CN113721173B - A Fiber-optic SERF Atomic Magnetometer Device Based on Reflective Bidirectional Pumping - Google Patents
A Fiber-optic SERF Atomic Magnetometer Device Based on Reflective Bidirectional Pumping Download PDFInfo
- Publication number
- CN113721173B CN113721173B CN202111029826.7A CN202111029826A CN113721173B CN 113721173 B CN113721173 B CN 113721173B CN 202111029826 A CN202111029826 A CN 202111029826A CN 113721173 B CN113721173 B CN 113721173B
- Authority
- CN
- China
- Prior art keywords
- alkali metal
- optical fiber
- gas chamber
- light source
- pumping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005086 pumping Methods 0.000 title claims abstract description 46
- 230000002457 bidirectional effect Effects 0.000 title claims abstract description 22
- 150000001340 alkali metals Chemical group 0.000 claims abstract description 45
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 41
- 239000013307 optical fiber Substances 0.000 claims abstract description 36
- 238000001514 detection method Methods 0.000 claims abstract description 21
- 238000010438 heat treatment Methods 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- 239000000835 fiber Substances 0.000 claims description 13
- 229910052701 rubidium Inorganic materials 0.000 claims description 10
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical group [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 10
- 230000010287 polarization Effects 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 7
- 230000007423 decrease Effects 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 3
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical group [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 6
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 239000000523 sample Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/032—Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
技术领域technical field
本发明涉及光纤弱磁探测领域,更具体的是涉及一种基于反射式双向泵浦的光纤SERF原子磁力仪装置。The invention relates to the field of optical fiber weak magnetic detection, and more particularly to an optical fiber SERF atomic magnetometer device based on reflective bidirectional pumping.
背景技术Background technique
SERF磁场测量装置在工业、农业、医疗以及科学研究等领域有着极大的应用价值,相对其他的磁场探测装置,具有灵敏度超高、可紧贴被测物体表面测量等优点。进行矿藏探测,本质上是对异常场的探测,不同矿产具有不同的磁场特性,因此,利用SERF磁场测量装置可以精确的获知地下或海底矿产种类、规模以及位置,将对工农业的发展起到重要促进作用;在医疗成像方面,SERF磁场测量装置不需要外加强磁场,有着被“动测量,对人体无损,整体、多方位成像”等优势。The SERF magnetic field measurement device has great application value in the fields of industry, agriculture, medical treatment and scientific research. Compared with other magnetic field detection devices, it has the advantages of ultra-high sensitivity and can be measured close to the surface of the object to be measured. The detection of mineral deposits is essentially the detection of abnormal fields. Different minerals have different magnetic field characteristics. Therefore, the use of SERF magnetic field measurement devices can accurately know the type, scale and location of underground or seabed minerals, which will play an important role in the development of industry and agriculture. Important role in promoting; in medical imaging, SERF magnetic field measurement device does not require an externally enhanced magnetic field, and has the advantages of "dynamic measurement, no damage to the human body, and overall, multi-directional imaging".
目前基于SERF的磁场探测方法已经被实现,这种方法可以探测极其微弱的磁场,但是,该方法通常会在探头附近引入一些电路部分,从而带来额外的干扰磁场噪声阻碍灵敏度的进一步提高;同时,由于电路部分的存在,导致整体结构尺寸不能进一步缩小,难以实现结构微型化。At present, a magnetic field detection method based on SERF has been realized, which can detect extremely weak magnetic fields. However, this method usually introduces some circuit parts near the probe, which brings additional interference magnetic field noise and hinders further improvement of sensitivity; at the same time , due to the existence of the circuit part, the overall structure size cannot be further reduced, and it is difficult to realize the structure miniaturization.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于:为了解决上述技术问题,本发明提供一种基于反射式双向泵浦的光纤SERF原子磁力仪装置,用于提高磁场探测灵敏度、稳定性、准确性和使传感探头结构微型化。The purpose of the present invention is: in order to solve the above-mentioned technical problems, the present invention provides a kind of optical fiber SERF atomic magnetometer device based on reflection type bidirectional pumping, which is used to improve the magnetic field detection sensitivity, stability, accuracy and make the sensor probe structure miniature. change.
本发明为了实现上述目的具体采用以下技术方案:The present invention specifically adopts the following technical solutions in order to achieve the above object:
一种基于反射式双向泵浦的光纤SERF原子磁力仪装置,包括光源、传感模块和调制、解调模块,所述的光源包括加热光源、泵浦探测光源、偏振控制器;所述的传感模块包括环形器、磁场线圈、第一光纤准直器、碱金属原子气室(7)、反射镜、第二光纤准直器;所述的调制、解调模块包括光电二极管、跨阻放大器、锁相放大器;An optical fiber SERF atomic magnetometer device based on reflective bidirectional pumping, comprising a light source, a sensing module and a modulation and demodulation module, the light source includes a heating light source, a pump detection light source, and a polarization controller; The sensing module includes a circulator, a magnetic field coil, a first optical fiber collimator, an alkali metal atomic gas chamber (7), a reflector, and a second optical fiber collimator; the modulation and demodulation module includes a photodiode, a transimpedance amplifier , lock-in amplifier;
所述加热光源与第二光纤准直器相连,所述泵浦探测光源与偏振控制器相连,偏振控制器输出端与环形器一端口相连,环形器二端口与第一光纤准直器相连,环形器三端口与光电二极管相连;所述锁相放大器参考输出端与磁场线圈相连,跨阻放大器输入端与光电二极管输出端相连,跨阻放大器输出与锁相放大器相连;The heating light source is connected with the second fiber collimator, the pump detection light source is connected with the polarization controller, the output end of the polarization controller is connected with the first port of the circulator, and the second port of the circulator is connected with the first fiber collimator, The three ports of the circulator are connected to the photodiode; the reference output end of the lock-in amplifier is connected to the magnetic field coil, the input end of the transimpedance amplifier is connected to the output end of the photodiode, and the output end of the transimpedance amplifier is connected to the lock-in amplifier;
第一光纤准直器远离环形器的一端依次设置碱金属原子气室和反射镜,碱金属原子气室的顶部设置第二光纤准直器,且第二光纤准直器的出射光与第一光纤准直器的出射光相互垂直。One end of the first optical fiber collimator away from the circulator is sequentially provided with an alkali metal atomic gas chamber and a reflector, a second optical fiber collimator is arranged on the top of the alkali metal atomic gas chamber, and the outgoing light of the second optical fiber collimator is the same as that of the first optical fiber collimator. The outgoing light of the fiber collimator is perpendicular to each other.
作为一种可选的技术方案,所述泵浦探测光源的泵浦光穿过碱金属原子气室后垂直入射在反射镜上,经反射后的泵浦光再次穿过碱金属原子气室,通过第一光纤准直器(6)上的自聚焦透镜后再次耦合进入光纤,输出到磁屏蔽桶外部,构成无源传感头结构;As an optional technical solution, the pump light of the pump detection light source passes through the alkali metal atomic gas cell and is vertically incident on the mirror, and the reflected pump light passes through the alkali metal atomic gas cell again, After passing through the self-focusing lens on the first optical fiber collimator (6), it is coupled into the optical fiber again, and output to the outside of the magnetic shielding barrel to form a passive sensor head structure;
光信号在磁屏蔽桶外部经过环形器输出到调制、解调模块,在调制、解调模块中进行光电转换以及数据处理。The optical signal is output to the modulation and demodulation module through the circulator outside the magnetic shielding barrel, and photoelectric conversion and data processing are performed in the modulation and demodulation module.
作为一种可选的技术方案,所述传感模块中,泵浦探测光源的泵浦光功率将随着碱金属原子气室中的传播距离增加而衰减,从而导致泵浦率下降;As an optional technical solution, in the sensing module, the pumping light power of the pumping and detecting light source will attenuate with the increase of the propagation distance in the alkali metal atom gas chamber, thereby causing the pumping rate to decrease;
定义泵浦光入射时与碱金属原子气室的交点为原点0,泵浦光传播方向为x轴正方向,则泵浦率Rp1与碱金属原子气室内的空间横坐标x的关系为公式一:Define the intersection of the pump light and the alkali metal atomic gas chamber as the origin 0, and the pump light propagation direction is the positive direction of the x-axis, then the relationship between the pumping rate R p1 and the spatial abscissa x in the alkali metal atomic gas chamber is the formula one:
其中,lambertw()为朗博W函数,Rr为弛豫率,Rp0为入射时还未衰减的泵浦率;Among them, lambertw() is the Lambert W function, R r is the relaxation rate, and R p0 is the pump rate that has not yet decayed at the incident;
泵浦光到达反射镜后,将全部被反射并再次进入碱金属原子气室,形成双向泵浦,第二次泵浦率Rp2与碱金属原子气室内的空间横坐标x的关系为公式二:After the pump light reaches the mirror, it will be completely reflected and enter the alkali metal atomic gas chamber again, forming a bidirectional pump. The relationship between the second pumping rate R p2 and the spatial abscissa x in the alkali metal atomic gas chamber is formula 2 :
其中xM为第一次泵浦光从原子气室出射的点的横坐标,即表示原子气室沿光传播方向的长度;where x M is the abscissa of the point where the first pump light is emitted from the atomic gas cell, that is, the length of the atomic gas cell along the light propagation direction;
进一步,经双向泵浦后,碱金属原子气室(7)内的总泵浦率Rp为两次泵浦率之和,即公式三:Further, after bidirectional pumping, the total pumping rate Rp in the alkali metal atom gas chamber (7) is the sum of the two pumping rates, that is, formula 3:
Rp=Rp1+Rp2 R p =R p1 +R p2
在公式三中,Rp1随x增加单调递减,故会造成碱金属原子气室内泵浦率的不均匀性,而Rp2随x增加单调递增,可对第一项的不均匀性进行补偿,从而得到更加均匀的泵浦率。In
作为一种可选的技术方案,碱金属原子气室中原子极化率P为公式四:As an optional technical solution, the atomic polarizability P in the alkali metal atomic gas chamber is formula 4:
作为一种可选的技术方案,所述泵浦探测光源的中心波长为795nm、894nm或770nm,分别对应铷原子、铯原子、钾原子的D1线,且其输出激光为线偏振光;As an optional technical solution, the central wavelength of the pump detection light source is 795nm, 894nm or 770nm, corresponding to the D1 line of rubidium atom, cesium atom and potassium atom respectively, and the output laser is linearly polarized light;
所述环形器、第一光纤准直器、光电二极管的工作波长与泵浦探测光源(2)的中心波长匹配。The operating wavelengths of the circulator, the first fiber collimator and the photodiode are matched with the central wavelength of the pumping and detecting light source (2).
作为一种可选的技术方案,所述的加热光源的输出功率在150mw以上,其功率需保证能加热气室使气室中碱金属原子能从固态变为气态;所述第二光纤准直器的工作波长与加热光源的中心波长匹配。As an optional technical solution, the output power of the heating light source is more than 150mw, and its power needs to ensure that it can heat the gas chamber so that the alkali metal atoms in the gas chamber can change from solid to gas; the second optical fiber collimator The operating wavelength matches the central wavelength of the heating light source.
作为一种可选的技术方案,所述碱金属原子气室在加热光源的通光面两侧,贴有吸收滤光片,其吸收中心波长与加热光源的中心波长一致,且出射一侧的滤光片厚度比入射一侧的滤光片的厚,使两片滤光片吸收的光能相等,能够从两侧均匀加热气室。As an optional technical solution, the alkali metal atomic gas chamber is attached with an absorption filter on both sides of the light-transmitting surface of the heating light source, and its absorption center wavelength is consistent with the center wavelength of the heating light source, and the output side is The thickness of the filter is thicker than that of the filter on the incident side, so that the light energy absorbed by the two filters is equal, and the air chamber can be heated uniformly from both sides.
作为一种可选的技术方案,所述的调制、解调模块产生的调制信号为频率为ω,幅值为B1的正弦信号,解调输出信号为As an optional technical solution, the modulation signal generated by the modulation and demodulation module is a sinusoidal signal with a frequency of ω and an amplitude of B 1 , and the demodulated output signal is
其中,γe为碱金属原子旋磁比,B0为待测磁场幅值,J0是0阶贝塞尔函数,J1是1阶贝塞尔函数,Q为核减速因子,Rp为光泵浦率,Rr为弛豫率,P为气室中原子极化率。Among them, γe is the gyromagnetic ratio of alkali metal atoms, B 0 is the amplitude of the magnetic field to be measured, J 0 is the 0-order Bessel function, J 1 is the 1-order Bessel function, Q is the nuclear deceleration factor, and R p is the light pump rate, R r is the relaxation rate, and P is the atomic polarizability in the gas cell.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
1.该方法相比传统的SERF原子磁力仪装置,利用反射镜与自聚焦透镜,将探测光束耦合进入光纤传输到磁屏蔽桶外部进行光电转换,移除了磁传感探头上的光电转换电路并减少了光纤数量,使得结构尺寸能够进一步缩小,便于进行集成化与阵列式应用。1. Compared with the traditional SERF atomic magnetometer device, this method uses a reflector and a self-focusing lens to couple the probe beam into the optical fiber and transmit it to the outside of the magnetic shielding barrel for photoelectric conversion, and the photoelectric conversion circuit on the magnetic sensing probe is removed. And the number of optical fibers is reduced, so that the structure size can be further reduced, which is convenient for integration and array applications.
2.由于移除了碱金属原子气室附近的光电转换电路,从而消除了该部分电路带来的磁场噪声。2. Since the photoelectric conversion circuit near the alkali metal atomic gas chamber is removed, the magnetic field noise brought by this part of the circuit is eliminated.
3.使用反射镜双向泵浦后,提高了碱金属原子气室内的泵浦率均匀性,从而也提高了极化率的均匀性,有利于提高系统测量的稳定性与准确性。3. After bidirectional pumping with mirrors, the uniformity of the pumping rate in the alkali metal atomic gas chamber is improved, thereby also improving the uniformity of the polarizability, which is beneficial to improve the stability and accuracy of the system measurement.
4.采用反射式光耦合结构,能够减少弱磁传感探头中光纤及光学元器件的数量,从而减小传感头尺寸与体积并提高传感头的可靠性4. The use of reflective optical coupling structure can reduce the number of optical fibers and optical components in the weak magnetic sensor probe, thereby reducing the size and volume of the sensor head and improving the reliability of the sensor head
附图说明Description of drawings
图1是本发明的系统示意图;Fig. 1 is the system schematic diagram of the present invention;
附图标记:1-加热光源、2-激光器、3-偏振控制器、4-三端口环形器、5-磁场线圈、6-第一光纤准直器、7-碱金属原子气室、8-反射镜、9-第二光纤准直器、10-光电二极管、11-跨阻放大器、12-锁相放大器。Reference signs: 1-heating light source, 2-laser, 3-polarization controller, 4-three-port circulator, 5-magnetic field coil, 6-first fiber collimator, 7-alkali metal atomic gas cell, 8- Mirror, 9-second fiber collimator, 10-photodiode, 11-transimpedance amplifier, 12-lock-in amplifier.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. The components of the embodiments of the invention generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations.
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。Thus, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the invention as claimed, but is merely representative of selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例1Example 1
如图1所示,碱金属原子气室7可采用铷原子、铯原子、钾原子,本实施例1优选为铷原子气室;本发明的一种基于反射式双向泵浦的光纤SERF原子磁力仪装置,包括光源、传感模块、调制、解调模块。所述的光源包括一束1550nm激光、一束795nm激光,1550nm激光对铷原子气室进行加热,其激光需输出功率大于150mw,使其从第二光纤准直器9输出后打在铷原子气室上,能够加热铷原子气室至150℃左右。795nm光源输出线偏振光,经过偏振控制器3后变为左旋圆偏振光,从环形器4一端口输入,二端口输出,再经过第一光纤准直器6出射在铷原子气室上,穿过铷原子气室后,又垂直打在反射镜8上,反射光反射回来再次进入铷原子气室,在出射端,由第一光纤准直器6上自聚焦透镜耦合进入光纤,传输到磁屏蔽桶外,同时磁屏蔽桶内部的磁场线圈由锁相放大器12的参考输出驱动,产生一定频率的调制磁场。在磁屏蔽桶外,测量的光信号从环形器4三端口输出,由光电二极管10将光信号转换为电流信号,再由跨阻放大器11放大一定倍数转换为电压信号,再传输至锁相放大器12进行解调处理。As shown in Figure 1, the alkali metal atomic gas chamber 7 can adopt rubidium atom, cesium atom, potassium atom, the
实施例2Example 2
进一步地,包括如下步骤:Further, include the following steps:
步骤一:所述激光器1的输出激光为1550nm激光,其输出功率需大于150mW从而能够加热碱金属原子气室7至150℃左右,所述激光器2输出795nm线偏振光,经偏振控制器3转换为左旋圆偏振光,两束激光正交出射打在碱金属原子气室7上。第一次泵浦率Rp1与碱金属原子气室7内的空间横坐标x的关系为公式一:Step 1: The output laser of the
其中,lambertw()为朗博W函数,Rr为弛豫率,Rp0为入射时还未衰减的泵浦率。Among them, lambertw() is the Lambert W function, R r is the relaxation rate, and R p0 is the pump rate that has not yet decayed at the time of incidence.
经反射镜后,泵浦光再次进入碱金属原子气室7形成双向泵浦,第二次泵浦率Rp2与x的关系为公式二:After passing through the mirror, the pump light enters the alkali metal atomic gas chamber 7 again to form bidirectional pumping. The relationship between the second pumping rate Rp2 and x is formula 2:
其中xM为第一次泵浦光从原子气室出射的点的横坐标,即表示原子气室沿光传播方向的长度;where x M is the abscissa of the point where the first pump light is emitted from the atomic gas cell, that is, the length of the atomic gas cell along the light propagation direction;
进一步,经双向泵浦后,碱金属原子气室(7)内的总泵浦率Rp为两次泵浦率之和,即公式三:Further, after bidirectional pumping, the total pumping rate Rp in the alkali metal atom gas chamber (7) is the sum of the two pumping rates, that is, formula 3:
Rp=Rp1+Rp2 R p =R p1 +R p2
进一步,碱金属原子气室7中原子极化率P为公式四:Further, the atomic polarizability P in the alkali metal atomic gas chamber 7 is the formula 4:
在公式四中,右边第一项Rp1随x增加单调递减,故会造成碱金属原子气室内泵浦率的不均匀性,而第二项Rp2随x增加单调递增,可对第一项的不均匀性进行补偿,从而得到相对均匀的泵浦率,从而也提高了极化率的均匀性。In
步骤二:所述锁相放大器12参考输出连接磁场线圈5,产生频率为ω、幅度为B1的调制磁场B1cosωt。Step 2: The reference output of the lock-in
步骤三:795nm再次从气室出射后,通过光纤准直器6上的自聚焦透镜耦合进入光纤,然后传出磁屏蔽桶外,由光电二极管10进行光电转换。Step 3: After 795 nm is emitted from the air chamber again, it is coupled into the optical fiber through the self-focusing lens on the optical fiber collimator 6, and then transmitted out of the magnetic shielding barrel, where the
由光电二极管10探测到的光强信号Sx与极化分量Px成正比,其一次谐波项为公式五:The light intensity signal Sx detected by the
其中,γe为碱金属原子旋磁比,B0为待测磁场幅值,J0是0阶贝塞尔函数,J1是1阶贝塞尔函数,Q为核减速因子,Rp为光泵浦率,Rr为弛豫率,P为气室中原子极化率。Among them, γe is the gyromagnetic ratio of alkali metal atoms, B 0 is the amplitude of the magnetic field to be measured, J 0 is the 0-order Bessel function, J 1 is the 1-order Bessel function, Q is the nuclear deceleration factor, and R p is the light pump rate, R r is the relaxation rate, and P is the atomic polarizability in the gas cell.
步骤四:利用锁相放大器12对该一次谐波项进行锁相放大即可从噪声中提取待测弱磁信号B0,在零场范围内,该表达式可近似为公式六:Step 4: Use the lock-in
进一步,由于光电转换系数k、调制幅度B1、调制频率ω、泵浦率Rp、弛豫率Rr、旋磁比re等参数在调整稳定后都不再改变,故可实现线性输出。Further, since parameters such as photoelectric conversion coefficient k, modulation amplitude B1, modulation frequency ω, pump rate Rp, relaxation rate Rr, and gyromagnetic ratio re will not change after adjustment and stabilization, linear output can be achieved.
通过上述步骤一~步骤四,得益于反射式双向泵浦的方式,提高了原子气室内原子极化率的空间均匀性,从而提高了探测结果的稳定性与可靠性,并采用空间光耦合的方式,避免了在碱金属原子气室7附近进行光电转换,避免了光电转换电路带来的附加磁场,从而进一步降低了磁噪声,使得该装置具有更高的探测灵敏度,同时,由于减少传感探头上的了光电转换电路以及光纤数量,使得传感探头的结构能进一步微型化,便于集成与阵列式应用。Through the
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明的保护范围,任何熟悉本领域的技术人员在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements and improvements made by any person skilled in the art within the spirit and principles of the present invention, etc. , should be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111029826.7A CN113721173B (en) | 2021-09-02 | 2021-09-02 | A Fiber-optic SERF Atomic Magnetometer Device Based on Reflective Bidirectional Pumping |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111029826.7A CN113721173B (en) | 2021-09-02 | 2021-09-02 | A Fiber-optic SERF Atomic Magnetometer Device Based on Reflective Bidirectional Pumping |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113721173A CN113721173A (en) | 2021-11-30 |
CN113721173B true CN113721173B (en) | 2022-07-15 |
Family
ID=78681276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111029826.7A Expired - Fee Related CN113721173B (en) | 2021-09-02 | 2021-09-02 | A Fiber-optic SERF Atomic Magnetometer Device Based on Reflective Bidirectional Pumping |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113721173B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114200357A (en) * | 2021-12-16 | 2022-03-18 | 中国人民解放军军事科学院国防科技创新研究院 | Non-magnetic temperature control device for atomic magnetic detection and measuring method |
CN114271826B (en) * | 2021-12-21 | 2024-09-10 | 苏州众烁云辉科技有限公司 | A magnetocardiographic detection device and method based on single beam polarization control |
CN115128517B (en) * | 2022-06-09 | 2024-08-02 | 电子科技大学 | A three-axis geomagnetic vector atomic magnetometer based on a single light source |
CN114966493B (en) * | 2022-07-20 | 2022-11-04 | 北京昆迈医疗科技有限公司 | Miniaturized atomic magnetometer |
CN115754841A (en) * | 2022-11-11 | 2023-03-07 | 北京航空航天大学 | Single-beam SERF atomic magnetometer system with uniform polarization |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113009385A (en) * | 2021-02-02 | 2021-06-22 | 中国人民解放军军事科学院国防科技创新研究院 | Atomic magnetic gradient measuring device and method based on distributed light modulation |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017026405A (en) * | 2015-07-21 | 2017-02-02 | キヤノン株式会社 | Optical pumping magnetometer and magnetic sensing method |
CN111025201A (en) * | 2019-12-02 | 2020-04-17 | 北京航天控制仪器研究所 | Probe light path structure of atomic magnetometer |
CN111983526B (en) * | 2020-08-24 | 2021-11-23 | 清华大学 | Atomic magnetometer and magnetic field imaging system |
CN112946539B (en) * | 2021-01-04 | 2023-09-01 | 北京航空航天大学 | Single-beam reflection type triaxial magnetic field measuring device based on SERF |
CN113311369A (en) * | 2021-05-28 | 2021-08-27 | 清华大学 | Microminiature atomic magnetometer and magnetic imaging system based on optical fiber circulator |
-
2021
- 2021-09-02 CN CN202111029826.7A patent/CN113721173B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113009385A (en) * | 2021-02-02 | 2021-06-22 | 中国人民解放军军事科学院国防科技创新研究院 | Atomic magnetic gradient measuring device and method based on distributed light modulation |
Also Published As
Publication number | Publication date |
---|---|
CN113721173A (en) | 2021-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113721173B (en) | A Fiber-optic SERF Atomic Magnetometer Device Based on Reflective Bidirectional Pumping | |
US8212556B1 (en) | Atomic magnetometer | |
CN104698410A (en) | Atomic magnetic sensor for magnetometer and method of removing detection dead zones of magnetometer | |
CN109782197B (en) | Implementation method of chip atomic sensing and its sensor | |
CN103308783B (en) | Based on the optical crystal electric-field sensor of Distributed Feedback Laser | |
CN103701030A (en) | A single-peak 87Rb isotope atomic filter for laser frequency stabilization and its filtering method | |
CN203324388U (en) | Optical crystal electric field sensor based on DFB laser | |
CN105629033A (en) | Device and method for measuring conductor current through employing magneto-optic materials | |
CN110632028B (en) | Zero-background laser absorption spectroscopy detection system based on optical fiber polarization inter-mode interference | |
CN112946539A (en) | Single-beam reflection type triaxial magnetic field measuring device based on SERF | |
CN105866506B (en) | A kind of device and method that conductor current is measured using magneto-optic memory technique | |
CN111896895A (en) | Probe structure of a solid-state gyromagnetic sensor | |
CN115825824A (en) | Device and method for improving electron polarizability uniformity of SERF atomic magnetometer | |
CN106342212B (en) | High reflection mirror laser back scattering measurement mechanism | |
CN114527413A (en) | Full-polarization regulation and control extremely-weak magnetic field detection device | |
CN113311369A (en) | Microminiature atomic magnetometer and magnetic imaging system based on optical fiber circulator | |
CN105954564B (en) | A kind of device and method that conductor current is measured using magneto-optic memory technique | |
CN105158208A (en) | Detection method for refractive index of SPR high-sensitivity medium of Goos-Haenchen shift | |
CN114487945B (en) | A scalar atomic magnetometer and method without detection blind area and capable of eliminating optical frequency shift | |
CN102183735A (en) | Space magnetic field detector | |
CN108279390B (en) | Non-blind area optical pump magnetometer probe | |
WO2024016371A1 (en) | Miniaturized atom magnetometer | |
CN113655413B (en) | Optical fiber type atomic magnetometer probe and adjusting method thereof | |
CN114601465B (en) | A small dual-beam dual-channel atomic magnetometer system | |
CN105222896A (en) | A kind of magneto-optic optical fiber that utilizes studies polarized light in the method for swinging propagation characteristic in chamber that declines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220715 |