CN113715308B - Adjustable multi-point progressive flanging forming device and method - Google Patents
Adjustable multi-point progressive flanging forming device and method Download PDFInfo
- Publication number
- CN113715308B CN113715308B CN202111024449.8A CN202111024449A CN113715308B CN 113715308 B CN113715308 B CN 113715308B CN 202111024449 A CN202111024449 A CN 202111024449A CN 113715308 B CN113715308 B CN 113715308B
- Authority
- CN
- China
- Prior art keywords
- adjusting rod
- flanging
- adjustable multi
- assembly
- adjustment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D31/00—Other methods for working sheet metal, metal tubes, metal profiles
- B21D31/005—Incremental shaping or bending, e.g. stepwise moving a shaping tool along the surface of the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D19/00—Flanging or other edge treatment, e.g. of tubes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/18—Manufacturability analysis or optimisation for manufacturability
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mechanical Engineering (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
Abstract
Description
技术领域technical field
本发明涉及的是一种钣金件制造领域的技术,具体是一种可调节式多点渐进翻边成形装置及方法。The invention relates to a technology in the field of sheet metal parts manufacturing, in particular to an adjustable multi-point progressive flanging forming device and method.
背景技术Background technique
现有生产翻边类零件主要有人工锤击和固定模具翻边两种成形方式。翻边类零件在成形过程中会发生回弹,人工锤击调整回弹量效率低,工人劳动强度大,环境噪音大;采用固定模具翻边成形需要针对不同产品设计对应模具,模具利用率低,开发费用高昂,生产周期长;且模具固定的情况下无法调整补偿翻边回弹量,受力不均匀,成形精度低。The existing production of flanging parts mainly includes two forming methods: manual hammering and fixed mold flanging. Flanging parts will spring back during the forming process. Manual hammering to adjust the springback is inefficient, labor intensity is high, and environmental noise is high. Using a fixed mold for flanging forming requires corresponding molds for different products, and the mold utilization rate is low. , the development cost is high, the production cycle is long; and the amount of flanging springback cannot be adjusted and compensated when the mold is fixed, the force is uneven, and the forming accuracy is low.
发明内容SUMMARY OF THE INVENTION
本发明针对现有技术存在的上述不足,提出一种可调节式多点渐进翻边成形装置及方法,通过调节调节杆组件的伸缩来改变模面曲率的变化,直至待成形件预设曲面的形状;本发明各调节杆组件之间协同控制,实现不同模面曲率的变化,实现同一平台完成不同尺寸材料的翻边成形。Aiming at the above-mentioned shortcomings of the prior art, the present invention proposes an adjustable multi-point progressive flanging forming device and method, which can change the change of the curvature of the die surface by adjusting the expansion and contraction of the adjusting rod assembly until the preset curved surface of the part to be formed is formed. shape; the adjustment rod components of the present invention are controlled cooperatively to realize the change of the curvature of different die surfaces, and realize the same platform to complete the flanging forming of materials of different sizes.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
本发明涉及一种可调节式多点渐进翻边成形装置,包括:由上而下依次设置的压紧机构、柔性弹垫组件以及若干层叠的调节杆组件以及用于成形的六自由度工作端,其中:待成形件的一端设置于压紧机构和柔性弹垫组件之间,柔性弹垫组件包络层叠的调节杆组件一侧构成的外表面,六自由度工作端位于待成形件的外侧对其进行弯曲变形。The invention relates to an adjustable multi-point progressive flanging forming device. , wherein: one end of the part to be formed is arranged between the pressing mechanism and the flexible spring washer assembly, the flexible spring washer assembly envelops the outer surface formed by one side of the stacked adjusting rod assembly, and the six-degree-of-freedom working end is located on the outside of the to-be-formed part Bend it.
所述的调节杆组件包括:电动推杆和与之相连的调节杆以及至少一个通过连接销活动设置于调节杆中的钢球,其中:电动推杆和调节杆通过联轴器连接,至少一个钢球与柔性弹垫组件点接触。The adjusting rod assembly includes: an electric push rod and an adjusting rod connected with it, and at least one steel ball movably arranged in the adjusting rod through a connecting pin, wherein: the electric push rod and the adjusting rod are connected by a coupling, and at least one The steel ball is in point contact with the flexible spring washer assembly.
所述的调节杆组件与可调节式多点渐进翻边电子控制单元相连以实现每个调节杆组件的独立控制及包络曲面形状的调整,该可调节式多点渐进翻边电子控制单元包括:信息接收模块、信息对比计算模块和翻边控制模块,其中:信息接收模块与光栅式位移传感器相连并传递位移信息,信息对比计算模块根据位移信息,与理论结果进行对比计算得到局部调整位移,翻边控制模块根据局部调整位移信息,调控调节杆组件进行回弹补偿,通过循环迭代直至成形出合格翻边零件。The adjusting rod assembly is connected with an adjustable multi-point progressive flanging electronic control unit to realize the independent control of each adjusting rod assembly and the adjustment of the shape of the enveloping surface. The adjustable multi-point progressive flanging electronic control unit includes: : information receiving module, information comparison calculation module and flanging control module, wherein: the information reception module is connected with the grating displacement sensor and transmits the displacement information, the information comparison calculation module compares and calculates the local adjustment displacement with the theoretical results according to the displacement information According to the local adjustment displacement information, the flanging control module regulates the adjustment rod assembly to perform springback compensation, and through cyclic iteration until a qualified flanging part is formed.
本发明涉及上述装置的可调节式多点渐进翻边成形方法,根据待成形件的曲面加工要求,通过可调节式多点渐进翻边电子控制单元调节调节杆组件的伸缩,直至调节杆组件的包络曲面符合待成形件预设曲面的形状后,通过六自由度工作端实现成形。The invention relates to an adjustable multi-point progressive flanging forming method of the above-mentioned device. According to the surface processing requirements of the to-be-formed part, the adjustable multi-point progressive flanging electronic control unit adjusts the expansion and contraction of the adjusting rod assembly until the After the enveloping surface conforms to the shape of the preset surface of the part to be formed, the forming is realized by the six-degree-of-freedom working end.
技术效果technical effect
本发明整体解决了现有翻边成形技术模具利用率低,生产周期长;且无法局部精确调控翻边回弹等问题;The invention as a whole solves the problems of low mold utilization rate and long production cycle of the existing flanging forming technology;
与现有技术相比,本发明通过可调节式多点渐进翻边电子控制单元调节调节杆组件的伸缩,有针对性的局部调整调节杆组件的位置来改变模面曲率的变化,直至待成形件预设曲面的形状,具有柔性、无模、曲面可重构等特点,能够实现同一平台完成不同尺寸材料的翻边成形,高效快速,适应现场调整作业,大幅度降低成形件开发周期,且能实时补偿调整回弹量,能有效改善模具利用率低的问题。Compared with the prior art, the present invention adjusts the expansion and contraction of the adjusting rod assembly through the adjustable multi-point progressive flanging electronic control unit, and adjusts the position of the adjusting rod assembly in a targeted manner to change the change of the curvature of the die surface until the molding is to be formed. The shape of the preset curved surface of the part has the characteristics of flexibility, no mold, and the surface can be reconfigured. It can realize the flanging forming of materials of different sizes on the same platform, which is efficient and fast, adapts to on-site adjustment operations, and greatly reduces the development cycle of formed parts. It can compensate and adjust the springback amount in real time, which can effectively improve the problem of low mold utilization rate.
附图说明Description of drawings
图1为本发明装置示意图;Fig. 1 is the schematic diagram of the device of the present invention;
图2为柔性弹垫组件剖面示意图;2 is a schematic cross-sectional view of a flexible spring cushion assembly;
图3为调节杆组件剖面示意图;Figure 3 is a schematic cross-sectional view of the adjustment rod assembly;
图4为本发明方法流程图;Fig. 4 is the flow chart of the method of the present invention;
图5为本发明成形件截面示意图;Figure 5 is a schematic cross-sectional view of the molded part of the present invention;
图6为实施例的多次调整补偿量的贴模间隙变化图;FIG. 6 is a graph showing the variation of the die gap for multiple adjustment of the compensation amount according to the embodiment;
图中:1压紧机构、2柔性弹垫组件、3调节杆组件、4光栅式线位移传感器、5可调节式多点渐进翻边电子控制单元、6旋轮、21聚氨酯垫板、23钢垫板、31电动推杆、33联轴器、35调节杆、37钢球、39连接销、351圆柱、352圆柱、7待成形件。In the picture: 1 pressing mechanism, 2 flexible spring washer components, 3 adjusting rod components, 4 grating linear displacement sensor, 5 adjustable multi-point progressive flanging electronic control unit, 6 rotary wheels, 21 polyurethane backing plate, 23 steel Backing plate, 31 electric push rod, 33 coupling, 35 adjusting rod, 37 steel ball, 39 connecting pin, 351 cylinder, 352 cylinder, 7 parts to be formed.
具体实施方式Detailed ways
如图1和图2所示,为本实施例涉及一种可调节式多点渐进翻边成形装置,包括:由上而下依次设置的压紧机构1、柔性弹垫组件2以及若干层叠的调节杆组件3以及用于成形的六自由度工作端6,其中:待成形件7的一端设置于压紧机构1和柔性弹垫组件2之间,柔性弹垫组件2包络层叠的调节杆组件3一侧构成的外表面,六自由度工作端6位于待成形件7的外侧对其进行弯曲变形。As shown in FIGS. 1 and 2 , this embodiment relates to an adjustable multi-point progressive flanging forming device, including: a pressing mechanism 1 , a flexible
如图2所示,所述的柔性弹垫组件2包括:至少一片钢垫板23以及对应设置于其两侧的聚氨酯垫板21,具体为聚氨酯垫板-钢垫板-聚氨酯垫板的三明治结构或聚氨酯垫板-钢垫板-聚氨酯垫板-钢垫板-聚氨酯垫板五层三明治结构的两种结构形式,根据所述待成形件7翻边曲率尺寸要求,选择不同规格的柔性弹垫组件。As shown in FIG. 2 , the flexible
所述的聚氨酯垫板21和钢垫板23之间优选通过胶粘剂连接。The
如图1所示,所述的柔性弹垫组件2的一端设有用于检测待成形件7尺寸位移变化的光栅式线位移传感器4,当待成形在成形过程中发生位移变化以及变形位移回弹时,光栅式线位移传感器4中的两块光栅会发生相对位移,光电池上的光强度随莫尔条纹移动而变化,计数器会记录下光栅移动通过的条纹数,即待成形在成形过程中发生位移变化以及变形位移回弹量,最后光栅式线位移传感器4将位移信息以电压信号的方式输入到可调节式多点渐进翻边电子控制单元5中以实现每个调节杆组件3的独立回弹补偿控制。As shown in FIG. 1 , one end of the flexible
如图3所示,所述的调节杆组件3包括:电动推杆31和与之相连的调节杆35以及至少一个通过连接销39活动设置于调节杆35中的钢球37,其中:电动推杆31和调节杆35通过联轴器33连接,至少一个钢球37与柔性弹垫组件2点接触。As shown in FIG. 3 , the
所述的调节杆35为两段圆柱式结构,一段圆柱351直径大于另一段圆柱352直径,钢球37固定设置于圆柱352上,钢球37直径与圆柱351直接相等。The adjusting
所述的调节杆组件3在纵向方向上有序排列,调节杆组件3在纵向方向上的数量为4~6个,在纵向方向上,调节杆组件3上钢球37数量呈等差数列排列,下面一层的调节杆组件上钢球数量比上面一层的调节杆组件上钢球数量多1~2个。The adjusting
如图3所示,所述的调节杆组件3均为单独控制,在可调节式多点渐进翻边电子控制单元5调控下,各调节杆组件3可以到达各自的指定位置。As shown in FIG. 3 , the
所述的层叠是指:每层调节杆组件3之间留有0.5~1.0mm的安装间隙,防止调节杆组件3在伸缩过程中相互干涉;调节杆组件3之间涂覆润滑油,减小调节杆组件3在伸缩过程中摩擦。The stacking refers to that there is an installation gap of 0.5-1.0mm between the adjusting
如图4所示,为本实施例涉及上述装置的可调节式多点渐进翻边成形方法,包括:As shown in FIG. 4 , the present embodiment relates to the adjustable multi-point progressive flanging forming method of the above device, including:
第一步,根据待成形件的翻边要求,计算出翻边曲率数据;The first step is to calculate the flanging curvature data according to the flanging requirements of the part to be formed;
第二步,将数据导入可调节式多点渐进翻边电子控制单元5中,调控调节杆组件3到达指定位置,形成一个多点的包络面;In the second step, the data is imported into the adjustable multi-point progressive flanging electronic control unit 5, and the adjusting
第三步,对待成形件进行可调节式多点渐进翻边有限元分析,在由工业六轴机器人控制位姿的工具头6的作用下,待成形件与柔性弹垫组件2以一定的弯曲曲率发生变形,待成形件在成形后发生回弹,通过有限元分析得出翻边曲率与回弹补偿量之间的关系式;The third step is to carry out an adjustable multi-point progressive flanging finite element analysis of the to-be-formed part. Under the action of the
第四步,对有限元分析结果进行实验验证与优化,在由工业六轴机器人控制位姿的工具头6的作用下,待成形件与柔性弹垫组件2以一定的弯曲曲率发生变形,柔性弹垫组件2上设置的光栅式线位移传感器4检测待成形件在成形过程中尺寸位移变化,将光栅式线位移传感器4的位移信息输入到可调节式多点渐进翻边电子控制单元5,可调节式多点渐进翻边电子控制单元5调控调节杆组件3进行回弹补偿,优化翻边曲率与回弹补偿量之间的关系式,使得到的关系式符合待成形件的翻边要求。The fourth step is to carry out experimental verification and optimization of the finite element analysis results. Under the action of the
第五步,将得到的关系式输入到可调节式多点渐进翻边电子控制单元5中,根据待成形件的翻边要求,可调节式多点渐进翻边电子控制单元5调控调节杆组件3达到指定的位置,成形出符合要求的翻边件。The fifth step is to input the obtained relational expression into the adjustable multi-point progressive flanging electronic control unit 5, and according to the flanging requirements of the part to be formed, the adjustable multi-point progressive flanging electronic control unit 5 regulates the adjustment rod assembly. 3 When the specified position is reached, the flanged parts that meet the requirements are formed.
第六步,由六自由度工作端6作用下,柔性弹垫组件2紧贴着待成形件,发生弯曲变形,柔性弹垫组件2弯曲曲率与待成形件弯曲曲率相等。In the sixth step, under the action of the six-degree-of-
如图1、图2和图4所示,所述的待成形件7设置于柔性弹垫组件2上表面,柔性弹垫组件2在成形前是一平面,在六自由度工作端6作用下,柔性弹垫组件2紧贴着待成形件7,发生弯曲变形,柔性弹垫组件2弯曲曲率与所述待成形件7弯曲曲率相等,柔性弹垫组件2与待成形件7以等时间、等曲率、等速度发生弯曲变形。As shown in Figures 1, 2 and 4, the said to-be-formed
如图1和图4所示,所述的六自由度工作端6是由六轴机器人驱动,六自由度工作端6有6个自由度,可以在轴向、径向以及周向方向上进行进给与旋转。As shown in FIG. 1 and FIG. 4 , the six-degree-of-
如图5,本实施例的待成形件7厚度2mm的6063铝合金板料,其目标形成的翻边件的尺寸为:圆弧半径1000mm,曲率为0.001。As shown in FIG. 5 , for the 6063 aluminum alloy sheet material to be formed 7 with a thickness of 2 mm in this embodiment, the size of the flanging piece to be formed is: the radius of the arc is 1000 mm, and the curvature is 0.001.
具体地,根据待成形件7的翻边要求,计算出翻边曲率数据;将数据导入可调节式多点渐进翻边电子控制单元5中,调控调节杆组件3到达指定位置,形成一个多点的包络面;在六自由度工作端6的作用下,待成形件7与柔性弹垫组件2以一定的弯曲曲率发生变形,最终成形出符合要求的翻边件。Specifically, according to the flanging requirements of the part to be formed 7, the flanging curvature data is calculated; the data is imported into the adjustable multi-point progressive flanging electronic control unit 5, and the adjusting
经过具体实验,利用本方法得到的翻边件最大贴模间隙小于0.5mm,远低于现有翻边成形技术得到的最大贴模间隙2.85mm。After specific experiments, the maximum die-fitting gap of the flanging piece obtained by this method is less than 0.5 mm, which is far lower than the maximum die-fitting gap of 2.85 mm obtained by the existing flanging forming technology.
相比于现有翻边技术一次修模需要10小时工时,并且需要多次修模,本发明根据零件回弹量,计算并调整调节杆组件3的位置最终成形出合格零件所需时间仅为0.6小时,极大地提高了成形效率;与现有技术得到翻边件最大贴模间隙2.85mm相比,本发明可以使得最大贴模间隙小于0.5mm,显著提高了成形质量。Compared with the existing flanging technology, which requires 10 hours of man-hours for one-time mold repair, and requires multiple mold repairs, the present invention calculates and adjusts the position of the
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。The above-mentioned specific implementation can be partially adjusted by those skilled in the art in different ways without departing from the principle and purpose of the present invention. The protection scope of the present invention is subject to the claims and is not limited by the above-mentioned specific implementation. Each implementation within the scope is bound by the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111024449.8A CN113715308B (en) | 2021-09-02 | 2021-09-02 | Adjustable multi-point progressive flanging forming device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111024449.8A CN113715308B (en) | 2021-09-02 | 2021-09-02 | Adjustable multi-point progressive flanging forming device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113715308A CN113715308A (en) | 2021-11-30 |
CN113715308B true CN113715308B (en) | 2022-08-09 |
Family
ID=78680800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111024449.8A Active CN113715308B (en) | 2021-09-02 | 2021-09-02 | Adjustable multi-point progressive flanging forming device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113715308B (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5027459B2 (en) * | 2006-07-25 | 2012-09-19 | 本田技研工業株式会社 | Hemming processing method and hemming processing apparatus |
JP5971226B2 (en) * | 2013-11-01 | 2016-08-17 | 株式会社安川電機 | Robot system and method of manufacturing workpiece |
JP6405961B2 (en) * | 2014-03-06 | 2018-10-17 | 日産自動車株式会社 | Roll hemming method and roll hemming apparatus |
CN104492894A (en) * | 2014-12-17 | 2015-04-08 | 浙江聚英风机工业有限公司 | Full automatic efficient flanging machine |
JP6405994B2 (en) * | 2014-12-25 | 2018-10-17 | 日産自動車株式会社 | Roll hemming machine |
CN106903233B (en) * | 2017-04-09 | 2018-10-12 | 安徽同步自动化科技有限公司 | A kind of positioning clamping device |
CN207839725U (en) * | 2018-01-25 | 2018-09-11 | 包头市新爱科风机制造有限责任公司 | A kind of ventilating draught fan air inlet spinning flange special plane |
CN112792219A (en) * | 2021-01-29 | 2021-05-14 | 赵雪蕾 | Multi-point incremental forming numerical control support device and numerical control multi-point incremental forming method of plate |
-
2021
- 2021-09-02 CN CN202111024449.8A patent/CN113715308B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113715308A (en) | 2021-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108311578B (en) | Flexible three-dimensional stretch bending forming process and device for stretch-press combined profile | |
CN102554008B (en) | Active reconfigurable stretch forming tool and method | |
Choi et al. | Comparison of implicit and explicit finite-element methods for the hydroforming process of an automobile lower arm | |
US7240532B2 (en) | Hybrid metal forming system | |
Leu | Position deviation and springback in V-die bending process with asymmetric dies | |
CN105921554A (en) | Bending apparatus and bending method for a plate-shaped metal workpiece | |
CN113715308B (en) | Adjustable multi-point progressive flanging forming device and method | |
CN207161637U (en) | A kind of 3D printer automatic belt tensioning device | |
CN220862438U (en) | Numerical control pipe bending machine | |
Chen et al. | Research on springback compensation method of 3D flexible stretch bending of multi-point roller dies | |
Wang et al. | An efficient closed-form solution for springback prediction and compensation in elastic–plastic creep age forming | |
CN102240703B (en) | Non-contact dieless processing forming angle measuring method | |
Leu | Position deviation in V-die bending process with asymmetric bend length | |
CN100384558C (en) | Thin-wall tube variable curvature push-bending technology and mold | |
Tang et al. | Roles of surface booster system on bending of thin-walled copper tube | |
Zhang et al. | Numerical simulation analysis of rubber flexible die properties on forming quality of the double-curved part for 6K21-T4 aluminum alloy | |
Erhu et al. | Study on the multi-point forming process with a swinging punch unit | |
CN1317089C (en) | An adjustable combination hot bending die | |
Wen et al. | Research on the influence of die head arrangement on the precision of discontinuous deformation in multi-points stretch-bending of profiles | |
CN201871615U (en) | Molding mould for hook assembly of automobile muffler | |
CN109570352B (en) | Single-mode multi-pass forming sheet metal machining method | |
Wu et al. | Comparison of the Geometric Accuracy by DSIF Toolpath With SPIF Toolpath | |
CN207076816U (en) | The bend molding apparatus of oil injector body oil return oil pipe | |
Jin et al. | Research on a multi-step spinning process for manufacturing disc-like part with thickened rim | |
CN221074895U (en) | Assembly tool for stacked die |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |