CN113705874A - New energy power grid evolution prediction method and device, computer equipment and storage medium - Google Patents
New energy power grid evolution prediction method and device, computer equipment and storage medium Download PDFInfo
- Publication number
- CN113705874A CN113705874A CN202110952453.4A CN202110952453A CN113705874A CN 113705874 A CN113705874 A CN 113705874A CN 202110952453 A CN202110952453 A CN 202110952453A CN 113705874 A CN113705874 A CN 113705874A
- Authority
- CN
- China
- Prior art keywords
- evolution
- key
- power grid
- target area
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 238000004146 energy storage Methods 0.000 claims abstract description 83
- 238000011161 development Methods 0.000 claims abstract description 72
- 238000010248 power generation Methods 0.000 claims abstract description 55
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 43
- 238000012545 processing Methods 0.000 claims abstract description 36
- 239000000446 fuel Substances 0.000 claims abstract description 21
- 230000008569 process Effects 0.000 claims abstract description 18
- 230000035515 penetration Effects 0.000 claims description 59
- 230000005611 electricity Effects 0.000 claims description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 26
- 229910052799 carbon Inorganic materials 0.000 claims description 26
- 230000006870 function Effects 0.000 claims description 25
- 238000010276 construction Methods 0.000 claims description 23
- 238000012423 maintenance Methods 0.000 claims description 23
- 238000004590 computer program Methods 0.000 claims description 20
- 238000000342 Monte Carlo simulation Methods 0.000 claims description 6
- 230000001568 sexual effect Effects 0.000 claims 1
- 230000004044 response Effects 0.000 description 22
- 238000005070 sampling Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 15
- 239000003245 coal Substances 0.000 description 11
- 238000004364 calculation method Methods 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000007405 data analysis Methods 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 238000013468 resource allocation Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000005381 potential energy Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
- G06Q30/0202—Market predictions or forecasting for commercial activities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
- G06Q30/0206—Price or cost determination based on market factors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S50/00—Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
- Y04S50/14—Marketing, i.e. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Entrepreneurship & Innovation (AREA)
- Finance (AREA)
- Accounting & Taxation (AREA)
- Physics & Mathematics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Game Theory and Decision Science (AREA)
- Tourism & Hospitality (AREA)
- Data Mining & Analysis (AREA)
- Educational Administration (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本申请涉及一种新能源电网演化预测方法、装置、计算机设备和存储介质。所述方法包括:确定目标区域对应的关键指标集合;关键指标集合包括影响目标区域电网发展的发电资源指标、储能指标、用电需求侧指标、灵活性资源指标、以及燃料价格指标;对关键指标集合中的每一个指标进行数值预测处理,获得关键指标样本集合;利用电网演化预测算法处理关键指标样本集合,获得目标区域对应的多组演化数据;演化数据包括目标区域对应的发电资源结构的演化数据以及目标区域对应的灵活性资源结构的演化数据。采用本方法能够实现电网演化路径的自动化智能预测,排除人为因素的影响,保证生成的演化路径的准确性,并使预测出的电网演化路径具备一定的全局覆盖性。
The present application relates to a new energy grid evolution prediction method, device, computer equipment and storage medium. The method includes: determining a set of key indicators corresponding to the target area; the set of key indicators includes power generation resource indicators, energy storage indicators, power demand side indicators, flexible resource indicators, and fuel price indicators that affect the development of power grids in the target area; Perform numerical prediction processing on each indicator in the indicator set to obtain a sample set of key indicators; use the power grid evolution prediction algorithm to process the sample set of key indicators to obtain multiple sets of evolution data corresponding to the target area; the evolution data includes the power generation resource structure corresponding to the target area. Evolution data and evolution data of the flexible resource structure corresponding to the target area. The method can realize automatic and intelligent prediction of the evolution path of the power grid, exclude the influence of human factors, ensure the accuracy of the generated evolution path, and make the predicted evolution path of the power grid have a certain global coverage.
Description
技术领域technical field
本申请涉及电力技术领域,特别是涉及一种新能源电网演化预测方法、装 置、计算机设备和存储介质。The present application relates to the field of electric power technology, and in particular to a new energy grid evolution prediction method, device, computer equipment and storage medium.
背景技术Background technique
随着灵活性资源(例如,火电机组灵活性改造、抽水蓄能、电池储能、压 缩空气储能、负荷转移型需求侧回应、负荷削减型需求侧回应)不断参与到电 网的演化发展中,电网的演化将会面临诸多不确定性因素,从而使电网的演化 具有深度不确定性。对辨识电网演化的关键驱动因素、判别电网演化的路径, 造成了极大的挑战。As flexibility resources (eg, thermal power plant flexibility retrofit, pumped hydro, battery storage, compressed air storage, load-shifting demand-side response, load-shedding demand-side response) continue to participate in the evolution of the grid, The evolution of the power grid will face many uncertain factors, so that the evolution of the power grid has deep uncertainty. It poses a great challenge to identify the key driving factors of power grid evolution and the path of power grid evolution.
传统技术中,主要依靠人为经验预测电网可能的演化路径。主要是预先根 据在先经验预测出多种可能的演化路径,并将这几种可能的演化路径当做未来 系统大致的演化发展路径。In traditional technologies, human experience is mainly used to predict the possible evolution path of the power grid. It is mainly to predict a variety of possible evolution paths in advance based on prior experience, and regard these possible evolution paths as the approximate evolution and development paths of the future system.
然而,传统的电网演化路径预测方法受人为因素影响较大,而且仅预测几 条电网可能的演化路径,就将这些路径作为未来系统大致的演化发展路径,使 预测结果缺乏普适性,可见现有技术难以保证演化路径的准确性。However, the traditional power grid evolution path prediction method is greatly affected by human factors, and only a few possible evolution paths of the power grid are predicted, and these paths are regarded as the approximate evolution and development paths of the future system, which makes the prediction results lack universality. It is difficult to guarantee the accuracy of the evolution path with existing technologies.
发明内容SUMMARY OF THE INVENTION
本申请提供一种新能源电网演化预测方法、装置、计算机设备和存储介质, 能够提高预测电网演化路径的全局覆盖性,在一定程度上保证了预测演化路径 的准确性。The present application provides a new energy power grid evolution prediction method, device, computer equipment and storage medium, which can improve the global coverage of the predicted power grid evolution path and ensure the accuracy of the predicted evolution path to a certain extent.
第一方面,提供了一种电网演化预测方法,该方法包括:确定目标区域对 应的关键指标集合;关键指标集合包括影响目标区域电网发展的发电资源指标、 影响目标区域电网发展的储能指标、影响目标区域电网发展的用电需求侧指标、 灵活性资源指标、以及影响目标区域电网发展的燃料价格指标;对关键指标集 合中的每一个指标进行数值预测处理,获得关键指标样本集合;利用电网演化 预测算法处理关键指标样本集合,获得目标区域对应的多组演化数据;演化数 据包括目标区域对应的发电资源结构的演化数据以及目标区域对应的灵活性资 源结构的演化数据。In a first aspect, a power grid evolution prediction method is provided, the method includes: determining a key index set corresponding to a target area; the key index set includes a power generation resource index affecting the development of the target area power grid, an energy storage index affecting the target area power grid development, Demand side indicators, flexible resource indicators that affect the development of the target regional power grid, and fuel price indicators that affect the development of the target regional power grid; perform numerical prediction processing on each indicator in the key indicator set to obtain a key indicator sample set; use the power grid The evolution prediction algorithm processes the key index sample set to obtain multiple sets of evolution data corresponding to the target area; the evolution data includes the evolution data of the power generation resource structure corresponding to the target area and the evolution data of the flexible resource structure corresponding to the target area.
结合第一方面,在第一方面的一种可能的实现方式中,对关键指标集合中 的每一个指标进行数值预测处理,以获得关键指标样本集合,包括:针对关键 指标集合中的每一个指标,确定每一个指标在预测时段内的上限值和下限值, 根据每一个指标的上限值和下限值对关键指标集合中的各个指标进行赋值处 理;采用蒙特卡洛方法对赋值处理后的关键指标集合进行随机抽样,获得每一 个指标在每个预测时段内的数值,根据每一个指标在每个预测时段内的数值确 定关键指标样本集合。With reference to the first aspect, in a possible implementation manner of the first aspect, performing numerical prediction processing on each indicator in the key indicator set to obtain a key indicator sample set, including: for each indicator in the key indicator set , determine the upper and lower limit values of each indicator in the forecast period, and assign values to each indicator in the key indicator set according to the upper and lower values of each indicator; use Monte Carlo method to assign values Random sampling is performed on the subsequent set of key indicators to obtain the value of each indicator in each forecast period, and a sample set of key indicators is determined according to the value of each indicator in each forecast period.
结合第一方面,在第一方面的一种可能的实现方式中,利用电网演化预测 算法处理关键指标样本集合,获得目标区域对应的多组演化数据,包括:将关 键指标样本集合输入电网演化预测算法中的目标函数,利用电网演化预测算法 中的约束条件对关键指标样本集合进行约束处理;根据目标函数的输出以及约 束处理的结果确定目标区域对应的多组演化数据;其中,目标函数为:电网演 化在各个预测时段的投资成本、电网固定运维成本、以及电网可变运行成本之 和最优;约束条件包括:电网的建设约束和电网的运行成本约束。In combination with the first aspect, in a possible implementation manner of the first aspect, a power grid evolution prediction algorithm is used to process the key indicator sample set to obtain multiple sets of evolution data corresponding to the target area, including: inputting the key indicator sample set into the power grid evolution prediction The objective function in the algorithm uses the constraints in the power grid evolution prediction algorithm to constrain the key indicator sample set; according to the output of the objective function and the result of the constraint processing, multiple sets of evolution data corresponding to the target area are determined; among them, the objective function is: The sum of the investment cost, the fixed operation and maintenance cost of the power grid, and the variable operation cost of the power grid in each forecast period of the power grid evolution is optimal; the constraints include: the construction constraints of the power grid and the operating cost constraints of the power grid.
结合第一方面,在第一方面的一种可能的实现方式中,投资成本为建设电 力系统中发电资源和灵活性资源所投入的资金成本;电网固定运维成本为对电 力系统中建设的设备进行日常维护所投入的资金成本;电网可变运行成本为电 力系统中发电资源运行时所消耗的燃料的成本。In combination with the first aspect, in a possible implementation manner of the first aspect, the investment cost is the capital cost invested in the construction of power generation resources and flexible resources in the power system; the fixed operation and maintenance cost of the power grid is the cost of equipment constructed in the power system. The cost of capital invested in routine maintenance; the variable operating cost of the grid is the cost of the fuel consumed by the power generation resources in the power system.
结合第三方面,在第三方面的一种可能的实现方式中,电网的建设约束包 括以下至少一项:各个预测时段内各电网节点上的各类资源的投资容量约束、 投资总容量约束、电网演化最终阶段的可再生能源渗透率约束和电网演化最终 阶段碳排放量约束;电网的运行成本约束为维持电力系统中各类发电资源正常 运行所需的资金成本。With reference to the third aspect, in a possible implementation manner of the third aspect, the construction constraints of the power grid include at least one of the following: investment capacity constraints of various resources on each power grid node in each prediction period, total investment capacity constraints, Renewable energy permeability constraints in the final stage of grid evolution and carbon emissions constraints in the final stage of grid evolution; the operating cost constraints of the grid are the capital costs required to maintain the normal operation of various power generation resources in the power system.
结合第一方面,在第一方面的一种可能的实现方式中,针对关键指标集合 中的任意一个关键指标,计算关键指标在不同的演化数据中的差异度,将最大 的差异度作为该关键指标的影响因子;将关键指标集合中,影响因子大于预设 门限的一个或多个关键指标确定为目标区域电网演化的关键驱动因素;该关键 驱动因素用于预测演化数据。In combination with the first aspect, in a possible implementation manner of the first aspect, for any key indicator in the key indicator set, the degree of difference of the key indicator in different evolution data is calculated, and the largest degree of difference is used as the key The impact factor of the indicator; one or more key indicators whose impact factor is greater than the preset threshold in the key indicator set is determined as the key driving factor of the grid evolution in the target area; the key driving factor is used to predict the evolution data.
结合第一方面,在第一方面的一种可能的实现方式中,计算目标区域的灵 活性资源发展指标,灵活性资源发展指标包括灵活性资源容量需求、灵活性资 源边际容量需求、电池储能出现点和电池储能主导点;其中,灵活性资源容量 需求为在不同可再生能源电量渗透率下,系统的灵活性资源容量,灵活性资源 边际容量需求为在不同可再生能源电量渗透率下,渗透率增长预设数值对应的 灵活性资源容量增量,电池储能出现点为电池储能在电力系统中出现时对应的 可再生能源电量渗透率,电池储能主导点为电池储能容量占灵活性资源容量的 预设比例时对应的可再生能源电量渗透率。In combination with the first aspect, in a possible implementation manner of the first aspect, the flexible resource development index of the target area is calculated, and the flexible resource development index includes flexible resource capacity demand, flexible resource marginal capacity demand, battery energy storage Emergence point and dominant point of battery energy storage; among them, the flexible resource capacity demand is the flexible resource capacity of the system under different renewable energy power penetration rates, and the flexible resource marginal capacity demand is under different renewable energy power penetration rates. , the flexible resource capacity increment corresponding to the preset value of the penetration rate increase, the battery energy storage occurrence point is the corresponding renewable energy power penetration rate when the battery energy storage appears in the power system, and the battery energy storage dominant point is the battery energy storage capacity Renewable energy electricity penetration rate corresponding to the preset proportion of flexible resource capacity.
第二方面,提供了一种电网演化预测装置,该装置包括:确定模块,用于 确定目标区域对应的关键指标集合;该关键指标集合包括影响目标区域电网发 展的发电资源指标、影响目标区域电网发展的储能指标、影响目标区域电网发 展的用电需求侧指标、灵活性资源指标、以及影响目标区域电网发展的燃料价 格指标;In a second aspect, a power grid evolution prediction device is provided, the device includes: a determination module for determining a key index set corresponding to a target area; the key index set includes a power generation resource index affecting the development of the target area power grid, a power generation resource index affecting the target area power grid The developed energy storage index, the electricity demand side index that affects the development of the target regional power grid, the flexible resource index, and the fuel price index that affects the development of the target regional power grid;
数值处理模块,用于对关键指标集合中的每一个指标进行数值预测处理, 获得关键指标样本集合;The numerical processing module is used to perform numerical prediction processing on each index in the key index set, and obtain the key index sample set;
演化数据生成模块,用于利用电网演化预测算法处理关键指标样本集合, 获得目标区域对应的多组演化数据;该演化数据包括目标区域对应的发电资源 结构的演化数据以及目标区域对应的灵活性资源结构的演化数据。The evolution data generation module is used to process the key index sample set by using the power grid evolution prediction algorithm to obtain multiple sets of evolution data corresponding to the target area; the evolution data includes the evolution data of the power generation resource structure corresponding to the target area and the flexibility resources corresponding to the target area. Structural evolution data.
第三方面,提供了一种计算机设备,包括存储器和处理器,该存储器存储 有计算机程序。处理器执行计算机程序时实现上述第一方面或第一方面任意一 种可能的实现方式中所述的方法的步骤。In a third aspect, there is provided a computer apparatus including a memory and a processor, the memory having a computer program stored thereon. When the processor executes the computer program, the steps of the method described in the first aspect or any one possible implementation manner of the first aspect are implemented.
第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,计 算机程序被处理器执行时实现上述第一方面或第一方面任意一种可能的实现方 式中所述的方法的步骤。In a fourth aspect, a computer-readable storage medium is provided, on which a computer program is stored, and when the computer program is executed by a processor, the method described in the first aspect or any possible implementation manner of the first aspect is implemented. step.
本申请提供一种新能源电网演化预测方法、装置、计算机设备和存储介质, 可以确定目标区域对应的关键指标集合,并对关键指标集合中的每一个指标进 行数值预测处理,以获得关键指标样本集合;最后,还可以利用电网演化预测 算法处理关键指标样本集合,获得目标区域对应的多组演化数据;演化数据用 于表征电网的演化趋势、演化路径等。其中,关键指标集合包括影响目标区域 电网发展的发电资源指标、影响目标区域电网发展的储能指标、影响目标区域 电网发展的用电需求侧指标、灵活性资源指标、以及影响目标区域电网发展的 燃料价格指标。可见,本申请中计算机能够基于电网演化预测算法实现对电网 演化路径的自动化智能预测,解决了现有技术依靠人工进行电网演化路径预测, 导致演化路径的准确性难以保证的问题。基于电网演化预测算法可以排除人为 因素对电网演化预测的影响。另外,本申请的关键指标集合基本涵盖了影响电 网发展的各种指标,具体包括灵活性资源配置相关的一些指标,在预测电网路 径时充分考虑了灵活性资源配置等不确定性因素,因此基于关键指标集合以及 电网演化预测算法能够获得较为全面的演化路径,预测出的电网演化路径具备 一定的全局覆盖性。The present application provides a new energy power grid evolution prediction method, device, computer equipment and storage medium, which can determine the key index set corresponding to the target area, and perform numerical prediction processing on each index in the key index set to obtain key index samples Finally, the power grid evolution prediction algorithm can also be used to process the key index sample set to obtain multiple sets of evolution data corresponding to the target area; the evolution data is used to characterize the evolution trend and evolution path of the power grid. The set of key indicators includes power generation resource indicators that affect the development of the target regional power grid, energy storage indicators that affect the development of the target regional power grid, demand side indicators that affect the development of the target regional power grid, flexible resource indicators, and indicators that affect the development of the target regional power grid. Fuel price indicator. It can be seen that the computer in the present application can realize the automatic intelligent prediction of the power grid evolution path based on the power grid evolution prediction algorithm, which solves the problem that the prior art relies on manual power grid evolution path prediction, resulting in the difficulty of guaranteeing the accuracy of the evolution path. Based on the power grid evolution prediction algorithm, the influence of human factors on the power grid evolution prediction can be excluded. In addition, the set of key indicators in this application basically covers various indicators that affect the development of the power grid, specifically including some indicators related to flexible resource allocation. When predicting the power grid path, uncertain factors such as flexible resource allocation are fully considered. Therefore, based on The set of key indicators and the power grid evolution prediction algorithm can obtain a more comprehensive evolution path, and the predicted power grid evolution path has a certain global coverage.
附图说明Description of drawings
图1为一个实施例中电网演化预测方法的流程示意图;1 is a schematic flowchart of a method for predicting the evolution of a power grid in one embodiment;
图2为一个实施例中数值预测处理方法的流程示意图;2 is a schematic flowchart of a numerical prediction processing method in one embodiment;
图3为一个实施例中演化数据分析方法的流程示意图;3 is a schematic flowchart of an evolutionary data analysis method in one embodiment;
图4为一个实施例中火电机组灵活性改造路径设定图;Fig. 4 is the setting diagram of the flexibility transformation path of thermal power unit in one embodiment;
图5为一个实施例中基于时变模式的关键驱动因素辨识示意图;5 is a schematic diagram of key driving factor identification based on a time-varying pattern in one embodiment;
图6为一个实施例中西北地区现状装机情况及负荷情况的示意图;6 is a schematic diagram of the current installed capacity and load conditions in the northwest region in one embodiment;
图7为一个实施例中系统演化路径及其分布的示意图;7 is a schematic diagram of a system evolution path and its distribution in one embodiment;
图8为一个实施例中不同可再生能源电量渗透率下灵活性资源需求情况的 示意图;FIG. 8 is a schematic diagram of the demand for flexibility resources under different renewable energy power penetration rates in one embodiment;
图9为一个实施例中电池储能在大量演化路径中统计情况的示意图;9 is a schematic diagram of the statistics of battery energy storage in a large number of evolution paths in one embodiment;
图10为一个实施例中可再生能源渗透率演化数据聚类结果的示意图;10 is a schematic diagram of a clustering result of renewable energy permeability evolution data in one embodiment;
图11为一个实施例中不同类别路径对应的关键指标的均值曲线图;11 is a graph of mean values of key indicators corresponding to different category paths in one embodiment;
图12为一个实施例中各关键指标的类间平均距离图;12 is a graph of the average distance between classes of each key indicator in one embodiment;
图13为一个实施例中海量演化路径生成及分析的框架图;13 is a frame diagram of the generation and analysis of massive evolution paths in one embodiment;
图14为一个实施例中电网演化预测装置的结构示意图;14 is a schematic structural diagram of a power grid evolution prediction device in one embodiment;
图15为一个实施例中电网演化数据分析结构示意图;FIG. 15 is a schematic diagram of a power grid evolution data analysis structure in one embodiment;
图16为一个实施例中电网演化数据调整结构示意图;FIG. 16 is a schematic diagram of a grid evolution data adjustment structure in one embodiment;
图17为一个实施例中计算机设备的内部结构图。Figure 17 is a diagram of the internal structure of a computer device in one embodiment.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅 用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application clearer, the present application will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
本申请实施例提供一种电网演化预测方法,应用于计算机设备,如图1所 示,所述方法包括以下步骤:An embodiment of the present application provides a method for predicting the evolution of a power grid, which is applied to computer equipment, and as shown in Figure 1, the method includes the following steps:
步骤101、确定目标区域对应的关键指标集合;关键指标集合包括影响目标 区域电网发展的发电资源指标、影响目标区域电网发展的储能指标、影响目标 区域电网发展的用电需求侧指标、灵活性资源指标、以及影响目标区域电网发 展的燃料价格指标;Step 101: Determine a set of key indicators corresponding to the target area; the set of key indicators includes a power generation resource index that affects the development of the power grid in the target area, an energy storage index that affects the development of the power grid in the target area, and an electricity demand side index that affects the development of the power grid in the target area, and flexibility Resource indicators, and fuel price indicators that affect the development of power grids in the target area;
本申请实施例中为了实现电网演化路径的自动化预测,需要确定多个影响 电网发展的不确定性因素,以便基于这些不确定性因素预测电网的演化路径, 使得预测的演化路径能够兼顾不确定性因素的影响。具体实现中,在针对某个 区域进行电网演化预测时,可以确定影响该区域电网演化的一些关键指标。例 如,对目标区域进行电网演化预测时,首先确定该目标区域的关键指标集合, 该关键指标集合包括影响目标区域电网演化方向的一些关键指标。In order to realize the automatic prediction of the evolution path of the power grid in the embodiment of the present application, it is necessary to determine multiple uncertain factors that affect the development of the power grid, so as to predict the evolution path of the power grid based on these uncertain factors, so that the predicted evolution path can take into account the uncertainty. influence of factors. In the specific implementation, when predicting the evolution of the power grid in a certain region, some key indicators that affect the evolution of the power grid in that region can be determined. For example, when predicting the evolution of the power grid in the target area, first determine the set of key indicators of the target area, and the set of key indicators includes some key indicators that affect the evolution direction of the power grid in the target area.
一种可能的实现方式中,关键指标集合包括影响所述目标区域电网发展的 发电资源指标、储能指标、用电需求侧指标、灵活性资源指标、燃料价格指标。In a possible implementation manner, the set of key indicators includes power generation resource indicators, energy storage indicators, electricity demand side indicators, flexible resource indicators, and fuel price indicators that affect the development of the target regional power grid.
其中,发电资源指标可以是目标区域的各种发电资源的投资参数,投资参 数可以表征对应发电资源的投资细节,例如,可以是各种发电资源的投资价格。 示例性的,发电资源可以是煤电、气电、水电、风电、光伏、光热。Wherein, the power generation resource index can be the investment parameters of various power generation resources in the target area, and the investment parameters can represent the investment details of the corresponding power generation resources, for example, can be the investment prices of various power generation resources. Exemplarily, the power generation resources may be coal power, gas power, hydropower, wind power, photovoltaic, solar thermal.
储能指标可以是目标区域灵活性资源的储能效率,储能效率可以表征电力 系统的应急能力,例如,可以是锂电池储能效率、压缩空气储能效率。其中, 锂电池储能主要利用锂离子电池中的化学物质的化学反应储存或释放电力,压 缩空气储能主要利用电网负荷低谷时的剩余电力压缩空气,并将其储藏在高压 密封设施内,在用电高峰释放出来驱动燃气轮机发电。The energy storage index can be the energy storage efficiency of flexible resources in the target area, and the energy storage efficiency can represent the emergency capability of the power system, such as lithium battery energy storage efficiency and compressed air energy storage efficiency. Among them, lithium battery energy storage mainly uses the chemical reaction of chemical substances in lithium ion batteries to store or release electricity, and compressed air energy storage mainly uses the surplus electricity when the grid load is low to compress air and store it in high-voltage sealed facilities. The peak of electricity consumption is released to drive the gas turbine to generate electricity.
用电需求侧指标可以是目标区域电力系统的电力需求响应,电力需求响应 可以表征电力系统运行的可靠性,例如,可以是用电需求侧响应的投资价格, 用电需求侧响应的补偿价格、用电需求侧响应的容量潜力。其中,用电需求侧 响应的投资价格为电力系统在用户需要或电力紧张时,为保证供需平衡,确保 系统运行的可靠性所投入的资金,示例性的,用电需求侧响应的投资价格可以 是转移型需求侧回应单位投资价格、削减型需求侧回应单位投资价格;用电需 求侧响应的补偿价格为用户在系统需要或电力紧张时减少电力需求,以此获得 直接补偿或其他时段的优惠电价,示例性的,用电需求侧响应的补偿价格可以 是转移型需求侧回应单位补偿价格、削减型需求侧回应单位补偿价格;用电需 求侧响应的容量潜力为电力系统在用户需要或电力紧张时,所能给用户或电力 设备提供的最大电功率,示例性的,用电需求侧响应的容量潜力可以是转移型 需求侧回应容量潜力、削减型需求侧回应容量潜力。The power demand side index can be the power demand response of the power system in the target area, and the power demand response can represent the reliability of the power system operation. For example, it can be the investment price of the power demand side response, the compensation price of the power demand side response, The capacity potential of demand-side response for electricity use. Wherein, the investment price of the electricity demand side response is the capital invested by the power system to ensure the balance of supply and demand and the reliability of the system operation when the user needs it or the power is in short supply. Exemplarily, the investment price of the electricity demand side response can be It is the unit investment price of transfer demand-side response and the unit investment price of reduction demand-side response; the compensation price of electricity demand-side response is that the user reduces the electricity demand when the system needs or power is in short supply, so as to obtain direct compensation or other discounts Electricity price, exemplarily, the compensation price of the electricity demand side response can be the unit compensation price of the transfer demand side response, the unit compensation price of the reduction demand side response; In times of stress, the maximum electric power that can be provided to users or power equipment. Exemplarily, the capacity potential of electricity demand side response can be a transfer demand side response capacity potential, a reduction type demand side response capacity potential.
灵活性资源指标可以是目标区域的各种灵活性资源的投资参数,投资参数 可以表征对应灵活性资源的投资细节,例如,可以是各种灵活性资源的投资价 格或在每个预测时段的最大投资容量(在每个预测时段内,电力系统所能在灵 活性资源上投入的最大资金)。示例性的,灵活性资源的投资价格可以是抽水 蓄能单位投资价格、锂电池储能单位投资价格、压缩空气储能单位投资价格; 其中,抽水蓄能是电力系统利用电力负荷低谷时的电能抽水至上水库,在电力 负荷高峰期再放水至下水库发电的水电站。即当电力系统中用电设备消耗的电 功率较小时,将剩余电功率用于将水抽至上水库,将电能转化为水的势能;当 电力系统中用电设备消耗的电功率较大时,将水放至下水库,将水的势能转化 为电能。灵活性资源在每个预测时段的最大投资容量可以是锂电池储能在每阶 段的最大投资容量、压缩空气储能在每阶段的最大投资容量。其中,锂电池储 能在每阶段的最大投资容量为每个预测时段内,电力系统所能在锂电池储能上 投入的最大资金;压缩空气储能在每阶段的最大投资容量为每个预测时段内, 电力系统所能在压缩空气储能设备上投入的最大资金。The flexible resource index can be the investment parameters of various flexible resources in the target area, and the investment parameters can represent the investment details of the corresponding flexible resources. Investment capacity (the maximum amount the power system can invest in flexible resources during each forecast period). Exemplarily, the investment price of the flexible resource may be the investment price of a pumped hydro energy storage unit, the investment price of a lithium battery energy storage unit, and the investment price of a compressed air energy storage unit; wherein, the pumped storage energy is the electric energy used by the power system when the power load is at a low valley. A hydropower station that pumps water to the upper reservoir and releases it to the lower reservoir to generate electricity during peak power load periods. That is, when the electrical power consumed by the electrical equipment in the power system is small, the remaining electrical power is used to pump water to the upper reservoir, and the electrical energy is converted into the potential energy of water; when the electrical power consumed by the electrical equipment in the power system is large, the water is discharged. To the lower reservoir, the potential energy of water is converted into electricity. The maximum investment capacity of flexible resources in each forecast period can be the maximum investment capacity of lithium battery energy storage in each stage, and the maximum investment capacity of compressed air energy storage in each stage. Among them, the maximum investment capacity of lithium battery energy storage in each stage is the maximum capital that the power system can invest in lithium battery energy storage in each forecast period; the maximum investment capacity of compressed air energy storage in each stage is each forecast period. The maximum capital that the power system can invest in compressed air energy storage equipment during a period of time.
燃料价格指标可以是目标区域的各种发电资源运行时所消耗的燃料的价 格。示例性的,燃料价格可以是煤电燃料价格、气电燃料价格。The fuel price indicator may be the price of fuel consumed when various power generation resources in the target area are operating. Exemplarily, the fuel price may be the price of coal-electric fuel and the price of gas-electric fuel.
以下表1为本申请实施例提供的一种关键指标集合,包括了21种影响电网 发展演化的关键指标(不确定性因素)。The following Table 1 provides a set of key indicators in this embodiment of the application, including 21 key indicators (uncertainty factors) that affect the development and evolution of the power grid.
具体实现中,目标区域的关键指标集合,可以是根据目标区域的电网实际 发展情况确定的。计算机设备可以接收用户输入的关键指标集合,或者关键指 标集合可以是预先存储在计算机设备中的。In the specific implementation, the set of key indicators in the target area can be determined according to the actual development of the power grid in the target area. The computer device may receive the set of key indicators input by the user, or the set of key indicators may be pre-stored in the computer device.
表1Table 1
步骤102、对关键指标集合中的每一个关键指标进行数值预测处理,以获得 关键指标样本集合;
本申请实施例中为了基于关键性指标集合确定目标区域对应的演化数据, 因此需要对关键指标集合中的各个指标进行赋值处理。例如,可以对关键指标 集合中的每一个关键指标进行数值预测处理,以获得关键指标样本集合。In the embodiment of the present application, in order to determine the evolution data corresponding to the target area based on the set of key indicators, it is necessary to perform assignment processing on each index in the set of key indicators. For example, numerical prediction processing can be performed on each key indicator in the key indicator set to obtain a key indicator sample set.
具体实现中,可以对关键指标集合中的每一个关键指标进行量化,并采用 随机抽样的方法对量化后的结果进行抽样,获得关键指标样本集合。其中,量 化可以是确定每一个指标可能的取值,抽样可以是对各指标可能取值的抽样。 一次抽样得到的数据就是一组关键指标样本,多次抽样得到的数据就是关键指 标样本集合。In the specific implementation, each key index in the key index set can be quantified, and the quantized result can be sampled by random sampling to obtain the key index sample set. Among them, quantification may be to determine the possible values of each indicator, and sampling may be to sample the possible values of each indicator. The data obtained by one sampling is a set of key indicator samples, and the data obtained by multiple sampling is the key indicator sample set.
一种可能的实现方式中,对已经确定的影响电网发展的不确定性因素进行 量化,量化数据可以是对历史数据进行分析并预测得到的,也可以是依据其他 相关文献确定的;对已经量化的影响电网发展的不确定性因素进行抽样,可以 采用随机抽样的方法进行抽样。In a possible implementation method, the uncertain factors that have been determined to affect the development of the power grid are quantified. The quantitative data can be obtained by analyzing and predicting historical data, or it can be determined according to other relevant documents; The uncertainty factors that affect the development of the power grid can be sampled, and the random sampling method can be used for sampling.
步骤103、利用电网演化预测算法处理关键指标样本集合,获得目标区域对 应的多组演化数据;演化数据包括目标区域对应的发电资源结构的演化数据以 及目标区域对应的灵活性资源结构的演化数据。Step 103: Use the power grid evolution prediction algorithm to process the key index sample set to obtain multiple sets of evolution data corresponding to the target area; the evolution data includes the evolution data of the power generation resource structure corresponding to the target area and the evolution data of the flexible resource structure corresponding to the target area.
现有技术基于人为经验由人工预测电网演化路径,本申请实施例中计算机 设备可以通过自动化处理算法获得电网的演化路径。例如,在对目标区域进行 电网演化预测时,可以根据电网演化预测算法处理该区域对应的关键指标样本 集合,获得该区域对应的多组演化数据。In the prior art, the evolution path of the power grid is manually predicted based on human experience. In the embodiment of the present application, the computer device can obtain the evolution path of the power grid through an automatic processing algorithm. For example, when the power grid evolution prediction is performed on the target area, the key index sample set corresponding to the area can be processed according to the power grid evolution prediction algorithm, and multiple sets of evolution data corresponding to the area can be obtained.
具体实现中,将关键指标样本集合输入电网演化预测算法中,可以确定各 个指标样本在某些约束条件下的合理演化,因此可以根据演化后的指标样本构 建该区域的电网演化数据。In the specific implementation, the key index sample set is input into the power grid evolution prediction algorithm, and the reasonable evolution of each index sample under certain constraints can be determined. Therefore, the power grid evolution data of the region can be constructed according to the evolved index samples.
一种可能的实现方式中,演化数据用于表征电网的演化趋势,或者电网的 演化路径。多组演化数据可以确定目标区域的多条电网演化路径。示例性的, 演化数据可以包括目标区域对应的发电资源结构的演化数据以及目标区域对应 的灵活性资源结构的演化数据。In a possible implementation, the evolution data is used to represent the evolution trend of the power grid, or the evolution path of the power grid. Multiple sets of evolution data can determine multiple grid evolution paths in the target area. Exemplarily, the evolution data may include evolution data of the power generation resource structure corresponding to the target area and evolution data of the flexible resource structure corresponding to the target area.
其中,演化数据用来表征演化趋势,可以是目标区域对应的发电资源结构 和灵活性资源结构在未来几年的变化趋势。发电资源结构是指在目标区域内部 署的各种发电资源的配置,具体可以为各种发电资源在目标区域内的建设数量 占总建设数量的百分比。灵活性资源结构是指在目标区域内部署的各种灵活性 资源的配置,具体可以为各种灵活性资源在目标区域内的建设数量占总建设数 量的百分比。Among them, the evolution data is used to represent the evolution trend, which can be the change trend of the power generation resource structure and flexible resource structure corresponding to the target area in the next few years. The structure of power generation resources refers to the allocation of various power generation resources deployed in the target area, which can specifically be the percentage of the construction quantity of various power generation resources in the target area to the total construction quantity. The flexible resource structure refers to the configuration of various flexible resources deployed in the target area, which can be the percentage of the construction quantity of various flexible resources in the target area to the total construction quantity.
本申请实施例提供的一种电网演化预测方法中,计算机能够基于电网演化 预测算法实现对电网演化路径的自动化智能预测,解决了现有技术依靠人工进 行电网演化路径预测,导致演化路径的准确性难以保证的问题。基于电网演化 预测算法可以排除人为因素对电网演化预测的影响。另外,本申请的关键指标 集合基本涵盖了影响电网发展的各种指标,具体包括灵活性资源配置相关的一 些指标,在预测电网路径时充分考虑了灵活性资源配置等不确定性因素,因此 基于关键指标集合以及电网演化预测算法能够获得较为全面的演化路径,预测 出的电网演化路径具备一定的全局覆盖性。In the power grid evolution prediction method provided by the embodiment of the present application, the computer can realize the automatic intelligent prediction of the power grid evolution path based on the power grid evolution prediction algorithm, which solves the problem that the prior art relies on manual power grid evolution path prediction, which leads to the accuracy of the evolution path. difficult to guarantee issues. The power grid evolution prediction algorithm can exclude the influence of human factors on the power grid evolution prediction. In addition, the set of key indicators in this application basically covers various indicators that affect the development of the power grid, specifically including some indicators related to flexible resource allocation. When predicting the power grid path, uncertain factors such as flexible resource allocation are fully considered. Therefore, based on The set of key indicators and the power grid evolution prediction algorithm can obtain a more comprehensive evolution path, and the predicted power grid evolution path has a certain global coverage.
前文所述的步骤102中,计算机设备可以通过对关键指标集合进行量化、 抽样,获得关键指标样本集合。例如,前文涉及的“对关键指标集合中的每一 个指标进行数值预测处理,以获得关键指标样本集合”的具体实现包括图2所 示的步骤:In the
步骤201、针对关键指标集合中的每一个指标,确定每一个指标在预测时段 内的上限值和下限值,根据每一个指标的上限值和下限值对关键指标集合中的 各个指标进行赋值处理。Step 201: For each indicator in the key indicator set, determine the upper limit value and lower limit value of each indicator in the forecast period, and determine the upper limit value and lower limit value of each indicator for each indicator in the key indicator set according to the upper limit value and lower limit value of each indicator. Perform assignment processing.
本申请实施例中为了生成具体的电网演化数据,因此需要对关键指标集合 进行量化处理,以具体的数据表示关键指标集合。例如,可以对关键指标集合 中的每一个指标进行赋值,以获得赋值后的关键指标集合。In order to generate specific power grid evolution data in the embodiment of the present application, it is necessary to perform quantitative processing on the set of key indicators, and to represent the set of key indicators with specific data. For example, each indicator in the set of key indicators can be assigned a value to obtain the set of key indicators after the assignment.
具体实现中,将关键指标集合中的每一个关键指标划分为多个预测时段, 并确定每个关键指标在每个预测时段内的上限值和下限值(上界和下界),以 多阶段(多个预测时段)、区间化(上限值和下限值区间)的形式表示该关键 指标集合,完成对该关键指标集合的赋值处理;In the specific implementation, each key indicator in the key indicator set is divided into multiple prediction periods, and the upper and lower limit values (upper and lower bounds) of each key indicator in each prediction period are determined, with multiple The key indicator set is represented in the form of stages (multiple forecast periods) and interval (upper limit value and lower limit value interval), and the assignment of the key indicator set is completed;
一种可能的实现方式中,将关键指标集合中的每一个关键指标划分为多个 预测时段。例如,参考表2具体可以划分为从2025年至2050年间的5个预测 时段,每个预测时段为5年;确定每一个关键指标在预测时段内的上限值和下 限值,在一个预测时段内,每一年的上限值、下限值可以不变,每一个关键指 标在预测时段内的上限值和下限值可以是对历史数据进行分析并预测得到的, 也可以依据其他相关文献确定。In a possible implementation manner, each key indicator in the key indicator set is divided into multiple forecast periods. For example, referring to Table 2, it can be divided into 5 forecast periods from 2025 to 2050, and each forecast period is 5 years; During the period, the upper and lower values of each year can remain unchanged, and the upper and lower values of each key indicator in the forecast period can be obtained by analyzing and predicting historical data, or based on other Relevant literature identified.
表2Table 2
步骤202、采用蒙特卡洛方法对赋值处理后的关键指标集合进行随机抽样, 获得每一个指标在每个预测时段内的数值,根据每一个指标在每个预测时段内 的数值确定关键指标样本集合。Step 202: Use the Monte Carlo method to randomly sample the set of key indicators after the assignment processing, obtain the value of each indicator in each forecast period, and determine the sample set of key indicators according to the value of each indicator in each forecast period .
本申请实施例中为了将关键指标集合进行基于算法的处理,需要对已经赋 值的关键指标集合进行抽样,获得关键指标样本集合。In the embodiment of the present application, in order to perform algorithm-based processing on the set of key indicators, it is necessary to sample the set of key indicators that have been assigned values to obtain a sample set of key indicators.
具体实现中,针对每一个关键指标的各个预测时段,在该预测时段的上限 值和下限值的区间内进行随机抽样,将随机抽样得到的一组数据作为一组关键 指标样本,多次抽样得到的数据即为关键指标样本集合。In the specific implementation, for each forecast period of each key indicator, random sampling is performed within the interval between the upper limit value and the lower limit value of the forecast period, and a set of data obtained by random sampling is used as a set of key indicator samples. The data obtained by sampling is the key indicator sample set.
一种可能的实现方式中,对赋值后的关键指标集合抽样,可以采用蒙特卡 洛方法进行随机抽样,抽样的结果为每一个关键指标在每个预测时段的上、下 限区间内的具体数值,以该具体数值代表该关键指标在该预测时段的数据,一 次抽样的结果为一组关键指标样本,对赋值后的关键指标集合进行多次随机抽 样,从而获得关键指标样本集合。In a possible implementation, the set of key indicators after the assignment can be sampled, and the Monte Carlo method can be used for random sampling, and the result of sampling is the specific value of each key indicator within the upper and lower limit intervals of each forecast period, The specific value represents the data of the key indicator in the forecast period, the result of one sampling is a set of key indicator samples, and the set of key indicators after the assignment is randomly sampled multiple times to obtain the key indicator sample set.
如前文表1所示,为本申请确定的影响电网演化发展的21个不确定性因素 (关键指标集合),将这21个不确定性因素划分为从2025年至2050年间的5 个预测时段,每个预测时段为5年,然后确定每一个不确定性因素在各预测时 段内的上限值和下限值,得到这21个不确定性因素的量化结果;接着对每一个 不确定性因素在每一个预测时段的上、下限区间内进行随机抽样,抽样得到的 数值代表该不确定性因素在该预测时段的数据,一次抽样的结果为一组关键指 标样本,对量化后的关键指标集合进行多次随机抽样,获得关键指标样本集合。As shown in Table 1 above, the 21 uncertain factors (set of key indicators) that affect the evolution and development of the power grid are determined for this application, and these 21 uncertain factors are divided into 5 forecast periods from 2025 to 2050. , each forecast period is 5 years, then determine the upper limit and lower limit of each uncertainty factor in each forecast period, and obtain the quantitative results of these 21 uncertainty factors; then for each uncertainty factor The factors are randomly sampled within the upper and lower limits of each forecast period, and the value obtained by sampling represents the data of the uncertainty factor in the forecast period. The result of one sampling is a set of key index samples. The collection is randomly sampled multiple times to obtain a sample set of key indicators.
其中,对表1中的21个不确定性因素(关键指标集合)的量化结果如表2 所示。以表2中煤电单位投资价格这个不确定性因素为例:表中,2025年至2030 年即为一个预测时段,2030年至2035年为一个预测时段,2025至2050年间共 有5个预测时段;559$/kW(1美元每千瓦)为煤电单位投资价格在2025至2030 年间的最低单位投资价格,即为2025至2030年这个预测时段的下限值,621$/kW 为煤电单位投资价格在2025至2030年间的最高单位投资价格,即为2025至2030 年这个预测时段的上限值。对煤电单位投资价格在2025年至2030年这个预测 时段抽样时,随机抽取559$/kW至621$/kW之间的一个数值,作为煤电单位投 资价格在2025年至2030年这个预测时段的数据,对21个不确定性因素在每个 预测时段内进行一次随机抽样,得到的抽样结果即为一组关键指标样本。Among them, the quantification results of the 21 uncertainty factors (set of key indicators) in Table 1 are shown in Table 2. Take the uncertainty factor of coal power unit investment price in Table 2 as an example: In the table, 2025 to 2030 is a forecast period, 2030 to 2035 is a forecast period, and there are 5 forecast periods from 2025 to 2050. ;559$/kW (1 US dollar per kilowatt) is the lowest unit investment price of coal power unit investment price between 2025 and 2030, which is the lower limit of the forecast period from 2025 to 2030, and 621$/kW is the coal power unit The highest unit investment price of the investment price between 2025 and 2030, which is the upper limit of the forecast period of 2025 to 2030. When sampling the investment price of coal power units in the forecast period from 2025 to 2030, a value between 559$/kW and 621$/kW is randomly selected as the investment price of coal power units in the forecast period from 2025 to 2030. 21 uncertainty factors are randomly sampled in each forecast period, and the sampling results obtained are a set of key indicator samples.
本申请实施例提供了对关键指标集合中的每一个关键指标进行数值预测处 理,以获得关键指标样本集合的方法。具体是,针对影响目标区域电网演化发 展的关键指标集合,将关键指标集合中的每一个关键指标划分为多个预测时段, 并确定每个预测时段内的上限值和下限值(上界和下界),完成对该关键指标 集合的赋值处理;然后针对每一个关键指标的每一个预测时段,在该预测时段 的上限值和下限值的区间内进行随机抽样,将随机抽样得到的一组数据作为一 组关键指标样本,多次抽样得到的数据即为关键指标样本集合。可见,本申请 实施例对影响目标区域电网演化发展的关键指标集合进行了数值预测处理,将 关键指标集合量化并抽样,得到关键指标样本集合,以具体数值的形式代表影 响电网演化发展的不确定性因素(关键指标集合),以便于后续用于电网演化 预测算法,生成大量的电网演化路径。相比于现有技术中,依靠人为经验预测 电网演化路径,本申请实施例依靠具体的样本进行电网演化路径预测,减小了 人为因素的影响,提高了电网演化路径预测的准确性。The embodiments of the present application provide a method for performing numerical prediction processing on each key indicator in the key indicator set to obtain a key indicator sample set. Specifically, for the set of key indicators that affect the evolution and development of the power grid in the target area, each key indicator in the set of key indicators is divided into multiple forecast periods, and the upper and lower limits (upper bounds) in each forecast period are determined. and lower bound) to complete the assignment of the set of key indicators; then, for each forecast period of each key indicator, random sampling is performed within the interval between the upper limit value and the lower limit value of the forecast period, and the random sampling is performed. A set of data is used as a set of key indicator samples, and the data obtained by multiple sampling is the key indicator sample set. It can be seen that the embodiment of the present application performs numerical prediction processing on the set of key indicators that affect the evolution and development of the power grid in the target area, quantifies and samples the set of key indicators, and obtains a sample set of key indicators, which represents the uncertainty affecting the evolution and development of the power grid in the form of specific numerical values. In order to facilitate the subsequent use in the power grid evolution prediction algorithm, a large number of power grid evolution paths can be generated. Compared with the prior art, which relies on human experience to predict the power grid evolution path, the embodiment of the present application relies on specific samples to predict the power grid evolution path, which reduces the influence of human factors and improves the accuracy of the power grid evolution path prediction.
前文所述的步骤103中,计算机设备可以利用电网演化预测算法处理关键 指标样本集合,获得目标区域对应的多组演化数据。In the
现有技术主要依靠人为经验预测电网演化路径,本申请实施例通过电网演 化预测算法,自动化生成电网演化路径。例如,在对目标区域进行电网演化预 测时,将关键指标样本集合输入到电网演化预测算法中,获得该区域对应的多 组演化数据。The prior art mainly relies on human experience to predict the evolution path of the power grid, and the embodiment of the present application automatically generates the evolution path of the power grid through the power grid evolution prediction algorithm. For example, when predicting the power grid evolution in the target area, the key index sample set is input into the power grid evolution prediction algorithm to obtain multiple sets of evolution data corresponding to the area.
具体实现中,针对关键指标样本集合中的每一组样本,将其输入到电网演 化预测算法中的目标函数,然后利用约束条件对目标函数的输出进行约束处理, 处理后的结果即为对应的演化数据。即,输出的演化数据既满足电网演化预测 算法的目标函数,也满足约束条件。In the specific implementation, for each group of samples in the key indicator sample set, it is input into the objective function of the power grid evolution prediction algorithm, and then the output of the objective function is constrained by the constraint conditions, and the processed result is the corresponding Evolution data. That is, the output evolution data not only satisfy the objective function of the power grid evolution prediction algorithm, but also satisfy the constraints.
一种可能的实现方式中,电网演化预测算法针对关键指标样本集合中的每 一组样本,若该样本满足目标函数以及约束条件,则根据该样本输出一组演化 数据。其中,目标函数为:电网演化各个阶段的投资成本、电网固定运维成本、 以及电网可变运行成本之和最优;约束条件包括:电网演化的建设约束和电网 的运行成本约束。In a possible implementation, the power grid evolution prediction algorithm targets each group of samples in the key indicator sample set, and if the sample satisfies the objective function and constraint conditions, then outputs a set of evolution data according to the sample. Among them, the objective function is: the optimal sum of investment cost, fixed operation and maintenance cost of power grid, and variable operation cost of power grid in each stage of power grid evolution; constraints include: construction constraints of power grid evolution and power grid operating cost constraints.
前文所述的目标函数,包括电网演化各个阶段的投资成本、电网固定运维 成本、以及电网可变运行成本。其中,电网演化各个阶段的投资成本指的是: 在各预测时段内用来建设电力系统中发电资源和灵活性资源所投入的资金成 本;电网固定运维成本指的是:对电力系统中建设的设备进行日常维护所投入 的资金成本;电网可变运行成本指的是:电力系统中发电资源运行时所消耗的 燃料的成本。另外,目标函数不仅要考虑到电网演化各个阶段的投资成本、电 网固定运维成本、以及电网可变运行成本之和最小,还要考虑到资金的时间价 值。本申请在探究电网演化路径时,所划定的时间区间是从2025年至2050年,且以5年为一个预测时段,时间跨度较长,使得相同的资金在不同预测时段的 价值有所不同,即2025年的1块钱与2050年的1块钱的价值是不一样的(例 如2025年的1块钱在2050年可以买到2块钱的东西)。因此,目标函数在考 虑电网演化各个阶段所投入的各种资金成本时,还需要将各个预测时段的资金 价值统一到同一预测时段中,即考虑资金的时间价值。The objective function mentioned above includes the investment cost of each stage of power grid evolution, the fixed power grid operation and maintenance cost, and the power grid variable operating cost. Among them, the investment cost of each stage of power grid evolution refers to: the capital cost used to build power generation resources and flexible resources in the power system during each forecast period; the fixed operation and maintenance cost of the power grid refers to: The capital cost invested in the routine maintenance of the equipment; the variable operation cost of the power grid refers to the cost of the fuel consumed by the power generation resources in the power system. In addition, the objective function should not only take into account the minimum sum of investment costs, fixed grid operation and maintenance costs, and grid variable operation costs at each stage of grid evolution, but also consider the time value of funds. When exploring the evolution path of the power grid in this application, the time interval delineated is from 2025 to 2050, and 5 years is used as a forecast period, and the time span is long, which makes the value of the same fund different in different forecast periods , i.e. 1 dollar in 2025 is not the same value as 1 dollar in 2050 (e.g. 1 dollar in 2025 can buy 2 dollars in 2050). Therefore, when the objective function considers the various capital costs invested in each stage of the power grid evolution, it is also necessary to unify the capital value of each forecast period into the same forecast period, that is, to consider the time value of funds.
前文所述的约束条件,包括目标区域电网演化的建设约束以及电网演化的 运行成本约束。其中,电网演化的建设约束指的是:在电力系统中,关于各种 机组投资容量的约束以及演化目标的约束;具体包括以下四个方面:各个预测 阶段内各电网节点上的各类资源的投资容量约束、投资总容量约束、电网演化 最终阶段的可再生能源渗透率约束和电网演化最终阶段碳排放量约束。其中, 电网演化各个阶段的投资容量约束指的是:在各预测时段内,在各省电力系统 中建设各种资源所投入的资金成本;投资总容量约束指的是:在整个预测时段 内,整个电力系统中建设各种资源所投入的资金成本;可再生能源电量渗透率 约束指的是:演化的最终阶段(2045年至2050年这个预测时段)需要达到预设 的可再生能源电量渗透率(可再生能源发电量)的目标;碳排放量约束指的是: 演化的最终阶段(2045年至2050年这个预测时段)所限制的碳排放量的最大值。The constraints mentioned above include the construction constraints of the grid evolution in the target area and the operating cost constraints of the grid evolution. Among them, the construction constraints of the power grid evolution refer to: in the power system, the constraints on the investment capacity of various units and the constraints on the evolution goals; it specifically includes the following four aspects: the constraints of various resources on each grid node in each prediction stage Investment capacity constraints, total investment capacity constraints, renewable energy penetration constraints in the final stage of grid evolution, and carbon emissions constraints in the final stage of grid evolution. Among them, the investment capacity constraint of each stage of power grid evolution refers to the capital cost invested in constructing various resources in the power system of each province during each forecast period; the total investment capacity constraint refers to: during the entire forecast period, the entire The capital cost of building various resources in the power system; the renewable energy penetration rate constraint refers to: the final stage of evolution (the forecast period from 2045 to 2050) needs to reach the preset renewable energy penetration rate ( Renewable energy generation); carbon emissions constraints refer to: The maximum carbon emissions that are limited by the final stage of evolution (the forecast period from 2045 to 2050).
电网运行成本约束指的是:电网系统中,供给各类资源(发电设备)正常 运行所需的资金成本。其中,火电机组以聚类的形式考虑运行约束;水电机组 以三段式出力考虑运行约束;风电、光伏、光热机组的出力小于其最大发电能 力;储能考虑其功率、能量、循环周期约束;假设各节点之间的电力传输为无 阻塞情况,则节点之间功率流动以交通流模型考虑运行约束。The power grid operating cost constraint refers to the capital cost required for the normal operation of various resources (generating equipment) in the power grid system. Among them, the thermal power unit considers the operation constraints in the form of clusters; the hydropower unit considers the operation constraints in the form of three-stage output; the output of wind power, photovoltaic and solar thermal units is less than its maximum power generation capacity; energy storage considers its power, energy, and cycle constraints. ; Assuming that the power transmission between nodes is non-blocking, the power flow between nodes takes the traffic flow model into account to consider the operating constraints.
以下结合具体公式,介绍前文所述的目标函数以及约束条件:The following describes the objective function and constraints mentioned above in combination with the specific formula:
电网演化预测算法中的目标函数为演化各阶段的投资成本、固定运维成本、 可变运行成本之和最小,且考虑资金的时间价值,如式(1)~(5)所示:The objective function in the power grid evolution prediction algorithm is to minimize the sum of investment cost, fixed operation and maintenance cost, and variable operation cost in each evolution stage, and consider the time value of funds, as shown in equations (1) to (5):
min CINV+COM+COPR+CTarget (1)min C INV +C OM +C OPR +C Target (1)
CTarget=cVREQVRE+cCarbQCarb (5)C Target = c VRE Q VRE +c Carb Q Carb (5)
其中,式(1)表示目标函数;式(2)表示总投资成本,包括各阶段、各 类型资源的投资成本之和;式(3)表示总运维成本,包括各阶段、各类型资源 的固定运维成本之和;式(4)表示总运行成本,包括以典型日估算的各阶段、 各类型资源的运行成本以及切负荷惩罚成本之和;式(5)表示远期惩罚成本, 包括可再生能源渗透率未达标的惩罚成本与碳排放未达标的惩罚成本之和。Among them, Equation (1) represents the objective function; Equation (2) represents the total investment cost, including the sum of the investment costs of each stage and various types of resources; Equation (3) represents the total operation and maintenance cost, including The sum of fixed operation and maintenance costs; Equation (4) represents the total operation cost, including the operation cost of each stage, each type of resource estimated on a typical day, and the sum of the load shedding penalty cost; Equation (5) represents the long-term penalty cost, including The sum of the penalty cost of not meeting the renewable energy penetration rate and the penalty cost of not meeting the carbon emission standard.
其中,CINV表示多个预测时段总的投资成本;COM表示多个预测时段固定运 维成本;COPR表示多个预测时段可变运行成本;CTarget表示与预设目标差距的惩 罚成本,该预设目标可以是可再生能源电量渗透率,也可以是碳排放量;d是年 贴现率,即将未来资产折算成现值的年利率;X表示各种发电资源和灵活性资 源;表示某种资源在第n个预测时段的单位容量投资成本;表示资源X在 第k个节点(以省为单位的电力系统)第n个预测时段的建设容量;Z表示每个 预测时段所包含的年份数目;f是年度单位固定运维成本;表示资源X在第n 个预测时段的总容量;假设每个阶段内共有S个典型运行场景(模拟不同配比的各种类型的电源在电力系统中协同优化运行),一年中对应于每个场景的天数 为ρs;表示火电机组的单位发电成本;表示火电机组的单位容量启动成本 (火电机组启动消耗的燃料的成本),其中G表示火电机组类型,包括煤电和 气电机组;表示节点k上火电机组在预测时段n典型场景s下时刻t的发电功 率;表示节点k上火电机组在预测时段n典型场景s下时刻t的开机容量;表示储能设备的单位运行成本,其中ES表示储能设备类型,包括抽水蓄能、电 池储能和压缩空气储能;表示储能的充电功率;表示储能的放电功率;表示需求侧响应的单位补偿成本,其中DR表示需求侧响应的类型,包括负荷 削减型和负荷转移型;表示需求侧响应的响应功率;表示切负荷(事故 情况下,为维持电力系统的功率平衡和稳定性,将部分负荷从电网上断开)的 单位惩罚成本;表示切负荷功率;cVRE表示可再生能源渗透率目标未完成时, 与目标相比单位缺额量的惩罚成本;cCarb表示碳排放目标未完成时,与目标相比 单位缺额量的惩罚成本;QVRE表示对应的可再生能源电量缺额量;QCarb表示对应 的碳排放减排缺额量。Among them, C INV represents the total investment cost of multiple forecast periods; C OM represents the fixed operation and maintenance cost of multiple forecast periods; C OPR represents the variable operation cost of multiple forecast periods; C Target represents the penalty cost of the gap with the preset target, The preset target can be renewable energy electricity penetration rate or carbon emissions; d is the annual discount rate, which is the annual interest rate that converts future assets into present value; X represents various power generation resources and flexible resources; Represents the unit capacity investment cost of a certain resource in the nth forecast period; Represents the construction capacity of resource X in the nth forecast period of the kth node (power system in the unit of province); Z represents the number of years included in each forecast period; f is the annual unit fixed operation and maintenance cost; Represents the total capacity of resource X in the nth forecast period; assuming that there are S typical operating scenarios in each stage (simulating the coordinated optimal operation of various types of power sources with different ratios in the power system), corresponding to each The number of days for each scene is ρ s ; Indicates the unit power generation cost of the thermal power unit; Represents the startup cost per unit capacity of thermal power units (the cost of fuel consumed for startup of thermal power units), where G represents the type of thermal power units, including coal-fired and gas-fired power units; Represents the generation power of the thermal power unit on node k at time t under typical scenario s in forecast period n; Represents the startup capacity of the thermal power unit on node k at time t under typical scenario s in forecast period n; Represents the unit operating cost of energy storage equipment, where ES represents the type of energy storage equipment, including pumped hydro storage, battery energy storage and compressed air energy storage; Represents the charging power of the energy storage; Represents the discharge power of the energy storage; Represents the unit compensation cost of demand-side response, where DR represents the type of demand-side response, including load reduction and load transfer; represents the response power of the demand-side response; Represents the unit penalty cost of load shedding (disconnecting part of the load from the grid in order to maintain the power balance and stability of the power system in the event of an accident); Represents load shedding power; c VRE represents the penalty cost per unit of shortfall compared with the target when the renewable energy penetration rate target is not fulfilled; c Carb represents the penalty cost per unit of shortfall compared with the target when the carbon emission target is not fulfilled; Q VRE represents the corresponding shortfall of renewable energy electricity; Q Carb represents the corresponding shortfall of carbon emission reduction.
电网演化预测算法中的约束条件为电网的建设约束和电网的运行成本约 束,如式(6)~(9):The constraints in the power grid evolution prediction algorithm are the power grid construction constraints and power grid operating cost constraints, such as equations (6) to (9):
式(6)约束了各阶段内各节点上各资源的投资容量;式(7)表示投资容 量与总容量之间的关系;式(8)约束了演化最终阶段需要达到的可再生能源渗 透率目标;式(9)约束了演化最终阶段碳排放上限目标。Equation (6) constrains the investment capacity of each resource on each node in each stage; Equation (7) represents the relationship between the investment capacity and the total capacity; Equation (8) constrains the renewable energy penetration rate that needs to be achieved in the final stage of evolution target; Equation (9) constrains the carbon emission cap target in the final stage of evolution.
其中,表示资源X在n阶段k节点上的投资容量上限,;表示在 最后一个阶段N内,风电的发电功率;表示在最后一个阶段N内,光伏的 发电功率;表示在最后一个阶段N内,光热的发电功率;ζ表示可再生能 源电量渗透率目标;Dk,n=N,t,s表示负荷功率;eG表示火电单位发电对应的碳排放 量;VCarb表示碳排放上限的目标值。in, Represents the upper limit of the investment capacity of resource X on node k in n stages,; Indicates the power generated by wind power in the last stage N; Indicates the photovoltaic power generation in the last stage N; Represents the solar thermal power generation in the last stage N; ζ represents the renewable energy penetration rate target; D k,n=N,t,s represents the load power; e G represents the carbon emission corresponding to the unit power generation of thermal power; V Carb represents the target value of the carbon cap.
本申请实施例提供了对关键指标样本集合进行基于电网演化预测算法的处 理,从而生成大量的演化数据的方法。具体是,针对关键指标样本集合中的每 一组样本,若该样本满足目标函数(电网演化各个阶段的投资成本、电网固定 运维成本、以及电网可变运行成本之和最优)以及约束条件(电网演化的建设 约束和电网的运行成本约束),则根据该样本输出一组演化数据。可见,本申 请实施例对关键指标样本集合进行基于电网演化预测算法的处理,生成了大量 的演化数据。相比于现有技术依靠人工预测出几条电网演化发展路径,本申请 实施例基于可靠的具体数据,依靠电网演化预测算法,自动生成了海量的演化 路径,可以排除人为因素对电网演化预测的影响,提高了电网演化路径预测的 准确性。The embodiment of the present application provides a method for generating a large amount of evolution data by performing processing based on the power grid evolution prediction algorithm on the key indicator sample set. Specifically, for each group of samples in the key indicator sample set, if the sample satisfies the objective function (the optimal sum of investment costs in each stage of grid evolution, grid fixed operation and maintenance costs, and grid variable operation costs) and constraints (Construction constraints of grid evolution and grid operating cost constraints), then output a set of evolution data according to the sample. It can be seen that, in the embodiment of the present application, the key indicator sample set is processed based on the power grid evolution prediction algorithm, and a large amount of evolution data is generated. Compared with the prior art relying on artificial prediction of several power grid evolution development paths, the embodiment of the present application automatically generates a large number of evolution paths based on reliable specific data and a power grid evolution prediction algorithm, which can eliminate the influence of human factors on the power grid evolution prediction. This improves the accuracy of power grid evolution path prediction.
本申请实施例提供的方法中,还可以对自动化预测所得的演化数据进行分 析,确定影响电网演化的一些关键驱动因素,用于预测电网演化数据,为后续 电网实际演化提供指导作用。具体的,本申请实施例提供的方法还包括图3所 示的步骤:In the method provided by the embodiment of the present application, the evolution data obtained by the automatic prediction can also be analyzed to determine some key driving factors affecting the evolution of the power grid, which are used to predict the evolution data of the power grid and provide guidance for the actual evolution of the subsequent power grid. Specifically, the method provided in the embodiment of the present application also includes the steps shown in Figure 3:
步骤301、针对关键指标集合中的任意一个指标,计算指标在不同的演化数 据中的差异度,将最大的差异度作为指标的影响因子。Step 301: For any index in the key index set, calculate the degree of difference of the index in different evolution data, and use the largest degree of difference as the influence factor of the index.
本申请实施例为了确定关键指标集合中,对电网演化发展影响较大的一些 关键指标(关键驱动因素),需要用一个具体的数值表示这些关键指标对电网 演化的影响程度。In order to determine some key indicators (key driving factors) that have a greater impact on the evolution and development of the power grid in the embodiment of the present application, it is necessary to use a specific numerical value to represent the degree of influence of these key indicators on the evolution of the power grid.
具体实现中,计算出关键指标在不同演化数据中的差异度,将最大的差异 度作为该关键指标的影响因子,表示该关键指标对电网演化的影响程度。In the specific implementation, the difference degree of the key index in different evolution data is calculated, and the largest difference degree is used as the influence factor of the key index, indicating the degree of influence of the key index on the evolution of the power grid.
计算关键指标在不同演化数据中的差异度,具体过程如式(10)~(13):Calculate the degree of difference of key indicators in different evolution data, the specific process is as formula (10) ~ (13):
yi=[yi,1,yi,2,...,yi,N] (10)y i =[y i,1 ,y i,2 ,...,y i,N ] (10)
式(10)表示由多阶段取值构成的时间序列;式(11)表示每一种关键指 标在对应子空间内的均值;式(12)表示对关键指标的时间序列进行标准化; 式(13)表示标准化后的时间序列在不同聚类之间的平均距离。Equation (10) represents the time series composed of multi-stage values; Equation (11) represents the mean value of each key indicator in the corresponding subspace; Equation (12) represents the standardization of the time series of the key indicators; Equation (13) ) represents the average distance of the normalized time series between different clusters.
其中,yi表示第i个关键指标;yi,1,yi,2,...,yi,N表示第i个关键指标在预测时段1到预测时段N的取值;R表示海量路径聚类的个数;表示同属于第r类的演 化路径对应的关键指标;Ψi表示关键指标的整个取值空间;表示关键指标在 一个聚类中的取值空间;表示标准化后的时间序列;μi,n表示关键指标在整个 取值空间中对应第n个预测时段内的均值;σi,n表示关键指标在整个取值空间中 对应第n个预测时段内的标准差。Disti表示关键指标在不同聚类演化路径间的平 均距离。Among them, y i represents the i-th key indicator; y i,1 , yi,2 ,...,y i,N represents the value of the i-th key indicator from the
最后计算出来的平均距离即为该关键指标在不同演化数据中的差异度,将 最大的差异度作为该关键指标的影响因子,The final calculated average distance is the degree of difference of the key indicator in different evolution data, and the maximum degree of difference is taken as the influence factor of the key indicator,
步骤302、将关键指标集合中,影响因子大于预设门限的一个或多个指标确 定为目标区域电网演化的关键驱动因素。Step 302: In the key index set, one or more indexes whose impact factor is greater than a preset threshold are determined as the key driving factors for the evolution of the power grid in the target area.
为了从关键指标集合中确定出对电网演化发展影响较大的一个或多个关键 驱动因素,需要针对每一个关键指标对应的影响因子,预设一个门限,将影响 因子大于该预设门限的对应关键指标,确定为一个关键驱动因素。In order to determine one or more key driving factors that have a greater impact on the evolution and development of the power grid from the key index set, it is necessary to preset a threshold for the impact factor corresponding to each key index, and set the impact factor greater than the preset threshold. Key metrics, identified as a key driver.
步骤303、根据关键驱动因素预测后续生成的演化数据。
确定出对电网演化发展影响较大的关键驱动因素,在后续生成目标区域的 电网演化数据时,就可以通过调整这些关键驱动因素预测电网演化数据。The key driving factors that have a greater impact on the evolution and development of the power grid are determined, and when the power grid evolution data of the target area is subsequently generated, the power grid evolution data can be predicted by adjusting these key driving factors.
本申请实施例提供了确定关键指标集合中,对电网演化发展影响较大的一 些关键指标(关键驱动因素)的方法。具体地,首先确定任意一个关键指标由 多阶段取值构成的时间序列,然后将生成的海量路径进行聚类,确定该关键指 标在同一聚类中的取值空间,计算该关键指标在该取值空间的均值,基于该均 值,对关键指标的时间序列进行标准化,计算标准化后的参数在不同聚类之间 的距离,作为该关键指标在不同演化数据中的差异度,将这些差异度进行排序, 将最大的差异度作为该指标的影响因子;获取关键指标集合中,每一个关键指 标的影响因子,将影响因子同预设门限作比较,将大于该预设门限的影响因子 对应的关键指标确定为目标区域电网演化的关键驱动因素;在后续的电网演化 发展过程中,就可以通过影响关键驱动因素调整后续的电网演化路径(演化数 据)。The embodiments of the present application provide a method for determining some key indicators (key driving factors) that have a greater impact on the evolution and development of the power grid in the key indicator set. Specifically, first determine the time series of any key indicator consisting of multi-stage values, and then cluster the generated massive paths to determine the value space of the key indicator in the same cluster, and calculate the key indicator in the same cluster. The mean value of the value space, based on the mean value, standardize the time series of the key indicators, calculate the distance of the standardized parameters between different clusters, as the degree of difference of the key index in different evolution data, these differences are calculated. Sort, take the largest difference as the impact factor of the index; obtain the impact factor of each key index in the key index set, compare the impact factor with the preset threshold, and compare the impact factor greater than the preset threshold to the corresponding key The index is determined as the key driving factor of the power grid evolution in the target area; in the subsequent power grid evolution and development process, the subsequent power grid evolution path (evolution data) can be adjusted by affecting the key driving factors.
本申请实施例提供的方法中,还可以计算目标区域的灵活性资源发展指标, 包括:灵活性资源容量需求、灵活性资源边际容量需求、电池储能出现点和电 池储能主导点。根据灵活性资源发展指标调整多组演化数据,还可以根据该发 展指标规划后续生成的的演化数据;In the method provided by the embodiment of the present application, the flexible resource development index of the target area can also be calculated, including: flexible resource capacity demand, flexible resource marginal capacity demand, battery energy storage emergence point, and battery energy storage dominant point. Adjust multiple sets of evolution data according to the development index of flexible resources, and also plan the evolution data generated subsequently according to the development index;
本申请实施例中,为了调整电网演化预测算法生成的演化数据,需要获得 灵活性资源和电池储能在电力系统中的分布情况,确定灵活性资源发展指标。 具体地,依据公式对目标区域的灵活性资源容量需求、灵活性资源边际容量需 求、电池储能出现点和电池储能主导点进行计算。In the embodiment of the present application, in order to adjust the evolution data generated by the power grid evolution prediction algorithm, it is necessary to obtain the distribution of flexible resources and battery energy storage in the power system, and determine the development index of flexible resources. Specifically, the flexible resource capacity demand, flexible resource marginal capacity demand, battery energy storage emergence point and battery energy storage dominant point of the target area are calculated according to the formula.
其中,灵活性资源容量需求为在不同可再生能源电量渗透率下,系统的灵 活性资源容量,即,在不同的可再生能源发电量目标下,灵活性资源需要达到 的装机容量(发电机组的额定功率);灵活性资源边际容量需求为在不同可再 生能源电量渗透率下,渗透率增长预设数值对应的灵活性资源容量增量,即, 在不同的可再生能源发电量目标下,可再生能源发电量增长1个百分点,对应 的灵活性资源的装机容量所需的增量;电池储能出现点为电池储能在电力系统 中出现时对应的可再生能源电量渗透率,电池储能主导点为电池储能容量占灵 活性资源容量的预设比例时对应的可再生能源电量渗透率。该预设比例可以为 50%。Among them, the demand for flexible resource capacity is the flexible resource capacity of the system under different renewable energy power penetration rates, that is, under different renewable energy power generation targets, the installed capacity of flexible resources that needs to be achieved (generating unit Rated power); the marginal capacity demand of flexible resources is the increment of flexible resource capacity corresponding to the preset value of penetration rate increase under different renewable energy power penetration rates, that is, under different renewable energy power generation targets, the The increase of renewable energy power generation by 1 percentage point corresponds to the increase in the installed capacity of flexible resources; the appearance point of battery energy storage is the penetration rate of renewable energy corresponding to the appearance of battery energy storage in the power system. The dominant point is the penetration rate of renewable energy corresponding to the preset proportion of battery energy storage capacity to flexible resource capacity. The preset ratio can be 50%.
灵活性资源容量的计算,如式(14):Calculation of flexible resource capacity, such as formula (14):
其中,表示灵活性资源容量;ζ0表示某一特定水平的可再生能源电量 渗透率。in, Represents flexible resource capacity; ζ 0 represents the penetration rate of renewable energy at a certain level.
灵活性资源边际容量的计算,如式(15):The calculation of the marginal capacity of flexible resources is shown in formula (15):
其中,表示灵活性资源的容量增量;Δζ表示可再生能源渗透率增量。in, represents the capacity increment of flexible resources; Δζ represents the renewable energy penetration increment.
电池储能出现点的计算,如式(16):The calculation of the occurrence point of battery energy storage, such as formula (16):
电池储能主导点的计算,如式(17):The calculation of the dominant point of battery energy storage is shown in formula (17):
其中表示电池储能的总容量。in Indicates the total capacity of battery energy storage.
本申请实施例提供了目标区域的灵活性资源发展指标的计算方法。具体地, 依据公式对目标区域的灵活性资源容量需求、灵活性资源边际容量需求、电池 储能出现点和电池储能主导点进行计算,依据计算结果,对灵活性资源进行调 整,以达到预设的可再生能源电量渗透率目标,也可以通过可再生能源电量渗 透率判断电池储能资源目前在电力系统中的分布情况(出现频率),增加了电 力系统的灵活性;当电力系统中可再生能源电量渗透率发生异常变化时,可以 通过调整灵活性资源干扰可再生能源电量渗透率,一定程度上增加电力系统的 可靠性。The embodiments of the present application provide a method for calculating a flexible resource development index of a target area. Specifically, according to the formula, calculate the flexible resource capacity demand, flexible resource marginal capacity demand, battery energy storage emergence point and battery energy storage dominant point of the target area, and adjust the flexible resources according to the calculation results to achieve the expected The renewable energy power penetration rate set target can also be used to judge the current distribution (occurrence frequency) of battery energy storage resources in the power system through the renewable energy power penetration rate, which increases the flexibility of the power system; When the electricity penetration rate of renewable energy changes abnormally, the reliability of the power system can be increased to a certain extent by adjusting the flexible resources to interfere with the electricity penetration rate of renewable energy.
本发明实施例以西北地区(例如包含陕西、甘肃、青海、宁夏、新疆)为 例,对本申请提供的电网演化预测方法进行详细说明。具体地,考虑2020年至 2050年的电网演化数据。西北电网各省目前的装机及负荷情况如图4所示,风 电和光伏装机占比为38.8%。假设本地负荷的年增长率为3%,外送负荷容量保 持不变。The embodiment of the present invention takes the northwest region (for example, including Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang) as an example to describe the power grid evolution prediction method provided in the present application in detail. Specifically, consider grid evolution data from 2020 to 2050. The current installed capacity and load of each province in the Northwest Power Grid are shown in Figure 4, with wind power and photovoltaic installed capacity accounting for 38.8%. Assuming an annual growth rate of local load of 3%, the outbound load capacity remains the same.
应用于上述具体场景,本申请实施例提供的电网演化预测方法包括以下步 骤:Applied to the above-mentioned specific scenario, the power grid evolution prediction method provided in the embodiment of the present application includes the following steps:
S1、根据历史文献,确定多个不确定性因素在各预测阶段的取值范围,完 成对这些不确定性因素的赋值。S1. According to historical documents, determine the value range of multiple uncertain factors in each prediction stage, and complete the assignment of these uncertain factors.
其中,不确定因素还可以称为关键指标,多个不确定因素构成前文所述的 关键指标集合。Among them, the uncertain factors can also be called key indicators, and multiple uncertain factors constitute the set of key indicators mentioned above.
S2、以5年为一个预测时段进行划分,将演化终态(2050年)可再生能源 渗透率目标设置为80%。S2. Divide 5 years as a forecast period, and set the target of renewable energy penetration in the final state of evolution (2050) to 80%.
S3、对赋值后的不确定性因素进行2500次抽样,并在图4所示的三种火电 灵活性改造路径下进行演化数据生成,共生成7500条演化数据。需要说明的是, 可再生能源渗透率目标的设定划定了常规电源的发电空间,常规电源的碳排放 量也相对确定,即可再生能源渗透率目标与碳排放目标具有一定程度的关联性, 因此本章未单独设置碳排放目标。S3. Sampling the uncertain factors after assignment for 2,500 times, and generate evolution data under the three thermal power flexibility transformation paths shown in Figure 4, generating a total of 7,500 pieces of evolution data. It should be noted that the setting of the renewable energy penetration rate target defines the power generation space of conventional power sources, and the carbon emissions of conventional power sources are relatively determined, that is, the renewable energy penetration rate target and the carbon emission target have a certain degree of correlation. , so this chapter does not set carbon emission targets separately.
系统的碳排放演化路径如图7(d)所示,年碳排放量呈现先达峰后下降的 趋势。从平均路径来看,年碳排放量仍将有12%左右的上升,在80%可再生能 源渗透率目标下,最终年碳排放量较2020年将下降57%。演化前期碳排放上升 是由于在前期可再生能源增长带来的碳排放量减少难以抵消负荷增长、火电发 电量增加带来的碳排放增加。The evolution path of carbon emissions of the system is shown in Figure 7(d), and the annual carbon emissions show a trend of peaking first and then decreasing. From the average path, the annual carbon emissions will still increase by about 12%, and under the target of 80% renewable energy penetration rate, the final annual carbon emissions will drop by 57% compared with 2020. The increase in carbon emissions in the early stage of evolution is due to the fact that the reduction in carbon emissions brought about by the growth of renewable energy in the early stage is difficult to offset the increase in carbon emissions brought about by the increase in load growth and thermal power generation.
图6展示了海量演化路径下灵活性资源(灵活性资源容量、灵活性资源边 际容量)在不同可再生能源电量渗透率下的需求情况,参与统计的演化数据均 在火电深度改造路径下生成。随着可再生能源电量渗透率的上升,不仅灵活性 资源容量需求增加,灵活性资源边际容量需求也呈上升趋势。渗透率在70~80% 之间需要的灵活性容量是渗透率在10~20%之间的约23倍,而对于边际灵活性 需求而言,相应的增长为11倍左右。因而当可再生能源渗透率较高时,进一步 提升渗透率的资源需求更多,灵活性资源在系统中的地位也将随之愈发重要。Figure 6 shows the demand of flexible resources (flexible resource capacity, flexible resource marginal capacity) under different renewable energy penetration rates under the massive evolution path. The evolution data involved in the statistics are all generated under the thermal power deep transformation path. With the increase in the penetration rate of renewable energy, not only the demand for flexibility resource capacity increases, but also the marginal capacity demand for flexibility resources is on the rise. A penetration rate between 70-80% requires about 23 times the flexibility capacity than a penetration rate between 10-20%, while for marginal flexibility needs, the corresponding increase is about 11 times. Therefore, when the penetration rate of renewable energy is high, more resources are required to further increase the penetration rate, and the position of flexible resources in the system will become more and more important.
图7展示了电池储能在海量演化路径中的统计情况。可以看出,电池储能 最早在可再生能源低比例发展初期即可能介入,而最有可能在可再生能源电量 渗透率处于40~45%之间介入系统;同时,其最有可能在可再生能源渗透率处于 60~65%之间成为主导的灵活性资源。Figure 7 shows the statistics of battery energy storage in the massive evolution path. It can be seen that battery energy storage may intervene in the early stage of the development of a low proportion of renewable energy, and it is most likely to intervene in the system when the penetration rate of renewable energy is between 40 and 45%. The energy penetration rate is between 60 and 65% to become the dominant flexibility resource.
如前文所述,电网演化受技术、市场、公共等不同方面因素的影响。本申 请首先以技术层面中可再生能源渗透率演化的关键驱动因素辨识为例展示图5 所示的辨识过程,然后分析影响电网演化各个方面的关键驱动因素。As mentioned above, the evolution of power grid is affected by different factors such as technology, market, and public. This application first shows the identification process shown in Figure 5 by taking the identification of key drivers of renewable energy penetration evolution at the technical level as an example, and then analyzes the key drivers that affect various aspects of grid evolution.
对于可再生能源渗透率演化路径,首先将生成的大量路径聚类,此处聚为4 类,如图8所示。这4类对应了渗透率演化的4种模式:快速增长模式、慢速增 长模式、前快后慢增长模式、前慢后快增长模式。将每一类演化数据对应的关 键指标各自求均值,并进行标准化,如图9所示。可以看出,可再生能源的单 位投资成本、电池储能成本、煤炭价格曲线在不同类别之间差别较大,表明可 再生能源渗透率对这些指标更为敏感。计算各指标曲线的平均距离并排序,结 果如图10所示。可以看出影响显著的因素依次为煤炭价格、风电单位投资成本、 各阶段电池储能的最大可投资容量、光伏的单位投资成本、电池储能的单位投 资成本,与图9中的结果相符。For the renewable energy permeability evolution path, firstly, a large number of generated paths are clustered, and here they are clustered into 4 categories, as shown in Figure 8. These four categories correspond to the four modes of permeability evolution: fast growth mode, slow growth mode, fast growth before and slow growth, slow growth before and fast growth. The key indicators corresponding to each type of evolution data are averaged and standardized, as shown in Figure 9. It can be seen that the unit investment cost of renewable energy, the cost of battery energy storage, and the coal price curve are quite different between different categories, indicating that the penetration rate of renewable energy is more sensitive to these indicators. Calculate the average distance of each index curve and sort, the result is shown in Figure 10. It can be seen that the influencing factors are coal price, unit investment cost of wind power, maximum investable capacity of battery energy storage in each stage, unit investment cost of photovoltaic, unit investment cost of battery energy storage, which is consistent with the results in Figure 9.
基于上述流程,进一步分析影响不同方面演化路径的关键指标,平均距离 指标计算值列于表3。在演化的各个方面,主要影响因素基本相同,包括可再生 能源和储能的单位投资成本、煤炭价格、电池储能在各预测时段的最大可投资 容量。但是这些因素间的相对重要程度在各方面略有区别。技术方面,电池储 能在各阶段的最大可投资容量是最主要影响因素,反映出配置电池储能是经济 性选择,其配置容量与其最大可配置上限密切相关。而在市场和公共方面,最 重要的影响因素是煤炭价格。Based on the above process, the key indicators that affect the evolution path of different aspects are further analyzed, and the calculated values of the average distance indicators are listed in Table 3. In all aspects of evolution, the main influencing factors are basically the same, including the unit investment cost of renewable energy and energy storage, coal price, and the maximum investable capacity of battery energy storage in each forecast period. But the relative importance of these factors varies slightly in various respects. In terms of technology, the maximum investable capacity of battery energy storage at each stage is the most important factor, reflecting that the configuration of battery energy storage is an economical choice, and its configuration capacity is closely related to its maximum configurable upper limit. On the market and public side, the most important influencing factor is the price of coal.
表3table 3
从上述计算过程可知,年碳排放量仍将有12%左右的上升,2050年碳排放 量较2020年将下降57%。系统的灵活性需求和边际灵活性需求都将随可再生能 源渗透率的上升而增长,其中电池储能最有可能在可再生能源电量渗透率处于 40~45%之间介入系统,且在渗透率为60~65%之间成为主导的灵活性资源。影 响电网演化的主要驱动因素包括可再生能源和储能的单位投资成本、煤炭价格、 电池储能在各阶段的最大可投资容量。该方法计算思路清晰,通用性较好,适 合推广使用。From the above calculation process, it can be seen that the annual carbon emissions will still increase by about 12%, and the carbon emissions in 2050 will drop by 57% compared with 2020. Both the flexibility demand and marginal flexibility demand of the system will increase with the increase of the penetration rate of renewable energy. Among them, battery energy storage is most likely to intervene in the system when the penetration rate of renewable energy is between 40% and 45%. The rate between 60 and 65% has become the dominant flexibility resource. The main drivers affecting grid evolution include unit investment costs of renewable energy and energy storage, coal prices, and the maximum investable capacity of battery storage at each stage. This method has clear calculation ideas, good generality, and is suitable for popularization.
图13为本申请的海量演化路径生成及分析的框架图。具体地,首先,确定 影响目标区域电网演化发展的不确定性因素(关键指标集合),然后对不确定 性因素划分为多个预测时段,确定每个预测时段的上限值和下限值,完成对不 确定性因素的量化;接着对每一个不确定性因素在每一个预测时段内的上限值、 下限值区间内进行随机抽样,得到关键指标样本,将该关键指标样本输入到演 化路径生成模块(电网演化预测算法),判断若该关键指标样本满足目标函数 以及约束条件,则对应的生成一组演化数据;最后,对生成的大量演化数据进 行分析,得到对电网演化发展影响较大的关键驱动因素;可以实现的,也可以 计算灵活性资源发展指标,用于调整生成的电网演化数据。FIG. 13 is a frame diagram of the generation and analysis of massive evolution paths of the present application. Specifically, first, determine the uncertainty factors (key index set) that affect the evolution and development of the power grid in the target area, then divide the uncertainty factors into multiple prediction periods, and determine the upper and lower limit values of each prediction period, Complete the quantification of uncertainty factors; then randomly sample each uncertainty factor within the upper limit value and lower limit value range of each forecast period to obtain key indicator samples, which are input into the evolution The path generation module (power grid evolution prediction algorithm) judges that if the key index sample satisfies the objective function and constraint conditions, a set of evolution data will be generated correspondingly; finally, a large number of generated evolution data are analyzed to obtain a comparative analysis of the impact on the evolution and development of the power grid. Large key drivers; achievable, and also calculate flexibility resource development metrics, used to tune the generated grid evolution data.
应该理解的是,虽然图1-3的流程图中的各个步骤按照箭头的指示依次显 示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明 确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺 序执行。而且,图1-3中的至少一部分步骤可以包括多个步骤或者多个阶段,这 些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行, 这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者 其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the various steps in the flowcharts of Figures 1-3 are shown in sequence as indicated by the arrows, these steps are not necessarily performed sequentially in the sequence indicated by the arrows. Unless explicitly stated herein, there is no strict order in the execution of these steps, and these steps may be performed in other orders. Moreover, at least a part of the steps in FIGS. 1-3 may include multiple steps or multiple stages, and these steps or stages are not necessarily executed and completed at the same time, but may be executed at different times. The execution of these steps or stages The order is also not necessarily sequential, but may be performed alternately or alternately with other steps or at least a portion of the steps or phases within the other steps.
在一个实施例中,如图14所示,提供了一种电网演化预测装置,包括:In one embodiment, as shown in FIG. 14, a power grid evolution prediction device is provided, including:
确定模块1401,用于确定目标区域对应的关键指标集合;关键指标集合包 括影响目标区域电网发展的发电资源指标、影响目标区域电网发展的储能指标、 影响目标区域电网发展的用电需求侧指标、灵活性资源指标、以及影响目标区 域电网发展的燃料价格指标;A
数值处理模块1402,用于对关键指标集合中的每一个指标进行数值预测处 理,获得关键指标样本集合;
演化数据生成模块1403,用于利用电网演化预测算法处理关键指标样本集 合,获得目标区域对应的多组演化数据;演化数据包括目标区域对应的发电资 源结构的演化数据以及目标区域对应的灵活性资源结构的演化数据。The evolution
在一个实施例,数值处理模块1402具体用于,对关键指标集合中的每一个 指标进行数值预测处理,以获得关键指标样本集合,包括:In one embodiment, the
针对关键指标集合中的每一个指标,确定每一个指标在预测时段内的上限 值和下限值,根据每一个指标的上限值和下限值对关键指标集合中的各个指标 进行赋值处理;For each indicator in the key indicator set, determine the upper limit value and lower limit value of each indicator in the forecast period, and assign each indicator in the key indicator set according to the upper limit value and lower limit value of each indicator. ;
采用蒙特卡洛方法对赋值处理后的关键指标集合进行随机抽样,获得每一 个指标在每个预测时段内的数值,根据每一个指标在每个预测时段内的数值确 定关键指标样本集合。The Monte Carlo method is used to randomly sample the set of key indicators after the assignment processing, and the value of each indicator in each forecast period is obtained, and the key indicator sample set is determined according to the value of each indicator in each forecast period.
在一个实施例,演化数据生成模块1403具体用于,将关键指标样本集合输 入电网演化预测算法中的目标函数,利用电网演化预测算法中的约束条件对关 键指标样本集合进行约束处理;In one embodiment, the evolution
根据目标函数的输出以及约束处理的结果确定目标区域对应的多组演化数 据;Determine multiple sets of evolution data corresponding to the target area according to the output of the objective function and the result of the constraint processing;
其中,目标函数为:电网演化在各个预测时段的投资成本、电网固定运维 成本、以及电网可变运行成本之和最优;约束条件包括:电网的建设约束和电 网的运行成本约束。Among them, the objective function is: the optimal sum of the investment cost of the power grid evolution in each forecast period, the fixed operation and maintenance cost of the power grid, and the variable operation cost of the power grid; the constraints include: the construction constraints of the power grid and the operating cost constraints of the power grid.
在一个实施例中,投资成本为建设电力系统中发电资源和灵活性资源所投 入的资金成本;电网固定运维成本为对电力系统中建设的设备进行日常维护所 投入的资金成本;电网可变运行成本为电力系统中发电资源运行时所消耗的燃 料的成本。In one embodiment, the investment cost is the capital cost invested in the construction of power generation resources and flexible resources in the power system; the grid fixed operation and maintenance cost is the capital cost invested in routine maintenance of the equipment built in the power system; the power grid variable The operating cost is the cost of the fuel consumed when the power generation resource in the power system operates.
在一个实施例中,电网的建设约束包括以下至少一项:In one embodiment, the construction constraints of the power grid include at least one of the following:
各个预测时段内各电网节点上的各类资源的投资容量约束、投资总容量约 束、电网演化最终阶段的可再生能源渗透率约束和电网演化最终阶段碳排放量 约束;Investment capacity constraints, total investment capacity constraints, renewable energy penetration rate constraints in the final stage of grid evolution, and carbon emission constraints in the final stage of grid evolution for various resources on each power grid node in each forecast period;
电网的运行成本约束为维持电力系统中各类发电资源正常运行所需的资金 成本。The operating cost constraint of the power grid is the capital cost required to maintain the normal operation of various power generation resources in the power system.
在一个实施例中,如图15所示,电网演化预测装置还包括电网演化数据分 析模块1404。In one embodiment, as shown in FIG. 15 , the power grid evolution prediction apparatus further includes a power grid evolution
该电网演化数据分析模块具体用于,针对关键指标集合中的任意一个关键 指标,计算关键指标在不同的演化数据中的差异度,将最大的差异度作为关键 指标的影响因子;The power grid evolution data analysis module is specifically used to, for any key index in the key index set, calculate the degree of difference of the key index in different evolution data, and take the largest degree of difference as the impact factor of the key index;
将关键指标集合中,影响因子大于预设门限的一个或多个关键指标确定为 目标区域电网演化的关键驱动因素;关键驱动因素用于预测电网演化数据。In the key indicator set, one or more key indicators whose impact factor is greater than the preset threshold are determined as the key driving factors of the grid evolution in the target area; the key driving factors are used to predict the grid evolution data.
在一个实施例中,如图16所示,电网演化预测装置还包括电网演化数据调 整模块1405。In one embodiment, as shown in FIG. 16 , the power grid evolution prediction apparatus further includes a power grid evolution
该电网演化数据调整模块具体用于计算目标区域的灵活性资源发展指标, 灵活性资源发展指标包括灵活性资源容量需求、灵活性资源边际容量需求、电 池储能出现点和电池储能主导点;The power grid evolution data adjustment module is specifically used to calculate the flexible resource development index of the target area. The flexible resource development index includes flexible resource capacity demand, flexible resource marginal capacity demand, battery energy storage emergence point and battery energy storage dominant point;
根据灵活性资源发展指标调整多组演化数据,还可以根据该发展指标规划 后续生成的演化数据;Adjust multiple sets of evolution data according to the development index of flexible resources, and plan the subsequent evolution data according to the development index;
其中,灵活性资源容量需求为在不同可再生能源电量渗透率下,系统的灵 活性资源容量,灵活性资源边际容量需求为在不同可再生能源电量渗透率下, 渗透率增长预设数值对应的灵活性资源容量增量,电池储能出现点为电池储能 在电力系统中出现时对应的可再生能源电量渗透率,电池储能主导点为电池储 能容量占灵活性资源容量的预设比例时对应的可再生能源电量渗透率。Among them, the flexible resource capacity requirement is the flexible resource capacity of the system under different renewable energy electricity penetration rates, and the flexible resource marginal capacity requirement is the penetration rate increase under different renewable energy electricity penetration rates, corresponding to the preset value. The capacity increment of flexible resources, the occurrence point of battery energy storage is the corresponding renewable energy power penetration rate when battery energy storage appears in the power system, and the dominant point of battery energy storage is the preset proportion of battery energy storage capacity to flexible resource capacity The corresponding renewable energy electricity penetration rate.
关于电网演化预测装置的具体限定可以参见上文中对于电网演化预测方法 的限定,在此不再赘述。上述电网演化预测装置中的各个模块可全部或部分通 过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算 机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以 便于处理器调用执行以上各个模块对应的操作。For the specific limitations of the power grid evolution prediction device, please refer to the limitations on the power grid evolution prediction method above, which will not be repeated here. Each module in the above-mentioned power grid evolution prediction device can be implemented in whole or in part by software, hardware and combinations thereof. The above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or can be stored in the memory in the computer device in the form of software, so that the processor can call and execute the corresponding operations of the above modules.
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器, 其内部结构图可以如图17所示。该计算机设备包括通过系统总线连接的处理器、 存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。 该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介 质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中 的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储关 键指标集合、关键指标样本集合以及演化数据。该计算机设备的网络接口用于 与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现本申请 实施例所述的电网演化预测方法。In one embodiment, a computer device is provided, and the computer device may be a server, and its internal structure diagram may be as shown in FIG. 17 . The computer device includes a processor, memory, and a network interface connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium, an internal memory. The nonvolatile storage medium stores an operating system, computer programs, and databases. The internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium. The computer device's database is used to store key indicator sets, key indicator sample sets, and evolution data. The network interface of the computer device is used to communicate with external terminals through a network connection. When the computer program is executed by the processor, the method for predicting the evolution of the power grid described in the embodiments of the present application is implemented.
本领域技术人员可以理解,图17中示出的结构,仅仅是与本申请方案相关 的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定, 具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件, 或者具有不同的部件布置。Those skilled in the art can understand that the structure shown in FIG. 17 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. The specific computer device may be Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器 中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:In one embodiment, a computer device is provided, comprising a memory and a processor, a computer program is stored in the memory, and the processor implements the following steps when executing the computer program:
确定目标区域对应的关键指标集合;关键指标集合包括影响目标区域电网 发展的发电资源指标、影响目标区域电网发展的储能指标、影响目标区域电网 发展的用电需求侧指标、灵活性资源指标、以及影响目标区域电网发展的燃料 价格指标;Determine the set of key indicators corresponding to the target area; the set of key indicators includes the power generation resource indicators affecting the development of the target regional power grid, the energy storage indicators affecting the development of the target regional power grid, the demand side indicators affecting the and fuel price indicators that affect the development of power grids in target regions;
对关键指标集合中的每一个指标进行数值预测处理,获得关键指标样本集 合;Perform numerical prediction processing on each indicator in the key indicator set to obtain a key indicator sample set;
利用电网演化预测算法处理关键指标样本集合,获得目标区域对应的多组 演化数据;演化数据包括目标区域对应的发电资源结构的演化数据以及目标区 域对应的灵活性资源结构的演化数据。The power grid evolution prediction algorithm is used to process the key index sample set to obtain multiple sets of evolution data corresponding to the target area; the evolution data includes the evolution data of the power generation resource structure corresponding to the target area and the evolution data of the flexible resource structure corresponding to the target area.
在一个实施例中,该处理器执行计算机程序时实现:In one embodiment, the processor, when executing a computer program, implements:
针对关键指标集合中的每一个指标,确定每一个指标在预测时段内的上限 值和下限值,根据每一个指标的上限值和下限值对关键指标集合中的各个指标 进行赋值处理;For each indicator in the key indicator set, determine the upper limit value and lower limit value of each indicator in the forecast period, and assign each indicator in the key indicator set according to the upper limit value and lower limit value of each indicator. ;
采用蒙特卡洛方法对赋值处理后的关键指标集合进行随机抽样,获得每一 个指标在每个预测时段内的数值,根据每一个指标在每个预测时段内的数值确 定关键指标样本集合。The Monte Carlo method is used to randomly sample the set of key indicators after the assignment processing, and the value of each indicator in each forecast period is obtained, and the key indicator sample set is determined according to the value of each indicator in each forecast period.
在一个实施例中,该处理器执行计算机程序时实现:In one embodiment, the processor, when executing a computer program, implements:
将关键指标样本集合输入电网演化预测算法中的目标函数,利用电网演化 预测算法中的约束条件对关键指标样本集合进行约束处理;Input the key index sample set into the objective function in the power grid evolution prediction algorithm, and use the constraints in the power grid evolution prediction algorithm to constrain the key index sample set;
根据目标函数的输出以及约束处理的结果确定目标区域对应的多组演化数 据;Determine multiple sets of evolution data corresponding to the target area according to the output of the objective function and the result of the constraint processing;
其中,目标函数为:电网演化在各个预测时段的投资成本、电网固定运维 成本、以及电网可变运行成本之和最优;约束条件包括:电网的建设约束和电 网的运行成本约束。Among them, the objective function is: the optimal sum of the investment cost of the power grid evolution in each forecast period, the fixed operation and maintenance cost of the power grid, and the variable operation cost of the power grid; the constraints include: the construction constraints of the power grid and the operating cost constraints of the power grid.
在一个实施例中,投资成本为建设电力系统中发电资源和灵活性资源所投 入的资金成本;电网固定运维成本为对电力系统中建设的设备进行日常维护所 投入的资金成本;电网可变运行成本为电力系统中发电资源运行时所消耗的燃 料的成本。In one embodiment, the investment cost is the capital cost invested in the construction of power generation resources and flexible resources in the power system; the grid fixed operation and maintenance cost is the capital cost invested in routine maintenance of the equipment built in the power system; the power grid variable The operating cost is the cost of the fuel consumed when the power generation resource in the power system operates.
在一个实施例中,电网的建设约束包括以下至少一项:In one embodiment, the construction constraints of the power grid include at least one of the following:
各个预测时段内各电网节点上的各类资源的投资容量约束、投资总容量约 束、电网演化最终阶段的可再生能源渗透率约束和电网演化最终阶段碳排放量 约束;Investment capacity constraints, total investment capacity constraints, renewable energy penetration rate constraints in the final stage of grid evolution, and carbon emission constraints in the final stage of grid evolution for various resources on each power grid node in each forecast period;
电网的运行成本约束为维持电力系统中各类发电资源正常运行所需的资金 成本。The operating cost constraint of the power grid is the capital cost required to maintain the normal operation of various power generation resources in the power system.
在一个实施例中,该处理器执行计算机程序时实现:In one embodiment, the processor, when executing a computer program, implements:
针对关键指标集合中的任意一个关键指标,计算关键指标在不同的演化数 据中的差异度,将最大的差异度作为关键指标的影响因子;For any key indicator in the key indicator set, calculate the degree of difference of the key indicator in different evolution data, and take the largest degree of difference as the impact factor of the key indicator;
将关键指标集合中,影响因子大于预设门限的一个或多个关键指标确定为 目标区域电网演化的关键驱动因素;关键驱动因素用于预测电网演化数据。In the key indicator set, one or more key indicators whose impact factor is greater than the preset threshold are determined as the key driving factors of the grid evolution in the target area; the key driving factors are used to predict the grid evolution data.
在一个实施例中,该处理器执行计算机程序时实现:In one embodiment, the processor, when executing a computer program, implements:
计算目标区域的灵活性资源发展指标,灵活性资源发展指标包括灵活性资 源容量需求、灵活性资源边际容量需求、电池储能出现点和电池储能主导点;Calculate the flexible resource development index of the target area, the flexible resource development index includes flexible resource capacity demand, flexible resource marginal capacity demand, battery energy storage emergence point and battery energy storage dominant point;
根据灵活性资源发展指标调整多组演化数据,还可以根据该发展指标规划 后续生成的演化数据;Adjust multiple sets of evolution data according to the development index of flexible resources, and plan the subsequent evolution data according to the development index;
其中,灵活性资源容量需求为在不同可再生能源电量渗透率下,系统的灵 活性资源容量,灵活性资源边际容量需求为在不同可再生能源电量渗透率下, 渗透率增长预设数值对应的灵活性资源容量增量,电池储能出现点为电池储能 在电力系统中出现时对应的可再生能源电量渗透率,电池储能主导点为电池储 能容量占灵活性资源容量的预设比例时对应的可再生能源电量渗透率。Among them, the flexible resource capacity requirement is the flexible resource capacity of the system under different renewable energy electricity penetration rates, and the flexible resource marginal capacity requirement is the penetration rate increase under different renewable energy electricity penetration rates, corresponding to the preset value. The capacity increment of flexible resources, the occurrence point of battery energy storage is the corresponding renewable energy power penetration rate when battery energy storage appears in the power system, and the dominant point of battery energy storage is the preset proportion of battery energy storage capacity to flexible resource capacity The corresponding renewable energy electricity penetration rate.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于 一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述 各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、 存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的 至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、 磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory, SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by instructing relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer-readable storage In the medium, when the computer program is executed, it may include the processes of the above-mentioned method embodiments. Wherein, any reference to memory, storage, database or other media used in the various embodiments provided in this application may include at least one of non-volatile and volatile memory. The non-volatile memory may include Read-Only Memory (ROM), magnetic tape, floppy disk, flash memory or optical memory, and the like. Volatile memory may include random access memory (RAM) or external cache memory. By way of illustration and not limitation, the RAM may be in various forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM).
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述 实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特 征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. In order to make the description simple, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features It is considered to be the range described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细, 但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的 普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改 进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权 利要求为准。The above-mentioned embodiments only represent several embodiments of the present application, and the descriptions thereof are relatively specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the patent of the present application shall be subject to the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110952453.4A CN113705874B (en) | 2021-08-19 | 2021-08-19 | New energy grid evolution prediction methods, devices, computer equipment and storage media |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110952453.4A CN113705874B (en) | 2021-08-19 | 2021-08-19 | New energy grid evolution prediction methods, devices, computer equipment and storage media |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113705874A true CN113705874A (en) | 2021-11-26 |
CN113705874B CN113705874B (en) | 2024-03-15 |
Family
ID=78653376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110952453.4A Active CN113705874B (en) | 2021-08-19 | 2021-08-19 | New energy grid evolution prediction methods, devices, computer equipment and storage media |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113705874B (en) |
Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7698233B1 (en) * | 2007-01-23 | 2010-04-13 | Southern Company Services, Inc. | System and method for determining expected unserved energy to quantify generation reliability risks |
US20130090774A1 (en) * | 2011-10-06 | 2013-04-11 | Avista Corporation | Real-Time Optimization of Hydropower Generation Facilities |
CN103886514A (en) * | 2014-03-10 | 2014-06-25 | 国家电网公司 | Power grid development assessment method with economical efficiency and security considered |
CN105354643A (en) * | 2015-11-24 | 2016-02-24 | 国网四川省电力公司经济技术研究院 | Risk prediction evaluation method for wind power grid integration |
CN107591841A (en) * | 2017-09-26 | 2018-01-16 | 清华大学 | Power network Evolution Simulation method under being accessed on a large scale suitable for new energy |
CN107862160A (en) * | 2017-12-06 | 2018-03-30 | 清华大学 | The generation method and device of the following power network evolutionary model of compressed-air energy-storage system |
CN107947165A (en) * | 2017-11-30 | 2018-04-20 | 国网浙江省电力公司经济技术研究院 | A kind of power distribution network flexibility evaluation method towards regulatory demand |
CN107958355A (en) * | 2018-01-10 | 2018-04-24 | 国网山东省电力公司经济技术研究院 | A kind of power distribution network input_output relevance coefficient analysis method based on item attribute |
CN109102116A (en) * | 2018-08-03 | 2018-12-28 | 国网山东省电力公司经济技术研究院 | A kind of power network development multi-stage optimization appraisal procedure |
CN110070221A (en) * | 2019-04-16 | 2019-07-30 | 清华大学 | Power network planning scheme assessment and preferred method and system based on full cost electricity price |
CN110504694A (en) * | 2019-07-19 | 2019-11-26 | 国网江苏省电力有限公司经济技术研究院 | Frequency modulation parameter acquisition method, device, computer equipment and readable storage medium |
CN110969347A (en) * | 2019-11-22 | 2020-04-07 | 国网山东省电力公司临沂供电公司 | Power transmission network structure form evaluation method |
US20200143489A1 (en) * | 2018-11-01 | 2020-05-07 | Battelle Memorial Institute | Flexible allocation of energy storage in power grids |
WO2020147349A1 (en) * | 2019-01-14 | 2020-07-23 | 中国电力科学研究院有限公司 | Power distribution network operation aided decision-making analysis system and method |
CN111598348A (en) * | 2020-05-21 | 2020-08-28 | 国网山东省电力公司经济技术研究院 | A method, system, medium and electronic equipment for optimization of uniformity planning of transmission network |
CN111738519A (en) * | 2020-06-24 | 2020-10-02 | 广东电网有限责任公司 | Power distribution network planning method, system and equipment |
US20200334577A1 (en) * | 2016-06-15 | 2020-10-22 | Roger N. Anderson | Electric grid analytics learning machine |
CN112001551A (en) * | 2020-08-25 | 2020-11-27 | 西安交通大学 | Method for predicting electricity sales amount of power grid in city based on electricity information of large users |
CN112072703A (en) * | 2020-09-10 | 2020-12-11 | 华北电力大学 | A flexibility evaluation method and system suitable for new energy access planning |
CN112101673A (en) * | 2020-09-22 | 2020-12-18 | 华北电力大学 | A method and system for predicting the development trend of power grid based on hidden Markov model |
AU2020103555A4 (en) * | 2019-12-31 | 2021-02-04 | North China Electric Power University | Method and system for power supply prediction by variety |
CN112541616A (en) * | 2020-11-27 | 2021-03-23 | 国家电网有限公司客户服务中心 | Power utilization adjusting method and system based on demand side response |
WO2021077646A1 (en) * | 2019-10-22 | 2021-04-29 | 中国科学院广州能源研究所 | Comprehensive multi-precision index evaluation method and system for electric power prediction models |
CN112952814A (en) * | 2021-03-04 | 2021-06-11 | 四川云起老和科技有限公司 | Regional energy Internet evolution simulation method considering town growth characteristics |
CN112990551A (en) * | 2021-02-20 | 2021-06-18 | 国电南瑞科技股份有限公司 | Cascading failure evolution path tracing and predicting method and device based on knowledge graph |
US20210203159A1 (en) * | 2019-12-27 | 2021-07-01 | North China Electric Power University | Power load forecasting method in multi-energy coupling mode |
-
2021
- 2021-08-19 CN CN202110952453.4A patent/CN113705874B/en active Active
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7698233B1 (en) * | 2007-01-23 | 2010-04-13 | Southern Company Services, Inc. | System and method for determining expected unserved energy to quantify generation reliability risks |
US20130090774A1 (en) * | 2011-10-06 | 2013-04-11 | Avista Corporation | Real-Time Optimization of Hydropower Generation Facilities |
CN103886514A (en) * | 2014-03-10 | 2014-06-25 | 国家电网公司 | Power grid development assessment method with economical efficiency and security considered |
CN105354643A (en) * | 2015-11-24 | 2016-02-24 | 国网四川省电力公司经济技术研究院 | Risk prediction evaluation method for wind power grid integration |
US20200334577A1 (en) * | 2016-06-15 | 2020-10-22 | Roger N. Anderson | Electric grid analytics learning machine |
CN107591841A (en) * | 2017-09-26 | 2018-01-16 | 清华大学 | Power network Evolution Simulation method under being accessed on a large scale suitable for new energy |
CN107947165A (en) * | 2017-11-30 | 2018-04-20 | 国网浙江省电力公司经济技术研究院 | A kind of power distribution network flexibility evaluation method towards regulatory demand |
CN107862160A (en) * | 2017-12-06 | 2018-03-30 | 清华大学 | The generation method and device of the following power network evolutionary model of compressed-air energy-storage system |
CN107958355A (en) * | 2018-01-10 | 2018-04-24 | 国网山东省电力公司经济技术研究院 | A kind of power distribution network input_output relevance coefficient analysis method based on item attribute |
CN109102116A (en) * | 2018-08-03 | 2018-12-28 | 国网山东省电力公司经济技术研究院 | A kind of power network development multi-stage optimization appraisal procedure |
US20200143489A1 (en) * | 2018-11-01 | 2020-05-07 | Battelle Memorial Institute | Flexible allocation of energy storage in power grids |
WO2020147349A1 (en) * | 2019-01-14 | 2020-07-23 | 中国电力科学研究院有限公司 | Power distribution network operation aided decision-making analysis system and method |
CN110070221A (en) * | 2019-04-16 | 2019-07-30 | 清华大学 | Power network planning scheme assessment and preferred method and system based on full cost electricity price |
CN110504694A (en) * | 2019-07-19 | 2019-11-26 | 国网江苏省电力有限公司经济技术研究院 | Frequency modulation parameter acquisition method, device, computer equipment and readable storage medium |
WO2021077646A1 (en) * | 2019-10-22 | 2021-04-29 | 中国科学院广州能源研究所 | Comprehensive multi-precision index evaluation method and system for electric power prediction models |
CN110969347A (en) * | 2019-11-22 | 2020-04-07 | 国网山东省电力公司临沂供电公司 | Power transmission network structure form evaluation method |
US20210203159A1 (en) * | 2019-12-27 | 2021-07-01 | North China Electric Power University | Power load forecasting method in multi-energy coupling mode |
AU2020103555A4 (en) * | 2019-12-31 | 2021-02-04 | North China Electric Power University | Method and system for power supply prediction by variety |
CN111598348A (en) * | 2020-05-21 | 2020-08-28 | 国网山东省电力公司经济技术研究院 | A method, system, medium and electronic equipment for optimization of uniformity planning of transmission network |
CN111738519A (en) * | 2020-06-24 | 2020-10-02 | 广东电网有限责任公司 | Power distribution network planning method, system and equipment |
CN112001551A (en) * | 2020-08-25 | 2020-11-27 | 西安交通大学 | Method for predicting electricity sales amount of power grid in city based on electricity information of large users |
CN112072703A (en) * | 2020-09-10 | 2020-12-11 | 华北电力大学 | A flexibility evaluation method and system suitable for new energy access planning |
CN112101673A (en) * | 2020-09-22 | 2020-12-18 | 华北电力大学 | A method and system for predicting the development trend of power grid based on hidden Markov model |
CN112541616A (en) * | 2020-11-27 | 2021-03-23 | 国家电网有限公司客户服务中心 | Power utilization adjusting method and system based on demand side response |
CN112990551A (en) * | 2021-02-20 | 2021-06-18 | 国电南瑞科技股份有限公司 | Cascading failure evolution path tracing and predicting method and device based on knowledge graph |
CN112952814A (en) * | 2021-03-04 | 2021-06-11 | 四川云起老和科技有限公司 | Regional energy Internet evolution simulation method considering town growth characteristics |
Non-Patent Citations (7)
Title |
---|
HUISHI LIANG;JIN MA;RONGFU SUN;YANLING DU: "A Data-Driven Approach for Targeting Residential Customers for Energy Efficiency Programs", IEEE TRANSACTIONS ON SMART GRID, vol. 11, no. 2, 7 August 2019 (2019-08-07), XP011772383, DOI: 10.1109/TSG.2019.2933704 * |
孙荣富1王隆扬2王玉林1丁然1徐海翔1王靖然1李强2: "基于数字孪生的光伏发电功率超短期预测", 电网技术, vol. 45, no. 04, 30 April 2021 (2021-04-30) * |
张怡;: "新能源风光发电预测技术的发展及应用", 浙江水利水电学院学报, no. 01 * |
盖新武;丁丽霞;任凤琴;张亚鹏;彭正伟;: "基于点估计法和随机潮流约束的电网及风电场相关特性研究", 电网与清洁能源, no. 05 * |
谢宇翔;张雪敏;罗金山;夏德明;张艳;: "新能源大规模接入下的未来电力系统演化模型", 中国电机工程学报, no. 02 * |
鲁宗相李海波乔颖: "高比例可再生能源并网的电力系统灵活性评价与平衡机理", 中国电机工程学报, vol. 37, no. 01, 5 January 2017 (2017-01-05) * |
齐宁;程林;田立亭;郭剑波;黄仁乐;王存平;: "考虑柔性负荷接入的配电网规划研究综述与展望", 电力系统自动化, no. 10 * |
Also Published As
Publication number | Publication date |
---|---|
CN113705874B (en) | 2024-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lujano-Rojas et al. | Operating conditions of lead-acid batteries in the optimization of hybrid energy systems and microgrids | |
CN106532688B (en) | A method and system for evaluating the reliability of microgrid operation | |
CN115796393B (en) | Energy management optimization method, system and storage medium based on multi-energy interaction | |
CN104239967A (en) | Multi-target economic dispatch method for power system with wind farm | |
CN110535159A (en) | A kind of method and system of scale energy-accumulating power station running unit fault pre-alarming | |
CN114301081B (en) | Micro-grid optimization method considering storage battery energy storage life loss and demand response | |
CN117895579A (en) | Cooperative operation control method, device and equipment of power grid equipment and storage medium | |
KR20200114424A (en) | Methods and apparatuses for operating power generator combined with heterogeneous renewable energy | |
CN118336836A (en) | A peak-shaving demand analysis method for multiple types of renewable energy based on risk elimination | |
CN112994092A (en) | Independent wind-solar storage micro-grid system size planning method based on power prediction | |
CN116706869A (en) | Prediction method and device for supply and demand balance scene of regional power grid | |
CN114219205A (en) | A flexible load trusted capacity calculation method for power grid planning | |
Gao et al. | Life extension of a multi-unit energy storage system by optimizing the power distribution based on the degradation ratio | |
CN117422254B (en) | Information processing method, device, equipment and storage medium for intelligent park | |
CN110649638B (en) | Optimization method of energy storage system for compensating wind power prediction error | |
CN115693787B (en) | Analysis method for new energy acceptance capacity of photovoltaic storage distribution network considering source-load randomness | |
CN113705874B (en) | New energy grid evolution prediction methods, devices, computer equipment and storage media | |
CN117977538A (en) | A method, system, device and medium for evaluating power system flexibility | |
CN117728378A (en) | Distributed virtual power plant integrated intelligent zero-cleaning hybrid system and method thereof | |
CN116415722A (en) | Photovoltaic power generation amount prediction method | |
CN114386849A (en) | Power balance risk early warning method for high proportion of new energy systems | |
CN118645985B (en) | A method and system for determining adjustable capacity of electric hydrogen production taking into account incentive forms | |
CN117955143B (en) | A zero-carbon rural integrated energy management method and system | |
CN117575175B (en) | Carbon emission evaluation method, device, electronic equipment and storage medium | |
KR102497271B1 (en) | Apparatus and method for optimizing the use ratio of ESS and water electrolysis facilities considering deterioration cost |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |