CN113725196B - Semiconductor structure and forming method thereof - Google Patents
Semiconductor structure and forming method thereof Download PDFInfo
- Publication number
- CN113725196B CN113725196B CN202111013804.1A CN202111013804A CN113725196B CN 113725196 B CN113725196 B CN 113725196B CN 202111013804 A CN202111013804 A CN 202111013804A CN 113725196 B CN113725196 B CN 113725196B
- Authority
- CN
- China
- Prior art keywords
- alignment mark
- layer
- dielectric layer
- metal material
- structural units
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/544—Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及半导体制造技术领域,尤其涉及一种半导体结构及其形成方法。The present invention relates to the field of semiconductor manufacturing technology, and in particular to a semiconductor structure and a forming method thereof.
背景技术Background Art
随着平面型闪存存储器的发展,半导体的生产工艺取得了巨大的进步。但是最近几年,平面型闪存的发展遇到了各种挑战:物理极限、现有显影技术极限以及存储电子密度极限等。在此背景下,为解决平面闪存遇到的困难以及追求更低的单位存储单元的生产成本,各种不同的三维(3D)闪存存储器结构应运而生,例如3D NOR(3D或非)闪存和3D NAND(3D与非)闪存。With the development of planar flash memory, the production process of semiconductors has made great progress. However, in recent years, the development of planar flash memory has encountered various challenges: physical limits, existing development technology limits, and storage electron density limits. In this context, in order to solve the difficulties encountered by planar flash memory and pursue lower production costs per unit storage unit, various three-dimensional (3D) flash memory structures have emerged, such as 3D NOR (3D non-or) flash memory and 3D NAND (3D non-and) flash memory.
其中,3D NAND存储器以其小体积、大容量为出发点,将储存单元采用三维模式层层堆叠的高度集成为设计理念,生产出高单位面积存储密度,高效存储单元性能的存储器,已经成为新兴存储器设计和生产的主流工艺。Among them, 3D NAND memory takes its small size and large capacity as its starting point, and uses a highly integrated design concept of stacking storage units in a three-dimensional mode to produce memory with high storage density per unit area and efficient storage unit performance. It has become the mainstream process for the design and production of emerging memories.
晶圆键合是半导体制造过程中的一个重要步骤。但是,当前的晶圆键合工艺中,由于键合对准标记本身的缺陷,导致键合过程中不能准确的识别对准标记,从而易出现对准偏差甚至是错位,影响晶圆键合质量。Wafer bonding is an important step in the semiconductor manufacturing process. However, in the current wafer bonding process, due to the defects of the bonding alignment marks themselves, the alignment marks cannot be accurately identified during the bonding process, which easily leads to alignment deviation or even misalignment, affecting the wafer bonding quality.
因此,如何提高对准标记识别的准确度,从而提高半导体产品的良率,是当前亟待解决的技术问题。Therefore, how to improve the accuracy of alignment mark recognition, thereby improving the yield of semiconductor products, is a technical problem that needs to be solved urgently.
发明内容Summary of the invention
本发明提供一种半导体结构及其形成方法,用于解决现有技术中对准标记识别准确度低的问题,以改善半导体产品的良率。The present invention provides a semiconductor structure and a method for forming the same, which are used to solve the problem of low recognition accuracy of alignment marks in the prior art, so as to improve the yield of semiconductor products.
为了解决上述问题,本发明提供了一种半导体结构,包括:In order to solve the above problems, the present invention provides a semiconductor structure, comprising:
衬底,所述衬底上包括半导体层、以及位于所述半导体层顶面的顶层互连层;A substrate, the substrate comprising a semiconductor layer and a top interconnection layer located on a top surface of the semiconductor layer;
对准标记,位于所述半导体层上方;an alignment mark located above the semiconductor layer;
介质层,位于所述半导体层上方,所述介质层中包括环绕所述对准标记的外周分布、且呈周期性排布的多个第一重复结构单元,所述第一重复结构单元用于增大所述对准标记与所述介质层之间的对比度。The dielectric layer is located above the semiconductor layer, and the dielectric layer includes a plurality of first repeating structural units distributed around the periphery of the alignment mark and arranged periodically, wherein the first repeating structural units are used to increase the contrast between the alignment mark and the dielectric layer.
可选的,所述第一重复结构单元的材料为第一金属材料,所述第一金属材料在第一波长光线照射下能够发生金属偶极谐振,以增大所述对准标记与所述介质层在所述第一波长光线下的吸收率差。Optionally, the material of the first repeating structure unit is a first metal material, and the first metal material can produce metal dipole resonance under the irradiation of a first wavelength of light to increase the difference in absorption rate between the alignment mark and the dielectric layer under the first wavelength of light.
可选的,所述第一重复结构单元的形状为圆形、椭圆形或者任意多边形。Optionally, the first repeating structural unit is in the shape of a circle, an ellipse or any polygon.
可选的,所述介质层位于所述半导体层的顶面,所述顶层互连层贯穿所述介质层,所述对准标记位于所述介质层中。Optionally, the dielectric layer is located on the top surface of the semiconductor layer, the top interconnect layer penetrates the dielectric layer, and the alignment mark is located in the dielectric layer.
可选的,所述介质层位于所述半导体层的顶面,所述顶层互连层贯穿所述介质层;所述半导体结构还包括:Optionally, the dielectric layer is located on the top surface of the semiconductor layer, and the top interconnect layer penetrates the dielectric layer; and the semiconductor structure further includes:
隔离层,覆盖所述介质层和所述顶层互连层,所述对准标记位于所述隔离层中,在沿垂直于所述半导体层顶面的方向上,呈周期性排布的多个所述第一重复结构单元的投影环绕所述对准标记的投影的外周分布。An isolation layer covers the dielectric layer and the top interconnection layer, the alignment mark is located in the isolation layer, and in a direction perpendicular to the top surface of the semiconductor layer, projections of a plurality of periodically arranged first repeating structural units are distributed around the periphery of the projection of the alignment mark.
可选的,所述对准标记包括若干个主体部,呈周期性排布的多个所述第一重复结构单元环绕所述主体部的外周分布。Optionally, the alignment mark includes a plurality of main body parts, and a plurality of the first repeating structure units are periodically arranged and distributed around the periphery of the main body parts.
可选的,所述对准标记包括多个相互分离的所述主体部,且多个所述主体部呈风车状或者八角状排布。Optionally, the alignment mark includes a plurality of main body portions separated from each other, and the plurality of main body portions are arranged in a windmill shape or an octagonal shape.
可选的,每个所述主体部内具有呈周期性排布的多个第二重复结构单元,所述第二重复结构单元与所述第一重复结构单元对第二波长光线的吸收率不同。Optionally, each of the main bodies has a plurality of second repeating structural units arranged periodically, and the second repeating structural units and the first repeating structural units have different absorptivity to the second wavelength light.
可选的,所述第二重复结构单元的材料为第二金属材料,所述第二金属材料在所述第二波长光线照射下能够发生金属偶极谐振,以增大所述对准标记与所述介质层在所述第二波长光线下的吸收率差。Optionally, the material of the second repeating structure unit is a second metal material, and the second metal material can produce metal dipole resonance when irradiated with the second wavelength light to increase the absorption rate difference between the alignment mark and the dielectric layer under the second wavelength light.
可选的,所述第二重复结构单元的形状与所述第一重复结构单元的形状相同。Optionally, the shape of the second repeating structural unit is the same as that of the first repeating structural unit.
可选的,所述第二重复结构单元的尺寸与所述第一重复结构单元的尺寸不同。Optionally, the size of the second repeating structural unit is different from the size of the first repeating structural unit.
为了解决上述问题,本发明还提供了一种半导体结构的形成方法,包括如下步骤:In order to solve the above problem, the present invention further provides a method for forming a semiconductor structure, comprising the following steps:
提供衬底,所述衬底上包括半导体层;Providing a substrate, wherein the substrate comprises a semiconductor layer;
形成位于所述半导体层上方的对准标记、顶层互连层和介质层,所述介质层中包括环绕所述对准标记的外周分布、且呈周期性排布的多个第一重复结构单元,所述第一重复结构单元用于增大所述对准标记与所述介质层之间的对比度。An alignment mark, a top interconnect layer and a dielectric layer are formed above the semiconductor layer, wherein the dielectric layer includes a plurality of first repeating structural units distributed around the periphery of the alignment mark and arranged periodically, and the first repeating structural units are used to increase the contrast between the alignment mark and the dielectric layer.
可选的,形成位于所述半导体层上方的对准标记、顶层互连层和介质层的具体步骤包括:Optionally, the specific steps of forming an alignment mark, a top interconnect layer and a dielectric layer located above the semiconductor layer include:
形成覆盖所述半导体层顶面的介质层;forming a dielectric layer covering the top surface of the semiconductor layer;
于所述介质层中形成所述对准标记、所述顶层互连层以及环绕所述对准标记外周分布的多个第一开口;forming the alignment mark, the top interconnect layer, and a plurality of first openings distributed around the periphery of the alignment mark in the dielectric layer;
填充第一金属材料至所述第一开口内,形成呈周期性排布的多个所述第一重复结构单元,所述第一金属材料在第一波长光线照射下能够发生金属偶极谐振,以增大所述对准标记与所述介质层在所述第一波长光线下的吸收率差。The first opening is filled with a first metal material to form a plurality of first repeating structural units arranged periodically, wherein the first metal material can generate metal dipole resonance under the irradiation of a first wavelength of light to increase the difference in absorption rate between the alignment mark and the dielectric layer under the first wavelength of light.
可选的,形成位于所述半导体层上方的对准标记、顶层互连层和介质层的具体步骤包括:Optionally, the specific steps of forming an alignment mark, a top interconnect layer and a dielectric layer located above the semiconductor layer include:
形成覆盖所述半导体层顶面的介质层;forming a dielectric layer covering the top surface of the semiconductor layer;
于所述介质层中形成所述顶层互连层以及多个第二开口;forming the top interconnect layer and a plurality of second openings in the dielectric layer;
填充第一金属材料至所述第二开口内,形成呈周期性排布的多个所述第一重复结构单元;Filling the first metal material into the second opening to form a plurality of the first repeating structure units arranged periodically;
形成覆盖所述介质层和所述顶层互连层的隔离层;forming an isolation layer covering the dielectric layer and the top interconnect layer;
于所述隔离层中形成对准标记,使得在沿垂直于所述半导体层顶面的方向上,呈周期性排布的多个所述第一重复结构单元的投影环绕所述对准标记的投影的外周分布,所述第一金属材料在第一波长光线照射下能够发生金属偶极谐振,以增大所述对准标记与所述介质层在所述第一波长光线下的吸收率差。An alignment mark is formed in the isolation layer, so that in a direction perpendicular to the top surface of the semiconductor layer, the projections of the plurality of periodically arranged first repeating structure units are distributed around the periphery of the projection of the alignment mark, and the first metal material can produce metal dipole resonance when irradiated with light of a first wavelength, so as to increase the difference in absorption rate between the alignment mark and the dielectric layer under the light of the first wavelength.
可选的,所述第一重复结构单元的形状为圆形、椭圆形或者任意多边形。Optionally, the first repeating structural unit is in the shape of a circle, an ellipse or any polygon.
可选的,于所述隔离层中形成对准标记的具体步骤包括:Optionally, the specific steps of forming an alignment mark in the isolation layer include:
于所述隔离层中定义若干主体区域;defining a plurality of main body regions in the isolation layer;
于每个所述主体区域中形成呈周期性排布的多个第二重复结构单元,所述第二重复结构单元与所述第一重复结构单元对第二波长光线的吸收率不同。A plurality of second repeating structure units are formed in each of the main body regions and are arranged periodically. The second repeating structure units and the first repeating structure units have different absorptivity to the second wavelength light.
可选的,于每个所述主体区域中形成呈周期性排布的多个第二重复结构单元的具体步骤包括:Optionally, the specific steps of forming a plurality of second repeating structural units arranged periodically in each of the main body regions include:
刻蚀所述主体区域的所述隔离层,形成呈周期性排布的多个第三开口;Etching the isolation layer in the main region to form a plurality of third openings arranged periodically;
填充第二金属材料至所述第三开口内,于每个所述主体区域中形成呈周期性排布的多个第二重复结构单元,所述第二金属材料在所述第二波长光线照射下能够发生金属偶极谐振,以增大所述对准标记与所述介质层在所述第二波长光线下的吸收率差。A second metal material is filled into the third opening to form a plurality of second repeating structural units arranged periodically in each of the main body regions, wherein the second metal material can produce metal dipole resonance when irradiated with the second wavelength light to increase the difference in absorption rate between the alignment mark and the dielectric layer under the second wavelength light.
可选的,所述主体区域的数量为多个,且多个所述主体区域呈风车状或者八角状排布。Optionally, there are multiple main body areas, and the multiple main body areas are arranged in a windmill shape or an octagonal shape.
可选的,所述第二重复结构单元的形状与所述第一重复结构单元的形状相同。Optionally, the shape of the second repeating structural unit is the same as that of the first repeating structural unit.
可选的,所述第二重复结构单元的尺寸与所述第一重复结构单元的尺寸不同。Optionally, the size of the second repeating structural unit is different from the size of the first repeating structural unit.
本发明提供的半导体结构及其形成方法,通过在介质层中形成环绕对准标记外周分布、且呈周期性排布的多个第一重复结构单元,利用呈周期性排布的多个所述第一重复结构单元增强所述对准标记与所述介质层之间的明暗对比度,从而使得在利用所述对准标记进行定位的过程中,能够提高对对准标记识别的准确度与清晰度,有助于提高半导体产品的良率,改善半导体产品的性能。The semiconductor structure and the method for forming the same provided by the present invention form a plurality of first repeating structural units distributed around the periphery of an alignment mark and arranged periodically in a dielectric layer, and utilize the plurality of first repeating structural units arranged periodically to enhance the light-dark contrast between the alignment mark and the dielectric layer, thereby enabling the accuracy and clarity of alignment mark recognition to be improved during positioning using the alignment mark, thereby helping to improve the yield of semiconductor products and the performance of semiconductor products.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
附图1是本发明第一具体实施方式中半导体结构的截面示意图;FIG1 is a schematic cross-sectional view of a semiconductor structure in a first specific embodiment of the present invention;
附图2是附图1中虚线框内的俯视示意图;Figure 2 is a schematic top view within the dotted frame in Figure 1;
附图3是附图2中圆形虚线框中的放大示意图;Figure 3 is an enlarged schematic diagram of the circular dotted frame in Figure 2;
附图4是附图2中方形虚线框中的放大示意图;Figure 4 is an enlarged schematic diagram of the square dotted frame in Figure 2;
附图5是本发明第一具体实施方式中半导体结构的形成方法流程图;5 is a flow chart of a method for forming a semiconductor structure in a first specific embodiment of the present invention;
附图6是本发明第二具体实施方式中半导体结构的截面示意图;6 is a schematic cross-sectional view of a semiconductor structure in a second specific embodiment of the present invention;
附图7是本发明第二具体实施方式中对准标记与介质层的俯视示意图;7 is a schematic top view of an alignment mark and a dielectric layer in a second specific embodiment of the present invention;
附图8是附图7中方形虚线框中的放大示意图;Figure 8 is an enlarged schematic diagram of the square dotted frame in Figure 7;
附图9是附图7中圆形虚线框中的放大示意图。FIG9 is an enlarged schematic diagram of the circular dotted frame in FIG7.
具体实施方式DETAILED DESCRIPTION
下面结合附图对本发明提供的半导体结构及其形成方法的具体实施方式做详细说明。The specific implementation manner of the semiconductor structure and the method for forming the same provided by the present invention will be described in detail below with reference to the accompanying drawings.
第一具体实施方式First specific embodiment
在晶圆键合过程中,为了确保两片晶圆间的对准,需要通过识别所述晶圆上的对准标记,来对所述晶圆进行定位。然而,在采用特定波长的光线照射所述晶圆时,由于所述对准标记与所述对准标记周围的介质层之间的明暗对比度较低,导致对准标记图案模糊,不能对所述对准标记进行准确识别,因而降低了晶圆定位的精准度,影响最终的晶圆键合效果,进而影响最终半导体产品的良率。In the wafer bonding process, in order to ensure the alignment between the two wafers, the wafer needs to be positioned by identifying the alignment marks on the wafer. However, when the wafer is irradiated with light of a specific wavelength, the alignment mark pattern is blurred due to the low contrast between the alignment mark and the dielectric layer surrounding the alignment mark, and the alignment mark cannot be accurately identified, thereby reducing the accuracy of wafer positioning, affecting the final wafer bonding effect, and further affecting the yield of the final semiconductor product.
为了提高对准标记识别的准确度,本具体实施方式提供了一种半导体结构,附图1是本发明第一具体实施方式中半导体结构的截面示意图,附图2是附图1中虚线框内的俯视示意图,附图3是附图2中圆形虚线框中的放大示意图,附图4是附图2中方形虚线框中的放大示意图。如图1-图4所示,所述半导体结构,包括:In order to improve the accuracy of alignment mark recognition, this specific embodiment provides a semiconductor structure, FIG1 is a cross-sectional schematic diagram of the semiconductor structure in the first specific embodiment of the present invention, FIG2 is a top view schematic diagram in the dotted frame in FIG1, FIG3 is an enlarged schematic diagram in the circular dotted frame in FIG2, and FIG4 is an enlarged schematic diagram in the square dotted frame in FIG2. As shown in FIG1-FIG4, the semiconductor structure includes:
衬底10,所述衬底10上包括半导体层11、以及位于所述半导体层11顶面的顶层互连层13;A substrate 10, wherein the substrate 10 comprises a semiconductor layer 11 and a top interconnection layer 13 located on a top surface of the semiconductor layer 11;
对准标记,位于所述半导体层11上方;an alignment mark, located above the semiconductor layer 11;
介质层12,位于所述半导体层11上方,所述介质层12中包括环绕所述对准标记的外周分布、且呈周期性排布的多个第一重复结构单元30,所述第一重复结构单元30用于增大所述对准标记与所述介质层12之间的对比度。The dielectric layer 12 is located above the semiconductor layer 11 , and includes a plurality of first repeating structural units 30 distributed around the periphery of the alignment mark and arranged periodically. The first repeating structural units 30 are used to increase the contrast between the alignment mark and the dielectric layer 12 .
具体来说,所述衬底10可以是但不限于硅衬底,本具体实施方式中以所述衬底10为硅衬底为例进行说明。所述半导体层11位于所述衬底10表面。所述半导体层11可以为单层结构,也可以为多层结构。所述半导体层11可以为CMOS电路结构,也可以为包括多个存储单元的堆叠结构。所述介质层12覆盖于所述半导体层11的顶面。所述半导体层11包括朝向所述衬底10的底面、以及与所述底面相对的顶面。所述顶层互连层13沿垂直于所述半导体层11顶面的方向贯穿所述介质层12。所述顶层互连层13的一端用于与所述半导体层11内的器件结构电连接、另一端用于与外部电路电连接。所述介质层12上还可以有覆盖所述介质层12、所述对准标记和所述顶层互连层13的隔离层15。所述介质层12的材料可以为但不限于氧化物材料(例如二氧化硅)、氮化物材料(例如氮化硅)、或者氮氧化物材料(例如氮氧化硅)等绝缘材料。所述顶层互连层13的材料可以是但不限于金属材料,例如钨。所述隔离层15可以为单层结构,也可以为多层结构。所述对准标记的材料与所述介质层12的材料不同,例如所述对准标记的材料可以为金属材料。Specifically, the substrate 10 may be, but is not limited to, a silicon substrate. In this specific embodiment, the substrate 10 is described as a silicon substrate. The semiconductor layer 11 is located on the surface of the substrate 10. The semiconductor layer 11 may be a single-layer structure or a multi-layer structure. The semiconductor layer 11 may be a CMOS circuit structure or a stacked structure including a plurality of memory cells. The dielectric layer 12 covers the top surface of the semiconductor layer 11. The semiconductor layer 11 includes a bottom surface facing the substrate 10 and a top surface opposite to the bottom surface. The top interconnect layer 13 penetrates the dielectric layer 12 in a direction perpendicular to the top surface of the semiconductor layer 11. One end of the top interconnect layer 13 is used to electrically connect to the device structure in the semiconductor layer 11, and the other end is used to electrically connect to an external circuit. The dielectric layer 12 may also have an isolation layer 15 covering the dielectric layer 12, the alignment mark and the top interconnect layer 13. The material of the dielectric layer 12 may be, but is not limited to, insulating materials such as oxide materials (e.g., silicon dioxide), nitride materials (e.g., silicon nitride), or oxynitride materials (e.g., silicon oxynitride). The material of the top interconnect layer 13 may be, but is not limited to, a metal material, such as tungsten. The isolation layer 15 may be a single-layer structure or a multi-layer structure. The material of the alignment mark is different from that of the dielectric layer 12, for example, the material of the alignment mark may be a metal material.
本具体实施方式通过在所述对准标记外周的所述介质层12中设置呈周期性排布的多个所述第一重复结构单元30,来增大采用光线定位过程中所述对准标记与所述介质层12之间的明暗对比度,例如通过呈周期性排布的多个所述第一重复结构单元30调整所述对准标记与所述介质层12对特定波长的反射率差异或者吸收率差异,从而能够提高对所述对准标记识别的准确度,进而提高定位的精准度。所述第一重复结构单元30的具体形状、尺寸和材料,本领域技术人员可以根据实际需要进行选择,只要能增大特定波长照射过程中所述对准标记与所述介质层12之间的对比度即可。本具体实施方式中所述的多个是指两个以上。In this specific embodiment, a plurality of first repeating structure units 30 arranged periodically are provided in the dielectric layer 12 at the periphery of the alignment mark to increase the light-dark contrast between the alignment mark and the dielectric layer 12 during the light positioning process. For example, the difference in reflectivity or absorptivity of the alignment mark and the dielectric layer 12 to a specific wavelength is adjusted by the plurality of first repeating structure units 30 arranged periodically, so as to improve the accuracy of the alignment mark recognition and thus improve the positioning accuracy. The specific shape, size and material of the first repeating structure unit 30 can be selected by those skilled in the art according to actual needs, as long as the contrast between the alignment mark and the dielectric layer 12 during the irradiation of a specific wavelength can be increased. The plurality mentioned in this specific embodiment refers to more than two.
可选的,所述介质层12位于所述半导体层11的顶面,所述顶层互连层13贯穿所述介质层12,所述对准标记位于所述介质层12中。Optionally, the dielectric layer 12 is located on the top surface of the semiconductor layer 11 , the top interconnect layer 13 penetrates the dielectric layer 12 , and the alignment mark is located in the dielectric layer 12 .
具体来说,所述对准标记设置于所述介质层12中,即所述对准标记也位于所述半导体层11的顶面,且所述对准标记与所述顶层互连层13同层设置。所述介质层12中的呈周期性排布的多个所述第一重复结构单元30环绕所述介质层12中的所述对准标记的外周分布。Specifically, the alignment mark is disposed in the dielectric layer 12, that is, the alignment mark is also located on the top surface of the semiconductor layer 11, and the alignment mark is disposed in the same layer as the top interconnection layer 13. The plurality of first repeating structure units 30 arranged periodically in the dielectric layer 12 are distributed around the periphery of the alignment mark in the dielectric layer 12.
在一些示例中,呈周期性排布的多个所述第一重复结构单元30可以仅分布于所述介质层12的预设区域14内,且所述预设区域14内具有所述对准标记。在其他示例中,呈周期性排布的多个所述第一重复结构单元30可以分布于所述介质层12中除所述顶层互连层13之外的所有区域。In some examples, the plurality of periodically arranged first repeating structure units 30 may be distributed only in a preset region 14 of the dielectric layer 12, and the preset region 14 has the alignment mark. In other examples, the plurality of periodically arranged first repeating structure units 30 may be distributed in all regions of the dielectric layer 12 except the top interconnect layer 13.
可选的,所述第一重复结构单元30的材料为第一金属材料,所述第一金属材料在第一波长光线照射下能够发生金属偶极谐振,以增大所述对准标记与所述介质层在所述第一波长光线下的吸收率差。Optionally, the material of the first repeating structure unit 30 is a first metal material, and the first metal material can generate metal dipole resonance under the irradiation of a first wavelength of light to increase the difference in absorption rate between the alignment mark and the dielectric layer under the first wavelength of light.
可选的,所述第一重复结构单元30的形状为圆形、椭圆形或者任意多边形。Optionally, the first repeating structure unit 30 is in the shape of a circle, an ellipse or any polygon.
具体来说,所述第一重复结构单元30采用所述第一金属材料制成。所述第一金属材料可以是但不限于铜,只要能在所述第一波长光线下能够发射金属偶极谐振即可。在所述第一波长光线照射下,所述第一波长光线穿过所述隔离层15,照射至所述介质层12。呈周期性排布的多个所述第一重复结构单元30利用所述第一金属材料的金属偶极谐振,即所述第一波长光线激发所述第一重复结构单元14中的正负偶极子,并产生偶极谐振,所述第一金属材料的偶极谐振会持续吸收所述第一波长光线,从而能够大幅度提高对所述第一波长光线的吸收率,从而使得所述对准标记与所述介质层12之间的吸收率差异增大,即使得所述对准标记与所述介质层12之间的明暗对比度增大,进而达到提高所述对准标记识别准确度的效果。Specifically, the first repeating structure unit 30 is made of the first metal material. The first metal material can be, but is not limited to, copper, as long as it can emit metal dipole resonance under the first wavelength light. Under the irradiation of the first wavelength light, the first wavelength light passes through the isolation layer 15 and irradiates the dielectric layer 12. The plurality of first repeating structure units 30 arranged periodically utilize the metal dipole resonance of the first metal material, that is, the first wavelength light excites the positive and negative dipoles in the first repeating structure unit 14 and generates dipole resonance. The dipole resonance of the first metal material will continue to absorb the first wavelength light, thereby greatly improving the absorption rate of the first wavelength light, thereby increasing the absorption rate difference between the alignment mark and the dielectric layer 12, that is, increasing the light-dark contrast between the alignment mark and the dielectric layer 12, thereby achieving the effect of improving the recognition accuracy of the alignment mark.
偶极谐振的频率与所述第一重复结构单元30的周期和尺寸相关,因此,通过调整所述第一重复结构单元30的周期和尺寸,可以实现对所述介质层12吸收率的调整。以所述第一重复结构单元30的形状为正方形、材料为所述第一金属材料为例。通过调整所述第一重复结构单元30的边长a1和/或周期p1,可以调整所述介质层12对特定波长(例如第一波长)光线的反射率,从而间接调整所述介质层12对特定波长光线的吸收率,进而实现所述对准标记与所述介质层12之间对比度的增大。例如,当所述第一重复结构单元30的边长a1=460nm、周期p1=620nm时,在所述第一波长光线的波长为629.86nm处,所述介质层12与所述对准标记之间的反射率差为51.8%,实现了对所述对准标记与所述介质层12之间明暗对比度的大幅度提升。The frequency of dipole resonance is related to the period and size of the first repeating structure unit 30. Therefore, by adjusting the period and size of the first repeating structure unit 30, the absorptivity of the dielectric layer 12 can be adjusted. Take the first repeating structure unit 30 as a square and the material as the first metal material as an example. By adjusting the side length a1 and/or the period p1 of the first repeating structure unit 30, the reflectivity of the dielectric layer 12 to light of a specific wavelength (e.g., the first wavelength) can be adjusted, thereby indirectly adjusting the absorptivity of the dielectric layer 12 to light of a specific wavelength, thereby increasing the contrast between the alignment mark and the dielectric layer 12. For example, when the side length a1 of the first repeating structure unit 30 is 460nm and the period p1 is 620nm, at the wavelength of the first wavelength of light of 629.86nm, the reflectivity difference between the dielectric layer 12 and the alignment mark is 51.8%, thereby significantly improving the light-dark contrast between the alignment mark and the dielectric layer 12.
可选的,所述对准标记包括若干个主体部141,呈周期性排布的多个所述第一重复结构单元30环绕所述主体部141的外周分布。Optionally, the alignment mark includes a plurality of main bodies 141 , and a plurality of periodically arranged first repeating structure units 30 are distributed around the periphery of the main bodies 141 .
可选的,所述对准标记包括多个相互分离的所述主体部141,且多个所述主体部141呈风车状或者八角状排布。Optionally, the alignment mark includes a plurality of main body portions 141 separated from each other, and the plurality of main body portions 141 are arranged in a windmill shape or an octagonal shape.
举例来说,如图2所示,所述主体部141的数量为4个,4个所述主体部141排布呈风车状。每个所述主体部141的周围具有呈周期性排布的多个所述第一重复结构单元30,相邻的两个所述主体部141之间的空隙也被呈周期性排布的多个所述第一重复结构单元30填充满。For example, as shown in FIG2 , the number of the main body parts 141 is 4, and the 4 main body parts 141 are arranged in a windmill shape. A plurality of the first repeating structural units 30 are arranged periodically around each main body part 141, and the gap between two adjacent main body parts 141 is also filled with the plurality of the first repeating structural units 30 arranged periodically.
可选的,每个所述主体部141内具有呈周期性排布的多个第二重复结构单元31,所述第二重复结构单元31与所述第一重复结构单元30对第二波长光线的吸收率不同。Optionally, each of the main bodies 141 has a plurality of second repeating structure units 31 arranged periodically, and the second repeating structure units 31 and the first repeating structure units 30 have different absorptivity to the second wavelength light.
可选的,所述第二重复结构单元31的材料为第二金属材料,所述第二金属材料在所述第二波长光线照射下能够发生金属偶极谐振,以增大所述对准标记与所述介质层12在所述第二波长光线下的吸收率差。Optionally, the material of the second repeating structure unit 31 is a second metal material, and the second metal material can generate metal dipole resonance under the irradiation of the second wavelength light to increase the absorption rate difference between the alignment mark and the dielectric layer 12 under the second wavelength light.
举例来说,所述第一重复结构单元30采用所述第一金属材料制成。在所述第二波长光线照射下,具有周期性结构的多个所述第一重复结构单元30利用所述第一金属材料的金属偶极谐振,即所述第二波长光线激发所述第一重复结构单元30中的正负偶极子,并产生偶极谐振,所述第三波长光线会被第一金属材料中的偶极谐振持续吸收,能够大幅度提高对所述第二波长光线的吸收率,即大幅度降低所述介质层12对所述第二波长光线的反射率。同时,所述第二重复结构单元31采用所述第二金属材料制成。在所述第二波长光线照射下,具有周期性排布的多个所述第二重复结构单元31利用所述第二金属材料的金属偶极谐振,即所述第二波长光线激发所述第二重复结构单元31中的正负偶极子,并产生偶极谐振,对于所述第二波长光线,第二金属材料中的偶极谐振会持续向外界辐射电磁波,从而能够大幅度提高所述对准标记对所述第二波长光线的反射率。两方面的共同作用,使得所述对准标记与所述介质层12之间的反射率差异增大,即使得所述对准标记与所述介质层12之间的明暗对比度增大。所述第一金属材料的种类与所述第二金属材料的种类不同,例如所述第一金属材料对所述第二波长光线的吸收率可以大于所述第二金属材料对所述第二波长光线的吸收率。For example, the first repeating structure unit 30 is made of the first metal material. Under the irradiation of the second wavelength light, the plurality of the first repeating structure units 30 with a periodic structure utilize the metal dipole resonance of the first metal material, that is, the second wavelength light excites the positive and negative dipoles in the first repeating structure unit 30 and generates dipole resonance, and the third wavelength light will be continuously absorbed by the dipole resonance in the first metal material, which can greatly improve the absorption rate of the second wavelength light, that is, greatly reduce the reflectivity of the dielectric layer 12 to the second wavelength light. At the same time, the second repeating structure unit 31 is made of the second metal material. Under the irradiation of the second wavelength light, the plurality of the second repeating structure units 31 with a periodic arrangement utilize the metal dipole resonance of the second metal material, that is, the second wavelength light excites the positive and negative dipoles in the second repeating structure unit 31 and generates dipole resonance. For the second wavelength light, the dipole resonance in the second metal material will continuously radiate electromagnetic waves to the outside, thereby greatly improving the reflectivity of the alignment mark to the second wavelength light. The combined effect of the two aspects increases the reflectivity difference between the alignment mark and the dielectric layer 12, that is, increases the light-dark contrast between the alignment mark and the dielectric layer 12. The type of the first metal material is different from the type of the second metal material. For example, the absorptivity of the first metal material to the second wavelength light may be greater than the absorptivity of the second metal material to the second wavelength light.
可选的,所述第二重复结构单元31的形状与所述第一重复结构单元30的形状相同。在一示例中,所述第二重复结构单元31与所述第一重复结构单元30的形状均为矩形。Optionally, the shape of the second repeating structure unit 31 is the same as that of the first repeating structure unit 30. In one example, the shapes of the second repeating structure unit 31 and the first repeating structure unit 30 are both rectangular.
为了进一步提高所述对准标记与所述介质层12之间的对比度,可选的,所述第二重复结构单元31的尺寸与所述第一重复结构单元30的尺寸不同。In order to further improve the contrast between the alignment mark and the dielectric layer 12 , optionally, the size of the second repeating structure unit 31 is different from the size of the first repeating structure unit 30 .
在其他示例中,所述对准标记可以为实心结构,例如风车状的所述对准标记中的每个所述主体部均呈实心矩形形状,即所述对准标记中不具有所述第二重复结构单元。In other examples, the alignment mark may be a solid structure, for example, each of the main parts in the windmill-shaped alignment mark is in a solid rectangular shape, that is, the alignment mark does not have the second repeating structure unit.
不仅如此,本具体实施方式还提供了一种半导体结构的形成方法。附图5是本发明第一具体实施方式中半导体结构的形成方法流程图,本具体实施方式形成的半导体结构的示意图可以参见图1-图4。如图1-图5所示,所述半导体结构的形成方法,包括如下步骤:In addition, this specific embodiment also provides a method for forming a semiconductor structure. FIG5 is a flow chart of the method for forming a semiconductor structure in the first specific embodiment of the present invention. The schematic diagrams of the semiconductor structure formed in this specific embodiment can be seen in FIG1-FIG4. As shown in FIG1-FIG5, the method for forming a semiconductor structure includes the following steps:
步骤S11,提供衬底10,所述衬底10上包括半导体层11;Step S11, providing a substrate 10, wherein the substrate 10 includes a semiconductor layer 11;
步骤S12,形成位于所述半导体层11上方的对准标记、顶层互连层13和介质层12,所述介质层12中包括环绕所述对准标记的外周分布、且呈周期性排布的多个第一重复结构单元30,所述第一重复结构单元30用于增大所述对准标记与所述介质层12之间的对比度。Step S12, forming an alignment mark, a top interconnect layer 13 and a dielectric layer 12 located above the semiconductor layer 11, wherein the dielectric layer 12 includes a plurality of first repeating structure units 30 distributed around the periphery of the alignment mark and arranged periodically, and the first repeating structure units 30 are used to increase the contrast between the alignment mark and the dielectric layer 12.
可选的,形成位于所述半导体层11上方的对准标记、顶层互连层13和介质层12的具体步骤包括:Optionally, the specific steps of forming the alignment mark, the top interconnection layer 13 and the dielectric layer 12 located above the semiconductor layer 11 include:
形成覆盖所述半导体层11顶面的介质层12;forming a dielectric layer 12 covering the top surface of the semiconductor layer 11;
于所述介质层12中形成所述对准标记、所述顶层互连层13以及环绕所述对准标记外周分布的多个第一开口;forming the alignment mark, the top interconnect layer 13 and a plurality of first openings distributed around the periphery of the alignment mark in the dielectric layer 12;
填充第一金属材料至所述第一开口内,形成呈周期性排布的多个所述第一重复结构单元30,所述第一金属材料在第一波长光线照射下能够发生金属偶极谐振,以增大所述对准标记与所述介质层12在所述第一波长光线下的吸收率差。The first opening is filled with a first metal material to form a plurality of first repeating structure units 30 arranged periodically. The first metal material can generate metal dipole resonance under the irradiation of a first wavelength of light to increase the difference in absorption rate between the alignment mark and the dielectric layer 12 under the first wavelength of light.
可选的,所述第一重复结构单元30的形状为圆形、椭圆形或者任意多边形。Optionally, the first repeating structure unit 30 is in the shape of a circle, an ellipse or any polygon.
可选的,于所述介质层12中形成所述对准标记、所述顶层互连层13以及环绕所述对准标记外周分布的多个第一开口的具体步骤还包括:Optionally, the specific step of forming the alignment mark, the top interconnect layer 13 and a plurality of first openings distributed around the periphery of the alignment mark in the dielectric layer 12 further includes:
于所述介质层12中定义若干主体区域;Defining a plurality of main regions in the dielectric layer 12;
于每个所述主体区域中形成呈周期性排布的多个第二重复结构单元31,所述第二重复结构单元31与所述第一重复结构单元30对第二波长光线的吸收率不同。A plurality of second repeating structure units 31 arranged periodically are formed in each of the main body regions. The second repeating structure units 31 and the first repeating structure units 30 have different absorptivity to the second wavelength light.
可选的,于每个所述主体区域中形成呈周期性排布的多个第二重复结构单元31的具体步骤包括:Optionally, the specific steps of forming a plurality of periodically arranged second repeating structure units 31 in each of the main body regions include:
刻蚀所述主体区域的所述介质层12,形成呈周期性排布的多个第三开口;Etching the dielectric layer 12 in the main region to form a plurality of third openings arranged periodically;
填充第二金属材料至所述第三开口内,于每个所述主体区域中形成呈周期性排布的多个第二重复结构单元31,所述第二金属材料在所述第二波长光线照射下能够发生金属偶极谐振,以增大所述对准标记与所述介质层12在所述第二波长光线下的吸收率差。A second metal material is filled into the third opening to form a plurality of second repeating structure units 31 arranged periodically in each of the main regions. The second metal material can produce metal dipole resonance when irradiated with the second wavelength light to increase the difference in absorption rate between the alignment mark and the dielectric layer 12 under the second wavelength light.
可选的,所述主体区域的数量为多个,且多个所述主体区域呈风车状或者八角状排布。Optionally, there are multiple main body areas, and the multiple main body areas are arranged in a windmill shape or an octagonal shape.
可选的,所述第二重复结构单元31的形状与所述第一重复结构单元30的形状相同。Optionally, the shape of the second repeating structure unit 31 is the same as that of the first repeating structure unit 30 .
可选的,所述第二重复结构单元31的尺寸与所述第一重复结构单元30的尺寸不同。Optionally, a size of the second repeating structure unit 31 is different from a size of the first repeating structure unit 30 .
本具体实施方式提供的半导体结构及其形成方法,通过在介质层中形成环绕对准标记外周分布、且呈周期性排布的多个第一重复结构单元,利用呈周期性排布的多个所述第一重复结构单元增强所述对准标记与所述介质层之间的明暗对比度,从而使得在利用所述对准标记进行定位的过程中,能够提高对对准标记识别的准确度与清晰度,有助于提高半导体产品的良率,改善半导体产品的性能。The semiconductor structure and the method for forming the same provided in this specific embodiment form a plurality of first repeating structural units distributed around the periphery of the alignment mark and arranged periodically in the dielectric layer, and utilize the plurality of first repeating structural units arranged periodically to enhance the light-dark contrast between the alignment mark and the dielectric layer, thereby enabling the accuracy and clarity of alignment mark recognition to be improved during positioning using the alignment mark, thereby helping to improve the yield of semiconductor products and the performance of semiconductor products.
第二具体实施方式Second specific embodiment
本具体实施方式提供了一种半导体结构。附图6是本发明第二具体实施方式中半导体结构的截面示意图,附图7是本发明第二具体实施方式中对准标记与介质层的俯视示意图,附图8是附图7中方形虚线框中的放大示意图,附图9是附图7中圆形虚线框中的放大示意图。对于与第一具体实施方式相同之处,本具体实施方式不再赘述,以下主要叙述与第一具体实施方式的不同之处。This specific embodiment provides a semiconductor structure. FIG6 is a cross-sectional schematic diagram of the semiconductor structure in the second specific embodiment of the present invention, FIG7 is a top view schematic diagram of the alignment mark and the dielectric layer in the second specific embodiment of the present invention, FIG8 is an enlarged schematic diagram in the square dashed frame in FIG7, and FIG9 is an enlarged schematic diagram in the circular dashed frame in FIG7. This specific embodiment will not repeat the same points as the first specific embodiment, and the following mainly describes the differences from the first specific embodiment.
如图6-图9所示,所述半导体结构,包括:As shown in FIGS. 6 to 9 , the semiconductor structure includes:
衬底40,所述衬底40上包括半导体层41、以及位于所述半导体层41顶面的顶层互连层43;A substrate 40, wherein the substrate 40 comprises a semiconductor layer 41 and a top interconnection layer 43 located on a top surface of the semiconductor layer 41;
对准标记46,位于所述半导体层41上方;an alignment mark 46, located above the semiconductor layer 41;
介质层42,位于所述半导体层41上方,所述介质层42中包括环绕所述对准标记46的外周分布、且呈周期性排布的多个第一重复结构单元60,所述第一重复结构单元30用于增大所述对准标记与所述介质层12之间的对比度。The dielectric layer 42 is located above the semiconductor layer 41 . The dielectric layer 42 includes a plurality of first repeating structural units 60 distributed around the periphery of the alignment mark 46 and arranged periodically. The first repeating structural units 30 are used to increase the contrast between the alignment mark and the dielectric layer 12 .
在一些示例中,呈周期性排布的多个所述第一重复结构单元60可以仅分布于所述介质层42的预设区域44内,且所述对准标记46在沿垂直于所述半导体层41顶面方向的投影位于所述预设区域44内。在其他示例中,呈周期性排布的多个所述第一重复结构单元60可以分布于整个所述介质层42中。In some examples, the plurality of periodically arranged first repeating structure units 60 may be distributed only in a preset region 44 of the dielectric layer 42, and the projection of the alignment mark 46 in a direction perpendicular to the top surface of the semiconductor layer 41 is located in the preset region 44. In other examples, the plurality of periodically arranged first repeating structure units 60 may be distributed throughout the dielectric layer 42.
可选的,所述介质层42位于所述半导体层41的顶面,所述顶层互连层43贯穿所述介质层42;所述半导体结构还包括:Optionally, the dielectric layer 42 is located on the top surface of the semiconductor layer 41, and the top interconnect layer 43 penetrates the dielectric layer 42; the semiconductor structure further includes:
隔离层45,覆盖所述介质层42和所述顶层互连层43,所述对准标记46位于所述隔离层45中,在沿垂直于所述半导体层41顶面的方向上,呈周期性排布的多个所述第一重复结构单元60的投影环绕所述对准标记46的投影的外周分布。The isolation layer 45 covers the dielectric layer 42 and the top interconnection layer 43. The alignment mark 46 is located in the isolation layer 45. In a direction perpendicular to the top surface of the semiconductor layer 41, the projections of the plurality of periodically arranged first repeating structure units 60 are distributed around the periphery of the projection of the alignment mark 46.
具体来说,所述对准标记46位于所述介质层42上方的所述隔离层45中。所述隔离层45的材料可以为但不限于氧化物材料(例如二氧化硅)、氮化物材料(例如氮化硅)、或者氮氧化物材料(例如氮氧化硅)等绝缘材料。Specifically, the alignment mark 46 is located in the isolation layer 45 above the dielectric layer 42. The isolation layer 45 may be made of, but not limited to, insulating materials such as oxide materials (such as silicon dioxide), nitride materials (such as silicon nitride), or oxynitride materials (such as silicon oxynitride).
以所述第一重复结构单元60的材料为所述第一金属材料为例。在所述第一波长光线照射下,部分所述第一波长光线穿过所述隔离层15,照射至所述介质层12,部分所述第一波长光线直接被所述隔离层45中的所述对准标记46反射。呈周期性排布的多个所述第一重复结构单元60利用所述第一金属材料的金属偶极谐振,即所述第一波长光线激发所述第一重复结构单元60中的正负偶极子,并产生偶极谐振,所述第一金属材料的偶极谐振会持续吸收所述第一波长光线,从而能够大幅度提高对所述第一波长光线的吸收率,从而使得所述对准标记46与所述介质层42之间的吸收率差异增大,即使得所述对准标记46与所述介质层42之间的反射率差异增大,进而使得所述对准标记46与所述介质层42之间的明暗对比度增大,最终达到提高所述对准标记46识别准确度的效果。Take the case where the material of the first repeating structure unit 60 is the first metal material. Under the irradiation of the first wavelength light, part of the first wavelength light passes through the isolation layer 15 and irradiates the dielectric layer 12, and part of the first wavelength light is directly reflected by the alignment mark 46 in the isolation layer 45. The plurality of first repeating structure units 60 arranged periodically utilize the metal dipole resonance of the first metal material, that is, the first wavelength light excites the positive and negative dipoles in the first repeating structure unit 60 and generates dipole resonance. The dipole resonance of the first metal material will continuously absorb the first wavelength light, thereby greatly improving the absorption rate of the first wavelength light, thereby increasing the absorption rate difference between the alignment mark 46 and the dielectric layer 42, that is, increasing the reflectivity difference between the alignment mark 46 and the dielectric layer 42, and further increasing the light-dark contrast between the alignment mark 46 and the dielectric layer 42, and finally achieving the effect of improving the recognition accuracy of the alignment mark 46.
本具体实施方式中所述对准标记46可以为实心结构,可以如第一具体实施方式所述包括呈周期性排布的多个第二重复结构单元61。In this specific embodiment, the alignment mark 46 may be a solid structure, and may include a plurality of second repeating structure units 61 arranged in a periodic manner as described in the first specific embodiment.
以所述介质层42包括如图8所示的呈周期性排布的多个第一重复结构单元60、所述对准标记46包括如图9所示的呈周期性排布的多个第二重复结构单元61,所述第一重复结构单元60和所述第二重复结构单元61均为正方形为例,通过调整所述第一重复结构单元60的周期p3、边长a3和所述第二重复结构单元61的周期p4、边长a4可以调整所述对准标记46与所述介质层42的反射率差。当所述第一重复结构单元60的边长a3=962nm、周期p3=1242nm,所述第二重复结构单元61的边长a4=460nm、周期p4=620nm时,在第二波长光线的波长为636.451nm处,所述介质层42与所述对准标记46之间的反射率差为58.2%,实现了对所述对准标记46与所述介质层42之间明暗对比度的大幅度提升。Taking the case where the dielectric layer 42 includes a plurality of first repeating structural units 60 arranged periodically as shown in FIG8 , and the alignment mark 46 includes a plurality of second repeating structural units 61 arranged periodically as shown in FIG9 , and both the first repeating structural units 60 and the second repeating structural units 61 are squares as an example, the reflectivity difference between the alignment mark 46 and the dielectric layer 42 can be adjusted by adjusting the period p3 and the side length a3 of the first repeating structural unit 60 and the period p4 and the side length a4 of the second repeating structural unit 61. When the side length a3 of the first repeating structural unit 60 is 962nm, the period p3 is 1242nm, and the side length a4 of the second repeating structural unit 61 is 460nm, and the period p4 is 620nm, at the wavelength of the second wavelength light of 636.451nm, the reflectivity difference between the dielectric layer 42 and the alignment mark 46 is 58.2%, thereby achieving a significant improvement in the light-dark contrast between the alignment mark 46 and the dielectric layer 42.
本具体实施方式还提供了一种半导体结构的形成方法。本具体实施方式形成的半导体结构的示意图可参见图6-图9。对于与第一具体实施方式相同之处,本具体实施方式不再赘述,以下主要叙述与第一具体实施方式的不同之处。This embodiment also provides a method for forming a semiconductor structure. The schematic diagrams of the semiconductor structure formed in this embodiment can be seen in Figures 6 to 9. This embodiment will not repeat the same points as the first embodiment, and the following mainly describes the differences from the first embodiment.
如图6-图9所示,本具体实施方式提供的半导体结构的形成方法,包括如下步骤:As shown in FIG. 6 to FIG. 9 , the method for forming a semiconductor structure provided in this specific embodiment includes the following steps:
步骤S21,提供衬底40,所述衬底40上包括半导体层41;Step S21, providing a substrate 40, wherein the substrate 40 includes a semiconductor layer 41;
步骤S22,形成位于所述半导体层41上方的对准标记46、顶层互连层43和介质层42,所述介质层42中包括环绕所述对准标记46的外周分布、且呈周期性排布的多个第一重复结构单元60,所述第一重复结构单元60用于增大所述对准标记46与所述介质层42之间的对比度。In step S22, an alignment mark 46, a top interconnect layer 43 and a dielectric layer 42 are formed above the semiconductor layer 41. The dielectric layer 42 includes a plurality of first repeating structural units 60 distributed around the periphery of the alignment mark 46 and arranged periodically. The first repeating structural units 60 are used to increase the contrast between the alignment mark 46 and the dielectric layer 42.
可选的,形成位于所述半导体层41上方的对准标记46、顶层互连层41和介质层42的具体步骤包括:Optionally, the specific steps of forming the alignment mark 46, the top interconnect layer 41 and the dielectric layer 42 located above the semiconductor layer 41 include:
形成覆盖所述半导体层41顶面的介质层42;forming a dielectric layer 42 covering the top surface of the semiconductor layer 41;
于所述介质层42中形成所述顶层互连层43以及多个第二开口;forming the top interconnect layer 43 and a plurality of second openings in the dielectric layer 42;
填充第一金属材料至所述第二开口内,形成呈周期性排布的多个所述第一重复结构单元60;Filling the first metal material into the second opening to form a plurality of the first repeating structure units 60 arranged periodically;
形成覆盖所述介质层42和所述顶层互连层43的隔离层45;forming an isolation layer 45 covering the dielectric layer 42 and the top interconnect layer 43;
于所述隔离层45中形成对准标记46,使得在沿垂直于所述半导体层41顶面的方向上,呈周期性排布的多个所述第一重复结构单元60的投影环绕所述对准标记46的投影的外周分布,所述第一金属材料在第一波长光线照射下能够发生金属偶极谐振,以增大所述对准标记46与所述介质层42在所述第一波长光线下的吸收率差。An alignment mark 46 is formed in the isolation layer 45, so that in a direction perpendicular to the top surface of the semiconductor layer 41, the projections of the plurality of periodically arranged first repeating structure units 60 are distributed around the periphery of the projection of the alignment mark 46, and the first metal material can produce metal dipole resonance when irradiated with a first wavelength of light to increase the difference in absorption rate between the alignment mark 46 and the dielectric layer 42 under the first wavelength of light.
可选的,于所述隔离层45中形成对准标记46的具体步骤包括:Optionally, the specific steps of forming the alignment mark 46 in the isolation layer 45 include:
于所述隔离层45中定义若干主体区域;defining a plurality of main body regions in the isolation layer 45;
于每个所述主体区域中形成呈周期性排布的多个第二重复结构单元61,所述第二重复结构单元61与所述第一重复结构单元60对第二波长光线的吸收率不同。A plurality of second repeating structure units 61 arranged periodically are formed in each of the main body regions. The second repeating structure units 61 and the first repeating structure units 60 have different absorptivity to the second wavelength light.
可选的,于每个所述主体区域中形成呈周期性排布的多个第二重复结构单元61的具体步骤包括:Optionally, the specific steps of forming a plurality of periodically arranged second repeating structure units 61 in each of the main body regions include:
刻蚀所述主体区域的所述隔离层45,形成呈周期性排布的多个第三开口;Etching the isolation layer 45 in the main region to form a plurality of third openings arranged periodically;
填充第二金属材料至所述第三开口内,于每个所述主体区域中形成呈周期性排布的多个第二重复结构单元61,所述第二金属材料在所述第二波长光线照射下能够发生金属偶极谐振,以增大所述对准标记46与所述介质层45在所述第二波长光线下的吸收率差。A second metal material is filled into the third opening to form a plurality of second repeating structure units 61 arranged periodically in each of the main regions. The second metal material can produce metal dipole resonance when irradiated with the second wavelength of light to increase the difference in absorption rate between the alignment mark 46 and the dielectric layer 45 under the second wavelength of light.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention. It should be pointed out that ordinary technicians in this technical field can make several improvements and modifications without departing from the principle of the present invention. These improvements and modifications should also be regarded as the scope of protection of the present invention.
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410965013.6A CN118919518A (en) | 2021-08-31 | 2021-08-31 | Semiconductor structure and method for forming the same |
CN202111013804.1A CN113725196B (en) | 2021-08-31 | 2021-08-31 | Semiconductor structure and forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111013804.1A CN113725196B (en) | 2021-08-31 | 2021-08-31 | Semiconductor structure and forming method thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410965013.6A Division CN118919518A (en) | 2021-08-31 | 2021-08-31 | Semiconductor structure and method for forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113725196A CN113725196A (en) | 2021-11-30 |
CN113725196B true CN113725196B (en) | 2024-08-13 |
Family
ID=78679886
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410965013.6A Pending CN118919518A (en) | 2021-08-31 | 2021-08-31 | Semiconductor structure and method for forming the same |
CN202111013804.1A Active CN113725196B (en) | 2021-08-31 | 2021-08-31 | Semiconductor structure and forming method thereof |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410965013.6A Pending CN118919518A (en) | 2021-08-31 | 2021-08-31 | Semiconductor structure and method for forming the same |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN118919518A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010287864A (en) * | 2009-06-15 | 2010-12-24 | Panasonic Corp | Semiconductor device and manufacturing method of semiconductor device |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010064079A (en) * | 1999-12-24 | 2001-07-09 | 박종섭 | A method for forming alignment mark with improved alignment accuracy |
DE10000759C1 (en) * | 2000-01-11 | 2001-05-23 | Infineon Technologies Ag | Production of justifying marks in a structure with integrated circuits comprises applying a first planar metal layer over a semiconductor substrate, applying an insulating layer, inserting metal and depositing a second metal layer |
CN1495540B (en) * | 2002-09-20 | 2010-08-11 | Asml荷兰有限公司 | Alignment system of photoetching system utilizing at least two wavelengths and its method |
JP4412922B2 (en) * | 2003-06-27 | 2010-02-10 | 株式会社ルネサステクノロジ | Semiconductor device |
JP5425363B2 (en) * | 2006-11-28 | 2014-02-26 | ルネサスエレクトロニクス株式会社 | Semiconductor device and display device |
CN101567302A (en) * | 2008-04-23 | 2009-10-28 | 力晶半导体股份有限公司 | Alignment mark and forming method thereof, and semiconductor alignment method |
CN103021803A (en) * | 2011-09-26 | 2013-04-03 | 上海华虹Nec电子有限公司 | Method for protecting thick metal layer photoetching alignment mark |
WO2020103025A1 (en) * | 2018-11-21 | 2020-05-28 | Yangtze Memory Technologies Co., Ltd. | Bonding alignment marks at bonding interface |
CN111261773B (en) * | 2018-11-30 | 2023-05-12 | 联华电子股份有限公司 | Semiconductor memory element and manufacturing method thereof |
CN112420718A (en) * | 2020-11-18 | 2021-02-26 | 长江存储科技有限责任公司 | Semiconductor structure and forming method and alignment method thereof |
-
2021
- 2021-08-31 CN CN202410965013.6A patent/CN118919518A/en active Pending
- 2021-08-31 CN CN202111013804.1A patent/CN113725196B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010287864A (en) * | 2009-06-15 | 2010-12-24 | Panasonic Corp | Semiconductor device and manufacturing method of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN118919518A (en) | 2024-11-08 |
CN113725196A (en) | 2021-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10566374B2 (en) | Via support structure under pad areas for BSI bondability improvement | |
US8338921B2 (en) | Wafer level chip scale package having an enhanced heat exchange efficiency with an EMF shield and a method for fabricating the same | |
US7811920B2 (en) | Semiconductor device having a through electrode, semiconductor module employing thereof and method for manufacturing semiconductor device having a through electrode | |
TWI244742B (en) | Fan out type wafer level package structure and method of the same | |
KR102556517B1 (en) | Stack package include bridge die | |
US8575760B2 (en) | Semiconductor devices having electrodes | |
US20210366855A1 (en) | Semiconductor die containing dummy metallic pads and methods of forming the same | |
JP6175701B2 (en) | Manufacturing method of 3D multi-chip module | |
CN110957322A (en) | Control gate strip layout to improve word line etch process window | |
CN113725197A (en) | Semiconductor structure and forming method thereof | |
CN111384028A (en) | Semiconductor device with anti-cracking structure | |
CN113725196B (en) | Semiconductor structure and forming method thereof | |
CN101350344B (en) | Semiconductor device package and fabricating method thereof | |
KR20140023055A (en) | Semiconductor device and method for forming using the same | |
US8552534B2 (en) | Laminated semiconductor substrate, semiconductor substrate, laminated chip package and method of manufacturing the same | |
CN118431304B (en) | Semiconductor capacitor structure and manufacturing method thereof | |
US11158591B2 (en) | Bond pad structure for bonding improvement | |
CN106653731A (en) | Sidewall bridge interconnector in semiconductor device | |
US20240203857A1 (en) | Package structure with through vias | |
KR20120054370A (en) | Method for fabricating a via hole and through interconnection having via hole | |
CN109065536B (en) | Wafer and chip | |
CN113725195B (en) | Method for forming alignment mark | |
US9589937B2 (en) | Semiconductor cooling method and method of heat dissipation | |
CN211555866U (en) | Pad structure and semiconductor device | |
CN114300443A (en) | Dicing street structure and forming method thereof, semiconductor wafer and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |