CN113704627B - Session recommendation method based on time interval graph - Google Patents
Session recommendation method based on time interval graph Download PDFInfo
- Publication number
- CN113704627B CN113704627B CN202111036181.XA CN202111036181A CN113704627B CN 113704627 B CN113704627 B CN 113704627B CN 202111036181 A CN202111036181 A CN 202111036181A CN 113704627 B CN113704627 B CN 113704627B
- Authority
- CN
- China
- Prior art keywords
- item
- graph
- session
- time interval
- user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000013598 vector Substances 0.000 claims abstract description 58
- 238000013528 artificial neural network Methods 0.000 claims abstract description 22
- 230000006870 function Effects 0.000 claims description 22
- 230000000306 recurrent effect Effects 0.000 claims description 15
- 238000010606 normalization Methods 0.000 claims description 7
- 230000002452 interceptive effect Effects 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000012512 characterization method Methods 0.000 claims 6
- 125000004122 cyclic group Chemical group 0.000 claims 4
- 238000011478 gradient descent method Methods 0.000 claims 1
- 230000003993 interaction Effects 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241001464837 Viridiplantae Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9536—Search customisation based on social or collaborative filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/01—Social networking
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Business, Economics & Management (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明公开了一种基于时间间隔图的会话推荐方法。该方法根据给定当前会话,对用户兴趣建模,并推荐当前用户在下一步最可能感兴趣的物品。主要由四个部分组成:第一部分是根据用户当前会话中的物品序列,构建带时间间隔属性的会话图;第二部分是使用时间间隔图神经网络更新物品向量表征;第三部分是根据用户当前会话中物品序列,获得用户兴趣向量表征;最后,根据用户兴趣表征,推荐物品。
The invention discloses a session recommendation method based on a time interval graph. The method models user interests given the current session and recommends items that the current user is most likely to be interested in in the next step. It mainly consists of four parts: the first part is to construct a session graph with time interval attributes according to the item sequence in the user's current session; the second part is to use the time interval graph neural network to update the item vector representation; the third part is based on the user's current session. The sequence of items in the session is used to obtain the vector representation of the user's interest; finally, the items are recommended according to the representation of the user's interest.
Description
技术领域technical field
本发明属于互联网服务技术领域,尤其是涉及一种基于时间间隔图的会话推荐方法。The invention belongs to the technical field of Internet services, and in particular relates to a session recommendation method based on a time interval graph.
背景技术Background technique
会话(Session)是一个时间段内用户的交互行为,基于会话的推荐是基于当前会话推荐用户下一个点击的物品。会话内的物品序列是有序的,对物品的序列性进行建模是非常必要的。如,买绿植之后,可能会产生买花盆的需求。传统的会话推荐系统采用循环神经网络来对用户兴趣进行建模,但是循环神经网络忽略了会话中更复杂的物品上下文关系。会话中一个物品的上一个被点击物品和下一个被点击物品叫做该物品的上下文(context)。在电商平台中,在同一个会话中,用户会对同一物品产生重复点击浏览的行为。同一物品会有多个上下文,如仅仅通过循环神经网络对会话进行建模,一个物品的多个上下文之间是没有联系的,想要对上下文之间联系进行建模,需要将会话构建成会话图。会话图可以捕捉到会话中丰富的物品转移关系。Session is the user's interactive behavior in a period of time, and session-based recommendation is to recommend the item that the user clicks next based on the current session. The sequence of items within a session is ordered, and it is necessary to model the sequentiality of items. For example, after buying green plants, there may be a need to buy flower pots. Traditional conversational recommender systems use recurrent neural networks to model user interests, but recurrent neural networks ignore more complex item contextual relationships in conversations. The last clicked item and the next clicked item of an item in the session are called the context of the item. In the e-commerce platform, in the same session, users will repeatedly click and browse the same item. There will be multiple contexts for the same item. For example, if the session is modeled only by the recurrent neural network, there is no connection between multiple contexts of an item. To model the connection between the contexts, the session needs to be constructed as a session. picture. Conversation graphs can capture rich item transfer relationships in conversations.
仅仅考虑会话中物品的序列性是不够的,会话中物品间隔时间的不同也会导致推荐结果不同。如:同一行为发生在两小时前和半小时前对当前的影响肯定是不同的。因此,在构建会话图的时候,将物品交互之间的时间间隔考虑进去。先对时间间隔采用最小最大化归一化方式进行归一化,然后将时间间隔进行离散化,来学习时间间隔对用户兴趣表征的影响。本方法先基于会话构建带时间间隔属性的会话图,并基于会话图更新物品向量表征;然后用门控制循环神经网络(GRU)对会话建模,得到用户兴趣向量表征;最后根据用户兴趣表征,推荐用户下一个可能感兴趣的物品。It is not enough to only consider the sequence of items in a session, and the difference in the interval time between items in a session will also lead to different recommendation results. Such as: the same behavior occurred two hours ago and half an hour ago must have different effects on the current. Therefore, consider the time interval between item interactions when constructing the conversation graph. The time interval is first normalized by the minimum-maximum normalization method, and then the time interval is discretized to learn the influence of the time interval on the representation of user interest. This method first builds a session graph with time interval attributes based on the session, and updates the item vector representation based on the session graph; then uses a gated recurrent neural network (GRU) to model the session to obtain the user interest vector representation; finally, according to the user interest representation, Recommend the next item the user might be interested in.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是给定当前会话,对用户兴趣建模,并推荐当前用户在下一步最可能感兴趣的物品。为了捕捉到会话中丰富的物品转移关系,将当前会话构建成会话图。并在构建会话图的时候,将物品交互之间的时间间隔考虑进去,来学习时间间隔对用户兴趣建模的影响。The technical problem to be solved by the present invention is to model the user's interest given the current session, and recommend the items that the current user is most likely to be interested in in the next step. In order to capture the rich item transfer relationship in the session, the current session is constructed as a session graph. And when building the conversation graph, the time interval between item interactions is taken into account to learn the impact of time interval on user interest modeling.
一种基于时间间隔图的会话推荐方法,包括以下步骤:A session recommendation method based on time interval graph, including the following steps:
根据用户当前会话中的物品序列,构建带时间间隔属性的会话图。给定一个会话s={v1,v2,…,v|s|},任一物品vj为会话图T的节点,(vj-1,vj)为图网络T的有向边,表示一个用户点击物品vj-1之后点击物品vj。且图的边属性为点击物品vj-1和点击物品vj之间的时间间隔。According to the sequence of items in the user's current session, a session graph with time interval attributes is constructed. Given a session s={v 1 ,v 2 ,...,v |s| }, any item v j is a node of the session graph T, (v j-1 , v j ) is a directed edge of the graph network T , indicating that a user clicks on item v j-1 and then clicks on item v j . And the edge property of the graph is the time interval between clicking on item v j-1 and clicking on item v j .
使用时间间隔图神经网络更新物品向量表征。会话图中的边属性时间间隔采用最小最大化归一化方式进行归一化,然后将时间间隔进行离散化。在会话图中进行物品节点信息传递时,将节点信息和边信息连接为整体进行传递,具体公式如下:Update item vector representations using a time-interval graph neural network. The edge attribute time interval in the conversation graph is normalized by the minimum-maximum normalization method, and then the time interval is discretized. When the item node information is transmitted in the conversation graph, the node information and edge information are connected as a whole for transmission. The specific formula is as follows:
其中,tj表示点击物品vj发生时间,和分别表示该会话中时间间隔的最大值和最小值,ti→j表示经过最小最大归一化后的时间间隔。函数bucketid(ti→j,{·})表示时间间隔ti→j处在集合参数中的下标,如ti→j=0.15,那么表示0.15落在第2个区间[0.1,0.2)内。emb(ti→j)表示ti→j的向量表征,emb(vi ) 表示物品vi向量表征,表示向量的连接。Among them, t j represents the time when the item v j is clicked, and represent the maximum and minimum value of the time interval in the session, respectively, and t i→j represents the time interval after the minimum and maximum normalization. The function bucket id (t i→j ,{}) represents the subscript of the time interval t i→j in the set parameter, such as t i→j =0.15, then Indicates that 0.15 falls within the second interval [0.1, 0.2). emb(t i→j ) represents the vector representation of t i→j , emb(vi ) represents the vector representation of item v i , Represents a concatenation of vectors.
然后再采用两层的图网络更新物品向量表征,最后得到物品vj的向量表征xj为图网络更新结果,也就是具体公式为:Then, the two-layer graph network is used to update the item vector representation, and finally the vector representation x j of the item v j is obtained as the graph network update result, that is, The specific formula is:
其中,Wpool和Wh是转移矩阵,b是向量,σ为sigmoid函数,max代表元素级别的max操作,表示向量的连接。k代表在图网络T中的搜索深度,k的最大值为搜索深度L,代表节点vj在k层的向量表征,B(j) 为会话图T中物品vj的邻居集合。表示物品节点xj的邻居节点vk传递过来的信息,融合了物品节点vj的所有邻居节点信息。融合了物品vj上一层的向量表征信息和物品vj邻居节点信息。where W pool and W h are transition matrices, b is a vector, σ is a sigmoid function, and max represents an element-level max operation, Represents a concatenation of vectors. k represents the search depth in the graph network T, the maximum value of k is the search depth L, represents the vector representation of node v j at layer k, and B(j) is the set of neighbors of item v j in the conversation graph T. Represents the information passed by the neighbor node v k of the item node x j , All neighbor node information of item node v j is fused. It combines the vector representation information of the upper layer of item v j and the neighbor node information of item v j .
根据用户当前会话中物品序列,获得用户兴趣向量表征。采用门控制循环神经网络(GRU)对会话进行表征,得到兴趣表征。也就是将当前会话作为门控制循环神经网络(GRU)的输入,得到门控制循环神经网络(GRU)的输出作为用户的兴趣pu:According to the item sequence in the user's current session, the user's interest vector representation is obtained. A gated recurrent neural network (GRU) is used to characterize the session to obtain an interest representation. That is, the current session is used as the input of the gated recurrent neural network (GRU), and the output of the gated recurrent neural network (GRU) is obtained as the user's interest p u :
zi=σ(Wxz·xi+Whz·hi-1)z i =σ(W xz ·x i +W hz ·h i-1 )
ri=σ(Wxr·xi+Whr·hi-1)r i =σ(W xr ·x i +W hr ·h i-1 )
其中,ri是重置门(reset gate),zi为更新门(update gate),这两个门控向量决定了哪些信息能作为门控循环单元的输出。是当前记忆内容。xi是当前层的节点输入,也就是物品vi的向量表征。Wxa、Wha、Wxr和Whr分别是控制更新门zi和重置门ri的参数。Wxh和Whh是控制前记忆内容的参数。⊙是元素级别的矩阵相乘,σ是sigmoid函数。门控制循环神经网络(GRU)的最后一个隐藏层的输出就是用户兴趣pu。Among them, ri is the reset gate (reset gate), zi is the update gate (update gate), these two gate vectors determine which information can be used as the output of the gated recurrent unit. is the current memory content. x i is the node input of the current layer, that is , the vector representation of the item vi. W xa , W ha , W xr and W hr are parameters that control the update gate zi and the reset gate ri , respectively. W xh and W hh are the pre-control memory contents parameter. ⊙ is the element-wise matrix multiplication and σ is the sigmoid function. The output of the last hidden layer of the gated recurrent neural network (GRU) is the user interest p u .
根据用户兴趣表征,推荐物品。将物品vj的向量vj乘以用户最终向量表征,再应用softmax函数计算出物品vj的分数:Recommend items based on user interest representations. Multiply the vector v j of item v j by the final vector representation of the user, and then apply the softmax function to calculate the score of item v j :
其中,pu代表用户的兴趣向量,代表物品vj成为下一个交互物品的可能性。同时根据的对数似然函数值,计算损失函数:where p u represents the user's interest vector, represents the possibility of item v j being the next interactive item. At the same time according to The log-likelihood function value of , calculates the loss function:
其中,yj代表vj的one-hot编码,函数用梯度下降法来最优化。Among them, y j represents the one-hot encoding of v j , The function is optimized using gradient descent.
本发明的有益技术效果如下:The beneficial technical effects of the present invention are as follows:
(1)本发明是一种基于会话图的推荐方法,将会话构建成会话图,让模型学习会话中更复杂的物品转移关系。(1) The present invention is a recommendation method based on a conversation graph, which constructs a conversation into a conversation graph, and allows the model to learn more complex item transfer relationships in the conversation.
(2)本发明是一种基于时间间隔会话图的推荐方法,不仅可以学习到会话中复杂的物品转移关系,还可以学习物品时间间隔对用户兴趣的影响。(2) The present invention is a recommendation method based on a time interval session graph, which can not only learn the complex item transfer relationship in the session, but also learn the influence of the item time interval on the user's interest.
附图说明Description of drawings
图1为本发明一种基于时间间隔图的会话推荐方法的流程示意图;1 is a schematic flowchart of a session recommendation method based on a time interval diagram of the present invention;
图2为本发明一种基于时间间隔图的会话推荐方法的模型框架图。FIG. 2 is a model frame diagram of a session recommendation method based on a time interval graph according to the present invention.
具体实施方式Detailed ways
为了进一步理解本发明,下面结合具体实施方式对本发明提供的一种基于时间间隔图的会话推荐方法进行具体描述,但本发明并不限于此,该领域技术人员在本发明核心指导思想下做出的非本质改进和调整,仍然属于本发明的保护范围。In order to further understand the present invention, a session recommendation method based on a time interval graph provided by the present invention will be specifically described below with reference to specific embodiments, but the present invention is not limited to this, and those skilled in the art will make a The non-essential improvements and adjustments still belong to the protection scope of the present invention.
首先,需要对用到的变量和公式给出相关定义。First, the relevant definitions of the variables and formulas used need to be given.
定义1.V:物品集合,且V={v1,v2,…,v|V|},|V|代表物品集合中物品的数量。Definition 1. V: an item set, and V={v 1 , v 2 ,...,v |V| }, |V| represents the number of items in the item set.
定义2.s:当前用户的当前会话,会话是当前时间段里的所有交互物品集合s={v1,v2,…,v|s|},|s|代表会话中物品的数量。Definition 2.s: the current session of the current user, the session is the set of all interactive items in the current time period s={v 1 , v 2 ,...,v |s| }, where |s| represents the number of items in the session.
定义3.S:系统中的会话集合,S={s1,s2,…,s|S|},|S|代表会话集合中会话的数量。Definition 3.S: session set in the system, S={s 1 , s 2 ,...,s |S| }, |S| represents the number of sessions in the session set.
定义4.T:基于当前会话中交互的物品序列构建的带时间间隔属性的会话图。Definition 4.T: A session graph with time interval attribute constructed based on the sequence of interacting items in the current session.
定义5.B(j):带时间间隔属性的会话图T中物品vj的邻居集合。Definition 5.B(j): The set of neighbors of item v j in the conversation graph T with time interval attribute.
定义6.物品vj的初始化的向量表征。Definition 6. Initialized vector representation of item v j .
定义7.物品vj的经过会话图更新后的向量表征。Definition 7. The vector representation of item v j after the session graph update.
定义8.用户兴趣向量表征。Definition 8. User interest vector representation.
结合以上变量定义,将最终的问题定义为:给定当前会话,对用户兴趣建模,并推荐当前用户在下一步最可能感兴趣的物品,物品是集合V的子集。为了捕捉到会话中丰富的物品转移关系,将当前会话构建成会话图。并在构建会话图的时候,将物品交互之间的时间间隔考虑进去,来学习时间间隔对用户兴趣表征的影响。Combined with the above variable definitions, the final problem is defined as: given the current session, model user interests, and recommend the items that the current user is most likely to be interested in in the next step. The items are a subset of the set V. In order to capture the rich item transfer relationship in the session, the current session is constructed as a session graph. When constructing the conversation graph, the time interval between item interactions is taken into account to learn the impact of time interval on the representation of user interest.
为此,本发明提出了一种基于时间间隔图的会话推荐方法,如图2所示,方法的向前传播(forward propagation)部分主要由四个部分组成。第一部分是根据用户当前会话中的物品序列,构建带时间间隔属性的会话图;第二部分是使用时间间隔图神经网络更新物品向量表征;第三部分是根据用户当前会话中物品序列,获得用户兴趣向量表征;最后,根据用户兴趣表征,推荐物品。To this end, the present invention proposes a session recommendation method based on a time interval graph. As shown in FIG. 2 , the forward propagation part of the method mainly consists of four parts. The first part is to construct a session graph with time interval attributes according to the item sequence in the user's current session; the second part is to use the time interval graph neural network to update the item vector representation; the third part is to obtain the user's Interest vector representation; finally, according to the user's interest representation, recommend items.
如图1所示,按照本发明的在电商中的一个实施例,本方法包括如下步骤:As shown in FIG. 1 , according to an embodiment of the present invention in e-commerce, the method includes the following steps:
S100,根据用户当前会话中的物品序列,构建带时间间隔属性的会话图。给定一个会话s= {v1,v2,…,v|s|},任一物品vj为会话图T的节点,(vj-1,vj)为图网络T的有向边,表示一个用户点击物品vj-1之后点击物品vj。且图的边属性为点击物品vj-1和点击物品vj之间的时间间隔。S100, construct a session graph with a time interval attribute according to the item sequence in the user's current session. Given a session s = {v 1 ,v 2 ,...,v |s| }, any item v j is a node of the session graph T, and (v j-1 ,v j ) is a directed edge of the graph network T , indicating that a user clicks on item v j-1 and then clicks on item v j . And the edge property of the graph is the time interval between clicking on item v j-1 and clicking on item v j .
S200,使用时间间隔图神经网络更新物品向量表征。会话图中的边属性时间间隔采用最小最大化归一化方式进行归一化,然后将时间间隔进行离散化。在会话图中进行物品节点信息传递时,将节点信息和边信息连接为整体进行传递,具体公式如下:S200, using the time interval graph neural network to update the item vector representation. The edge attribute time interval in the conversation graph is normalized by the minimum-maximum normalization method, and then the time interval is discretized. When the item node information is transmitted in the conversation graph, the node information and edge information are connected as a whole for transmission. The specific formula is as follows:
其中,tj表示点击物品vj发生时间,和分别表示该会话中时间间隔的最大值和最小值,ti→j表示经过最小最大归一化后的时间间隔。函数bucketid(ti→j,{·})表示时间间隔ti→j处在集合参数中的下标,如ti→j=0.15,那么表示0.15落在第2个区间[0.1,0.2)内。emb(ti→j)表示ti→j的向量表征,emb(vi ) 表示物品vi向量表征,表示向量的连接。Among them, t j represents the time when the item v j is clicked, and represent the maximum and minimum value of the time interval in the session, respectively, and t i→j represents the time interval after the minimum and maximum normalization. The function bucket id (t i→j ,{}) represents the subscript of the time interval t i→j in the set parameter, such as t i→j =0.15, then Indicates that 0.15 falls within the second interval [0.1, 0.2). emb(t i→j ) represents the vector representation of t i→j , emb(vi ) represents the vector representation of item v i , Represents a concatenation of vectors.
然后再采用两层的图网络更新物品向量表征,最后得到物品vj的向量表征xj为图网络更新结果,也就是具体公式为:Then, the two-layer graph network is used to update the item vector representation, and finally the vector representation x j of the item v j is obtained as the graph network update result, that is, The specific formula is:
其中,Wpool和Wh是转移矩阵,b是向量,σ为sigmoid函数,max代表元素级别的max操作,表示向量的连接。k代表在图网络T中的搜索深度,k的最大值为搜索深度L,代表节点vj在k层的向量表征,B(j) 为会话图T中物品vj的邻居集合。表示物品节点vj的邻居节点vk传递过来的信息,融合了物品节点vj的所有邻居节点信息。融合了物品vj上一层的向量表征信息和物品vj邻居节点信息。本方法中采用两层的图网络,所以搜索深度L=2。where W pool and W h are transition matrices, b is a vector, σ is a sigmoid function, and max represents an element-level max operation, Represents a concatenation of vectors. k represents the search depth in the graph network T, the maximum value of k is the search depth L, represents the vector representation of node v j at layer k, and B(j) is the set of neighbors of item v j in the conversation graph T. Represents the information passed by the neighbor node v k of the item node v j , All neighbor node information of item node v j is fused. It combines the vector representation information of the upper layer of item v j and the neighbor node information of item v j . In this method, a two-layer graph network is used, so the search depth L=2.
S300,根据用户当前会话中物品序列,获得用户兴趣向量表征。采用门控制循环神经网络(GRU)对会话进行表征,得到兴趣表征。也就是将当前会话作为门控制循环神经网络(GRU)的输入,得到门控制循环神经网络(GRU)的输出作为用户的兴趣pu:S300, according to the sequence of items in the current session of the user, obtain the vector representation of the user's interest. A gated recurrent neural network (GRU) is used to characterize the session to obtain an interest representation. That is, the current session is used as the input of the gated recurrent neural network (GRU), and the output of the gated recurrent neural network (GRU) is obtained as the user's interest p u :
zi=σ(Wxz·xi+Whz·hi-1)z i =σ(W xz ·x i +W hz ·h i-1 )
ri=σ(Wxr·xi+Whr·hi-1)r i =σ(W xr ·x i +W hr ·h i-1 )
其中,ri是重置门(reset gate),zi为更新门(update gate),这两个门控向量决定了哪些信息能作为门控循环单元的输出。是当前记忆内容。xi是当前层的节点输入,也就是物品vi的向量表征。Wxa、Wna、Wxr和Whr分别是控制更新门zi和重置门ri的参数。Wxh和Whh是控制前记忆内容的参数。⊙是元素级别的矩阵相乘,σ是sigmoid函数。门控制循环神经网络(GRU)的最后一个隐藏层的输出就是用户兴趣pu。Among them, ri is the reset gate (reset gate), zi is the update gate (update gate), these two gate vectors determine which information can be used as the output of the gated recurrent unit. is the current memory content. x i is the node input of the current layer, that is , the vector representation of the item vi. W xa , W na , W xr and W hr are parameters that control the update gate zi and the reset gate ri , respectively. W xh and W hh are the pre-control memory contents parameter. ⊙ is the element-wise matrix multiplication and σ is the sigmoid function. The output of the last hidden layer of the gated recurrent neural network (GRU) is the user interest p u .
S400,根据用户兴趣表征,推荐物品。将物品vj的向量vj乘以用户最终向量表征,再应用softmax函数计算出物品vj的分数:S400, recommend items according to the user's interest representation. Multiply the vector v j of item v j by the final vector representation of the user, and then apply the softmax function to calculate the score of item v j :
其中,pu代表用户的兴趣向量,代表物品vj成为下一个交互物品的可能性。同时根据的对数似然函数值,计算损失函数:where p u represents the user's interest vector, represents the possibility of item v j being the next interactive item. At the same time according to The log-likelihood function value of , calculates the loss function:
其中,yj代表vj的one-hot编码,函数用梯度下降法来最优化。Among them, y j represents the one-hot encoding of v j , The function is optimized using gradient descent.
上述对实施例的描述是为方便于本技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对上述实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。The above description of the embodiments is for the convenience of those skilled in the art to understand and apply the present invention. It will be apparent to those skilled in the art that various modifications to the above-described embodiments can be readily made, and the general principles described herein can be applied to other embodiments without inventive effort. Therefore, the present invention is not limited to the above-mentioned embodiments, and improvements and modifications made to the present invention by those skilled in the art according to the disclosure of the present invention should all fall within the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111036181.XA CN113704627B (en) | 2021-09-06 | 2021-09-06 | Session recommendation method based on time interval graph |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111036181.XA CN113704627B (en) | 2021-09-06 | 2021-09-06 | Session recommendation method based on time interval graph |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113704627A CN113704627A (en) | 2021-11-26 |
CN113704627B true CN113704627B (en) | 2022-05-17 |
Family
ID=78660218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111036181.XA Active CN113704627B (en) | 2021-09-06 | 2021-09-06 | Session recommendation method based on time interval graph |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113704627B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10210860B1 (en) * | 2018-07-27 | 2019-02-19 | Deepgram, Inc. | Augmented generalized deep learning with special vocabulary |
CN111125537A (en) * | 2019-12-31 | 2020-05-08 | 中国计量大学 | A Conversation Recommendation Method Based on Graph Representation |
CN111460331A (en) * | 2020-04-07 | 2020-07-28 | 中国计量大学 | A Conversation Recommendation Method Based on Spatio-temporal Graph |
CN112819575A (en) * | 2021-01-26 | 2021-05-18 | 中国计量大学 | Session recommendation method considering repeated purchasing behavior |
WO2021169361A1 (en) * | 2020-09-18 | 2021-09-02 | 平安科技(深圳)有限公司 | Method and apparatus for detecting time series data, and computer device and storage medium |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102346894B (en) * | 2010-08-03 | 2017-03-01 | 阿里巴巴集团控股有限公司 | The output intent of recommendation information, system and server |
CN110008408B (en) * | 2019-04-12 | 2021-04-06 | 山东大学 | Session recommendation method, system, device and medium |
US11068663B2 (en) * | 2019-06-19 | 2021-07-20 | Microsoft Technology Licensing, Llc | Session embeddings for summarizing activity |
CN112765493B (en) * | 2021-01-04 | 2022-07-05 | 武汉大学 | Method for obtaining time preference fusion sequence preference for point of interest recommendation |
CN112765461A (en) * | 2021-01-12 | 2021-05-07 | 中国计量大学 | Session recommendation method based on multi-interest capsule network |
-
2021
- 2021-09-06 CN CN202111036181.XA patent/CN113704627B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10210860B1 (en) * | 2018-07-27 | 2019-02-19 | Deepgram, Inc. | Augmented generalized deep learning with special vocabulary |
CN111125537A (en) * | 2019-12-31 | 2020-05-08 | 中国计量大学 | A Conversation Recommendation Method Based on Graph Representation |
CN111460331A (en) * | 2020-04-07 | 2020-07-28 | 中国计量大学 | A Conversation Recommendation Method Based on Spatio-temporal Graph |
WO2021169361A1 (en) * | 2020-09-18 | 2021-09-02 | 平安科技(深圳)有限公司 | Method and apparatus for detecting time series data, and computer device and storage medium |
CN112819575A (en) * | 2021-01-26 | 2021-05-18 | 中国计量大学 | Session recommendation method considering repeated purchasing behavior |
Non-Patent Citations (4)
Title |
---|
A Time-Aware Graph Neural Network for Session-Based Recommendation;Yupu Guo等;《IEEE Access》;20200914;第8卷;全文 * |
基于图神经网络和时间注意力的会话序列推荐;孙鑫等;《计算机工程与设计》;20201016(第10期);全文 * |
基于时序和距离的门控循环单元兴趣点推荐算法;夏永生等;《计算机工程》;20190315(第01期);全文 * |
基于知识图谱的会话型推荐系统的研究与实现;吴金盛;《中国优秀硕士学位论文全文数据库 (信息科技辑)》;20210415(第4期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113704627A (en) | 2021-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111222054B (en) | A Conversational Social Recommendation Method Based on Contextual Neighbor Relationship Modeling | |
CN111125537B (en) | A Conversation Recommendation Method Based on Graph Representation | |
CN110910218B (en) | Multi-behavior migration recommendation method based on deep learning | |
CN111460331B (en) | Conversation recommendation method based on space-time diagram | |
CN113590900A (en) | Sequence recommendation method fusing dynamic knowledge maps | |
CN113722599B (en) | A Conversational Recommendation Method Based on User Long-term and Short-term Interest Modeling | |
CN112685657B (en) | A Conversational Social Recommendation Method Based on Multimodal Cross-Fusion Graph Network | |
CN110738314B (en) | Click rate prediction method and device based on deep migration network | |
CN112528165A (en) | Session social recommendation method based on dynamic routing graph network | |
CN112256916B (en) | A short video click-through rate prediction method based on graph capsule network | |
CN113761388B (en) | Recommendation method, device, electronic device and storage medium | |
CN112765461A (en) | Session recommendation method based on multi-interest capsule network | |
CN114282077A (en) | Session recommendation method and system based on session data | |
CN112819575B (en) | A Conversational Recommendation Method Considering Repeat Purchase Behavior | |
CN113313381A (en) | User interaction sensitive dynamic graph sequence recommendation system | |
CN115270001A (en) | Privacy-preserving recommendation method and system based on cloud collaborative learning | |
CN112559904A (en) | Conversational social recommendation method based on door mechanism and multi-modal graph network | |
CN114428912A (en) | Session recommendation method based on capturing long-term and short-term interest heterogeneous hypergraph of user | |
CN113704627B (en) | Session recommendation method based on time interval graph | |
CN112883268A (en) | Session recommendation method considering user multiple interests and social influence | |
CN116489464B (en) | Medical information recommendation method based on heterogeneous double-layer network in 5G application field | |
CN112256918A (en) | A short video click-through rate prediction method based on multimodal dynamic routing | |
CN116501991B (en) | Recommendation method applied to anonymous login scene and based on click sequence time enhancement | |
CN113704440B (en) | A Conversational Recommendation Method Based on Path Representation in Item Graph Network | |
CN114445180B (en) | A personalized recommendation method and device based on knowledge graph |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231016 Address after: Room 407-10, floor 4, building 2, Haichuang science and technology center, Cangqian street, Yuhang District, Hangzhou City, Zhejiang Province, 311100 Patentee after: Zhejiang Zhiduo Network Technology Co.,Ltd. Address before: 310018, No. 258, source street, Xiasha Higher Education Park, Hangzhou, Zhejiang Patentee before: China Jiliang University |