are obtained through optimization; The genetic algorithm is based on the global optimization, and adopts a step point population adaptive trajectory optimization method based on the speed smoothness as the main goal. According to the position and speed of each trajectory point of the gripper of the six-axis robot, the adaptive generation In the initial population, the genetic algorithm is used to select the best, and the overall stability of the global acceleration is discarded, so as to solve the problems such as the sudden change of speed and acceleration in the turning point of the traditional genetic algorithm, improve the optimization efficiency of special trajectories such as the turning point, and prevent the jump of speed and acceleration. The trajectory of the gripper of the robotic arm is continuous and smooth, the speed is stable, and there is no large acceleration jump.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。其中:The accompanying drawings that form a part of the present application are used to provide further understanding of the present application, and the schematic embodiments and descriptions of the present application are used to explain the present application and do not constitute improper limitations on the present application. in:
图1为根据本申请实施例提供的一种用于高温炉平渣的异构冗余机器人的原理示意图;1 is a schematic diagram of the principle of a heterogeneous redundant robot for high-temperature furnace slag leveling provided according to an embodiment of the present application;
图2为根据本申请实施例提供的一种用于高温炉平渣的冗余异构机器人的结构示意图;2 is a schematic structural diagram of a redundant heterogeneous robot for high-temperature furnace slag leveling provided according to an embodiment of the present application;
图3为根据本申请的一些实施例提供的一种高温炉平渣方法的流程示意图;3 is a schematic flowchart of a high-temperature furnace slag leveling method provided according to some embodiments of the present application;
图4为根据本申请的一些实施例提供的高温炉平渣方法中冗余异构机器人单工位示意图;FIG. 4 is a schematic diagram of a single station of redundant heterogeneous robots in a high-temperature furnace slag leveling method provided according to some embodiments of the present application;
图5为图4所示单工位下耙子推料行程最远时的单工位示意图;Fig. 5 is the single-station schematic diagram when the rake pushing stroke is the farthest under the single-station shown in Fig. 4;
图6为根据本申请的一些实施例提供的滑移组件在滑轨上最远时的单工位示意图;6 is a schematic diagram of a single station when the sliding assembly provided according to some embodiments of the present application is furthest on the sliding rail;
图7为根据本申请的一些实施例提供的步骤S103的流程示意图;FIG. 7 is a schematic flowchart of step S103 provided according to some embodiments of the present application;
图8为根据本申请的一些实施例提供的步进优化种群的初始示意图;8 is an initial schematic diagram of a step-optimized population provided according to some embodiments of the present application;
图9为根据本申请的一些实施例提供的耙杆支撑点轨迹坐标适应度函数示意图。FIG. 9 is a schematic diagram of a coordinate fitness function of a rake support point trajectory provided according to some embodiments of the present application.
附图标记说明:Description of reference numbers:
100、六轴机械臂;200、耙子;300、耙子支架;400、高温炉;500、地轨;100, six-axis robotic arm; 200, rake; 300, rake bracket; 400, high temperature furnace; 500, ground rail;
301、滑轨;302、滑移组件;312、滑移底座;322、固定框;301, slide rail; 302, slide assembly; 312, slide base; 322, fixed frame;
401、工作腔;402-推料口。401. Working cavity; 402- Pushing port.
具体实施方式Detailed ways
下面将参考附图并结合实施例来详细说明本申请。各个示例通过本申请的解释的方式提供而非限制本申请。实际上,本领域的技术人员将清楚,在不脱离本申请的范围或精神的情况下,可在本申请中进行修改和变型。例如,示为或描述为一个实施例的一部分的特征可用于另一个实施例,以产生又一个实施例。因此,所期望的是,本申请包含归入所附权利要求及其等同物的范围内的此类修改和变型。The present application will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments. The various examples are provided by way of explanation of the application and do not limit the application. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present application without departing from the scope or spirit of the application. For example, features illustrated or described as part of one embodiment can be used on another embodiment to yield yet another embodiment. Therefore, it is intended that this application cover such modifications and variations as come within the scope of the appended claims and their equivalents.
在本申请的描述中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请而不是要求本申请必须以特定的方位构造和操作,因此不能理解为对本申请的限制。本申请中使用的术语“相连”、“连接”、“设置”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是直接相连,也可以通过中间部件间接相连;可以是有线电连接、无线电连接,也可以是无线通信信号连接,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。In the description of this application, the terms "portrait", "horizontal", "upper", "lower", "front", "rear", "left", "right", "vertical", "horizontal", " The orientations or positional relationships indicated by "top" and "bottom" are based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the application rather than requiring the application to be constructed and operated in a specific orientation, and therefore cannot be understood as LIMITATIONS ON THIS APPLICATION. The terms "connected", "connected" and "arranged" used in this application should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection; it can be directly connected or indirectly connected through intermediate components; it can be It is a wired electrical connection, a radio connection, or a wireless communication signal connection. For those of ordinary skill in the art, the specific meanings of the above terms can be understood according to specific circumstances.
图1为根据本申请实施例提供的一种用于高温炉平渣的异构冗余机器人的原理示意图;图2为根据本申请实施例提供的一种用于高温炉平渣的冗余异构机器人的结构示意图;如图1、图2所示,该用于高温炉平渣的异构冗余机器人包括:地轨500、六轴机械臂100、平渣耙子200和耙子支架300;所示地轨500沿第一方向铺设;其中,第一方向为高温炉400的中心与高温炉400的推料口402连线的延伸方向;六轴机械臂100滑动安装于地轨500上,能够在地轨500上沿第一方向移动;耙子支架300位于地轨500和高温炉400之间,耙子支架300包括:滑轨301和滑移组件302,滑轨301沿第二方向设置,滑移组件302与滑轨301相适配,能够在滑轨301上沿第二方向往返移动;其中,第二方向为水平面上与第一方向垂直的方向;耙子200的耙头深入高温炉400的工作腔401内,耙子200的杆部与滑移组件302活动连接,能够在滑移组件302的带动下沿第二方向移动;耙子200的尾部与六轴机械臂100的执行末端连接,能够在六轴机械臂100的带动下将高温炉400的工作腔401中的煤渣耙平。FIG. 1 is a schematic diagram of the principle of a heterogeneous redundant robot for high-temperature furnace slag leveling provided according to an embodiment of the present application; FIG. 2 is a redundant heterogeneous robot for high-temperature furnace slag leveling provided according to an embodiment of the present application As shown in Figure 1 and Figure 2, the heterogeneous redundant robot for high temperature furnace slag leveling includes: ground rail 500, six-axis robotic arm 100, slag leveling rake 200 and rake bracket 300; as shown The rail 500 is laid along the first direction; wherein, the first direction is the extension direction of the line connecting the center of the high temperature furnace 400 and the feed opening 402 of the high temperature furnace 400; the six-axis robotic arm 100 is slidably installed on the ground rail 500, and can The rail 500 moves in the first direction; the rake bracket 300 is located between the ground rail 500 and the high-temperature furnace 400, and the rake bracket 300 includes: a sliding rail 301 and a sliding assembly 302, the sliding rail 301 is arranged along the second direction, and the sliding assembly 302 It is adapted to the slide rail 301 and can move back and forth along the second direction on the slide rail 301; wherein, the second direction is a direction perpendicular to the first direction on the horizontal plane; Inside, the rod part of the rake 200 is movably connected with the sliding assembly 302, and can move in the second direction under the driving of the sliding assembly 302; Driven by the arm 100, the cinder in the working chamber 401 of the high temperature furnace 400 is raked flat.
在本申请实施例中,地轨500为双排地轨500,沿高温炉400中心至推料口402(推料口402中心)连线的延伸方向铺设,对称布置与高温炉400中心与推料口402连线的延伸线两侧;六轴机械臂100滑动安装在地轨500上,能够在地轨500上往返移动,调整六轴机械臂100与高温炉400之间的距离,六轴机械臂100的底座中心位于高温炉400中心至推料口402中心的连线上。In the embodiment of the present application, the ground rails 500 are double-row ground rails 500, which are laid along the extending direction of the line connecting the center of the high-
耙子支架300同样布置在高温炉400中心至推料口402中线连线的延伸线上,且滑移组件302的运动方向与高温炉400中心至推料口402中心连线的延伸线相垂直,且滑移组件302往返运动行程的中心位于高温炉400中心至推料口402中心连线的延伸线上,即滑移组件302以高温炉400中心至推料口402中心连线的延伸线为对称轴线,在其两侧往返运动。在此,定义六轴机械臂100的运动方向为第一方向,滑移组件302的运动方向为第二方向。The
耙子200的耙头从推料口402伸入工作腔401中,用于按照预设工作路径耙平从高温炉400进料口送入的煤料;耙子200的杆部与滑移组件302活动连接,能够在滑移组件302的带动下沿第二方向移动,具体的,滑移组件302对耙子200杆部形成支撑;耙子200的尾部受六轴机械臂100的执行末端(抓手)作用,随抓手的移动而移动。The rake head of the
在一些可选实施例中,滑移组件302包括滑移底座312和固定框322,滑移底座312滑动安装于滑轨301上,固定框322固定连接于滑移底座312上,固定框322的高度与推料口402的高度持平,以使固定框322正对推料口402。进一步的,固定框322上沿第一方向设有通孔,以由耙尾穿过通孔后与六轴机械臂100的执行末端连接,相应的,耙杆与通孔活动连接。In some optional embodiments, the sliding
在本申请实施例中,滑轨301的下表面通过多个高度可调节的支腿进行固定,以对滑轨301的高度进行调节;滑移底座312与滑轨301之间的配合可采用燕尾槽型、矩形、三角型等多种滑动配合方式,实现滑移底座312在滑轨301上的移动;滑移底座312的上表面固定连接固定框322。在此,固定框322可通过型材进行折弯形成,在本申请中,固定框322通过多个圆管焊接而成,其中,固定框322包括门型框架和耙杆连接部,门型框架由一个圆管折弯而成,门型框架的下端固定连接于滑移底座312的上表面,耙杆连接部为凵型结构,凵型结构的上端固定连接于门型框架的上端。即,凵型结构的耙杆连接部连接于门型框架上后构成沿第一方向的通孔,耙尾穿过耙杆连接部的凵型结构的中心后与抓手连接。In the embodiment of the present application, the lower surface of the sliding
在本申请实施例中,在平渣过程中,耙子200需要不断的运动,耙子200杆部与耙杆连接部之间在平渣过程中,具有不断的相互运动,为更好的对耙子200的杆部进行保护,在耙杆连接部上包覆柔性耐磨体,即通孔的内侧壁包覆柔性耐磨体,比如,包覆橡胶、海绵等,籍此,有效的降低耙子200杆部与耙杆连接部之间的相互摩擦,提高耙子200杆部的使用寿命。In the embodiment of the present application, during the slag leveling process, the
在本申请实施例中,为降低抓手在带动耙子200运动时的负载,可以将固定框322沿第二方向往返移动的中心设置在第一方向上,即调整滑移组件302在滑轨301上的位置,使滑移组件302位于第一方向上,籍此,抓手在带动耙子200进行平渣时,姿态调整幅度最小,耙头在工作腔401中的工作范围最大,有效的提升了异构冗余机器人的工作效率。In the embodiment of the present application, in order to reduce the load of the gripper when driving the
在本申请实施例中,耙子200的耙头深入高温炉400的工作腔401中,耙子200的杆部与耙子支架300的滑移组件302活动连接,在滑移组件302的带动下能够沿第二方向往返移动;耙子200的尾部与位于地轨500上的六轴机械臂100的执行末端连接,为耙子200的工作提供动力,将高温炉400工作腔401中的煤渣耙平;六轴机械臂100能够在地轨500上往返移动,调整六轴机械臂100底座至高温炉400中心的距离,六轴机械臂100自身具有多个自由度可以调整耙子200尾部的姿态;耙子支架300为耙杆提供支撑,且通过滑移组件302调整耙杆支撑点的位置。In the embodiment of the present application, the rake head of the
通过六轴机械臂100、地轨500来模拟人手握耙子200的耙尾,耙子200从耙子支架300的通孔穿过,抓手把握耙尾动作时,可以控制前端耙头上的耙齿上下、左右移动,以达到推料目的;当遇到大行程进给时,六轴机械臂100可沿地轨500前进,耙子支架300可以左右移动,配合六轴机械臂100,使耙齿从任意方向、任意位置到达工作腔401内部。The six-axis
籍此,六轴机械臂100在地轨500上沿第一方向的移动、六轴机械臂100自身的多个自由度、滑移组件302带动耙子200杆部沿第二方向的移动共同组成了异构冗余机器人的冗余系统。通过该冗余异构机器人系统来代替人工进行推料平渣工作,利用多个自由度的协调配合,有效提高耙子200在高温炉400工作腔401中的工作范围,满足高温炉400工作腔401中煤渣耙平的工作需求,完美的代替人工实现对高温炉400的平渣,将人员从高温、粉尘、腐蚀、有害气体的环境中解放出来,保护人员健康。In this way, the movement of the six-axis
需要说明的,高温炉400沿周向具有多个并列设置的工作腔401,每个工作腔401上设有一个对应的推料口402,并对应布置一套异构冗余机器人进行平渣作业,或者,沿高温炉400周向铺设环形轨道,使异构冗余机器人能够在环形轨道上移动,对高温炉400的多个工作腔401进行平渣作业。籍此,有效提高异构冗余机器人的利用效率,并实现在高温、粉尘、腐蚀、有害气体的环境中的无人化操作。It should be noted that the
图3为根据本申请的一些实施例提供的一种高温炉平渣方法的流程示意图;如图3所示,该高温炉平渣方法采用上述任一实施例的异构冗余机器人对高温炉400的工作腔401内的煤渣进行耙平;该高温炉平渣方法包括:Fig. 3 is a schematic flow chart of a high-temperature furnace slag leveling method provided according to some embodiments of the present application; as shown in Fig. 3 , the high-temperature furnace slag leveling method adopts the heterogeneous redundant robot of any of the above-mentioned embodiments to clean the high-temperature furnace The coal slag in the working
步骤S101、建立冗余异构机器人工作时的约束模型;Step S101, establishing a constraint model when the redundant heterogeneous robot works;
在本申请实施例中,在高温炉400中加注原料后,要使用耙子200进行耙平,将原料尽快推到电机旁边,防止产生喷火和冒火花的情况,在耙子200平渣过程中,一方面,直接推的过程要平顺,尽可能的将原料推到工作腔401的内侧;另一方面,耙子200斜着推的时候,原料要尽可能的挨着电机。In the embodiment of the present application, after the
图4为根据本申请的一些实施例提供的高温炉平渣方法中冗余异构机器人单工位示意图;图5为图4所示单工位下耙子200推料行程最远时的单工位示意图;4 is a schematic diagram of a single station of redundant heterogeneous robots in a method for leveling slag in a high-temperature furnace provided according to some embodiments of the present application; ;
如图4、图5所示;高温炉400的内圆半径为r1,外圆半径为r2,工作腔401的圆心角为α,工作腔401的推料口402的圆心角为θ1,六轴机械臂100的中心与高温炉400的中心的距离为d1,高温炉400的耙子支架300距离推料口402的距离为d2,高温炉400的耙子支架300中的滑移组件302在滑轨301上的移动距离为d3,冗余异构机器人的耙子200的耙杆的长度为L,六轴机械臂100在第一方向的运动范围为[Xmin,Xmax],Xmax表示六轴机械臂100距离高温炉400的中心的最远距离,设定Xmin=0;滑移组件302在第二方向的运动范围为[Ymin,Ymax],其中,Ymim=-Ymax,Ymax表示滑移组件302在滑轨301上的移动的最远距离。As shown in Fig. 4 and Fig. 5 ; the inner radius of the
当耙子200推料行程最远,且机械臂抓手受力最大时,耙子200的位置如图5所示,此时,定义冗余异构机器人的六轴机械臂100的承重为G0,定义冗余异构机器人的耙杆的内侧杆长(耙杆与耙子支架接触处到抓手的长度)所占耙杆全长的比例的导数为p,定义耙杆的直径为j。可有,耙杆的杆长的约束如下公式(2-1)所示,公式(2-1)如下:When the pushing stroke of the
通过高温炉400的推料口402的圆心角θ1以及高温炉400工作腔401的圆心角α,有高温炉400的耙子支架300距离推料口402的距离d2、高温炉400的耙子支架300中的滑移组件302在滑轨301上的移动距离d3、以及冗余异构机器人的耙杆的内侧杆长所占比例的导数p之间的关系如下公式(2-2)所示,公式(2-2)如下:Through the central angle θ 1 of the
为保证耙头运行到最远距离时,滑移组件302在第二方向的运动范围[Ymin,Ymax]需要满足耙杆可通过推料口402的任意位置进行推料,由高温炉400的耙子支架300距离推料口402的距离d2、高温炉400的耙子支架300中的滑移组件302在滑轨301上的移动距离d3的关系如下公式(2-3)所示,公式(2-3)如下:In order to ensure that when the rake head runs to the farthest distance, the movement range [Y min , Y max ] of the sliding
在耙子200运行到最远距离时,六轴机械臂100的最大行程如下公式(2-4)所示,公式(2-4)如下:When the
为简化计算,设定六轴机械臂100的最小行程Xmin=0,此时,耙子200需要在工作腔内,可知,六轴机械臂100的中心与高温炉400的中心的距离d1为:In order to simplify the calculation, the minimum stroke X min of the six-
图6为根据本申请的一些实施例提供的滑移组件302在滑轨301上最远时的单工位示意图;如图6所示,滑移组件302在滑轨301上最远时,耙杆与推料口402底部的交点为B点,B点坐标为(xb,yb),xb表示滑移组件302在滑轨301上的移动的最远距离时耙杆与推料口402的交点到六轴机械臂100的中心的距离,yb滑移组件302在滑轨301上的移动到最远距离时耙杆与推料口402的交点到中心线的距离,中心线为六轴机械臂100的中心与高温炉400的中心的连线。6 is a schematic diagram of a single station when the sliding
耙子200的左端点为抓手在第一方向最大行程Xmax和第二方向最小行程Ymin时所在的点,可知,此时,耙头在工作腔401中位于A点,A点的坐标如公式(2-6)所示,公式(2-6)如下:The left end point of the
其中,in,
则杆长L与Xmax和Ymin之间的关系如公式(2-8)所示,公式(2-8)如下:Then the relationship between the rod length L and X max and Y min is shown in formula (2-8), and formula (2-8) is as follows:
由此,可得到冗余异构机器人的约束模型为:Thus, the constraint model of the redundant heterogeneous robot can be obtained as:
其中,公式(2-1)、(2-2)、(2-4)、(2-5)、(2-8)为冗余异构机器人的参数之间的等式约束,公式(2-3)为各参数之间的不等式约束条件。Among them, formulas (2-1), (2-2), (2-4), (2-5), (2-8) are the equality constraints between the parameters of redundant heterogeneous robots, formula (2-3) ) are the inequality constraints between the parameters.
步骤S102、基于多目标优化算法,根据约束模型,计算冗余异构机器人的结构参数,其中,结构参数包括:六轴机械臂100的承重G0、耙杆的内侧杆长所占比例的导数p、耙杆的直径j、耙杆的长度L、六轴机械臂100的中心与高温炉400的中心的距离d1、高温炉400的耙子支架300距离推料口402的距离d2、高温炉400的耙子支架300中的滑移组件302在滑轨301上的移动距离d3、六轴机械臂100距离高温炉400的中心的最远距离Xmax、滑移组件302在滑轨301上的移动的最远距离Ymax;Step S102: Calculate the structural parameters of the redundant heterogeneous robot based on the multi-objective optimization algorithm and the constraint model, wherein the structural parameters include: the load-bearing G 0 of the six-axis
在本申请实施例中,在平渣过程中六轴机械臂100的抓手的承重不能超过极限,因而,耙杆应尽可能的短;耙子支架300应使得耙子200可以尽可能从多个方向进行平渣作业,且不超过机械臂的运动范围,故应在满足受力要求的前提下耙杆长度L最小,滑移组件302在滑轨301上的移动距离d3最小。In the embodiment of the present application, the load bearing of the gripper of the six-
在一具体的应用场景中,高温炉400的内圆半径为r1=1.625m,外圆半径为r2=3.25m,工作腔401的圆心角为α=60°,工作腔401的推料口402的圆心角为θ1=30°;基于多目标优化算法,调用优化函数fgoalattain,根据约束模型,得到的冗余异构机器人的结构参数如表1所示。表1如下:In a specific application scenario, the inner radius of the
表1Table 1
在本申请实施例中,对冗余异构机器人的运动路径进行规划,以高温炉400推料口402为约束,以最短运动行程和六轴机械臂100抓手运动速度平稳为目标进行优化,其中,最短运动行程包括耙子200支撑点(滑移组件302)运动行程和六轴机械臂100的抓手的运动行程。In the embodiment of the present application, the motion path of the redundant heterogeneous robot is planned, with the
在一些可选实施例中,该高温炉400平渣方法还包括:基于建立的冗余异构机器人的正运动学模型,对冗余异构机器人的结构参数进行验证。In some optional embodiments, the
在本申请实施例中,对于冗余异构机器人的除六轴机械臂100之外的其它冗余系统,由于耙子200和滑移组件302的联动,使得冗余异构机器人难以通过D-H参数法标定,因而,将整个冗余系统看做是在同一Z轴平面下的二维空间内,不考虑各个冗余自由度关节的姿态信息,建立整个冗余系统的正运动学方程。根据抓手的轨迹坐标(x0,y0),以及耙杆支撑点的轨迹坐标(x1,y1),即可知道耙头的坐标(x,y),即:In the embodiment of the present application, for other redundant systems except the six-
通过冗余异构机器人的正运动学模型,根据冗余异构机器人的结构参数,模拟冗余异构机器人的耙头的工作范围,进而将模拟的耙头的工作范围与实际耙头在的高温炉400的工作空间中的范围相比较,确定模拟的耙头的工作范围是否能够达到实际耙头在的高温炉400的工作空间中的范围,如果能够达到,则说明冗余异构机器人的结构参数满足实际需求。Through the forward kinematic model of the redundant heterogeneous robot, according to the structural parameters of the redundant heterogeneous robot, the working range of the rake head of the redundant heterogeneous robot is simulated, and then the simulated working range of the rake head is compared with the working space of the
步骤S103、基于遗传算法,根据冗余异构机器人的结构参数,生成冗余异构机器人的运动轨迹,以由冗余异构机器人根据运动轨迹对煤渣进行耙平。Step S103 , based on the genetic algorithm and according to the structural parameters of the redundant heterogeneous robot, generate the motion trajectory of the redundant heterogeneous robot, so that the redundant heterogeneous robot can rak the cinder according to the motion trajectory.
在本申请实施例中,基于遗传算法,利用适应度函数对冗余异构机器人的运动路径不断的进行迭代计算,即可实现冗余异构机器人的运动路径的规划,但是传统的遗传算法是基于全局优化,无法有效的避免局部出现的速度、加速度跃变的问题。为此,本申请中,针对冗余异构机器人的冗余系统进行运动学分析,基于改进的遗传算法,舍弃全局优化,采用一种基于速度平滑性为主要目标的步进点种群自适应轨迹优化方法,根据六轴机器人的抓手的每个轨迹点的位置和速度,自适应的生成初始种群,通过改进的遗传算法进行择优,舍弃全局加速的整体稳定性,解决传统遗传算法在转折点出现的速度和加速度突变等问题,提高了转折点等特殊轨迹的优化效率,防止速度、加速度的跳变,使得抓手的轨迹连续平滑,速度平稳,且无较大加速度跃变。In the embodiment of the present application, based on the genetic algorithm, the fitness function is used to continuously iteratively calculate the motion path of the redundant heterogeneous robot, so as to realize the planning of the motion path of the redundant heterogeneous robot, but the traditional genetic algorithm is based on global optimization, It is impossible to effectively avoid the problem of local speed and acceleration jumps. For this reason, in this application, kinematics analysis is performed for the redundant system of redundant heterogeneous robots, based on an improved genetic algorithm, global optimization is discarded, and a stepping point population adaptive trajectory optimization method based on speed smoothness as the main goal is adopted , according to the position and speed of each trajectory point of the gripper of the six-axis robot, the initial population is adaptively generated, and the improved genetic algorithm is used to select the best, abandon the overall stability of the global acceleration, and solve the speed of the traditional genetic algorithm at the turning point. It improves the optimization efficiency of special trajectories such as turning points, prevents jumps in speed and acceleration, and makes the trajectory of the gripper continuous and smooth, the speed is stable, and there is no large acceleration jump.
图7为根据本申请的一些实施例提供的步骤S103的流程示意图;如图7所示,所示基于遗传算法,根据冗余异构机器人的结构参数,生成冗余异构机器人的运动轨迹,以由冗余异构机器人根据运动轨迹对煤渣进行耙平,包括:FIG. 7 is a schematic flowchart of step S103 provided according to some embodiments of the present application; as shown in FIG. 7 , based on the genetic algorithm, the motion trajectory of the redundant heterogeneous robot is generated according to the structural parameters of the redundant heterogeneous robot, so that the redundant heterogeneous robot can be The robot rakes the cinder according to the motion trajectory, including:
步骤S113、根据冗余异构机器人的结构参数和耙头的预设工作路径的起始点的轨迹坐标,得到滑移组件302的工作路径的起始点的轨迹坐标和执行末端的工作路径的起始点的轨迹坐标;Step S113, according to the structural parameters of the redundant heterogeneous robot and the track coordinates of the starting point of the preset working path of the drag head, obtain the track coordinates of the starting point of the working path of the sliding
具体的,根据耙头的预设工作路径的起始点的轨迹坐标和冗余异构机器人的结构参数,生成滑移组件302的工作路径的起始点的轨迹坐标;根据滑移组件302的工作路径的起始点的轨迹坐标和冗余异构机器人的结构参数,生成执行末端的工作路径的起始点的轨迹坐标。Specifically, according to the trajectory coordinates of the starting point of the preset working path of the drag head and the structural parameters of the redundant heterogeneous robot, the trajectory coordinates of the starting point of the working path of the sliding
在本申请实施例中,高温炉400中的原料从进料口进入工作腔401后,在工作腔401中堆积,耙子200需要将堆积的原料向工作腔401的其它位置推耙,以耙平原料。在此,耙头在工作腔401中的预设工作路径确定后,其工作路径对应的各个轨迹点的坐标即可确定。在耙头工作路径的起始点的轨迹坐标确定后,根据冗余异构机器人的结构参数即可确定唯一的滑移组件302在第二方向上的工作路径的起始点的坐标(即耙杆支撑点的起始坐标);然后根据滑移组件302工作路径的起始点的唯一坐标和冗余异构机器人的结构参数即可确定抓手的工作路径的起始点的唯一坐标。In the embodiment of the present application, after the raw materials in the high-
步骤S123、根据执行末端的工作路径的起始点的轨迹坐标、执行末端的工作参数、耙头的预设工作路径的轨迹坐标和冗余机器人的结构参数,基于遗传算法,获取滑移组件302的工作路径的轨迹坐标和执行末端的工作路径的轨迹坐标,生成冗余异构机器人的运动轨迹,以由冗余异构机器人根据运动轨迹对煤渣进行耙平;其中,工作参数包括执行末端的最大速度和最大加速度。Step S123, according to the trajectory coordinates of the starting point of the working path of the execution end, the working parameters of the execution end, the trajectory coordinates of the preset working path of the drag head, and the structural parameters of the redundant robot, based on the genetic algorithm, obtain the sliding
具体的,首先,根据执行末端的工作路径的起始点的轨迹坐标和六轴机械臂100的执行末端的工作参数,得到六轴机械臂100的执行末端的工作路径的下一工作位置的轨迹坐标集合;然后,根据六轴机械臂100的执行末端的工作路径的下一工作位置的轨迹坐标集合和滑移组件302的工作路径的下一工作位置的轨迹坐标,得到滑移组件302的工作路径的下一工作位置的轨迹坐标集合;接着,基于预设的适应度函数,根据滑移组件302的工作路径的下一工作位置的轨迹坐标集合,获得滑移组件302的工作路径的下一工作位置的轨迹坐标;最后,根据滑移组件302的工作路径的下一工作位置的轨迹坐标和冗余异构机器人的结构参数,获得六轴机械臂100的执行末端的工作路径的下一工作位置的轨迹坐标。Specifically, first, according to the trajectory coordinates of the starting point of the working path of the execution end and the working parameters of the execution end of the six-
在本申请实施例中,在获取了抓手工作路径的初始坐标后,根据抓手的工作参数,即抓手的最大速度和最大加速度获取抓手工作路径的下一工作位置的轨迹坐标的集合,然后由抓手工作路径的下一作位置的轨迹坐标的集合和耙头的预设工作路径中下一工作位置的轨迹坐标,确定处耙杆支撑点(滑移组件302)的工作路径上下一工作位置的轨迹坐标的集合;然后,通过适应度函数对耙杆支撑点的工作路径上下一工作位置的轨迹坐标的集合进行计算优化,从耙杆支撑点的工作路径上下一工作位置的轨迹坐标的集合中确定出最优的耙杆支撑点的工作路径上下一工作位置的轨迹坐标。In the embodiment of the present application, after the initial coordinates of the working path of the gripper are obtained, the set of trajectory coordinates of the next working position of the working path of the gripper is obtained according to the working parameters of the gripper, that is, the maximum speed and the maximum acceleration of the gripper , and then the set of trajectory coordinates of the next working position of the gripper working path and the trajectory coordinates of the next working position in the preset working path of the rake head are used to determine the upper and lower working path of the rake bar support point (slip component 302 ). The set of trajectory coordinates of the working position; then, the set of trajectory coordinates of the next working position on the working path of the rake rod support point is calculated and optimized by the fitness function, and the trajectory coordinates of the next working position on the working path of the rake rod support point are calculated and optimized. The trajectory coordinates of the next working position on the working path of the optimal rake bar support point are determined from the set of .
当耙杆支撑点的工作路径上下一工作位置的轨迹坐标确定后,由于耙头的预设工作路径中下一工作位置的轨迹坐标已知,结合冗余机器人的结构参数,即可从抓手工作路径的下一作位置的轨迹坐标的集合中确定处抓手工作路径的下一作位置最优的轨迹坐标。以此循环迭代,即可确定处滑移组件302的工作路径的轨迹坐标和执行末端的工作路径的轨迹坐标,生成冗余异构机器人的运动轨迹,以由冗余异构机器人根据运动轨迹对煤渣进行耙平。When the trajectory coordinates of the next working position on the working path of the rake bar support point are determined, since the trajectory coordinates of the next working position in the preset working path of the rake head are known, combined with the structural parameters of the redundant robot, it is possible to start from the gripper. In the set of trajectory coordinates of the next work position of the working path, the optimal trajectory coordinate of the next work position of the gripper working path is determined. With this loop iteration, the trajectory coordinates of the working path of the sliding
在本申请实施例中,采用基于速度平滑性为主要目标的步进点种群自适应轨迹优化方法对抓手工作路径的轨迹坐标进行优化。图8为根据本申请的一些实施例提供的步进优化种群的初始示意图;如图8所示,已知抓手当前时刻(当前工作位置)的运动速度为V0,限定抓手最大加速度为Amax,抓手运动的最大速度为Vmax,以抓手工作路径的当前工作位置的轨迹坐标为圆心,以Vl和Vh为半径做两个同心圆,其中,In the embodiments of the present application, the trajectory coordinates of the gripper working path are optimized by adopting the step point population adaptive trajectory optimization method based on the speed smoothness as the main objective. FIG. 8 is an initial schematic diagram of a step-by-step optimization population provided according to some embodiments of the present application; as shown in FIG. 8 , it is known that the movement speed of the gripper at the current moment (current working position) is V 0 , and the maximum acceleration of the gripper is limited to be A max , the maximum speed of the gripper movement is V max , taking the trajectory coordinates of the current working position of the gripper working path as the center of the circle, and making two concentric circles with V l and V h as the radii, where,
Vl=V0-Amax V l =V 0 -A max
Vh=max(V0+Amax,Vmax)V h =max(V 0 +A max , V max )
在该同心圆环内根据耙杆的长度L,可确定抓手工作路径的下一工作位置的轨迹坐标的集合,在该集合内生成遗传算法的初始种群,并进行遗传算法的迭代后,得到抓手工作路径的下一工作位置的最优轨迹点,将得到的最优轨迹点作为下一个圆心点,依次循环,即可得到抓手的工作路径的轨迹。In the concentric ring, according to the length L of the rake bar, the set of trajectory coordinates of the next working position of the gripper working path can be determined, and the initial population of the genetic algorithm is generated in the set, and after the iteration of the genetic algorithm, the obtained The optimal trajectory point of the next working position of the working path of the gripper is taken as the next center point of the circle, and the track of the working path of the gripper can be obtained by cycling in turn.
图9为根据本申请的一些实施例提供的耙杆支撑点轨迹坐标适应度函数示意图;如图9所示,对于异构冗余机器人的冗余系统的轨迹规划,由于推料口402的限制,可能会存在耙头无法到达的情况。因此,在本申请的技术方案中,适应度函数中加入轨迹坐标相对于推料口402尺寸的限制,在相同或相近速度适应度的条件下,选择抓手更靠近推料口的开口线的坐标。FIG. 9 is a schematic diagram of the coordinate fitness function of the trajectory of the support point of the rake bar provided according to some embodiments of the present application; as shown in FIG. 9 , for the trajectory planning of the redundant system of the heterogeneous redundant robot, due to the limitation of the
在本申请实施例中,适应度函数如下公式(2-9)所示,公式(2-9)如下:In the embodiment of the present application, the fitness function is shown in the following formula (2-9), and the formula (2-9) is as follows:
其中,f1为抓手速度适应度函数,f2为抓手加速度适应度函数,f3为耙杆支撑点位置适应度函数,α1、α2、α3分别为抓手速度适应度函数f1、抓手加速度适应度函数f2以及耙杆支撑点位置适应度函数f3的权值;Among them, f 1 is the hand speed fitness function, f 2 is the hand acceleration fitness function, f 3 is the position fitness function of the rake bar support point, α 1 , α 2 , α 3 are the hand speed fitness functions respectively f 1 , the weight of the gripper acceleration fitness function f 2 and the position fitness function f 3 of the support point of the rake bar;
f1表示式如下公式(2-10)所示,公式(2-10)如下:The expression of f 1 is shown in the following formula (2-10), and the formula (2-10) is as follows:
f2表示式如下公式(2-11)所示,公式(2-11)如下:The expression of f 2 is shown in the following formula (2-11), and the formula (2-11) is as follows:
f3表示式如下公式(2-12)所示,公式(2-12)如下:The expression of f3 is shown in the following formula (2-12), and the formula (2-12) is as follows:
在本申请实施例中,高温炉400内推料平渣要求耙子200在工作腔401中速度稳定,沿固定路线进行平渣推料工作,为了能够保证工作腔401中耙子200速度一定,选择合适的耙子200支撑点(滑移组件302)使六轴机械臂100的抓手轨迹平滑,并保持速度和加速度稳定,防止突变产生较大的关节扭矩和安全隐患。In the embodiment of the present application, the slag leveling in the high-
在本申请实施例中,通过冗余异构机器人的各约束关系,通过最优化求得其机构参数;然后,针对冗余系统进行运动学分析,基于改进的遗传算法,舍弃全局优化,采用一种基于速度平滑性为主要目标的步进点种群自适应轨迹优化方法,根据六轴机器人的抓手的每个轨迹点的位置和速度,自适应的生成初始种群,通过遗传算法进行择优,舍弃全局加速的整体稳定性,解决传统遗传算法在转折点出现的速度和加速度突变等问题,提高了转折点等特殊轨迹的优化效率,防止速度、加速度的跳变,使得机械臂抓手的轨迹连续平滑,速度平稳,且无较大加速度跃变。In the embodiment of the present application, the mechanism parameters of the redundant heterogeneous robot are obtained through optimization through each constraint relationship; then, kinematics analysis is performed for the redundant system, based on the improved genetic algorithm, global optimization is discarded, and a system based on The step point population adaptive trajectory optimization method with speed smoothness as the main goal, according to the position and speed of each trajectory point of the gripper of the six-axis robot, the initial population is adaptively generated, the genetic algorithm is used to select the best, and the global acceleration is discarded. The overall stability of the robot can solve the problems of sudden changes in speed and acceleration at turning points in traditional genetic algorithms, improve the optimization efficiency of special trajectories such as turning points, prevent jumps in speed and acceleration, and make the trajectory of the gripper of the robot arm smooth and stable. , and there is no large acceleration jump.
以上所述仅为本申请的优选实施例,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, the present application may have various modifications and changes. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this application shall be included within the protection scope of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111040020.8A CN113733115B (en) | 2021-09-06 | 2021-09-06 | Heterogeneous redundant robot for leveling slag of high-temperature furnace and slag leveling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111040020.8A CN113733115B (en) | 2021-09-06 | 2021-09-06 | Heterogeneous redundant robot for leveling slag of high-temperature furnace and slag leveling method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113733115A true CN113733115A (en) | 2021-12-03 |
CN113733115B CN113733115B (en) | 2022-11-29 |
Family
ID=78736288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111040020.8A Active CN113733115B (en) | 2021-09-06 | 2021-09-06 | Heterogeneous redundant robot for leveling slag of high-temperature furnace and slag leveling method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113733115B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116766210A (en) * | 2023-08-12 | 2023-09-19 | 中天智能装备(天津)有限公司 | Double-robot collaborative slag-fishing track planning method for large-scale anode smelting pool |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020144826A1 (en) * | 2001-04-05 | 2002-10-10 | Case Corporation | Tillage implement with one point pin angle adjustment |
CN101314821A (en) * | 2008-07-25 | 2008-12-03 | 乔焰锋 | Machine for producing magnesium metal and high-temperature slagging off method of magnesium metal reduction tank |
CN102534250A (en) * | 2011-12-07 | 2012-07-04 | 上海泰谱信息科技有限公司 | Automatic slag removing machine for metal magnesium reduction jar |
CN205774745U (en) * | 2016-05-25 | 2016-12-07 | 赣州白塔金属材料有限公司 | A kind of tin metal device for removing slag |
CN208468400U (en) * | 2018-06-13 | 2019-02-05 | 中山市盘古机器人科技有限公司 | High temperature working AGV slag rake robot |
CN109423588A (en) * | 2017-08-29 | 2019-03-05 | 上海宝信软件股份有限公司 | Dragveyer device people and its application method |
CN209326367U (en) * | 2018-12-28 | 2019-08-30 | 西南铝业(集团)有限责任公司 | A kind of tooling of skimming for smelting furnace scarfing cinder |
CN210718670U (en) * | 2019-09-03 | 2020-06-09 | 滨州联信新材料科技有限公司 | Automatic slag raking device for smelting furnace |
CN212870774U (en) * | 2020-04-24 | 2021-04-02 | 湖南辰州矿业有限责任公司 | Automatic slag raking device of reverberatory furnace |
-
2021
- 2021-09-06 CN CN202111040020.8A patent/CN113733115B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020144826A1 (en) * | 2001-04-05 | 2002-10-10 | Case Corporation | Tillage implement with one point pin angle adjustment |
CN101314821A (en) * | 2008-07-25 | 2008-12-03 | 乔焰锋 | Machine for producing magnesium metal and high-temperature slagging off method of magnesium metal reduction tank |
CN102534250A (en) * | 2011-12-07 | 2012-07-04 | 上海泰谱信息科技有限公司 | Automatic slag removing machine for metal magnesium reduction jar |
CN205774745U (en) * | 2016-05-25 | 2016-12-07 | 赣州白塔金属材料有限公司 | A kind of tin metal device for removing slag |
CN109423588A (en) * | 2017-08-29 | 2019-03-05 | 上海宝信软件股份有限公司 | Dragveyer device people and its application method |
CN208468400U (en) * | 2018-06-13 | 2019-02-05 | 中山市盘古机器人科技有限公司 | High temperature working AGV slag rake robot |
CN209326367U (en) * | 2018-12-28 | 2019-08-30 | 西南铝业(集团)有限责任公司 | A kind of tooling of skimming for smelting furnace scarfing cinder |
CN210718670U (en) * | 2019-09-03 | 2020-06-09 | 滨州联信新材料科技有限公司 | Automatic slag raking device for smelting furnace |
CN212870774U (en) * | 2020-04-24 | 2021-04-02 | 湖南辰州矿业有限责任公司 | Automatic slag raking device of reverberatory furnace |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116766210A (en) * | 2023-08-12 | 2023-09-19 | 中天智能装备(天津)有限公司 | Double-robot collaborative slag-fishing track planning method for large-scale anode smelting pool |
CN116766210B (en) * | 2023-08-12 | 2023-12-01 | 中天智能装备(天津)有限公司 | Double-robot collaborative slag-fishing track planning method for large-scale anode smelting pool |
Also Published As
Publication number | Publication date |
---|---|
CN113733115B (en) | 2022-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI412467B (en) | Hexapod robot device | |
CN113733115B (en) | Heterogeneous redundant robot for leveling slag of high-temperature furnace and slag leveling method | |
CN111399439B (en) | A Trajectory Generation Method for Mobile Work Robot Based on Second-Order Cone Planning | |
CN112264989A (en) | Two-mechanical-arm cooperative obstacle avoidance method based on neighborhood traversal | |
CN105537824B (en) | One kind is based on the autonomous welding control method of mechanical arm hand eye coordination | |
CN115070294A (en) | Gantry double-arm welding robot trajectory planning research method | |
CN106891111A (en) | A robotic closed-loop processing system for pin welding of membrane water-cooled walls | |
CN114407019A (en) | Collision-free track planning method for joint space of industrial robot | |
Yang et al. | Collision avoidance trajectory planning for a dual-robot system: Using a modified APF method | |
CN115039572B (en) | A six-degree-of-freedom hybrid picking operator | |
Dian et al. | A novel shrimp rover-based mobile robot for monitoring tunnel power cables | |
CN102873678B (en) | Device and method for controlling attitude and space displacement of welding smoke air inlet | |
CN111805506A (en) | A balance control method for an electric power inspection robot and a soft waist platform | |
CN109986167A (en) | An intelligent obstacle avoidance method for a dual-six-axis arc welding robot for large-scale three-dimensional complex components | |
CN118357933A (en) | A control method for multi-degree-of-freedom operation and maintenance robot | |
CN104670911A (en) | Digital-bus-based small-U-shaped-pipe grabbing and sequential stacking unit | |
CN114895556B (en) | A wheeled robot trajectory tracking control method and computer readable medium | |
CN116810177A (en) | Groove cutting method and device for arc workpiece | |
CN114101869B (en) | Welding seam forming regulation and control method based on space arc track arc swing coupling welding parameter follow-up | |
CN112936279B (en) | Method for solving shortest time of target grabbing operation of mobile operation robot | |
CN204565545U (en) | Fin assembly little U-shaped pipe is unordered grabs cannula unit automatically | |
Chen et al. | Design and control of a novel six-degree-of-freedom hybrid robotic arm | |
CN114290348A (en) | End effector for tunnel inspection robot, inspection robot and control method thereof | |
Tanaka et al. | Suction-port Position Control for Vacuum Working Robot to Improve Working Efficiency | |
CN204689148U (en) | Little U-shaped pipe based on number bus captures sequence and piles up unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |