CN113725711B - Optical vortex optical fiber laser based on double vortex wave plates - Google Patents
Optical vortex optical fiber laser based on double vortex wave plates Download PDFInfo
- Publication number
- CN113725711B CN113725711B CN202110981527.7A CN202110981527A CN113725711B CN 113725711 B CN113725711 B CN 113725711B CN 202110981527 A CN202110981527 A CN 202110981527A CN 113725711 B CN113725711 B CN 113725711B
- Authority
- CN
- China
- Prior art keywords
- optical
- fiber
- vortex
- optical fiber
- wave plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 60
- 239000013307 optical fiber Substances 0.000 title claims abstract description 58
- 239000000835 fiber Substances 0.000 claims abstract description 114
- 230000010287 polarization Effects 0.000 claims abstract description 35
- 239000006096 absorbing agent Substances 0.000 claims description 5
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 2
- 150000002910 rare earth metals Chemical class 0.000 claims description 2
- 230000001276 controlling effect Effects 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 description 5
- 238000005086 pumping Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001548 drop coating Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 238000012576 optical tweezer Methods 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06791—Fibre ring lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10061—Polarization control
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/101—Lasers provided with means to change the location from which, or the direction in which, laser radiation is emitted
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Description
技术领域technical field
本发明涉及新型矢量光场调控领域,尤其涉及一种基于双涡旋波片的光学涡旋光纤激光器。The invention relates to the field of novel vector light field control, in particular to an optical vortex fiber laser based on a double vortex wave plate.
背景技术Background technique
光学涡旋是一种新型结构光束,典型的光学涡旋包括圆柱矢量光束和涡旋光束。其中,圆柱矢量光束具有旋转对称的偏振分布,典型的圆柱矢量光束有径向偏振光束和角向偏振光束。圆柱矢量光束的中心存在偏振奇点,表现为中心光强为零的环状光强分布。偏振态的各向异性以及环形光强分布的特性使圆柱矢量光束广泛的应用于激光加工、粒子加速、表面等离激元激发、超分辨率光学显微、光学镊子等领域;而涡旋光束是指波前具有的新型结构光束,其单个光子携带的轨道角动量(Orbital Angular Momentum,OAM),因为又被称为OAM光束。OAM光束的中心存在相位奇点,也表现为中心光强为零的环状光强分布。携带轨道角动量以及环状光强分布的特性使涡旋光束在轨道角动量复用光纤通信、粒子操控、激光微纳加工等领域具有广泛的应用前景。随着学者们的深入研究,光学涡旋的各种新应用层出不穷,对光学涡旋激光器有着强烈的需求。Optical vortex is a new type of structured beam. Typical optical vortex includes cylindrical vector beam and vortex beam. Among them, the cylindrical vector beam has a rotationally symmetric polarization distribution, and typical cylindrical vector beams include radially polarized beams and angularly polarized beams. There is a polarization singularity in the center of the cylindrical vector beam, which is manifested as a ring-shaped light intensity distribution with the central light intensity being zero. The anisotropy of the polarization state and the characteristics of the annular light intensity distribution make the cylindrical vector beam widely used in laser processing, particle acceleration, surface plasmon excitation, super-resolution optical microscopy, optical tweezers and other fields; and the vortex beam means that the wavefront has A novel structured beam of which a single photon carries Orbital Angular Momentum (OAM), because it is also called OAM beam. There is a phase singularity in the center of the OAM beam, which also appears as a ring-shaped light intensity distribution with zero central light intensity. The characteristics of carrying orbital angular momentum and annular light intensity distribution make vortex beams have broad application prospects in the fields of orbital angular momentum multiplexing optical fiber communication, particle manipulation, and laser micro-nano processing. With the in-depth research of scholars, various new applications of optical vortex emerge in an endless stream, and there is a strong demand for optical vortex lasers.
发明内容Contents of the invention
发明目的:本发明目的是提供一种基于双涡旋波片的光学涡旋光纤激光器,在光纤激光器的腔内插入两面相同的光学涡旋波片,通过对激光腔内偏振态的调控,分别实现圆柱矢量光束(含径向和角向偏振光束)和涡旋光束的输出。Purpose of the invention: The purpose of the present invention is to provide an optical vortex fiber laser based on a double vortex wave plate, inserting two identical optical vortex wave plates in the cavity of the fiber laser, by adjusting the polarization state in the laser cavity, respectively Realize the output of cylindrical vector beam (including radial and angular polarization beam) and vortex beam.
技术方案:本发明包括环形腔,所述的环形腔包括首尾依次相连的波分复用器、增益光纤、空间光部分和多个单模光纤,所述空间光部分的输入端和输出端均连接有光纤准直器,所述的波分复用器与光源连接,所述环形腔内的光纤光路上或空间光部分的空间光路上连接有光隔离器,所述的光纤光路或空间光路上集成有偏振控制模块,所述的空间光部分包括多个涡旋波片,所述的涡旋波片之间设有输出镜。Technical solution: The present invention includes a ring cavity, and the ring cavity includes a wavelength division multiplexer, a gain fiber, a spatial light part and a plurality of single-mode fibers connected end to end in sequence, and the input end and the output end of the space light part are both An optical fiber collimator is connected, the wavelength division multiplexer is connected to the light source, an optical isolator is connected to the optical fiber optical path in the annular cavity or the spatial optical path of the spatial light part, and the optical fiber optical path or the spatial optical path A polarization control module is integrated on the road, and the spatial light part includes a plurality of vortex wave plates, and output mirrors are arranged between the vortex wave plates.
所述空间光部分的输入端连接有第二光纤准直器,输出端连接有第一光纤准直器。The input end of the spatial light part is connected with a second fiber collimator, and the output end is connected with a first fiber collimator.
所述的空间光部分包括第一涡旋波片和第二涡旋波片,所述的第一涡旋波片和第二涡旋波片之间设有输出镜,其中,第一涡旋波片置于第二光纤准直器一侧,第二涡旋波片置于第一光纤准直器一侧。The spatial light part includes a first vortex wave plate and a second vortex wave plate, and an output mirror is arranged between the first vortex wave plate and the second vortex wave plate, wherein the first vortex wave plate The wave plate is placed on the side of the second fiber collimator, and the second vortex wave plate is placed on the side of the first fiber collimator.
所述的单模光纤包括第一单模光纤和第二单模光纤,所述的第一单模光纤一端与第一光纤准直器连接,另一端与第二单模光纤连接,第二单模光纤的另一端与波分复用器连接。The single-mode fiber includes a first single-mode fiber and a second single-mode fiber, one end of the first single-mode fiber is connected to the first fiber collimator, the other end is connected to the second single-mode fiber, and the second single-mode fiber The other end of the mode fiber is connected with a wavelength division multiplexer.
所述的第一单模光纤和第二单模光纤之间设有锁模器件,所述的锁模器件包括第一光纤跳线和第二光纤跳线,其中,第二光纤跳线与第一单模光纤连接,第一光纤跳线与第二单模光纤连接。A mode-locking device is provided between the first single-mode fiber and the second single-mode fiber, and the mode-locking device includes a first fiber jumper and a second fiber jumper, wherein the second fiber jumper is the same as the first fiber jumper A single-mode optical fiber is connected, and the first optical fiber jumper is connected to the second single-mode optical fiber.
所述的锁模器件集成至光纤光路或放置在空间光路。The mode-locking device is integrated into the fiber optical path or placed in the spatial optical path.
所述的第一光纤跳线和第二光纤跳线采用光纤耦合器连接,第一光纤跳线和第二光纤跳线之间设有可饱和吸收体。The first fiber jumper and the second fiber jumper are connected by a fiber coupler, and a saturable absorber is arranged between the first fiber jumper and the second fiber jumper.
所述的光隔离器采用置于腔内空间光路的空间光隔离器或置于腔内光纤光路的光纤隔离器。The optical isolator is a spatial optical isolator placed in the spatial optical path in the cavity or a fiber isolator placed in the optical fiber optical path in the cavity.
所述的偏振控制模块采用置于光纤光路中的光纤偏振控制器或置于空间光光路中的半波片与四分之一波片的组合,所述的半波片和四分之一波片顺光路依次设置,其中,半波片置于第二光纤准直器一侧,四分之一波片另一侧设有第一涡旋波片。The polarization control module adopts a fiber optic polarization controller placed in the optical fiber path or a combination of a half-wave plate and a quarter-wave plate placed in the spatial light path, and the half-wave plate and quarter-wave The plates are arranged sequentially along the optical path, wherein the half-wave plate is placed on one side of the second fiber collimator, and the other side of the quarter-wave plate is provided with the first vortex wave plate.
所述的增益光纤为稀土掺杂增益光纤,增益光纤受激辐射出的光波长应大于该装置中单模光纤的截止频率,使单模光纤工作在单模传输状态。The gain fiber is a rare-earth-doped gain fiber, and the wavelength of light radiated by the gain fiber should be greater than the cut-off frequency of the single-mode fiber in the device, so that the single-mode fiber works in a single-mode transmission state.
工作原理:通过在环形光纤激光器的激光腔内插入两面相同的涡旋半波片,使激光腔内的横模模态实现高斯光束-涡旋光束/圆柱矢量光束-高斯光束的转化,从而获得偏振连续可调的圆柱矢量光束和涡旋光束。Working principle: By inserting two identical vortex half-wave plates into the laser cavity of the ring fiber laser, the transverse mode in the laser cavity can realize the conversion of Gaussian beam-vortex beam/cylindrical vector beam-Gaussian beam, thus obtaining Cylindrical vector and vortex beams with continuously adjustable polarization.
有益效果:本发明将双涡旋波片插入光纤激光器的激光腔内,一方面,解决了以往单面涡旋波片和反射镜组合,而产生的强菲涅尔反射作用,大幅度地减少了背向反射光回到光纤光路而造成不稳定因素,另一方面,大幅度提高了腔内光束的利用率,在保证光纤光路的光全是基模的前提下,在腔内获得了圆柱矢量光束及涡旋光束,避免了少模光纤及选模器件的使用,从而获得高纯度、高利用率的超短脉冲圆柱矢量光束及涡旋光束。Beneficial effects: the present invention inserts the double vortex wave plate into the laser cavity of the fiber laser, on the one hand, solves the strong Fresnel reflection effect caused by the combination of the single-sided vortex wave plate and the mirror in the past, and greatly reduces It prevents the back-reflected light from returning to the optical fiber path and causing instability. On the other hand, it greatly improves the utilization rate of the beam in the cavity. Under the premise of ensuring that the light in the optical fiber path is all the fundamental mode, a cylinder is obtained in the cavity. Vector beams and vortex beams avoid the use of few-mode fibers and mode selection devices, thereby obtaining ultrashort pulse cylindrical vector beams and vortex beams with high purity and high utilization rate.
附图说明Description of drawings
图1为本发明基于双涡旋波片的脉冲光学涡旋光束纤激光器示意图;1 is a schematic diagram of a pulsed optical vortex beam fiber laser based on a double vortex wave plate in the present invention;
图2为本发明基于双涡旋波片的连续光学涡旋光束纤激光器示意图;2 is a schematic diagram of a continuous optical vortex beam fiber laser based on a double vortex wave plate in the present invention;
图3(a)通过双涡旋波片后的高斯光束;Figure 3(a) Gaussian beam after passing through the double vortex wave plate;
图3(b)输出的角向矢量偏振光束;The angular vector polarized light beam output in Fig. 3(b);
图3(c)输出的径向矢量偏振光束;The radial vector polarized light beam of Fig. 3 (c) output;
图3(d)输出的左旋圆偏振涡旋光束;Figure 3(d) output left-handed circularly polarized vortex beam;
图3(e)输出的45°圆柱矢量光束;45° cylindrical vector beam output in Fig. 3(e);
图3(f)输出的30°圆柱矢量光束。Figure 3(f) Output 30° cylindrical vector beam.
具体实施方式Detailed ways
下面结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing.
本发明通过将两面相同的涡旋波片插入环形光纤激光器的腔内,一面用于将腔内的高斯光束转化为圆柱矢量光束或涡旋光束后输出腔外,另一面用于将圆柱矢量光束或涡旋光束转换为高斯光束,从而再次耦合进光纤。通过对激光腔内偏振态的调控,分别实现圆柱矢量光束(含径向和角向偏振光束)和涡旋光束的输出。同时,在腔内加入锁模器件,便可产生超短脉冲圆柱矢量光束和涡旋光束。本装置具有电光效率高、结构紧凑等优势。In the present invention, two identical vortex wave plates are inserted into the cavity of the ring fiber laser, one side is used to convert the Gaussian beam in the cavity into a cylindrical vector beam or a vortex beam and then output out of the cavity, and the other side is used to convert the cylindrical vector beam Or the vortex beam is converted into a Gaussian beam, which is coupled into the fiber again. By adjusting the polarization state in the laser cavity, the outputs of cylindrical vector beams (including radially and angularly polarized beams) and vortex beams are respectively realized. At the same time, adding a mode-locking device in the cavity can generate ultrashort pulse cylindrical vector beams and vortex beams. The device has the advantages of high electro-optic efficiency, compact structure and the like.
实施例1Example 1
如图1所示,本发明包括用于泵浦增益光纤的泵浦源1,泵浦源包括且不限于光纤耦合输出半导体激光器,半导体激光器的输出波长为976nm,泵浦功率0到600mW可调。泵浦源1与波分复用器2连接,将泵浦光耦合进环形腔内,波分复用器2包括但不限于980nm/1064nm或980nm/1310nm或980nm/1550nm波分复用器,其耦合波长应与增益光纤3的受激辐射光波长一致。波分复用器2另一端与增益光纤3连接,增益光纤3作为环形腔的工作物质,为稀土掺杂增益光纤,包括但不限于掺镱、掺铒等掺杂光纤,增益光纤3受激辐射出的光波长应大于该装置中单模光纤的截止频率,使单模光纤工作在单模传输状态。As shown in Figure 1, the present invention includes a
增益光纤3与光隔离器连接,光隔离器使环形腔内的光路具有单向性,光隔离器可采用空间光隔离器,置于腔内空间光路,亦可采用光纤隔离器5,置于腔内光纤光路,如图1和图2所示。光纤隔离器5的另一端与偏振控制模块连接,偏振控制模块可在光纤光路中采用光纤偏振控制器62,如图1所示,亦可在空间光光路中采用半波片75与四分之一波片74的组合,如图2所示。光纤偏振控制器62可以控制腔内的偏振态,从而控制输出光为圆柱矢量光束或普通涡旋光束;光纤偏振控制器62的另一端与第二光纤准直器82连接,第二光纤准直器82将光纤中的光束输出至空间光部分7,由于空间光和光纤准直器间存在较强的菲涅尔反射作用,实际操作过程中可采用FC/APC接头接入准直器,以减少背向反射光回到光路而造成不稳定因素;在空间光部分7,顺光路方向依次为第一涡旋波片72、输出镜73、第二涡旋波片71,输出镜73用于将超短脉冲圆柱矢量光束或涡旋光束输出,对腔内偏振态分布无影响,包括但不限于45°分光平片、非偏振分束立方体等。The gain
以输出涡旋光束为例,假设第二光纤准直器82输出的光为右旋圆偏振光21;透射至第一涡旋波片72后变为左旋圆偏振涡旋光束22,参见图3(d)为左旋圆偏振涡旋光束,左旋圆偏振涡旋光束22通过输出镜73输出一部分第二涡旋光束25,并透射一部分第一涡旋光束23,第一涡旋光束23再次经过第二涡旋波片71,透射后变为右旋圆偏振高斯光24,参见图3(a),为经过两面涡旋波片后的高斯光束。实际操作过程中,若涡旋波片的拓扑荷数较大,则可用聚焦准直模块,将此光束聚焦准直后通过第一光纤准直器81耦合进第一单模光纤4中;第一单模光纤4的另一端与锁模组件33连接,锁模组件33用于形成超短脉冲,包括第一光纤跳线31和第二光纤跳线32,其中,第二光纤跳线32与第一单模光纤4连接;第一光纤跳线31和第二光纤跳线32用光纤耦合器连接,可饱和吸收体置于两跳线之间从而在腔内形成超短脉冲;第一光纤跳线31的另一端通过第二单模光纤12与波分复用器2连接形成环形腔。Taking the output vortex beam as an example, it is assumed that the light output by the
图1中所用锁模方式为真实可保和吸收体锁模,本发明装置还可以用非线性偏振旋转(NPR)、非线性环形放大镜(NALM)和非线性光纤环形镜(NOLM)等人工可保和吸收体锁模。锁模器件可集成至光纤光路,亦可放置至空间光路,集成至光纤光路的方法包括且不限于滴涂跳线头、D形或锥形光纤沉积、光子晶体光纤填充等。锁模器件可去除,从而实现连续型圆柱矢量光束及涡旋光束的产生,如图2所示。The mode-locking mode used in Fig. 1 is real insurable and absorber mode-locking, and the device of the present invention can also be artificially available with nonlinear polarization rotation (NPR), nonlinear loop magnifier (NALM) and nonlinear optical fiber loop mirror (NOLM) Paul and absorber mode-locking. The mode-locking device can be integrated into the optical fiber path or placed in the spatial light path. The methods of integration into the fiber optic path include but are not limited to drop-coating jumper head, D-shaped or tapered fiber deposition, photonic crystal fiber filling, etc. The mode-locking device can be removed to realize the generation of continuous cylindrical vector beams and vortex beams, as shown in Figure 2.
调节腔内偏振态可获得圆柱矢量光束,参见图3(b),其为角向矢量光;参见图3(c),其为径向矢量光,两种光束都是特殊的圆柱矢量光束。还可以输出其他的圆柱矢量光束,参见图3(e),为与标准径向偏振光各点夹角为45°时的圆柱矢量光束,只需调节偏振模块62使光纤准直器82输出的线偏振光的偏振角度与涡旋波片72的零度快轴夹角为45°即可;同理,参见图3(f)为与标准径向偏振光各点夹角为30°时的圆柱矢量光束。Cylindrical vector beams can be obtained by adjusting the polarization state in the cavity. See Figure 3(b), which is angular vector beams; see Figure 3(c), which is radial vector beams. Both beams are special cylindrical vector beams. It is also possible to output other cylindrical vector beams, referring to Fig. 3(e), for the cylindrical vector beams when the angle with each point of the standard radially polarized light is 45°, only need to adjust the
实施例2Example 2
如图2所示,将图1中的锁模组件33去除,即可输出连续型圆柱矢量光束或普通涡旋光束,与实施例1的不同点还在于,图2中的偏振控制模块置于空间光路部分。连续型圆柱矢量光束或普通涡旋光束产生装置包括用于泵浦增益光纤的泵浦源1;用于将泵浦光耦合进增益光纤的波分复用器2;用于作为激光腔工作物质的增益光纤3;用于使环形腔内光路具有单向性的光隔离器5;用于将光纤中的光与空间光相互耦合的光纤准直器81和82;用于控制腔内偏振态的四分之一波片74和半波片75;用于将腔内光束模态相互转化的涡旋波片71和72;用于将超短脉冲圆柱矢量光束或涡旋光束输出的输出镜73;用于连接整个光路的单模光纤4和12。As shown in Figure 2, the mode-locking component 33 in Figure 1 can be removed to output a continuous cylindrical vector beam or a common vortex beam. The difference from
泵浦源1与波分复用器2连接,将泵浦光耦合进环形腔内;波分复用器2尾端与增益光纤3连接,增益光纤3作为环形腔的工作物质;增益光纤3另一端与光纤隔离器5连接,光纤隔离器5使环形腔内的光路具有单向性;光纤隔离器5的另一端与第二光纤准直器82连接,第二光纤准直器82将光纤中的光束输出至空间光部分7,由于空间光和光纤准直器间存在较强的菲涅尔反射作用,实际操作过程中可采用FC/APC接头接入准直器,以减少背向反射光回到光路而造成不稳定因素;在空间光部分,顺光路方向依次为半波片75、四分之一波片74、第一涡旋波片72、输出镜73、第二涡旋波片71;与实施例1一致,可通过旋转半波片75和四分之一波片74,来控制腔内偏振态分布,从而选择输出光的模态,若涡旋波片的拓扑荷数较大,亦可用聚焦准直模块,将此光束聚焦准直后通过第一光纤准直器81耦合进第一单模光纤4中;第一单模光纤4的另一端通过第二单模光纤12与波分复用器2连接形成环形腔。The
下面利用琼斯矢量对于空间光路的光束横模转化做出推导。In the following, the Jones vector is used to deduce the beam transverse mode transformation of the spatial light path.
假设光纤准直器输出的高斯光束为右旋圆偏振光,则该光束通过第一涡旋波片的过程可用琼斯矩阵表示为:Assuming that the Gaussian beam output by the fiber collimator is right-handed circularly polarized light, the process of the beam passing through the first vortex wave plate can be expressed by Jones matrix as:
其中,m为涡旋波片拓扑荷数;为涡旋波片特定位置的半径和0°快轴夹角;θ为涡旋波片0°快轴与光束偏振角度夹角。通过上式可见,第一涡旋波片输出为拓扑荷数为m的涡旋光束,可参见附图3(d)。将此光束一部分反射输出腔外,使另一部光透射再次回到腔内。回到腔内的涡旋光束,通过第二涡旋波片可用琼斯矩阵表示为:Among them, m is the topological charge number of the vortex wave plate; is the angle between the radius of a specific position of the vortex wave plate and the 0° fast axis; θ is the angle between the 0° fast axis of the vortex wave plate and the beam polarization angle. It can be seen from the above formula that the output of the first vortex wave plate is a vortex beam with a topological charge m, as can be seen in Figure 3(d). A part of the light beam is reflected out of the cavity, and another part of the light is transmitted back into the cavity again. The vortex beam returning to the cavity can be expressed by the Jones matrix through the second vortex wave plate:
通过上式可见,产生的涡旋光束通过第二涡旋波片后,其螺旋相位因子被抵消,再次转化成了右旋圆偏振高斯光束。当涡旋波片的拓扑荷数较大时,可用聚焦准直模块将双涡旋波片转换的高斯光束聚焦并耦合进光纤中。It can be seen from the above formula that after the generated vortex beam passes through the second vortex wave plate, its helical phase factor is canceled out and transformed again into a right-handed circularly polarized Gaussian beam. When the topological charge of the vortex wave plate is large, the Gaussian beam converted by the double vortex wave plate can be focused and coupled into the optical fiber by the focusing and collimating module.
假设光纤准直器输出的高斯光束为任意线偏振光,则该光束通过第一涡旋波片的过程可用琼斯矩阵表示为:Assuming that the Gaussian beam output by the fiber collimator is any linearly polarized light, the process of the beam passing through the first vortex wave plate can be expressed by Jones matrix as:
其中α为线偏振光与x轴的夹角。通过上式可见,第一涡旋波片输出为圆柱形矢量光束,当α为45°时,输出光可参见图3(e);当α为30°时,输出光可参见图3(f)。其偏振状态在各个方向上与标准径向偏振光的偏振角度夹角为α,将此光束一部分反射输出腔外,使另一部光透射再次回到腔内。回到腔内的涡旋光束,通过第二涡旋波片可用琼斯矩阵表示为:Where α is the angle between the linearly polarized light and the x-axis. It can be seen from the above formula that the output of the first vortex wave plate is a cylindrical vector beam. When α is 45°, the output light can be seen in Figure 3(e); when α is 30°, the output light can be seen in Figure 3(f ). The polarization angle between its polarization state and the standard radially polarized light in each direction is α, and a part of the light beam is reflected out of the cavity, and the other part of the light is transmitted back into the cavity again. The vortex beam returning to the cavity can be expressed by the Jones matrix through the second vortex wave plate:
通过上式可见,产生的圆柱矢量光束通过第二涡旋波片后,其偏振态奇点被抵消,再次转化成了再次转化成了线偏振高斯光束,且偏振态与入射至第一涡旋波片的光束偏振态一致。It can be seen from the above formula that after the generated cylindrical vector beam passes through the second vortex wave plate, its polarization state singularity is canceled and transformed into a linearly polarized Gaussian beam again, and the polarization state is the same as that incident on the first vortex wave plate The beam polarization state of the wave plate is consistent.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110981527.7A CN113725711B (en) | 2021-08-25 | 2021-08-25 | Optical vortex optical fiber laser based on double vortex wave plates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110981527.7A CN113725711B (en) | 2021-08-25 | 2021-08-25 | Optical vortex optical fiber laser based on double vortex wave plates |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113725711A CN113725711A (en) | 2021-11-30 |
CN113725711B true CN113725711B (en) | 2022-11-08 |
Family
ID=78677868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110981527.7A Active CN113725711B (en) | 2021-08-25 | 2021-08-25 | Optical vortex optical fiber laser based on double vortex wave plates |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113725711B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115360570B (en) * | 2022-08-17 | 2024-09-27 | 江苏科技大学 | An intracavity frequency-doubled green light optical vortex generating device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111525379A (en) * | 2020-04-01 | 2020-08-11 | 南京大学 | A Broadband Topological Charge Tunable Laguerre Gaussian Optical Parametric Oscillator |
CN111916985A (en) * | 2020-08-24 | 2020-11-10 | 苏州索拉科技有限公司 | Laser for generating column vector beam |
CN113036584A (en) * | 2021-03-02 | 2021-06-25 | 江苏科技大学 | Ultrashort pulse vortex light beam generating device |
CN113050273A (en) * | 2021-03-19 | 2021-06-29 | 中国人民解放军陆军炮兵防空兵学院 | Direct-view method and device for generating arbitrary column vector polarized light based on vortex half-wave plate |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10367328B2 (en) * | 2017-07-06 | 2019-07-30 | Industrial Technology Research Institute | Pulse laser device |
-
2021
- 2021-08-25 CN CN202110981527.7A patent/CN113725711B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111525379A (en) * | 2020-04-01 | 2020-08-11 | 南京大学 | A Broadband Topological Charge Tunable Laguerre Gaussian Optical Parametric Oscillator |
CN111916985A (en) * | 2020-08-24 | 2020-11-10 | 苏州索拉科技有限公司 | Laser for generating column vector beam |
CN113036584A (en) * | 2021-03-02 | 2021-06-25 | 江苏科技大学 | Ultrashort pulse vortex light beam generating device |
CN113050273A (en) * | 2021-03-19 | 2021-06-29 | 中国人民解放军陆军炮兵防空兵学院 | Direct-view method and device for generating arbitrary column vector polarized light based on vortex half-wave plate |
Also Published As
Publication number | Publication date |
---|---|
CN113725711A (en) | 2021-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0742966B1 (en) | Diode pumped, multi axial mode, intracavity frequency doubled laser | |
CN107681426B (en) | A kind of column symmetry vector light solid state laser that polarization is continuously adjustable | |
CN101764348B (en) | Semiconductor pump ultraviolet laser | |
CN107565352B (en) | A kind of laser exporting the tunable Laguerre Gaussian beam of 1064nm | |
KR20150129021A (en) | Highly Efficient, Single-Pass, Harmonic Generator with Round Output Beam | |
CN105591268A (en) | Large power fiber laser with inner cavity frequency doubling | |
CN107086430B (en) | A kind of third harmonic generation ultraviolet laser | |
CN113725711B (en) | Optical vortex optical fiber laser based on double vortex wave plates | |
US7457328B2 (en) | Polarization methods for diode laser excitation of solid state lasers | |
CN113904208B (en) | A high-purity Laguerre-Gaussian beam generating system and its generating method | |
CN107611760A (en) | A kind of torsional pendulum chamber pure-tone pulse laser | |
CN1741328B (en) | diode pumped laser | |
CN106785850A (en) | A kind of solid state laser of outputting radial polarization and angular polarization light beam | |
CN102332676A (en) | Mid-infrared fiber laser | |
Zhang et al. | Decentered Gaussian beam pumped highly efficient passively Q-switched microchip laser for controllable high-order transverse modes | |
CN111525376A (en) | Based on TM01Vortex laser generation method for mode light conversion and vortex laser | |
CN105098591A (en) | Continuous wave self-Raman laser of wavelength-locked LD resonance pumping | |
CN114784606A (en) | Laguerre Gaussian beam generating device and method | |
CN104701726A (en) | Cylindrical vector pulse laser device based on walk-off effect of birefringent crystal | |
CN105006737B (en) | The compound green (light) laser of electric light, double frequency function based on rubidium oxygen titanium phosphate crystal and its method of work | |
CN115360570A (en) | Intracavity frequency doubling green light optical vortex generating device | |
CN101969175A (en) | Ytterbium-doped multicore photonic crystal optical fiber mode-locked laser | |
Shulga | Generation of radially polarized beams by intracavity waveguide technique | |
CN207559263U (en) | A kind of high efficiency all -fiber column vector beam laser | |
CN221862158U (en) | A blue light semiconductor laser pumped Pr:YLF pulsed solid laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20241115 Address after: Room 403, Building B, Optics Valley Precision Technology Park, No. 8 Changchengyuan Road, Donghu New Technology Development Zone, Wuhan City, Hubei Province, China 430205 Patentee after: WUHAN MESWAY TECHNOLOGY CO.,LTD. Country or region after: China Address before: No.2, Mengxi Road, Jingkou District, Zhenjiang City, Jiangsu Province, 212008 Patentee before: JIANGSU University OF SCIENCE AND TECHNOLOGY Country or region before: China |
|
TR01 | Transfer of patent right |