CN113675195B - Semiconductor device and method for forming the same - Google Patents
Semiconductor device and method for forming the same Download PDFInfo
- Publication number
- CN113675195B CN113675195B CN202110180184.4A CN202110180184A CN113675195B CN 113675195 B CN113675195 B CN 113675195B CN 202110180184 A CN202110180184 A CN 202110180184A CN 113675195 B CN113675195 B CN 113675195B
- Authority
- CN
- China
- Prior art keywords
- dielectric layer
- spacer
- boundary
- layer
- conductive line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 184
- 239000004065 semiconductor Substances 0.000 title claims abstract description 109
- 125000006850 spacer group Chemical group 0.000 claims abstract description 189
- 239000000463 material Substances 0.000 claims description 144
- 238000005530 etching Methods 0.000 claims description 83
- 239000000758 substrate Substances 0.000 claims description 70
- 238000000151 deposition Methods 0.000 claims description 15
- 238000007789 sealing Methods 0.000 claims description 7
- 239000003566 sealing material Substances 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 438
- 230000008569 process Effects 0.000 description 154
- 239000002086 nanomaterial Substances 0.000 description 90
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 44
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 44
- 229910052710 silicon Inorganic materials 0.000 description 44
- 239000010703 silicon Substances 0.000 description 44
- 229910052581 Si3N4 Inorganic materials 0.000 description 31
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 28
- 229910021332 silicide Inorganic materials 0.000 description 23
- 238000005229 chemical vapour deposition Methods 0.000 description 22
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical group [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 21
- 229920002120 photoresistant polymer Polymers 0.000 description 20
- 238000000231 atomic layer deposition Methods 0.000 description 19
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 19
- 239000012535 impurity Substances 0.000 description 18
- 239000003989 dielectric material Substances 0.000 description 16
- 239000011810 insulating material Substances 0.000 description 16
- 238000011049 filling Methods 0.000 description 15
- 239000010949 copper Substances 0.000 description 14
- 239000010936 titanium Substances 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 13
- 238000005240 physical vapour deposition Methods 0.000 description 13
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 13
- WEAMLHXSIBDPGN-UHFFFAOYSA-N (4-hydroxy-3-methylphenyl) thiocyanate Chemical compound CC1=CC(SC#N)=CC=C1O WEAMLHXSIBDPGN-UHFFFAOYSA-N 0.000 description 12
- TWRSDLOICOIGRH-UHFFFAOYSA-N [Si].[Si].[Hf] Chemical compound [Si].[Si].[Hf] TWRSDLOICOIGRH-UHFFFAOYSA-N 0.000 description 12
- 229910000449 hafnium oxide Inorganic materials 0.000 description 12
- 238000002513 implantation Methods 0.000 description 12
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 12
- 229910021355 zirconium silicide Inorganic materials 0.000 description 12
- 229910017052 cobalt Inorganic materials 0.000 description 11
- 239000010941 cobalt Substances 0.000 description 11
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 11
- 238000002955 isolation Methods 0.000 description 11
- 229910052814 silicon oxide Inorganic materials 0.000 description 11
- 229910052715 tantalum Inorganic materials 0.000 description 11
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 11
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 10
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 9
- 239000004020 conductor Substances 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 238000000206 photolithography Methods 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 9
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 9
- 229910052721 tungsten Inorganic materials 0.000 description 9
- 239000010937 tungsten Substances 0.000 description 9
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 8
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 8
- 238000001312 dry etching Methods 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 229910010271 silicon carbide Inorganic materials 0.000 description 8
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 8
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 8
- 238000000059 patterning Methods 0.000 description 7
- 238000001039 wet etching Methods 0.000 description 7
- GEIAQOFPUVMAGM-UHFFFAOYSA-N Oxozirconium Chemical compound [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 6
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 6
- HVXCTUSYKCFNMG-UHFFFAOYSA-N aluminum oxygen(2-) zirconium(4+) Chemical compound [O-2].[Zr+4].[Al+3] HVXCTUSYKCFNMG-UHFFFAOYSA-N 0.000 description 6
- 238000000137 annealing Methods 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- JMOHEPRYPIIZQU-UHFFFAOYSA-N oxygen(2-);tantalum(2+) Chemical compound [O-2].[Ta+2] JMOHEPRYPIIZQU-UHFFFAOYSA-N 0.000 description 6
- 238000001020 plasma etching Methods 0.000 description 6
- 229910052707 ruthenium Inorganic materials 0.000 description 6
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 6
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- 238000002161 passivation Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000005360 phosphosilicate glass Substances 0.000 description 4
- 238000000927 vapour-phase epitaxy Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000005388 borosilicate glass Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- SCCCLDWUZODEKG-UHFFFAOYSA-N germanide Chemical group [GeH3-] SCCCLDWUZODEKG-UHFFFAOYSA-N 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- PEUPIGGLJVUNEU-UHFFFAOYSA-N nickel silicon Chemical compound [Si].[Ni] PEUPIGGLJVUNEU-UHFFFAOYSA-N 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 239000002135 nanosheet Substances 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910017107 AlOx Inorganic materials 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 1
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000109 continuous material Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- IWTIUUVUEKAHRM-UHFFFAOYSA-N germanium tin Chemical compound [Ge].[Sn] IWTIUUVUEKAHRM-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76897—Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/85—Complementary IGFETs, e.g. CMOS
- H10D84/853—Complementary IGFETs, e.g. CMOS comprising FinFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76264—SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
- H01L21/76283—Lateral isolation by refilling of trenches with dielectric material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/7682—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76832—Multiple layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76834—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/76843—Barrier, adhesion or liner layers formed in openings in a dielectric
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5222—Capacitive arrangements or effects of, or between wiring layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Layout of the interconnection structure
- H01L23/5286—Arrangements of power or ground buses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/5329—Insulating materials
- H01L23/53295—Stacked insulating layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
- H10D30/6219—Fin field-effect transistors [FinFET] characterised by the source or drain electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6735—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes having gates fully surrounding the channels, e.g. gate-all-around
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6757—Thin-film transistors [TFT] characterised by the structure of the channel, e.g. transverse or longitudinal shape or doping profile
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/021—Manufacture or treatment using multiple gate spacer layers, e.g. bilayered sidewall spacers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0186—Manufacturing their interconnections or electrodes, e.g. source or drain electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0193—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices the components including FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
- H01L21/31122—Etching inorganic layers by chemical means by dry-etching of layers not containing Si, e.g. PZT, Al2O3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76885—By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5226—Via connections in a multilevel interconnection structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/026—Manufacture or treatment of FETs having insulated gates [IGFET] having laterally-coplanar source and drain regions, a gate at the sides of the bulk channel, and both horizontal and vertical current flow
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/018—Spacers formed inside holes at the prospective gate locations, e.g. holes left by removing dummy gates
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Thin Film Transistor (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
公开了包括形成在背侧互连结构中的空气间隔件的半导体器件及其形成方法。在实施例中,器件包括:第一晶体管结构;前侧互连结构,位于第一晶体管结构的前侧上;以及背侧互连结构,位于第一晶体管结构的背侧上,背侧互连结构包括:第一介电层,位于第一晶体管结构的背侧上;第一通孔,延伸穿过第一介电层,第一通孔电耦接至第一晶体管结构的源极/漏极区域;第一导线,电耦接至第一通孔;以及空气间隔件,在平行于第一介电层的背面的方向上与第一导线相邻。
A semiconductor device including an air spacer formed in a backside interconnect structure and a method for forming the same are disclosed. In an embodiment, the device includes: a first transistor structure; a frontside interconnect structure located on the front side of the first transistor structure; and a backside interconnect structure located on the back side of the first transistor structure, the backside interconnect structure including: a first dielectric layer located on the back side of the first transistor structure; a first via extending through the first dielectric layer, the first via being electrically coupled to a source/drain region of the first transistor structure; a first conductive line electrically coupled to the first via; and an air spacer adjacent to the first conductive line in a direction parallel to the back side of the first dielectric layer.
Description
技术领域Technical Field
本申请的实施例涉及半导体器件及其形成方法。Embodiments of the present application relate to semiconductor devices and methods of forming the same.
背景技术Background Art
半导体器件用于各种电子应用中,诸如例如,个人计算机、手机、数码相机和其它电子设备。半导体器件通常通过在半导体衬底上方依次沉积绝缘层或介电层、导电层和半导体材料层并且使用光刻图案化各个材料层以在其上形成电路组件和元件来制造。Semiconductor devices are used in a variety of electronic applications, such as, for example, personal computers, cell phones, digital cameras, and other electronic devices. Semiconductor devices are typically manufactured by sequentially depositing insulating or dielectric layers, conductive layers, and semiconductor material layers over a semiconductor substrate and patterning the various material layers using photolithography to form circuit components and elements thereon.
半导体工业通过不断减小最小部件尺寸来不断提高各个电子组件(例如,晶体管、二极管、电阻器、电容器等)的集成密度,这允许更多的组件集成至给定区域中。但是,随着最小部件尺寸的减小,出现了应解决的额外的问题。The semiconductor industry continues to increase the integration density of individual electronic components (e.g., transistors, diodes, resistors, capacitors, etc.) by continuously reducing the minimum feature size, which allows more components to be integrated into a given area. However, as the minimum feature size decreases, additional problems arise that should be solved.
发明内容Summary of the invention
本申请的一些实施例提供了一种半导体器件,包括:第一晶体管结构;前侧互连结构,位于所述第一晶体管结构的前侧上;以及背侧互连结构,位于所述第一晶体管结构的背侧上,所述背侧互连结构包括:第一介电层,位于所述第一晶体管结构的所述背侧上;第一通孔,延伸穿过所述第一介电层,所述第一通孔电耦接至所述第一晶体管结构的源极/漏极区域;第一导线,电耦接至所述第一通孔;以及空气间隔件,在平行于所述第一介电层的背侧的方向上与所述第一导线相邻。Some embodiments of the present application provide a semiconductor device, including: a first transistor structure; a front-side interconnect structure located on the front side of the first transistor structure; and a back-side interconnect structure located on the back side of the first transistor structure, the back-side interconnect structure including: a first dielectric layer located on the back side of the first transistor structure; a first through-hole extending through the first dielectric layer, the first through-hole electrically coupled to the source/drain region of the first transistor structure; a first wire electrically coupled to the first through-hole; and an air spacer adjacent to the first wire in a direction parallel to the back side of the first dielectric layer.
本申请的另一些实施例提供了一种半导体器件,包括:晶体管结构;前侧互连结构,位于所述晶体管结构的前侧上;以及背侧互连结构,位于所述晶体管结构的背侧上,所述背侧互连结构包括:导线,通过背侧通孔电耦接至所述晶体管结构的源极/漏极区域;第一介电层,接触所述导线的侧面;以及气隙,与所述第一介电层相邻,其中,所述第一介电层的侧面限定所述气隙的第一边界。Other embodiments of the present application provide a semiconductor device, comprising: a transistor structure; a front-side interconnect structure located on the front side of the transistor structure; and a back-side interconnect structure located on the back side of the transistor structure, the back-side interconnect structure comprising: a conductive line electrically coupled to a source/drain region of the transistor structure through a back-side through hole; a first dielectric layer contacting a side of the conductive line; and an air gap adjacent to the first dielectric layer, wherein the side of the first dielectric layer defines a first boundary of the air gap.
本申请的又一些实施例提供了一种形成半导体器件的方法,包括:在第一衬底上形成第一晶体管;暴露第一外延材料,其中,暴露所述第一外延材料包括减薄所述第一衬底的背侧;用背侧通孔代替所述第一外延材料,所述背侧通孔电耦接至所述第一晶体管的源极/漏极区域;在所述背侧通孔上方形成导线,所述导线电耦接至所述背侧通孔;形成与所述导线相邻的伪间隔件;蚀刻所述伪间隔件以形成第一凹槽;以及密封所述第一凹槽以形成空气间隔件。Some other embodiments of the present application provide a method for forming a semiconductor device, comprising: forming a first transistor on a first substrate; exposing a first epitaxial material, wherein exposing the first epitaxial material comprises thinning the back side of the first substrate; replacing the first epitaxial material with a back side via, wherein the back side via is electrically coupled to a source/drain region of the first transistor; forming a conductive wire above the back side via, wherein the conductive wire is electrically coupled to the back side via; forming a dummy spacer adjacent to the conductive wire; etching the dummy spacer to form a first groove; and sealing the first groove to form an air spacer.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
当结合附图进行阅读时,从以下详细描述可最佳理解本发明的各个方面。应该指出,根据工业中的标准实践,各个部件未按比例绘制。实际上,为了清楚的讨论,各个部件的尺寸可以任何地增大或减小。When read in conjunction with the accompanying drawings, various aspects of the present invention can be best understood from the following detailed description. It should be noted that, in accordance with standard practice in the industry, the various components are not drawn to scale. In fact, for the sake of clarity of discussion, the size of the various components can be increased or reduced at will.
图1示出了根据一些实施例的三维视图中的纳米结构场效应晶体管(纳米FET)的实例。FIG. 1 illustrates an example of a nanostructured field effect transistor (nanoFET) in a three-dimensional view, according to some embodiments.
图2、图3、图4、图5、图6A、图6B、图6C、图7A、图7B、图7C、图8A、图8B、图8C、图9A、图9B、图9C、图10A、图10B、图10C、图11A、图11B、图11C、图11D、图12A、图12B、图12C、图12D、图12E、图13A、图13B、图13C、图14A、图14B、图14C、图15A、图15B、图15C、图16A、图16B、图16C、图17A、图17B、图17C、图18A、图18B、图18C、图19A、图19B、图19C、图20A、图20B、图20C、图20D、图21A、图21B、图21C、图22A、图22B、图22C、图23A、图23B、图23C、图24A、图24B、图24C、图25A、图25B、图25C、图26A、图26B、图26C、图26D、图27A、图27B、图27C、图28A、图28B、图28C、图29A、图29B、图29C、图30A、图30B、图30C、图31A、图31B、图31C、图32A、图32B、图32C、图33A、图33B、图33C、图34A、图34B、图34C、图35A、图35B、图35C、图36A、图36B、图36C、图37A、图37B、图37C、图38A、图38B、图38C、图39A、图39B、图39C、图40A、图40B和图40C是根据一些实施例的在纳米FET的制造中的中间阶段的截面图。Figure 2, Figure 3, Figure 4, Figure 5, Figure 6A, Figure 6B, Figure 6C, Figure 7A, Figure 7B, Figure 7C, Figure 8A, Figure 8B, Figure 8C, Figure 9A, Figure 9B, Figure 9C, Figure 10A, Figure 10B, Figure 10C, Figure 11A, Figure 11B, Figure 11C, Figure 11D, Figure 12A, Figure 12B, Figure 12C, Figure 12D, Figure 12E, Figure 13A, Figure 13B, Figure 13C, Figure 14A, Figure 14B , Figure 14C, Figure 15A, Figure 15B, Figure 15C, Figure 16A, Figure 16B, Figure 16C, Figure 17A, Figure 17B, Figure 17C, Figure 18A, Figure 18B, Figure 18C, Figure 19A, Figure 19B, Figure 19C, Figure 20A, Figure 20B, Figure 20C, Figure 20D, Figure 21A, Figure 21B, Figure 21C, Figure 22A, Figure 22B, Figure 22C, Figure 23A, Figure 23B, Figure 23C , Figure 24A, Figure 24B, Figure 24C, Figure 25A, Figure 25B, Figure 25C, Figure 26A, Figure 26B, Figure 26C, Figure 26D, Figure 27A, Figure 27B, Figure 27C, Figure 28A, Figure 28B, Figure 28C, Figure 29A, Figure 29B, Figure 29C, Figure 30A, Figure 30B, Figure 30C, Figure 31A, Figure 31B, Figure 31C, Figure 32A, Figure 32B, Figure 32C, Figure 33 A, Figure 33B, Figure 33C, Figure 34A, Figure 34B, Figure 34C, Figure 35A, Figure 35B, Figure 35C, Figure 36A, Figure 36B, Figure 36C, Figure 37A, Figure 37B, Figure 37C, Figure 38A, Figure 38B, Figure 38C, Figure 39A, Figure 39B, Figure 39C, Figure 40A, Figure 40B and Figure 40C are cross-sectional views of intermediate stages in the manufacture of nanoFETs according to some embodiments.
具体实施方式DETAILED DESCRIPTION
以下公开内容提供了许多用于实现本发明的不同特征的不同实施例或实例。下面描述了组件和布置的具体实例以简化本发明。当然,这些仅仅是实例,而不旨在限制本发明。例如,以下描述中,在第二部件上方或上形成第一部件可以包括第一部件和第二部件直接接触形成的实施例,并且也可以包括在第一部件和第二部件之间可以形成额外的部件,从而使得第一部件和第二部件可以不直接接触的实施例。此外,本发明可在各个实例中重复参考标号和/或字符。该重复是为了简单和清楚的目的,并且其本身不指示所讨论的各个实施例和/或配置之间的关系。The following disclosure provides many different embodiments or examples for implementing different features of the present invention. Specific examples of components and arrangements are described below to simplify the present invention. Of course, these are merely examples and are not intended to limit the present invention. For example, in the following description, forming a first component above or on a second component may include an embodiment in which the first component and the second component are directly in contact with each other, and may also include an embodiment in which an additional component may be formed between the first component and the second component so that the first component and the second component may not be in direct contact. In addition, the present invention may repeat reference numerals and/or characters in various examples. This repetition is for the purpose of simplicity and clarity, and does not itself indicate the relationship between the various embodiments and/or configurations discussed.
而且,为了便于描述,在此可以使用诸如“在…之下”、“在…下方”、“下部”、“在…之上”、“上部”等空间相对术语,以描述如图所示的一个元件或部件与另一个(或另一些)元件或部件的关系。除了图中所示的方位外,空间相对术语旨在包括器件在使用或操作中的不同方位。器件可以以其它方式定向(旋转90度或在其它方位上),而本文使用的空间相对描述符可以同样地作出相应的解释。Furthermore, for ease of description, spatially relative terms such as "below," "beneath," "lower," "above," "upper," etc. may be used herein to describe the relationship of one element or component to another (or additional) elements or components as shown in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein should likewise be interpreted accordingly.
各个实施例提供了包括形成在背侧互连结构中的空气间隔件的半导体器件及其形成方法。空气间隔件可以形成为与背侧互连结构中的导线相邻,其用于电源线、电接地线等布线。空气间隔件可以在导线之间提供改善的隔离,这减少了电容耦接,并且允许使用增大的器件速度。空气间隔件可以通过在导线上方沉积牺牲介电层;去除牺牲介电层以形成凹槽;以及用额外的介电层密封凹槽形成。Various embodiments provide semiconductor devices including air spacers formed in a backside interconnect structure and methods for forming the same. The air spacers may be formed adjacent to a conductor in the backside interconnect structure, which is used for routing power lines, electrical ground lines, and the like. The air spacers may provide improved isolation between the conductors, which reduces capacitive coupling and allows the use of increased device speeds. The air spacers may be formed by depositing a sacrificial dielectric layer over the conductors; removing the sacrificial dielectric layer to form a groove; and sealing the groove with an additional dielectric layer.
在包括纳米FET的管芯的背景下描述本文讨论的一些实施例。但是,各个实施例可以应用于代替或与纳米FET结合的包括其它类型的晶体管(例如,鳍式场效应晶体管(FinFET)、平面晶体管等)的管芯。Some embodiments discussed herein are described in the context of dies including nanoFETs. However, various embodiments may be applied to dies including other types of transistors (eg, fin field effect transistors (FinFETs), planar transistors, etc.) instead of or in combination with nanoFETs.
图1示出了根据一些实施例的三维视图中的纳米FET(例如,纳米线FET、纳米片FET等)的实例。纳米FET包括位于衬底50(例如,半导体衬底)上的鳍66上方的纳米结构55(例如,纳米片、纳米线等),其中纳米结构55用作用于纳米FET的沟道区域。纳米结构55可以包括p型纳米结构、n型纳米结构或它们的组合。浅沟槽隔离(STI)区域68设置在可以在相邻的STI区域68之上突出并且从相邻的STI区域68之间突出的相邻的鳍66之间。虽然STI区域68描述/示出为与衬底50分隔开,但是如本文所使用的,术语“衬底”可以单独指半导体衬底或半导体衬底和STI区域的组合。此外,虽然鳍66的底部与衬底50一样示出为单一、连续材料,但是鳍66和/或衬底50的底部可以包括单一材料或多种材料。在该背景下,鳍66指在相邻的STI区域68之间延伸的部分。FIG. 1 shows an example of a nanoFET (e.g., a nanowire FET, a nanosheet FET, etc.) in a three-dimensional view according to some embodiments. The nanoFET includes a nanostructure 55 (e.g., a nanosheet, a nanowire, etc.) located above a fin 66 on a substrate 50 (e.g., a semiconductor substrate), wherein the nanostructure 55 is used as a channel region for the nanoFET. The nanostructure 55 may include a p-type nanostructure, an n-type nanostructure, or a combination thereof. A shallow trench isolation (STI) region 68 is disposed between adjacent fins 66 that may protrude above and between adjacent STI regions 68. Although the STI region 68 is described/illustrated as being separated from the substrate 50, as used herein, the term "substrate" may refer to a semiconductor substrate alone or to a combination of a semiconductor substrate and an STI region. In addition, although the bottom of the fin 66 is shown as a single, continuous material like the substrate 50, the bottom of the fin 66 and/or the substrate 50 may include a single material or multiple materials. In this context, the fin 66 refers to a portion extending between adjacent STI regions 68.
栅极介电层100位于鳍66的顶面上方并且沿纳米结构55的顶面、侧壁和底面。栅电极102位于栅极介电层100上方。外延源极/漏极区域92设置在栅极介电层100和栅电极102的相对侧上的鳍66上。Gate dielectric layer 100 is located over the top surface of fin 66 and along the top surface, sidewalls and bottom surface of nanostructure 55. Gate electrode 102 is located over gate dielectric layer 100. Epitaxial source/drain regions 92 are disposed on fin 66 on opposite sides of gate dielectric layer 100 and gate electrode 102.
图1还示出了在随后的图中使用的参考截面。截面A-A’沿栅电极102的纵轴,并且在例如垂直于纳米FET的外延源极/漏极区域92之间的电流方向的方向上。截面B-B’平行于截面A-A’,并且延伸通过多个纳米FET的外延源极/漏极区域92。截面C-C’垂直于截面A-A’,并且平行于纳米FET的鳍66的纵轴,并且在例如纳米FET的外延源极/漏极区域92之间的电流方向上。为了清楚,随后附图参考这些参考截面。1 also shows reference cross sections used in subsequent figures. Cross section A-A' is along the longitudinal axis of the gate electrode 102 and in a direction, e.g., perpendicular to the direction of current flow between the epitaxial source/drain regions 92 of the nanoFETs. Cross section B-B' is parallel to cross section A-A' and extends through the epitaxial source/drain regions 92 of a plurality of nanoFETs. Cross section C-C' is perpendicular to cross section A-A' and parallel to the longitudinal axis of the fins 66 of the nanoFETs and in a direction of current flow between the epitaxial source/drain regions 92 of the nanoFETs. For clarity, subsequent figures refer to these reference cross sections.
在使用后栅极工艺形成的纳米FET的背景下讨论本文讨论的一些实施例。在其它实施例中,可以使用先栅极工艺。而且,一些实施例考虑了在诸如平面FET的平面器件中或在鳍式场效应晶体管(FinFET)中使用的方面。Some embodiments discussed herein are discussed in the context of nano-FETs formed using a gate-last process. In other embodiments, a gate-first process may be used. Moreover, some embodiments contemplate aspects used in planar devices such as planar FETs or in fin field effect transistors (FinFETs).
图2至图39C是根据一些实施例的在纳米FET的制造中的中间阶段的截面图。图2至图5、图6A、图7A、图8A、图9A、图10A、图11A、图12A、图13A、图14A、图15A、图16A、图17A、图18A、图19A、图20A、图21A、图22A、图23A、图24A、图25A、图26A、图27A、图28A、图29A、图30A、图31A、图32A、图33A、图34A、图35A、图36A、图37A、图38A和图39A示出了图1中所示的参考截面A-A’。图6B、图7B、图8B、图9B、图10B、图11B、图12B、图12D、图13B、图14B、图15B、图16B、图17B、图18B、图19B、图20B、图21B、图22B、图23B、图24B、图25B、图26B、图27B、图28B、图29B、图30B、图31B、图32B、图33B、图34B、图35B、图36B、图37B、图38B和图39B示出了图1中所示的参考截面B-B’。图7C、图8C、图9C、图10C、图11C、图11D、图12C、图12E、图13C、图14C、图15C、图16C、图17C、图18C、图19C、图20C、图20D、图21C、图22C、图23C、图24C、图25C、图26C、图26D、图27C、图28C、图29C、图30C、图31C、图32C、图33C、图34C、图35C、图36C、图37C、图38C和图39C示出了图1中所示的参考截面C-C’。Figures 2 to 39C are cross-sectional views of intermediate stages in the fabrication of a nanoFET according to some embodiments. Figures 2 to 5, 6A, 7A, 8A, 9A, 10A, 11A, 12A, 13A, 14A, 15A, 16A, 17A, 18A, 19A, 20A, 21A, 22A, 23A, 24A, 25A, 26A, 27A, 28A, 29A, 30A, 31A, 32A, 33A, 34A, 35A, 36A, 37A, 38A, and 39A show reference cross section A-A' shown in Figure 1. Figures 6B, 7B, 8B, 9B, 10B, 11B, 12B, 12D, 13B, 14B, 15B, 16B, 17B, 18B, 19B, 20B, 21B, 22B, 23B, 24B, 25B, 26B, 27B, 28B, 29B, 30B, 31B, 32B, 33B, 34B, 35B, 36B, 37B, 38B and 39B show the reference section B-B’ shown in Figure 1. Figures 7C, 8C, 9C, 10C, 11C, 11D, 12C, 12E, 13C, 14C, 15C, 16C, 17C, 18C, 19C, 20C, 20D, 21C, 22C, 23C, 24C, 25C, 26C, 26D, 27C, 28C, 29C, 30C, 31C, 32C, 33C, 34C, 35C, 36C, 37C, 38C and 39C show the reference section C-C’ shown in Figure 1.
在图2中,提供了衬底50。衬底50可以是半导体衬底,诸如块状半导体、绝缘体上半导体(SOI)衬底等,其可以是掺杂的(例如,用p型或n型掺杂剂)或未掺杂的。衬底50可以是晶圆,诸如硅晶圆。通常,SOI衬底是形成在绝缘层上的半导体材料层。绝缘层可以是例如埋氧(BOX)层、氧化硅层等。在通常为硅或玻璃衬底的衬底上提供绝缘层。也可以使用其它衬底,诸如多层或梯度衬底。在一些实施例中,衬底50的半导体材料可以包括硅;锗;化合物半导体,包括碳化硅、砷化镓、磷化镓、磷化铟、砷化铟和/或锑化铟;合金半导体,包括硅锗、磷砷化镓、砷化铝铟、砷化铝镓、砷化镓铟、磷化镓铟和/或磷砷化镓铟;或它们的组合。In FIG. 2 , a substrate 50 is provided. The substrate 50 may be a semiconductor substrate, such as a bulk semiconductor, a semiconductor on insulator (SOI) substrate, etc., which may be doped (e.g., with a p-type or n-type dopant) or undoped. The substrate 50 may be a wafer, such as a silicon wafer. Typically, an SOI substrate is a layer of semiconductor material formed on an insulating layer. The insulating layer may be, for example, a buried oxide (BOX) layer, a silicon oxide layer, etc. An insulating layer is provided on a substrate, typically a silicon or glass substrate. Other substrates, such as multilayer or gradient substrates, may also be used. In some embodiments, the semiconductor material of the substrate 50 may include silicon; germanium; compound semiconductors, including silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, indium arsenide, and/or indium antimonide; alloy semiconductors, including silicon germanium, gallium arsenide phosphide, aluminum indium arsenide, aluminum gallium arsenide, gallium indium arsenide, gallium indium phosphide, and/or gallium indium arsenide phosphide; or combinations thereof.
衬底50具有n型区域50N和p型区域50P。n型区域50N可以用于形成诸如NMOS晶体管的n型器件,例如,n型纳米FET,并且p型区域50P可以用于形成诸如PMOS晶体管的p型器件,例如,p型纳米FET。n型区域50N可以与p型区域50P物理分隔开(如由分隔器20所示),并且任何数量的器件部件(例如,其它有源器件、掺杂区域、隔离结构等)可以设置在n型区域50N和p型区域50P之间。虽然示出了一个n型区域50N和一个p型区域50P,但是可以提供任何数量的n型区域50N和p型区域50P。The substrate 50 has an n-type region 50N and a p-type region 50P. The n-type region 50N can be used to form an n-type device such as an NMOS transistor, for example, an n-type nano FET, and the p-type region 50P can be used to form a p-type device such as a PMOS transistor, for example, a p-type nano FET. The n-type region 50N can be physically separated from the p-type region 50P (as shown by the separator 20), and any number of device components (e.g., other active devices, doped regions, isolation structures, etc.) can be disposed between the n-type region 50N and the p-type region 50P. Although one n-type region 50N and one p-type region 50P are shown, any number of n-type regions 50N and p-type regions 50P can be provided.
进一步在图2中,在衬底50上方形成多层堆叠件64。多层堆叠件64包括第一半导体层51A-51C(统称为第一半导体层51)和第二半导体层53A-53C(统称为第二半导体层53)的交替层。为了说明目的,并且如下面更详细讨论,将去除第一半导体层51并且将图案化第二半导体层53以在n型区域50N和p型区域50P中形成纳米FET的沟道区域。但是,在一些实施例中,可以去除第一半导体层51并且可以图案化第二半导体层53以在n型区域50N中形成纳米FET的沟道区域,并且可以去除第二半导体层53并且可以图案化第一半导体层51以在p型区域50P中形成纳米FET的沟道区域。在一些实施例中,可以去除第二半导体层53并且可以图案化第一半导体层51以在n型区域50N中形成纳米FET的沟道区域,并且可以去除第一半导体层51并且可以图案化第二半导体层53以在p型区域50P中形成纳米FET的沟道区域。在一些实施例中,可以去除第二半导体层53并且可以图案化第一半导体层51以在n型区域50N和p型区域50P中形成纳米FET的沟道区域。Further in FIG. 2 , a multilayer stack 64 is formed over the substrate 50. The multilayer stack 64 includes alternating layers of first semiconductor layers 51A-51C (collectively referred to as first semiconductor layers 51) and second semiconductor layers 53A-53C (collectively referred to as second semiconductor layers 53). For illustration purposes, and as discussed in more detail below, the first semiconductor layer 51 will be removed and the second semiconductor layer 53 will be patterned to form a channel region of the nanoFET in the n-type region 50N and the p-type region 50P. However, in some embodiments, the first semiconductor layer 51 may be removed and the second semiconductor layer 53 may be patterned to form a channel region of the nanoFET in the n-type region 50N, and the second semiconductor layer 53 may be removed and the first semiconductor layer 51 may be patterned to form a channel region of the nanoFET in the p-type region 50P. In some embodiments, the second semiconductor layer 53 may be removed and the first semiconductor layer 51 may be patterned to form a channel region of the nanoFET in the n-type region 50N, and the first semiconductor layer 51 may be removed and the second semiconductor layer 53 may be patterned to form a channel region of the nanoFET in the p-type region 50P. In some embodiments, the second semiconductor layer 53 may be removed and the first semiconductor layer 51 may be patterned to form a channel region of the nanoFET in the n-type region 50N and the p-type region 50P.
为了说明目的,多层堆叠件64示出为包括第一半导体层51和第二半导体层53的每个的三层。在一些实施例中,多层堆叠件64可以包括任何数量的第一半导体层51和第二半导体层53。可以使用诸如化学汽相沉积(CVD)、原子层沉积(ALD)、汽相外延(VPE)、分子束外延(MBE)等工艺外延生长多层堆叠件64的每层。在各个实施例中,第一半导体层51可以由适合于p型纳米FET的第一半导体材料(诸如硅锗等)形成,并且第二半导体层53可以由适合于n型纳米FET的第二半导体材料(诸如硅、硅碳等)形成。为了说明目的,多层堆叠件64示出为具有适合于p型纳米FET的最底部半导体层。在一些实施例中,多层堆叠件64可以形成为使得最底层是适合于n型纳米FET的半导体层。For illustrative purposes, the multilayer stack 64 is shown as including three layers of each of the first semiconductor layer 51 and the second semiconductor layer 53. In some embodiments, the multilayer stack 64 may include any number of first semiconductor layers 51 and second semiconductor layers 53. Each layer of the multilayer stack 64 may be epitaxially grown using processes such as chemical vapor deposition (CVD), atomic layer deposition (ALD), vapor phase epitaxy (VPE), molecular beam epitaxy (MBE), etc. In various embodiments, the first semiconductor layer 51 may be formed of a first semiconductor material suitable for a p-type nanoFET (such as silicon germanium, etc.), and the second semiconductor layer 53 may be formed of a second semiconductor material suitable for an n-type nanoFET (such as silicon, silicon carbon, etc.). For illustrative purposes, the multilayer stack 64 is shown as having a bottommost semiconductor layer suitable for a p-type nanoFET. In some embodiments, the multilayer stack 64 may be formed so that the bottommost layer is a semiconductor layer suitable for an n-type nanoFET.
第一半导体材料和第二半导体材料可以是彼此具有高蚀刻选择性的材料。因此,可以在不显著去除第二半导体材料的第二半导体层53的情况下去除第一半导体材料的第一半导体层51,从而允许图案化第二半导体层53以形成纳米FET的沟道区域。类似地,在去除第二半导体层53并且图案化第一半导体层51以形成沟道区域的实施例中,可以在不显著去除第一半导体材料的第一半导体层51的情况下去除第二半导体材料的第二半导体层53,从而允许图案化第一半导体层51以形成纳米FET的沟道区域。The first semiconductor material and the second semiconductor material can be materials with high etching selectivity to each other. Therefore, the first semiconductor layer 51 of the first semiconductor material can be removed without significantly removing the second semiconductor layer 53 of the second semiconductor material, thereby allowing the second semiconductor layer 53 to be patterned to form the channel region of the nanoFET. Similarly, in an embodiment where the second semiconductor layer 53 is removed and the first semiconductor layer 51 is patterned to form the channel region, the second semiconductor layer 53 of the second semiconductor material can be removed without significantly removing the first semiconductor layer 51 of the first semiconductor material, thereby allowing the first semiconductor layer 51 to be patterned to form the channel region of the nanoFET.
现在参考图3,根据一些实施例,在衬底50中形成鳍66,并且在多层堆叠件64中形成纳米结构55。在一些实施例中,可以通过在多层堆叠件64和衬底50中蚀刻沟槽分别在多层堆叠件64和衬底50中形成纳米结构55和鳍66。蚀刻可以是任何可接受的蚀刻工艺,诸如反应性离子蚀刻(RIE)、中性束蚀刻(NBE)等或它们的组合。蚀刻可以是各向异性的。通过蚀刻多层堆叠件64形成纳米结构55可以进一步从第一半导体层51限定第一纳米结构52A-52C(统称为第一纳米结构52),并且从第二半导体层53限定第二纳米结构54A-54C(统称为第二纳米结构54)。第一纳米结构52和第二纳米结构54可以统称为纳米结构55。Referring now to FIG. 3 , in accordance with some embodiments, fins 66 are formed in substrate 50 and nanostructures 55 are formed in multilayer stack 64 . In some embodiments, nanostructures 55 and fins 66 may be formed in multilayer stack 64 and substrate 50 , respectively, by etching trenches in multilayer stack 64 and substrate 50 . Etching may be any acceptable etching process, such as reactive ion etching (RIE), neutral beam etching (NBE), etc. or a combination thereof. Etching may be anisotropic. Forming nanostructures 55 by etching multilayer stack 64 may further define first nanostructures 52A-52C (collectively referred to as first nanostructures 52 ) from first semiconductor layer 51 , and define second nanostructures 54A-54C (collectively referred to as second nanostructures 54 ) from second semiconductor layer 53 . First nanostructures 52 and second nanostructures 54 may be collectively referred to as nanostructures 55 .
可以通过任何合适的方法图案化鳍66和纳米结构55。例如,可以使用包括双重图案化或多重图案化工艺的一种或多种光刻工艺图案化鳍66和纳米结构55。通常,双重图案化或多重图案化工艺结合光刻和自对准工艺,从而允许产生例如间距小于使用单个、直接光刻工艺可获得的间距的图案。例如,在一个实施例中,在衬底上方形成并且使用光刻工艺图案化牺牲层。使用自对准工艺在图案化的牺牲层旁边形成间隔件。然后去除牺牲层,并且然后剩余的间隔件可以用于图案化鳍66。The fins 66 and nanostructures 55 may be patterned by any suitable method. For example, the fins 66 and nanostructures 55 may be patterned using one or more photolithography processes including double patterning or multiple patterning processes. Typically, the double patterning or multiple patterning processes combine photolithography and self-alignment processes, thereby allowing the generation of patterns with, for example, a pitch smaller than that obtainable using a single, direct photolithography process. For example, in one embodiment, a sacrificial layer is formed over a substrate and patterned using a photolithography process. Spacers are formed next to the patterned sacrificial layer using a self-alignment process. The sacrificial layer is then removed, and the remaining spacers may then be used to pattern the fins 66.
为了说明目的,图3将n型区域50N和p型区域50P中的鳍66示出为具有基本相等的宽度。在一些实施例中,n型区域50N中的鳍66的宽度可以大于或薄于p型区域50P中的鳍66的宽度。此外,虽然鳍66和纳米结构55的每个示出为自始至终具有一致的宽度,但是在其它实施例中,鳍66和/或纳米结构55可以具有锥形侧壁,从而使得鳍66和/或纳米结构55的每个的宽度在朝着衬底50的方向上连续增大。在这样的实施例中,纳米结构55的每个可以具有不同的宽度并且在形状上是梯形的。For illustrative purposes, FIG. 3 shows the fins 66 in the n-type region 50N and the p-type region 50P as having substantially equal widths. In some embodiments, the width of the fins 66 in the n-type region 50N may be greater than or thinner than the width of the fins 66 in the p-type region 50P. In addition, while each of the fins 66 and nanostructures 55 is shown as having a uniform width throughout, in other embodiments, the fins 66 and/or nanostructures 55 may have tapered sidewalls such that the width of each of the fins 66 and/or nanostructures 55 increases continuously in a direction toward the substrate 50. In such embodiments, each of the nanostructures 55 may have different widths and be trapezoidal in shape.
在图4中,浅沟槽隔离(STI)区域68形成为与鳍66相邻。STI区域68可以通过在衬底50、鳍66和纳米结构55上方以及相邻鳍66之间沉积绝缘材料形成。绝缘材料可以是诸如氧化硅的氧化物、氮化物等或它们的组合,并且可以通过高密度等离子体CVD(HDP-CVD)、可流动CVD(FCVD)等或它们的组合形成。可以使用通过任何可接受的工艺形成的其它绝缘材料。在所示的实施例中,绝缘材料是通过FCVD工艺形成的氧化硅。一旦形成绝缘材料,则可以实施退火工艺。在实施例中,绝缘材料形成为使得过量绝缘材料覆盖纳米结构55。虽然绝缘材料示出为单层,但是一些实施例可以利用多层。例如,在一些实施例中,可以首先沿衬底50、鳍66和纳米结构55的表面形成衬垫(未单独示出)。此后,可以在衬垫上方形成诸如以上讨论的那些填充材料。In FIG. 4 , a shallow trench isolation (STI) region 68 is formed adjacent to the fin 66. The STI region 68 can be formed by depositing an insulating material over the substrate 50, the fin 66, and the nanostructure 55 and between adjacent fins 66. The insulating material can be an oxide, a nitride, or the like, such as silicon oxide, or a combination thereof, and can be formed by high density plasma CVD (HDP-CVD), flowable CVD (FCVD), or the like, or a combination thereof. Other insulating materials formed by any acceptable process can be used. In the illustrated embodiment, the insulating material is silicon oxide formed by an FCVD process. Once the insulating material is formed, an annealing process can be performed. In an embodiment, the insulating material is formed so that excess insulating material covers the nanostructure 55. Although the insulating material is shown as a single layer, some embodiments may utilize multiple layers. For example, in some embodiments, a liner (not shown separately) may first be formed along the surface of the substrate 50, the fin 66, and the nanostructure 55. Thereafter, a filling material such as those discussed above may be formed over the liner.
然后,对绝缘材料施加去除工艺以去除纳米结构55上方的过量绝缘材料。在一些实施例中,可以利用诸如化学机械抛光(CMP)的平坦化工艺、回蚀工艺、它们的组合等。平坦化工艺暴露纳米结构55,从而使得在平坦化工艺完成之后,纳米结构55和绝缘材料的顶面齐平。Then, a removal process is applied to the insulating material to remove excess insulating material above the nanostructure 55. In some embodiments, a planarization process such as chemical mechanical polishing (CMP), an etch-back process, a combination thereof, etc. may be used. The planarization process exposes the nanostructure 55 so that after the planarization process is completed, the top surface of the nanostructure 55 and the insulating material are flush.
然后使绝缘材料凹进以形成STI区域68。使绝缘材料凹进,从而使得n型区域50N和p型区域50P中的鳍66的上部从相邻的STI区域68之间突出。此外,STI区域68的顶面可以具有如所示的平坦表面、凸表面、凹表面(诸如凹槽)或它们的组合。STI区域68的顶面可以通过适当的蚀刻形成为平坦的、凸的和/或凹的。可以使用可接受的蚀刻工艺使STI区域68凹进,诸如对绝缘材料的材料具有选择性的蚀刻工艺(例如,以比鳍66和纳米结构55的材料更快的速率蚀刻绝缘材料的材料)。例如,可以使用使用例如稀氢氟(dHF)酸的氧化物去除。The insulating material is then recessed to form STI regions 68. The insulating material is recessed so that the upper portions of the fins 66 in the n-type region 50N and the p-type region 50P protrude from between adjacent STI regions 68. In addition, the top surface of the STI region 68 may have a flat surface, a convex surface, a concave surface (such as a groove) as shown, or a combination thereof. The top surface of the STI region 68 may be formed to be flat, convex and/or concave by appropriate etching. The STI region 68 may be recessed using an acceptable etching process, such as an etching process that is selective to the material of the insulating material (e.g., etching the material of the insulating material at a faster rate than the material of the fin 66 and the nanostructure 55). For example, oxide removal using, for example, dilute hydrofluoric (dHF) acid may be used.
以上关于图2至图4描述的工艺仅仅是可以如何形成鳍66和纳米结构55的一个实例。在一些实施例中,可以使用掩模和外延生长工艺形成鳍66和/或纳米结构55。例如,可以在衬底50的顶面上方形成介电层,并且可以穿过介电层蚀刻沟槽以暴露下面的衬底50。可以在沟槽中外延生长外延结构,并且可以使介电层凹进,从而使得外延结构从介电层突出以形成鳍66和/或纳米结构55。外延结构可以包括以上讨论的交替的半导体材料,诸如第一半导体材料和第二半导体材料。在外延生长外延结构的一些实施例中,可以在生长期间原位掺杂外延生长的材料,这可以消除之前和/或随后的注入,但是可以一起使用原位和注入掺杂。The processes described above with respect to FIGS. 2 to 4 are merely one example of how fins 66 and nanostructures 55 may be formed. In some embodiments, fins 66 and/or nanostructures 55 may be formed using a mask and epitaxial growth process. For example, a dielectric layer may be formed above the top surface of substrate 50, and a trench may be etched through the dielectric layer to expose the underlying substrate 50. The epitaxial structure may be epitaxially grown in the trench, and the dielectric layer may be recessed so that the epitaxial structure protrudes from the dielectric layer to form fins 66 and/or nanostructures 55. The epitaxial structure may include alternating semiconductor materials discussed above, such as a first semiconductor material and a second semiconductor material. In some embodiments of epitaxially grown epitaxial structures, the epitaxially grown material may be doped in situ during growth, which may eliminate previous and/or subsequent implants, but in situ and implant doping may be used together.
此外,仅为了说明目的,第一半导体层51(和所得的第一纳米结构52)和第二半导体层53(和所得的第二纳米结构54)在本文中示出并且讨论为在p型区域50P和n型区域50N中包括相同的材料。因此,在一些实施例中,第一半导体层51和第二半导体层53中的一个或两个可以是不同的材料,或可以以不同的顺序在p型区域50P和n型区域50N中形成。In addition, for illustration purposes only, the first semiconductor layer 51 (and the resulting first nanostructure 52) and the second semiconductor layer 53 (and the resulting second nanostructure 54) are shown and discussed herein as including the same material in the p-type region 50P and the n-type region 50N. Therefore, in some embodiments, one or both of the first semiconductor layer 51 and the second semiconductor layer 53 may be different materials, or may be formed in a different order in the p-type region 50P and the n-type region 50N.
进一步在图4中,可以在鳍66、纳米结构55和/或STI区域68中形成适当的阱(未单独示出)。在具有不同阱类型的实施例中,可以使用光刻胶或其它掩模(未单独示出)实现用于n型区域50N和p型区域50P的不同注入步骤。例如,可以在n型区域50N和p型区域50P中的鳍66和STI区域68上方形成光刻胶。图案化光刻胶以暴露p型区域50P。可以通过使用旋涂技术形成并且可以使用可接受的光刻技术图案化光刻胶。一旦图案化光刻胶,则在p型区域50P中实施n型杂质注入,并且光刻胶可以用作掩模以基本防止n型杂质被注入至n型区域50N中。n型杂质可以是在区域中注入的在约1013原子/cm3至约1014原子/cm3的范围内的浓度的磷、砷、锑等。在注入之后,诸如通过可接受的灰化工艺去除光刻胶。Further in FIG. 4 , appropriate wells (not shown separately) may be formed in the fin 66, the nanostructure 55, and/or the STI region 68. In embodiments with different well types, different implantation steps for the n-type region 50N and the p-type region 50P may be implemented using a photoresist or other mask (not shown separately). For example, a photoresist may be formed over the fin 66 and the STI region 68 in the n-type region 50N and the p-type region 50P. The photoresist is patterned to expose the p-type region 50P. The photoresist may be formed using a spin coating technique and may be patterned using an acceptable photolithography technique. Once the photoresist is patterned, an n-type impurity implantation is implemented in the p-type region 50P, and the photoresist may be used as a mask to substantially prevent n-type impurities from being implanted into the n-type region 50N. The n-type impurity may be phosphorus, arsenic, antimony, etc., at a concentration in the range of about 10 13 atoms/cm 3 to about 10 14 atoms/cm 3 implanted in the region. After implantation, the photoresist is removed, such as by an acceptable ashing process.
在注入p型区域50P之后或之前,在p型区域50P和n型区域50N中的鳍66、纳米结构55和STI区域68上方形成光刻胶或其它掩模(未单独示出)。图案化光刻胶以暴露n型区域50N。可以通过使用旋涂技术形成并且可以使用可接受的光刻技术图案化光刻胶。一旦图案化光刻胶,则可以在n型区域50N中实施p型杂质注入,并且光刻胶可以用作掩模以基本防止p型杂质注入至p型区域50P中。p型杂质可以是在区域中注入的在约1013原子/cm3至约1014原子/cm3的范围内的浓度的硼、氟化硼、铟等。在注入之后,可以诸如通过可接受的灰化工艺去除光刻胶。After or before the p-type region 50P is implanted, a photoresist or other mask (not shown separately) is formed over the fins 66, nanostructures 55, and STI regions 68 in the p-type region 50P and the n-type region 50N. The photoresist is patterned to expose the n-type region 50N. The photoresist can be formed by using a spin coating technique and can be patterned using an acceptable photolithography technique. Once the photoresist is patterned, a p-type impurity implantation can be performed in the n-type region 50N, and the photoresist can be used as a mask to substantially prevent the p-type impurity from being implanted into the p-type region 50P. The p-type impurity can be boron, boron fluoride, indium, etc., at a concentration in the range of about 10 13 atoms/cm 3 to about 10 14 atoms/cm 3 injected in the region. After the implantation, the photoresist can be removed, such as by an acceptable ashing process.
在n型区域50N和p型区域50P的注入之后,可以实施退火以修复注入损伤并且激活注入的p型和/或n型杂质。在一些实施例中,可以在生长期间原位掺杂外延鳍的生长材料,这可以消除注入,但是可以一起使用原位和注入掺杂。After implantation of n-type region 50N and p-type region 50P, annealing may be performed to repair implantation damage and activate implanted p-type and/or n-type impurities. In some embodiments, the growing material of the epitaxial fin may be doped in situ during growth, which may eliminate implantation, but in situ and implantation doping may be used together.
在图5中,在鳍66和/或纳米结构55上形成伪介电层70。伪介电层70可以是例如氧化硅、氮化硅、它们的组合等,并且可以根据可接受的技术沉积或热生长。在伪介电层70上方形成伪栅极层72,并且在伪栅极层72上方形成掩模层74。可以在伪介电层70上方沉积并且然后诸如通过CMP平坦化伪栅极层72。可以在伪栅极层72上方沉积掩模层74。伪栅极层72可以是导电材料或非导电材料,并且可以选自包括非晶硅、多晶硅(poly硅)、多晶硅锗(poly-SiGe)、金属氮化物、金属硅化物、金属氧化物和金属的组。可以通过物理汽相沉积(PVD)、CVD、溅射沉积或用于沉积所选材料的其它技术沉积伪栅极层72。伪栅极层72可以由从蚀刻隔离区域起具有高蚀刻选择性的其它材料制成。掩模层74可以包括例如氮化硅、氮氧化硅等。在该实例中,横跨n型区域50N和p型区域50P形成单个伪栅极层72和单个掩模层74。应该指出,仅为了说明目的,伪介电层70示出为仅覆盖鳍66和纳米结构55。在一些实施例中,伪介电层70可以沉积为使得伪介电层70覆盖STI区域68,从而使得伪介电层70在伪栅极层72和STI区域68之间延伸。In FIG. 5 , a pseudo dielectric layer 70 is formed on the fin 66 and/or the nanostructure 55. The pseudo dielectric layer 70 may be, for example, silicon oxide, silicon nitride, a combination thereof, etc., and may be deposited or thermally grown according to acceptable techniques. A pseudo gate layer 72 is formed above the pseudo dielectric layer 70, and a mask layer 74 is formed above the pseudo gate layer 72. The pseudo gate layer 72 may be deposited above the pseudo dielectric layer 70 and then planarized, such as by CMP. A mask layer 74 may be deposited above the pseudo gate layer 72. The pseudo gate layer 72 may be a conductive material or a non-conductive material, and may be selected from a group including amorphous silicon, polycrystalline silicon (poly silicon), polycrystalline silicon germanium (poly-SiGe), metal nitrides, metal silicides, metal oxides, and metals. The pseudo gate layer 72 may be deposited by physical vapor deposition (PVD), CVD, sputtering deposition, or other techniques for depositing selected materials. The pseudo gate layer 72 may be made of other materials having high etching selectivity from the etching isolation region. The mask layer 74 may include, for example, silicon nitride, silicon oxynitride, etc. In this example, a single dummy gate layer 72 and a single mask layer 74 are formed across the n-type region 50N and the p-type region 50P. It should be noted that for illustration purposes only, the dummy dielectric layer 70 is shown to cover only the fin 66 and the nanostructure 55. In some embodiments, the dummy dielectric layer 70 may be deposited such that the dummy dielectric layer 70 covers the STI region 68, such that the dummy dielectric layer 70 extends between the dummy gate layer 72 and the STI region 68.
图6A至图18C示出了在制造实施例器件中的各个额外的步骤。图6A至图18C示出了n型区域50N或p型区域50P任何一个中的部件。在图6A至图6C中,可以使用可接受的光刻和蚀刻技术图案化掩模层74(见图5)以形成掩模78。然后可以将掩模78的图案转移至伪栅极层72和伪介电层70,以分别形成伪栅极76和伪栅极电介质71。伪栅极76覆盖鳍66的相应沟道区域。掩模78的图案可以用于将伪栅极76的每个与相邻的伪栅极76物理分隔开。伪栅极76也可以具有基本垂直于相应鳍66的长度方向的长度方向。6A to 18C illustrate various additional steps in manufacturing an embodiment device. FIG. 6A to 18C illustrate components in any one of the n-type region 50N or the p-type region 50P. In FIG. 6A to 6C, a mask layer 74 (see FIG. 5) may be patterned using acceptable photolithography and etching techniques to form a mask 78. The pattern of the mask 78 may then be transferred to the dummy gate layer 72 and the dummy dielectric layer 70 to form a dummy gate 76 and a dummy gate dielectric 71, respectively. The dummy gate 76 covers the corresponding channel region of the fin 66. The pattern of the mask 78 may be used to physically separate each of the dummy gates 76 from the adjacent dummy gates 76. The dummy gate 76 may also have a length direction substantially perpendicular to the length direction of the corresponding fin 66.
在图7A至图7C中,在图6A至图6C所示的结构上方形成第一间隔件层80和第二间隔件层82。随后将图案化第一间隔件层80和第二间隔件层82以用作用于形成自对准源极/漏极区域的间隔件。在图7A至图7C中,在STI区域68的顶面上形成第一间隔件层80;在鳍66、纳米结构55和掩模78的顶面和侧壁上形成第一间隔件层80;并且在伪栅极76和伪栅极电介质71的侧壁上形成第一间隔件层80。在第一间隔件层80上方沉积第二间隔件层82。第一间隔件层80可以使用诸如热氧化的技术由氧化硅、氮化硅、氮氧化硅等形成,或可以通过CVD、ALD等沉积。第二间隔件层82可以由具有与第一间隔件层80的材料不同的蚀刻速率的材料形成,诸如氧化硅、氮化硅、氮氧化硅等,并且可以通过CVD、ALD等沉积。In FIGS. 7A to 7C , a first spacer layer 80 and a second spacer layer 82 are formed over the structure shown in FIGS. 6A to 6C . The first spacer layer 80 and the second spacer layer 82 will then be patterned to serve as spacers for forming self-aligned source/drain regions. In FIGS. 7A to 7C , a first spacer layer 80 is formed on the top surface of the STI region 68 ; a first spacer layer 80 is formed on the top surface and sidewalls of the fin 66 , the nanostructure 55 , and the mask 78 ; and a first spacer layer 80 is formed on the sidewalls of the dummy gate 76 and the dummy gate dielectric 71 . A second spacer layer 82 is deposited over the first spacer layer 80 . The first spacer layer 80 may be formed of silicon oxide, silicon nitride, silicon oxynitride, etc. using a technique such as thermal oxidation, or may be deposited by CVD, ALD, etc. The second spacer layer 82 may be formed of a material having a different etch rate than the material of the first spacer layer 80 , such as silicon oxide, silicon nitride, silicon oxynitride, etc., and may be deposited by CVD, ALD, etc.
在形成第一间隔件层80之后并且在形成第二间隔件层82之前,可以实施用于轻掺杂的源极/漏极(LDD)区域(未单独示出)的注入。在具有不同器件类型的实施例中,类似于以上在图4中讨论的注入,可以在n型区域50N上方形成诸如光刻胶的掩模,同时暴露p型区域50P,并且可以将适当类型(例如,p型)的杂质注入至p型区域50P中的暴露的鳍66和纳米结构55中。然后可以去除掩模。随后,可以在p型区域50P上方形成诸如光刻胶的掩模,同时暴露n型区域50N,并且可以将适当类型的杂质(例如,n型)注入至n型区域50N中的暴露的鳍66和纳米结构55中。然后可以去除掩模。n型杂质可以是先前讨论的任何n型杂质,并且p型杂质可以是先前讨论的任何p型杂质。轻掺杂的源极/漏极区域可以具有在从约1x1015原子/cm3至约1x1019原子/cm3的范围内的杂质浓度。退火可以用于修复注入损坏并且激活注入的杂质。After forming the first spacer layer 80 and before forming the second spacer layer 82, an implantation for a lightly doped source/drain (LDD) region (not shown separately) may be performed. In embodiments with different device types, similar to the implantation discussed above in FIG. 4, a mask such as a photoresist may be formed over the n-type region 50N while exposing the p-type region 50P, and an impurity of an appropriate type (e.g., p-type) may be implanted into the exposed fins 66 and nanostructures 55 in the p-type region 50P. The mask may then be removed. Subsequently, a mask such as a photoresist may be formed over the p-type region 50P while exposing the n-type region 50N, and an impurity of an appropriate type (e.g., n-type) may be implanted into the exposed fins 66 and nanostructures 55 in the n-type region 50N. The mask may then be removed. The n-type impurity may be any of the n-type impurities discussed previously, and the p-type impurity may be any of the p-type impurities discussed previously. The lightly doped source/drain regions may have an impurity concentration in a range from about 1×10 15 atoms/cm 3 to about 1×10 19 atoms/cm 3. Annealing may be used to repair implantation damage and activate implanted impurities.
在图8A至图8C中,蚀刻第一间隔件层80和第二间隔件层82以形成第一间隔件81和第二间隔件83。如将在下面更详细讨论的,第一间隔件81和第二间隔件83用于自对准随后形成的源极/漏极区域,以及在随后处理期间保护鳍66和/或纳米结构55的侧壁。可以使用诸如各向同性蚀刻工艺(例如,湿蚀刻工艺)、各向异性蚀刻工艺(例如,干蚀刻工艺)等的合适的蚀刻工艺蚀刻第一间隔件层80和第二间隔件层82。在一些实施例中,第二间隔件层82的材料具有与第一间隔件层80的材料不同的蚀刻速率,从而使得第一间隔件层80可以在图案化第二间隔件层82时用作蚀刻停止层,并且从而使得第二间隔件层82可以在图案化第一间隔件层80时用作掩模。例如,可以使用各向异性蚀刻工艺蚀刻第二间隔件层82,其中第一间隔件层80用作蚀刻停止层,其中第二间隔件层82的剩余部分形成如图8B所示的第二间隔件层83。此后,第二间隔件83在蚀刻第一间隔件层80的暴露部分的同时用作掩模,从而形成如图8B和图8C所示的第一间隔件81。In FIGS. 8A to 8C , the first spacer layer 80 and the second spacer layer 82 are etched to form the first spacer 81 and the second spacer 83. As will be discussed in more detail below, the first spacer 81 and the second spacer 83 are used to self-align the subsequently formed source/drain regions, and to protect the sidewalls of the fin 66 and/or the nanostructure 55 during subsequent processing. The first spacer layer 80 and the second spacer layer 82 may be etched using a suitable etching process such as an isotropic etching process (e.g., a wet etching process), an anisotropic etching process (e.g., a dry etching process), etc. In some embodiments, the material of the second spacer layer 82 has a different etching rate than the material of the first spacer layer 80, so that the first spacer layer 80 can be used as an etching stop layer when patterning the second spacer layer 82, and so that the second spacer layer 82 can be used as a mask when patterning the first spacer layer 80. For example, the second spacer layer 82 may be etched using an anisotropic etching process, wherein the first spacer layer 80 serves as an etch stop layer, wherein the remaining portion of the second spacer layer 82 forms a second spacer layer 83 as shown in FIG8B . Thereafter, the second spacer 83 serves as a mask while etching the exposed portion of the first spacer layer 80, thereby forming the first spacer 81 as shown in FIGS. 8B and 8C .
如图8B所示,第一间隔件81和第二间隔件83设置在鳍66和/或纳米结构55的侧壁上。如图8C所示,在一些实施例中,可以从与掩模78、伪栅极76和伪栅极电介质71相邻的第一间隔件层80上方去除第二间隔件层82,并且第一间隔件81设置在掩模78、伪栅极76和伪栅极电介质60的侧壁上。在其它实施例中,第二间隔件层82的部分可以保留在与掩模78、伪栅极76和伪栅极电介质71相邻的第一间隔件层80上方。As shown in Fig. 8B, the first spacer 81 and the second spacer 83 are disposed on the sidewalls of the fin 66 and/or the nanostructure 55. As shown in Fig. 8C, in some embodiments, the second spacer layer 82 can be removed from above the first spacer layer 80 adjacent to the mask 78, the dummy gate 76, and the dummy gate dielectric 71, and the first spacer 81 is disposed on the sidewalls of the mask 78, the dummy gate 76, and the dummy gate dielectric 60. In other embodiments, a portion of the second spacer layer 82 can remain above the first spacer layer 80 adjacent to the mask 78, the dummy gate 76, and the dummy gate dielectric 71.
应该指出,以上公开总体上描述了形成间隔件和LDD区域的工艺。可以使用其它工艺和顺序。例如,可以利用更少或额外的间隔件,可以利用不同顺序的步骤(例如,可以在沉积第二间隔件层82之前图案化第一间隔件81),可以形成和去除额外的间隔件等等。此外,n型和p型器件可以使用不同的结构和步骤形成。It should be noted that the above disclosure generally describes the process of forming spacers and LDD regions. Other processes and sequences may be used. For example, fewer or additional spacers may be used, steps in different sequences may be used (e.g., the first spacer 81 may be patterned before the second spacer layer 82 is deposited), additional spacers may be formed and removed, and the like. In addition, n-type and p-type devices may be formed using different structures and steps.
在图9A至图9C中,根据一些实施例,在鳍66、纳米结构55和衬底50中形成第一凹槽86和第二凹槽87。随后将在第一凹槽86中形成外延源极/漏极区域,并且随后将在第二凹槽87中形成第一外延材料和外延源极/漏极区域。第一凹槽86和第二凹槽87可以延伸穿过第一纳米结构52和第二纳米结构54,并且延伸至衬底50中。如图9B所示,STI区域58的顶面可以与第一凹槽86的底面齐平。在各个实施例中,可以蚀刻鳍66,从而使得第一凹槽86的底面设置在STI区域68等的顶面下方。第二凹槽87的底面可以设置在第一凹槽86的底面和STI区域68的顶面下方。第一凹槽86和第二凹槽87可以通过使用诸如RIE、NBE等的各向异性蚀刻工艺蚀刻鳍66、纳米结构55和衬底50形成。在用于形成第一凹槽86和第二凹槽87的蚀刻工艺期间,第一间隔件81、第二间隔件83和掩模78掩蔽鳍66、纳米结构55和衬底50的部分。单个蚀刻工艺或多个蚀刻工艺可以用于蚀刻纳米结构55和/或鳍66的每层。在第一凹槽86和第二凹槽87达到期望的深度之后,定时蚀刻工艺可以用于停止蚀刻。可以通过用于蚀刻第一凹槽86的相同工艺以及在蚀刻第一凹槽86之前或之后的额外蚀刻工艺蚀刻第二凹槽87。在一些实施例中,可以在实施用于第二凹槽87的额外蚀刻工艺的同时,掩蔽对应于第一凹槽86的区域。In FIGS. 9A to 9C , according to some embodiments, first recesses 86 and second recesses 87 are formed in fin 66, nanostructure 55, and substrate 50. An epitaxial source/drain region will be subsequently formed in first recess 86, and a first epitaxial material and an epitaxial source/drain region will be subsequently formed in second recess 87. First recess 86 and second recess 87 may extend through first nanostructure 52 and second nanostructure 54, and extend into substrate 50. As shown in FIG. 9B , the top surface of STI region 58 may be flush with the bottom surface of first recess 86. In various embodiments, fin 66 may be etched so that the bottom surface of first recess 86 is disposed below the top surface of STI region 68, etc. The bottom surface of second recess 87 may be disposed below the bottom surface of first recess 86 and the top surface of STI region 68. First recess 86 and second recess 87 may be formed by etching fin 66, nanostructure 55, and substrate 50 using an anisotropic etching process such as RIE, NBE, etc. During the etching process for forming the first groove 86 and the second groove 87, the first spacer 81, the second spacer 83 and the mask 78 mask the fin 66, the nanostructure 55 and the portion of the substrate 50. A single etching process or multiple etching processes can be used to etch each layer of the nanostructure 55 and/or the fin 66. After the first groove 86 and the second groove 87 reach the desired depth, a timed etching process can be used to stop etching. The second groove 87 can be etched by the same process used to etch the first groove 86 and an additional etching process before or after etching the first groove 86. In some embodiments, the area corresponding to the first groove 86 can be masked while the additional etching process for the second groove 87 is implemented.
在图10A至图10C中,蚀刻由第一凹槽86和第二凹槽87暴露的由第一半导体材料(例如,第一纳米结构52)形成的多层堆叠件64的层的侧壁的部分,以形成侧壁凹槽88。虽然与侧壁凹槽88相邻的第一纳米结构52的侧壁在图10C中示出为笔直的,但是侧壁可以是凹的或凸的。可以使用诸如湿蚀刻等的各向同性蚀刻工艺蚀刻侧壁。在第一纳米结构52包括例如SiGe并且第二纳米结构54包括例如Si或SiC的实施例中,具有四甲基氢氧化铵(TMAH)、氢氧化铵(NH4OH)等的干蚀刻工艺可以用于蚀刻第一纳米结构52的侧壁。In FIGS. 10A to 10C , portions of the sidewalls of the layers of the multilayer stack 64 formed of the first semiconductor material (e.g., the first nanostructure 52) exposed by the first recess 86 and the second recess 87 are etched to form sidewall recesses 88. Although the sidewalls of the first nanostructure 52 adjacent to the sidewall recess 88 are shown as straight in FIG. 10C , the sidewalls may be concave or convex. The sidewalls may be etched using an isotropic etching process such as wet etching. In embodiments where the first nanostructure 52 includes, for example, SiGe and the second nanostructure 54 includes, for example, Si or SiC, a dry etching process with tetramethylammonium hydroxide (TMAH), ammonium hydroxide (NH 4 OH), or the like may be used to etch the sidewalls of the first nanostructure 52.
在图11A至图11D中,在侧壁凹槽88中形成第一内部间隔件90。第一内部间隔件层90可以通过在图10A至图10C所示的结构上方沉积内部间隔件层(未单独示出)形成。第一内部间隔件90用作随后形成的源极/漏极区域和栅极结构之间的隔离部件。如将在下面更详细讨论的,将在第一凹槽86和第二凹槽87中形成源极/漏极区域和外延材料,同时第一纳米结构52将被对应的栅极结构代替。In FIGS. 11A to 11D , a first internal spacer 90 is formed in the sidewall recess 88. The first internal spacer layer 90 can be formed by depositing an internal spacer layer (not shown separately) over the structure shown in FIGS. 10A to 10C . The first internal spacer 90 serves as an isolation member between the subsequently formed source/drain regions and the gate structure. As will be discussed in more detail below, the source/drain regions and the epitaxial material will be formed in the first recess 86 and the second recess 87, while the first nanostructure 52 will be replaced by the corresponding gate structure.
可以通过诸如CVD、ALD等的共形沉积工艺沉积内部间隔件层。内部间隔件层可以包括诸如氮化硅或氮氧化硅的材料,但是可以利用诸如具有小于约3.5的k值的任何低介电常数(低k)材料的任何合适的材料。然后可以各向异性蚀刻内部间隔件层以形成第一内部间隔件90。虽然第一内部间隔件90的外侧壁示出为与第二纳米结构54的侧壁齐平,但是第一内部间隔件90的外侧壁可以延伸超过第二纳米结构54的侧壁或从第二纳米结构54的侧壁凹进。The inner spacer layer may be deposited by a conformal deposition process such as CVD, ALD, etc. The inner spacer layer may include a material such as silicon nitride or silicon oxynitride, but any suitable material may be utilized such as any low dielectric constant (low-k) material having a k value of less than about 3.5. The inner spacer layer may then be anisotropically etched to form a first inner spacer 90. Although the outer sidewalls of the first inner spacer 90 are shown flush with the sidewalls of the second nanostructure 54, the outer sidewalls of the first inner spacer 90 may extend beyond the sidewalls of the second nanostructure 54 or be recessed from the sidewalls of the second nanostructure 54.
此外,虽然在图11C中第一内部间隔件90的外侧壁示出为笔直的,但是第一内部间隔件90的外侧壁可以是凹的或凸的。作为实例,图11D示出了第一纳米结构52的侧壁是凹的,第一内部间隔件90的外侧壁是凹的并且第一内部间隔件90从第二纳米结构54的侧壁凹进的实施例。可以通过诸如RIE、NBE等的各向异性蚀刻工艺蚀刻内部间隔件层。第一内部间隔件90可以用于防止通过随后的蚀刻工艺(诸如用于形成栅极结构的蚀刻工艺)对随后形成的源极/漏极区域(诸如下面关于图12A至图12E讨论的外延源极/漏极区域92)的损坏。In addition, although the outer sidewalls of the first inner spacer 90 are shown as straight in FIG. 11C , the outer sidewalls of the first inner spacer 90 may be concave or convex. As an example, FIG. 11D shows an embodiment in which the sidewalls of the first nanostructure 52 are concave, the outer sidewalls of the first inner spacer 90 are concave, and the first inner spacer 90 is recessed from the sidewalls of the second nanostructure 54. The inner spacer layer may be etched by an anisotropic etching process such as RIE, NBE, etc. The first inner spacer 90 may be used to prevent damage to subsequently formed source/drain regions (such as the epitaxial source/drain regions 92 discussed below with respect to FIGS. 12A to 12E ) by subsequent etching processes (such as etching processes used to form gate structures).
在图12A至图12E中,在第二凹槽87中形成第一外延材料91,并且在第一凹槽86和第二凹槽87中形成外延源极/漏极区域92。在一些实施例中,第一外延材料91可以是牺牲材料,其随后被去除以形成背侧通孔(诸如下面关于图26A至图26D讨论的背侧通孔130)。如图12B至图12E所示,第一外延材料91的顶面可以与第一凹槽86的底面齐平。但是,在一些实施例中,第一外延材料91的顶面可以设置在第一凹槽86的底面之上或下方。可以使用诸如化学汽相沉积(CVD)、原子层沉积(ALD)、汽相外延(VPE)、分子束外延(MBE)等工艺在第二凹槽87中外延生长第一外延材料91。第一外延材料91可以包括任何可接受的材料,诸如硅锗等。第一外延材料91可以由对外延源极/漏极区域92、衬底50和介电层(诸如下面关于图24A至图24C讨论的STI区域68和第二介电层125)的材料具有高蚀刻选择性的材料形成。因此,可以在不显著去除外延源极/漏极区域92和介电层的情况下去除并且用背侧通孔代替第一外延材料91。In FIGS. 12A to 12E , a first epitaxial material 91 is formed in the second recess 87 , and an epitaxial source/drain region 92 is formed in the first recess 86 and the second recess 87 . In some embodiments, the first epitaxial material 91 may be a sacrificial material that is subsequently removed to form a backside via (such as the backside via 130 discussed below with respect to FIGS. 26A to 26D ). As shown in FIGS. 12B to 12E , the top surface of the first epitaxial material 91 may be flush with the bottom surface of the first recess 86 . However, in some embodiments, the top surface of the first epitaxial material 91 may be disposed above or below the bottom surface of the first recess 86 . The first epitaxial material 91 may be epitaxially grown in the second recess 87 using processes such as chemical vapor deposition (CVD), atomic layer deposition (ALD), vapor phase epitaxy (VPE), molecular beam epitaxy (MBE), and the like. The first epitaxial material 91 may include any acceptable material, such as silicon germanium, and the like. The first epitaxial material 91 may be formed of a material having a high etch selectivity to the material of the epitaxial source/drain regions 92, the substrate 50, and dielectric layers (such as the STI regions 68 and the second dielectric layer 125 discussed below with respect to FIGS. 24A to 24C ). Thus, the first epitaxial material 91 may be removed and replaced with the backside vias without significantly removing the epitaxial source/drain regions 92 and the dielectric layers.
然后,在第一凹槽86中和第二凹槽87中的第一外延材料91上方形成外延源极/漏极区域92。在一些实施例中,外延源极/漏极区域92可以在第二纳米结构54上施加应力,从而改善性能。如图12C所示,在第一凹槽86和第二凹槽87中形成外延源极/漏极区域92,从而使得每个伪栅极76设置在外延源极/漏极区域92的相应相邻对之间。在一些实施例中,第一间隔件81用于将外延源极/漏极区域92与伪栅极76分隔开,并且第一内部间隔件90用于将外延源极/漏极区域92与纳米结构55分隔开适当的横向距离,使得外延源极/漏极区域92不会与所得纳米FET的随后形成的栅极短路。Then, epitaxial source/drain regions 92 are formed over the first epitaxial material 91 in the first recess 86 and the second recess 87. In some embodiments, the epitaxial source/drain regions 92 can exert stress on the second nanostructure 54, thereby improving performance. As shown in FIG. 12C , the epitaxial source/drain regions 92 are formed in the first recess 86 and the second recess 87 so that each dummy gate 76 is disposed between a corresponding adjacent pair of epitaxial source/drain regions 92. In some embodiments, the first spacer 81 is used to separate the epitaxial source/drain regions 92 from the dummy gate 76, and the first internal spacer 90 is used to separate the epitaxial source/drain regions 92 from the nanostructure 55 by an appropriate lateral distance so that the epitaxial source/drain regions 92 do not short circuit with the subsequently formed gate of the resulting nanoFET.
n型区域50N(例如,NMOS区域)中的外延源极/漏极区域92可以通过掩蔽p型区域50P(例如,PMOS区域)形成。然后,在n型区域50N中的第一凹槽86和第二凹槽87中外延生长外延源极/漏极区域92。外延源极/漏极区域92可以包括适合于n型纳米FET的任何可接受的材料。例如,如果第二纳米结构54是硅,则外延源极/漏极区域92可以包括在第二纳米结构54上施加拉伸应变的材料,诸如硅、碳化硅、磷掺杂的碳化硅、磷化硅等。外延源极/漏极区域92可以具有从纳米结构55的相应上表面凸起的表面,并且可以具有小平面。The epitaxial source/drain region 92 in the n-type region 50N (e.g., NMOS region) can be formed by masking the p-type region 50P (e.g., PMOS region). Then, the epitaxial source/drain region 92 is epitaxially grown in the first groove 86 and the second groove 87 in the n-type region 50N. The epitaxial source/drain region 92 may include any acceptable material suitable for n-type nanoFETs. For example, if the second nanostructure 54 is silicon, the epitaxial source/drain region 92 may include a material that applies tensile strain on the second nanostructure 54, such as silicon, silicon carbide, phosphorus-doped silicon carbide, silicon phosphide, etc. The epitaxial source/drain region 92 may have a surface protruding from the corresponding upper surface of the nanostructure 55, and may have a small facet.
p型区域50P(例如,PMOS区域)中的外延源极/漏极区域92可以通过掩蔽n型区域50N(例如,NMOS区域)形成。然后,在p型区域50P中的第一凹槽86和第二凹槽87中外延生长外延源极/漏极区域92。外延源极/漏极区域92可以包括适合于p型纳米FET的任何可接受的材料。例如,如果第一纳米结构52是硅锗,则外延源极/漏极区域92可以包括在第一纳米结构52上施加压缩应变的材料,诸如硅锗、硼掺杂的硅锗、锗、锗锡等。外延源极/漏极区域92也可以具有从多层堆叠件56的相应表面凸起的表面,并且可以具有小平面。The epitaxial source/drain region 92 in the p-type region 50P (e.g., a PMOS region) can be formed by masking the n-type region 50N (e.g., an NMOS region). Then, the epitaxial source/drain region 92 is epitaxially grown in the first groove 86 and the second groove 87 in the p-type region 50P. The epitaxial source/drain region 92 may include any acceptable material suitable for a p-type nano FET. For example, if the first nanostructure 52 is silicon germanium, the epitaxial source/drain region 92 may include a material that applies compressive strain on the first nanostructure 52, such as silicon germanium, boron-doped silicon germanium, germanium, germanium tin, etc. The epitaxial source/drain region 92 may also have a surface that protrudes from the corresponding surface of the multilayer stack 56 and may have a small facet.
可以用掺杂剂注入外延源极/漏极区域92、第一纳米结构52、第二纳米结构54和/或衬底50以形成源极/漏极区域,类似于先前讨论的用于形成轻掺杂源极/漏极区域工艺,随后是退火。源极/漏极区域可以具有在约1×1019原子/cm3至约1×1021原子/cm3之间的杂质浓度。用于源极/漏极区域的n型和/或p型杂质可以是先前讨论的任何杂质。在一些实施例中,可以在生长期间原位掺杂外延源极/漏极区域92。The epitaxial source/drain region 92, the first nanostructure 52, the second nanostructure 54, and/or the substrate 50 may be implanted with dopants to form the source/drain region, similar to the process previously discussed for forming the lightly doped source/drain region, followed by annealing. The source/drain region may have an impurity concentration between about 1×10 19 atoms/cm 3 and about 1×10 21 atoms/cm 3. The n-type and/or p-type impurities used for the source/drain region may be any of the impurities previously discussed. In some embodiments, the epitaxial source/drain region 92 may be doped in situ during growth.
由于用于在n型区域50N和p型区域50P中形成外延源极/漏极区域92的外延工艺,外延源极/漏极区域92的上表面具有横向向外扩展超过纳米结构55的侧壁的小平面。在一些实施例中,这些小平面使得相同纳米FET的相邻外延源极/漏极区域92合并,如图12B所示。在其它实施例中,如图12D所示,在外延工艺完成之后,相邻的外延源极/漏极区域92保持分隔开。在图12B和图12D所示的实施例中,第一间隔件81可以形成STI区域68的顶面,从而阻止外延生长。在一些其它实施例中,第一间隔件81可以覆盖纳米结构55的侧壁的部分,从而进一步阻止外延生长。在一些其它实施例中,可以调整用于形成第一间隔件81的间隔件蚀刻以去除间隔件材料,以允许外延生长的区域延伸至STI区域58的表面。Due to the epitaxial process used to form the epitaxial source/drain region 92 in the n-type region 50N and the p-type region 50P, the upper surface of the epitaxial source/drain region 92 has a small facet that extends laterally outward beyond the sidewalls of the nanostructure 55. In some embodiments, these small facets merge adjacent epitaxial source/drain regions 92 of the same nanoFET, as shown in FIG. 12B. In other embodiments, as shown in FIG. 12D, after the epitaxial process is completed, adjacent epitaxial source/drain regions 92 remain separated. In the embodiments shown in FIG. 12B and FIG. 12D, the first spacer 81 can form the top surface of the STI region 68, thereby preventing epitaxial growth. In some other embodiments, the first spacer 81 can cover a portion of the sidewall of the nanostructure 55, thereby further preventing epitaxial growth. In some other embodiments, the spacer etch used to form the first spacer 81 can be adjusted to remove the spacer material to allow the epitaxially grown area to extend to the surface of the STI region 58.
外延源极/漏极区域92可以包括一个或多个半导体材料层。例如,外延源极/漏极区域92可以包括第一半导体材料层92A、第二半导体材料层92B和第三半导体材料层92C。任何数量的半导体材料层可以用于外延源极/漏极区域92。第一半导体材料层92A、第二半导体材料层92B和第三半导体材料层92C的每个可以由不同的半导体材料形成并且可以被掺杂至不同的掺杂剂浓度。在一些实施例中,第一半导体材料层92A可以具有小于第二半导体材料层92B并且大于第三半导体材料层92C的掺杂剂浓度。在外延源极/漏极区域92包括三个半导体材料层的实施例中,可以沉积第一半导体材料层92A,可以在第一半导体材料层92A上方沉积第二半导体材料层92B,并且可以在第二半导体材料层92B上方沉积第三半导体材料层92C。The epitaxial source/drain region 92 may include one or more semiconductor material layers. For example, the epitaxial source/drain region 92 may include a first semiconductor material layer 92A, a second semiconductor material layer 92B, and a third semiconductor material layer 92C. Any number of semiconductor material layers may be used for the epitaxial source/drain region 92. Each of the first semiconductor material layer 92A, the second semiconductor material layer 92B, and the third semiconductor material layer 92C may be formed of different semiconductor materials and may be doped to different dopant concentrations. In some embodiments, the first semiconductor material layer 92A may have a dopant concentration that is less than the second semiconductor material layer 92B and greater than the third semiconductor material layer 92C. In an embodiment where the epitaxial source/drain region 92 includes three semiconductor material layers, the first semiconductor material layer 92A may be deposited, the second semiconductor material layer 92B may be deposited above the first semiconductor material layer 92A, and the third semiconductor material layer 92C may be deposited above the second semiconductor material layer 92B.
图12E示出了第一纳米结构52的侧壁是凹的,第一内部间隔件90的外侧壁是凹的,并且第一内部间隔件90从第二纳米结构54的侧壁凹进的实施例。如图12E所示,外延源极/漏极区域92可以形成为与第一内部间隔件90接触并且可以延伸越过第二纳米结构54的侧壁。12E shows an embodiment in which the sidewalls of the first nanostructure 52 are concave, the outer sidewalls of the first inner spacer 90 are concave, and the first inner spacer 90 is recessed from the sidewalls of the second nanostructure 54. As shown in FIG12E, the epitaxial source/drain regions 92 may be formed to contact the first inner spacer 90 and may extend over the sidewalls of the second nanostructure 54.
在图13A至图13C中,在图12A至图12C所示的结构上方沉积第一层间电介质(ILD)96。第一ILD 96可以由介电材料形成,并且可以通过诸如CVD、等离子体增强CVD(PECVD)或FCVD的任何合适的方法沉积。介电材料可包括磷硅酸盐玻璃(PSG)、硼硅酸盐玻璃(BSG)、硼掺杂的磷硅酸盐玻璃(BPSG)、未掺杂的硅酸盐玻璃(USG)等。可以使用通过任何可接受的工艺形成的其它绝缘材料。在一些实施例中,接触蚀刻停止层(CESL)94设置在第一ILD 96和外延源极/漏极区域92、掩模78以及第一间隔件81之间。CESL 94可以包括具有与上面的第一ILD 96的材料不同的蚀刻速率的介电材料,诸如氮化硅、氧化硅、氮氧化硅等。In FIGS. 13A to 13C , a first interlayer dielectric (ILD) 96 is deposited over the structure shown in FIGS. 12A to 12C . The first ILD 96 may be formed of a dielectric material and may be deposited by any suitable method such as CVD, plasma enhanced CVD (PECVD) or FCVD. The dielectric material may include phosphosilicate glass (PSG), borosilicate glass (BSG), boron-doped phosphosilicate glass (BPSG), undoped silicate glass (USG), etc. Other insulating materials formed by any acceptable process may be used. In some embodiments, a contact etch stop layer (CESL) 94 is disposed between the first ILD 96 and the epitaxial source/drain regions 92, the mask 78, and the first spacer 81. The CESL 94 may include a dielectric material having an etch rate different from that of the material of the first ILD 96 above, such as silicon nitride, silicon oxide, silicon oxynitride, etc.
在图14A至图14C中,可以实施诸如CMP的平坦化工艺以使第一ILD96的顶面与伪栅极76或掩模78的顶面齐平。平坦化工艺也可以去除伪栅极76上的掩模78和第一间隔件81的沿掩模78的侧壁的部分。在平坦化工艺之后,伪栅极76、第一间隔件81和第一ILD 96的顶面在工艺变化内齐平。因此,伪栅极76的顶面通过第一ILD 96暴露。在一些实施例中,掩模78可以保留,在这种情况下,平坦化工艺使第一ILD 96的顶面与掩模78和第一间隔件81的顶面齐平。In FIGS. 14A to 14C , a planarization process such as CMP may be performed to make the top surface of the first ILD 96 flush with the top surface of the dummy gate 76 or the mask 78. The planarization process may also remove the mask 78 on the dummy gate 76 and the portion of the first spacer 81 along the sidewall of the mask 78. After the planarization process, the top surfaces of the dummy gate 76, the first spacer 81, and the first ILD 96 are flush within process variations. Therefore, the top surface of the dummy gate 76 is exposed through the first ILD 96. In some embodiments, the mask 78 may remain, in which case the planarization process makes the top surface of the first ILD 96 flush with the top surfaces of the mask 78 and the first spacer 81.
在图15A至图15C中,在一个或多个蚀刻步骤中去除伪栅极76和掩模78(如果存在),从而形成第三凹槽98。也去除伪栅极电介质60的位于第三凹槽98中的部分。在一些实施例中,通过各向异性干蚀刻工艺去除伪栅极76和伪栅极电介质60。例如,蚀刻工艺可以包括使用以比第一ILD96或第一间隔件81更快的速率选择性蚀刻伪栅极76的反应气体的干蚀刻工艺。第三凹槽98的每个暴露和/或覆盖纳米结构55的部分,其在随后完成的纳米FET中用作沟道区域。用作沟道区域的纳米结构55的部分设置在外延源极/漏极区域92的相邻对之间。在去除期间,伪栅极电介质60在蚀刻伪栅极76时可以用作蚀刻停止层。然后可以在去除伪栅极76之后去除伪栅极电介质60。In FIGS. 15A to 15C , the dummy gate 76 and the mask 78 (if present) are removed in one or more etching steps, thereby forming a third recess 98. The portion of the dummy gate dielectric 60 located in the third recess 98 is also removed. In some embodiments, the dummy gate 76 and the dummy gate dielectric 60 are removed by an anisotropic dry etching process. For example, the etching process may include a dry etching process using a reactive gas that selectively etches the dummy gate 76 at a faster rate than the first ILD 96 or the first spacer 81. Each of the third recesses 98 exposes and/or covers a portion of the nanostructure 55, which is used as a channel region in a subsequently completed nanoFET. The portion of the nanostructure 55 used as a channel region is disposed between adjacent pairs of epitaxial source/drain regions 92. During removal, the dummy gate dielectric 60 can be used as an etch stop layer when etching the dummy gate 76. The dummy gate dielectric 60 can then be removed after removing the dummy gate 76.
在图16A至图16C中,去除第一纳米结构52从而延伸第三凹槽98。可以通过使用对第一纳米结构52的材料具有选择性的蚀刻剂实施诸如湿蚀刻的各向同性蚀刻工艺去除第一纳米结构52,与第一纳米结构52相比,第二纳米结构54、衬底50、STI区域58保持相对未蚀刻。在第一纳米结构52包括例如SiGe并且第二纳米结构54A-54C包括例如Si或SiC的实施例中,四甲基氢氧化铵(TMAH)、氢氧化铵(NH4OH)等可以用于去除第一纳米结构52。16A to 16C , the first nanostructure 52 is removed to extend the third recess 98. The first nanostructure 52 may be removed by performing an isotropic etching process such as a wet etch using an etchant selective to the material of the first nanostructure 52, and the second nanostructure 54, the substrate 50, and the STI region 58 remain relatively unetched compared to the first nanostructure 52. In embodiments where the first nanostructure 52 includes, for example, SiGe and the second nanostructures 54A-54C include, for example, Si or SiC, tetramethylammonium hydroxide (TMAH), ammonium hydroxide (NH 4 OH), or the like may be used to remove the first nanostructure 52.
在图17A至图17C中,形成栅极介电层100和栅电极102用于替换栅极。在第三凹槽98中共形沉积栅极介电层100。可以在衬底50的顶面和侧壁上以及第二纳米结构54的顶面、侧壁和底面上形成栅极介电层100。也可以在第一ILD 96、CESL 94、第一间隔件81和STI区域68的顶面上以及第一间隔件81和第一内部间隔件90的侧壁上沉积栅极介电层100。In FIGS. 17A to 17C , a gate dielectric layer 100 and a gate electrode 102 are formed for replacing the gate. The gate dielectric layer 100 is conformally deposited in the third recess 98. The gate dielectric layer 100 may be formed on the top surface and sidewalls of the substrate 50 and the top surface, sidewalls, and bottom surface of the second nanostructure 54. The gate dielectric layer 100 may also be deposited on the top surface of the first ILD 96, the CESL 94, the first spacer 81, and the STI region 68 and on the sidewalls of the first spacer 81 and the first inner spacer 90.
根据一些实施例,栅极介电层100包括一个或多个介电层,诸如氧化物、金属氧化物等或它们的组合。例如,在一些实施例中,栅极电介质可以包括氧化硅层和位于氧化硅层上方的金属氧化物层。在一些实施例中,栅极介电层100包括高k介电材料,并且在这些实施例中,栅极介电层100可以具有大于约7.0的k值,并且可以包括铪、铝、锆、镧、锰、钡、钛、铅和它们的组合的金属氧化物或硅酸盐。栅极介电层100的结构在n型区域50N和p型区域50P中可以相同或不同。栅极介电层100的形成方法可以包括分子束沉积(MBD)、ALD、PECVD等。According to some embodiments, the gate dielectric layer 100 includes one or more dielectric layers, such as oxides, metal oxides, etc., or combinations thereof. For example, in some embodiments, the gate dielectric may include a silicon oxide layer and a metal oxide layer located above the silicon oxide layer. In some embodiments, the gate dielectric layer 100 includes a high-k dielectric material, and in these embodiments, the gate dielectric layer 100 may have a k value greater than about 7.0 and may include metal oxides or silicates of hafnium, aluminum, zirconium, lanthanum, manganese, barium, titanium, lead, and combinations thereof. The structure of the gate dielectric layer 100 may be the same or different in the n-type region 50N and the p-type region 50P. The formation method of the gate dielectric layer 100 may include molecular beam deposition (MBD), ALD, PECVD, etc.
分别在栅极介电层100上方沉积栅电极102,并且填充第三凹槽98的剩余部分。栅电极102可以包括含金属的材料,诸如氮化钛、氧化钛、氮化钽、碳化钽、钴、钌、铝、钨、它们的组合或它们的多层。例如,虽然在图17A和图17C中示出了单层栅电极102,但是栅电极102可以包括任何数量的衬垫层、任何数量的功函调整层和填充材料。可以在相邻的第二纳米结构54之间以及第二纳米结构54A和衬底50之间的n型区域50N中沉积并且可以在相邻的第一纳米结构52之间的p型区域50P中沉积构成栅电极102的层的任何组合。A gate electrode 102 is deposited over the gate dielectric layer 100, respectively, and the remaining portion of the third recess 98 is filled. The gate electrode 102 may include a metal-containing material such as titanium nitride, titanium oxide, tantalum nitride, tantalum carbide, cobalt, ruthenium, aluminum, tungsten, a combination thereof, or a multilayer thereof. For example, although a single-layer gate electrode 102 is shown in FIGS. 17A and 17C , the gate electrode 102 may include any number of liner layers, any number of work function adjustment layers, and filling materials. Any combination of layers constituting the gate electrode 102 may be deposited in the n-type region 50N between adjacent second nanostructures 54 and between the second nanostructure 54A and the substrate 50, and may be deposited in the p-type region 50P between adjacent first nanostructures 52.
在n型区域50N和p型区域50P中形成栅极介电层100可以同时发生,从而使得每个区域中的栅极介电层100由相同的材料形成,并且形成栅电极102可以同时发生,从而使得每个区域中的栅电极102由相同的材料形成。在一些实施例中,每个区域中的栅极介电层100可以通过不同的工艺形成,从而使得栅极介电层100可以是不同的材料和/或具有不同数量的层,和/或每个区域中的栅电极102可以通过不同的工艺形成,从而使得栅电极102可以是不同的材料和/或具有不同数量的层。当使用不同的工艺时,各个掩蔽步骤可以用于掩蔽和暴露适当的区域。The formation of the gate dielectric layer 100 in the n-type region 50N and the p-type region 50P may occur simultaneously, so that the gate dielectric layer 100 in each region is formed of the same material, and the formation of the gate electrode 102 may occur simultaneously, so that the gate electrode 102 in each region is formed of the same material. In some embodiments, the gate dielectric layer 100 in each region may be formed by a different process, so that the gate dielectric layer 100 may be a different material and/or have a different number of layers, and/or the gate electrode 102 in each region may be formed by a different process, so that the gate electrode 102 may be a different material and/or have a different number of layers. When different processes are used, various masking steps may be used to mask and expose the appropriate regions.
在填充第三凹槽98之后,可以实施诸如CMP的平坦化工艺以去除栅极介电层100的过量部分和栅电极102的材料,该过量部分位于第一ILD 96的顶面上方。因此,栅电极102和栅极介电层100的材料的剩余部分形成所得纳米FET的替换栅极结构。栅电极102和栅极介电层100可以统称为“栅极结构”。After filling the third recess 98, a planarization process such as CMP may be performed to remove excess portions of the gate dielectric layer 100 and the material of the gate electrode 102, which are located above the top surface of the first ILD 96. Thus, the gate electrode 102 and the remaining portions of the material of the gate dielectric layer 100 form a replacement gate structure of the resulting nanoFET. The gate electrode 102 and the gate dielectric layer 100 may be collectively referred to as a "gate structure".
在图18A至图18C中,使栅极结构(包括栅极介电层100和对应的上面的栅电极102)凹进,使得在栅极结构正上方和第一间隔件81的相对的部分之间形成凹槽。在凹槽中填充包括一层或多层介电材料(诸如氮化硅、氮氧化硅等)的栅极掩模104,随后是平坦化工艺以去除在第一ILD 96上方延伸的介电材料的过量部分。随后形成的栅极接触件(诸如下面参考图20A至图20C讨论的栅极接触件114)穿透栅极掩模104以接触凹进的栅电极102的顶面。18A to 18C , the gate structure (including the gate dielectric layer 100 and the corresponding gate electrode 102 thereon) is recessed so that a groove is formed directly above the gate structure and between the opposing portions of the first spacer 81. A gate mask 104 including one or more layers of dielectric material (such as silicon nitride, silicon oxynitride, etc.) is filled in the groove, followed by a planarization process to remove excess portions of the dielectric material extending over the first ILD 96. A subsequently formed gate contact (such as the gate contact 114 discussed below with reference to FIGS. 20A to 20C ) penetrates the gate mask 104 to contact the top surface of the recessed gate electrode 102.
如图18A至图18C进一步所示,在第一ILD 96上方和栅极掩模104上方沉积第二ILD106。在一些实施例中,第二ILD 106是通过FCVD形成的可流动膜。在一些实施例中,第二ILD106由诸如PSG、BSG、BPSG、USG等的介电材料形成,并且可以通过诸如CVD、PECVD等的任何合适的方法沉积。18A to 18C , a second ILD 106 is deposited over the first ILD 96 and over the gate mask 104. In some embodiments, the second ILD 106 is a flowable film formed by FCVD. In some embodiments, the second ILD 106 is formed of a dielectric material such as PSG, BSG, BPSG, USG, etc., and can be deposited by any suitable method such as CVD, PECVD, etc.
在图19A至图19C中,蚀刻第二ILD 106、第一ILD 96、CESL 94和栅极掩模104以形成暴露外延源极/漏极区域92和/或栅极结构的表面的第四凹槽108。第四凹槽108可以通过使用诸如RIE、NBE等的各向异性蚀刻工艺的蚀刻形成。在一些实施例中,可以使用第一蚀刻工艺穿过第二ILD106和第一ILD 96蚀刻第四凹槽108;可以使用第二蚀刻工艺穿过栅极掩模104蚀刻第四凹槽108;并且然后可以使用第三蚀刻工艺穿过CESL 94蚀刻第四凹槽108。可以在第二ILD 106上方形成并且图案化诸如光刻胶的掩模,以掩蔽第二ILD 106的来自第一蚀刻工艺和第二蚀刻工艺的部分。在一些实施例中,蚀刻工艺可以过蚀刻,并且因此,第四凹槽108延伸至外延源极/漏极区域92和/或栅极结构中,并且第四凹槽108的底部可以与外延源极/漏极区域92和/或栅极结构齐平(例如,在相同水平处,或具有从衬底50相同的距离)或低于(例如,更靠近衬底50)外延源极/漏极区域92和/或栅极结构。虽然图19C将第四凹槽108示出为在相同的截面中暴露外延源极/漏极区域92和栅极结构,但是在各个实施例中,可以在不同的截面中暴露外延源极/漏极区域92和栅极结构,从而减小随后形成的接触件短路的风险。In FIGS. 19A to 19C , the second ILD 106, the first ILD 96, the CESL 94, and the gate mask 104 are etched to form a fourth recess 108 that exposes the surface of the epitaxial source/drain region 92 and/or the gate structure. The fourth recess 108 may be formed by etching using an anisotropic etching process such as RIE, NBE, etc. In some embodiments, the fourth recess 108 may be etched through the second ILD 106 and the first ILD 96 using a first etching process; the fourth recess 108 may be etched through the gate mask 104 using a second etching process; and then the fourth recess 108 may be etched through the CESL 94 using a third etching process. A mask such as a photoresist may be formed and patterned over the second ILD 106 to mask portions of the second ILD 106 from the first etching process and the second etching process. In some embodiments, the etching process may over-etch, and therefore, the fourth recess 108 extends into the epitaxial source/drain region 92 and/or the gate structure, and the bottom of the fourth recess 108 may be flush with (e.g., at the same level, or having the same distance from the substrate 50) or lower than (e.g., closer to the substrate 50) the epitaxial source/drain region 92 and/or the gate structure. Although FIG. 19C shows the fourth recess 108 as exposing the epitaxial source/drain region 92 and the gate structure in the same cross section, in various embodiments, the epitaxial source/drain region 92 and the gate structure may be exposed in different cross sections, thereby reducing the risk of shorting of subsequently formed contacts.
在形成第四凹槽108之后,在外延源极/漏极区域92上方形成第一硅化物区域110。在一些实施例中,第一硅化物区域110通过首先沉积能够与下面的外延源极/漏极区域92的半导体材料(例如,硅、硅锗、锗)反应以在外延源极/漏极区域92的暴露部分上方形成硅化物或锗化物区域(诸如镍、钴、钛、钽、铂、钨、其它贵金属、其它难熔金属、稀土金属或它们的合金)的金属(未单独示出),然后实施热退火工艺以形成第一硅化物区域110形成。然后,例如通过蚀刻工艺去除沉积的金属的未反应部分。虽然将第一硅化物区域110称为硅化物区域,但是第一硅化物区域110也可以是锗化物区域或硅锗化物区域(例如,包括硅化物和锗化物的区域)。在实施例中,第一硅化物区域110包括TiSi,并且具有在从约2nm至约10nm范围内的厚度。After forming the fourth recess 108, a first silicide region 110 is formed over the epitaxial source/drain region 92. In some embodiments, the first silicide region 110 is formed by first depositing a metal (not shown separately) that can react with the semiconductor material (e.g., silicon, silicon germanium, germanium) of the underlying epitaxial source/drain region 92 to form a silicide or germanide region (such as nickel, cobalt, titanium, tantalum, platinum, tungsten, other precious metals, other refractory metals, rare earth metals, or alloys thereof) over the exposed portion of the epitaxial source/drain region 92, and then performing a thermal annealing process to form the first silicide region 110. The unreacted portion of the deposited metal is then removed, for example, by an etching process. Although the first silicide region 110 is referred to as a silicide region, the first silicide region 110 may also be a germanide region or a silicon germanide region (e.g., a region including silicide and germanide). In an embodiment, the first silicide region 110 includes TiSi and has a thickness ranging from about 2 nm to about 10 nm.
在图20A至图20C中,在第四凹槽108中形成源极/漏极接触件112和栅极接触件114(也称为接触插塞)。源极/漏极接触件112和栅极接触件114可以每个包括一层或多层,诸如阻挡层、扩散层和填充材料。例如,在一些实施例中,源极/漏极接触件112和栅极接触件114每个包括阻挡层和导电材料,并且每个电耦接至下面的导电部件(例如,栅电极102和/或第一硅化物区域110)。栅极接触件114电耦接至栅电极102,并且源极/漏极接触件112电耦接至第一硅化物区域110。阻挡层可以包括钛、氮化钛、钽、氮化钽等。导电材料可以是铜、铜合金、银、金、钨、钴、铝、镍等。可以实施诸如CMP的平坦化工艺以从第二ILD 106的表面去除过量材料。外延源极/漏极区域92、第二纳米结构54和栅极结构(包括栅极介电层100和栅电极102)可以统称为晶体管结构109。可以在晶体管结构109的前侧上方形成第一互连结构(诸如下面关于图21A至图21C讨论的前侧互连结构120),并且可以在晶体管结构109的背侧上方形成第二互连结构(诸如下面关于图39A至图39C讨论的背侧互连结构164)。虽然晶体管结构109描述为包括纳米FET,但是其它实施例可以包括晶体管结构109(包括不同类型的晶体管(例如,平面FET、FinFET、薄膜晶体管(TFT)等))。In FIGS. 20A to 20C , source/drain contacts 112 and gate contacts 114 (also referred to as contact plugs) are formed in the fourth recess 108. The source/drain contacts 112 and the gate contacts 114 may each include one or more layers, such as a barrier layer, a diffusion layer, and a filling material. For example, in some embodiments, the source/drain contacts 112 and the gate contacts 114 each include a barrier layer and a conductive material, and each is electrically coupled to the underlying conductive component (e.g., the gate electrode 102 and/or the first silicide region 110). The gate contact 114 is electrically coupled to the gate electrode 102, and the source/drain contact 112 is electrically coupled to the first silicide region 110. The barrier layer may include titanium, titanium nitride, tantalum, tantalum nitride, etc. The conductive material may be copper, copper alloy, silver, gold, tungsten, cobalt, aluminum, nickel, etc. A planarization process such as CMP may be performed to remove excess material from the surface of the second ILD 106. The epitaxial source/drain regions 92, the second nanostructure 54, and the gate structure (including the gate dielectric layer 100 and the gate electrode 102) may be collectively referred to as a transistor structure 109. A first interconnect structure (such as the front-side interconnect structure 120 discussed below with respect to FIGS. 21A to 21C) may be formed over the front side of the transistor structure 109, and a second interconnect structure (such as the back-side interconnect structure 164 discussed below with respect to FIGS. 39A to 39C) may be formed over the back side of the transistor structure 109. Although the transistor structure 109 is described as including a nanoFET, other embodiments may include a transistor structure 109 including different types of transistors (e.g., planar FETs, FinFETs, thin film transistors (TFTs), etc.).
虽然图20A至图20C示出了延伸至外延源极/漏极区域92的每个的源极/漏极接触件112,但是可以从某些外延源极/漏极区域92中省略源极/漏极接触件112。例如,如下面更详细解释的,可以随后通过一个或多个外延源极/漏极区域92的背侧附接导电部件(例如,背侧通孔或电源轨)。对于这些特定的外延源极/漏极区域92,可以省略源极/漏极接触件112或可以是不电连接至任何上面的导线(诸如下面参考图21A至图21C讨论的第一导电部件122)的伪接触件。Although FIGS. 20A-20C show source/drain contacts 112 extending to each of the epitaxial source/drain regions 92, the source/drain contacts 112 may be omitted from certain epitaxial source/drain regions 92. For example, as explained in more detail below, a conductive feature (e.g., a backside via or power rail) may be subsequently attached through the backside of one or more epitaxial source/drain regions 92. For these particular epitaxial source/drain regions 92, the source/drain contacts 112 may be omitted or may be dummy contacts that are not electrically connected to any overlying conductive lines (such as the first conductive features 122 discussed below with reference to FIGS. 21A-21C).
图20D示出了根据一些实施例的沿器件的图1的截面C-C’的截面图。图20D的实施例可以类似于以上关于图20A至图20C描述的实施例,其中相同参考标号指示使用相同工艺形成的相同元件。但是,在图20D中,源极/漏极接触件112可以具有复合结构,并且每个可以包括第一ILD 96中的第一接触件112A和第二ILD 106中的第二接触件112B。在一些实施例中,可以在沉积第二ILD 106之前在第一ILD 96中形成第一接触件112A。第一接触件112A可以从第一ILD 96的顶面凹进。在第一接触件112A凹进之后,可以沉积绝缘掩模117以覆盖第一接触件112A。第一接触件112A可以包括钨(W)、钌(Ru)、钴(Co)、铜(Cu)、钛(Ti)、氮化钛(TiN)、钽(Ta)、氮化钽(TaN)、钼(Mo)、镍(Ni)、它们的组合等,并且可以具有从约1nm至约50nm的范围内的厚度(例如,在相对的侧壁之间测量)。绝缘掩模117可以包括氧化硅(SiO)、硅化铪(HfSi)、碳氧化硅(SiOC)、氧化铝(AlO)、硅化锆(ZrSi)、氮氧化铝(AlON)、氧化锆(ZrO)、氧化铪(HfO)、氧化钛(TiO)、氧化锆铝(ZrAlO)、氧化锌(ZnO)、氧化钽(TaO)、氧化镧(LaO)、氧化钇(YO)、碳氮化钽(TaCN)、氮化硅(SiN)、碳氮氧化硅(SiOCN)、硅(Si)、氮化锆(ZrN)、碳氮化硅(SiCN)、它们的组合等。在一些实施例中,绝缘掩模117的材料可以与栅极掩模104的材料不同,从而使得可以相对于彼此选择性蚀刻绝缘掩模117和栅极掩模104。以这种方式,可以彼此独立地形成第二接触件112B和栅极接触件114。FIG. 20D shows a cross-sectional view along section C-C' of FIG. 1 of the device according to some embodiments. The embodiment of FIG. 20D may be similar to the embodiment described above with respect to FIG. 20A to FIG. 20C, where the same reference numerals indicate the same elements formed using the same process. However, in FIG. 20D, the source/drain contacts 112 may have a composite structure, and each may include a first contact 112A in the first ILD 96 and a second contact 112B in the second ILD 106. In some embodiments, the first contact 112A may be formed in the first ILD 96 before the second ILD 106 is deposited. The first contact 112A may be recessed from the top surface of the first ILD 96. After the first contact 112A is recessed, an insulating mask 117 may be deposited to cover the first contact 112A. The first contact 112A may include tungsten (W), ruthenium (Ru), cobalt (Co), copper (Cu), titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), molybdenum (Mo), nickel (Ni), combinations thereof, and the like, and may have a thickness ranging from about 1 nm to about 50 nm (e.g., measured between opposing sidewalls). The insulating mask 117 may include silicon oxide (SiO), hafnium silicide (HfSi), silicon oxycarbide (SiOC), aluminum oxide (AlO), zirconium silicide (ZrSi), aluminum oxynitride (AlON), zirconium oxide (ZrO), hafnium oxide (HfO), titanium oxide (TiO), zirconium aluminum oxide (ZrAlO), zinc oxide (ZnO), tantalum oxide (TaO), lanthanum oxide (LaO), yttrium oxide (YO), tantalum carbonitride (TaCN), silicon nitride (SiN), silicon oxycarbonitride (SiOCN), silicon (Si), zirconium nitride (ZrN), silicon carbonitride (SiCN), combinations thereof, and the like. In some embodiments, the material of the insulating mask 117 may be different from that of the gate mask 104 so that the insulating mask 117 and the gate mask 104 may be selectively etched relative to each other. In this way, the second contact 112B and the gate contact 114 may be formed independently of each other.
随后,在如以上描述的绝缘掩模117和第一接触件112A上方沉积第二ILD 106。在沉积第二ILD 106之后,第二接触件112B可以形成为延伸穿过第二ILD 106和绝缘掩模117并且电耦接至第一接触件112A。第二接触件112B可以进一步部分延伸至第一接触件112A中并且嵌入第一接触件112A中。第二接触件112B可以包括钨(W)、钌(Ru)、钴(Co)、铜(Cu)、钛(Ti)、氮化钛(TiN)、钽(Ta)、氮化钽(TaN)、钼(Mo)、镍(Ni)、它们的组合等,并且可以具有从约1nm至约50nm的范围内的厚度(例如,在相对的侧壁之间测量)。第二接触件112B的厚度可以与第一接触件112A的厚度相同或不同,并且第二接触件112B的材料可以与第一接触件112A的材料相同或不同。因此,可以形成包括第一接触件112A和第二接触件112B的复合源极/漏极接触件112。为了便于说明,关于图20A至图20C的实施例描述随后工艺步骤;但是,应该理解,它们同样适用于图20D的实施例。在一些实施例中,源极/漏极接触件112的其它配置也是可能的。Subsequently, the second ILD 106 is deposited over the insulating mask 117 and the first contact 112A as described above. After the second ILD 106 is deposited, the second contact 112B may be formed to extend through the second ILD 106 and the insulating mask 117 and electrically coupled to the first contact 112A. The second contact 112B may further partially extend into the first contact 112A and be embedded in the first contact 112A. The second contact 112B may include tungsten (W), ruthenium (Ru), cobalt (Co), copper (Cu), titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), molybdenum (Mo), nickel (Ni), combinations thereof, etc., and may have a thickness ranging from about 1 nm to about 50 nm (e.g., measured between opposing sidewalls). The thickness of the second contact 112B may be the same as or different from the thickness of the first contact 112A, and the material of the second contact 112B may be the same as or different from the material of the first contact 112A. Thus, a composite source/drain contact 112 including a first contact 112A and a second contact 112B may be formed. For ease of illustration, subsequent process steps are described with respect to the embodiment of FIGS. 20A to 20C ; however, it should be understood that they are equally applicable to the embodiment of FIG. 20D . In some embodiments, other configurations of the source/drain contact 112 are also possible.
图21A至图39C示出了在晶体管结构109上形成前侧互连结构和背侧互连结构的中间步骤。前侧互连结构和背侧互连结构可以每个包括电连接至形成在衬底50上的纳米FET的导电部件。在图21A至图39C中,以“A”结尾的图示出了沿图1的线A-A’的截面图,以“B”结尾的图示出了沿图1的线B-B’的截面图,并且以“C”结尾的图示出了沿图1的线C-C’的截面图。图21A至图29C中描述的工艺步骤可以应用于n型区域50N和p型区域50P。如以上所指出的,背侧导电部件(例如,背侧通孔或电源轨)可以连接至外延源极/漏极区域92的一个或多个。因此,可以可选地从外延源极/漏极区域92省略源极/漏极接触件112。21A to 39C illustrate intermediate steps in forming a front-side interconnect structure and a back-side interconnect structure on transistor structure 109. The front-side interconnect structure and the back-side interconnect structure may each include a conductive feature electrically connected to a nanoFET formed on substrate 50. In FIGS. 21A to 39C, the figures ending with "A" illustrate a cross-sectional view along line A-A' of FIG. 1, the figures ending with "B" illustrate a cross-sectional view along line B-B' of FIG. 1, and the figures ending with "C" illustrate a cross-sectional view along line C-C' of FIG. 1. The process steps described in FIGS. 21A to 29C may be applied to n-type region 50N and p-type region 50P. As noted above, a back-side conductive feature (e.g., a back-side via or power rail) may be connected to one or more of epitaxial source/drain regions 92. Thus, source/drain contacts 112 may be optionally omitted from epitaxial source/drain regions 92.
在图21A至图21C中,在第二ILD 106上形成前侧互连结构120。前侧互连结构120可以称为前侧互连结构,因为它在晶体管结构109的前侧(例如,晶体管结构的与其上形成有晶体管结构109的衬底50相对的侧)上形成。21A-21C , a front side interconnect structure 120 is formed on the second ILD 106. The front side interconnect structure 120 may be referred to as a front side interconnect structure because it is formed on the front side of the transistor structure 109 (e.g., the side of the transistor structure opposite to the substrate 50 on which the transistor structure 109 is formed).
前侧互连结构120可以包括形成在一个或多个堆叠的第一介电层124中的一层或多层的第一导电部件122。堆叠的第一介电层124的每个可以包括介电材料,诸如低k介电材料、超低k(ELK)介电材料等。可以使用诸如CVD、ALD、PVD、PECVD等的合适工艺沉积第一介电层124。The front-side interconnect structure 120 may include one or more layers of first conductive features 122 formed in one or more stacked first dielectric layers 124. Each of the stacked first dielectric layers 124 may include a dielectric material, such as a low-k dielectric material, an ultra-low-k (ELK) dielectric material, etc. The first dielectric layer 124 may be deposited using a suitable process such as CVD, ALD, PVD, PECVD, etc.
第一导电部件122可以包括导线和互连导线层的导电通孔。导电通孔可以延伸穿过相应的第一介电层124以在导线层之间提供垂直连接。第一导电部件122可以通过任何可接受的工艺(例如,镶嵌工艺、双重镶嵌工艺等)形成。The first conductive component 122 may include conductive wires and conductive vias that interconnect the conductive wire layers. The conductive vias may extend through the corresponding first dielectric layer 124 to provide vertical connections between the conductive wire layers. The first conductive component 122 may be formed by any acceptable process (e.g., a damascene process, a dual damascene process, etc.).
在一些实施例中,第一导电部件122可以使用镶嵌工艺形成,其中利用光刻和蚀刻技术的组合图案化相应的第一介电层124,以形成对应于第一导电部件122的期望图案的沟槽。可以沉积可选的扩散阻挡层和/或可选的粘合层,并且然后可以用导电材料填充沟槽。用于阻挡层的合适的材料包括钛、氮化钛、氧化钛、钽、氮化钽、氧化钛、它们的组合等,用于导电材料的合适的材料包括铜、银、金、钨、铝、它们的组合等。在实施例中,第一导电部件122可以通过沉积铜或铜合金的晶种层并且通过电镀填充沟槽形成。化学机械平坦化(CMP)工艺等可以用于从相应的第一介电层124的表面去除过量导电材料,并且平坦化第一介电层124和第一导电部件122的表面以用于随后处理。In some embodiments, the first conductive component 122 can be formed using a damascene process, in which the corresponding first dielectric layer 124 is patterned using a combination of photolithography and etching techniques to form a groove corresponding to the desired pattern of the first conductive component 122. An optional diffusion barrier layer and/or an optional adhesion layer can be deposited, and the groove can then be filled with a conductive material. Suitable materials for the barrier layer include titanium, titanium nitride, titanium oxide, tantalum, tantalum nitride, titanium oxide, combinations thereof, and the like, and suitable materials for the conductive material include copper, silver, gold, tungsten, aluminum, combinations thereof, and the like. In an embodiment, the first conductive component 122 can be formed by depositing a seed layer of copper or a copper alloy and filling the groove by electroplating. A chemical mechanical planarization (CMP) process or the like can be used to remove excess conductive material from the surface of the corresponding first dielectric layer 124, and planarize the surfaces of the first dielectric layer 124 and the first conductive component 122 for subsequent processing.
图21A至图21C示出了前侧互连结构120中的五层第一导电部件122和第一介电层124。但是,应该理解,前侧互连结构120可以包括设置在任何数量的第一介电层124中的任何数量的第一导电部件122。前侧互连结构120可以电连接至栅极接触件114和源极/漏极接触件112以形成功能电路。在一些实施例中,由前侧互连结构120形成的功能电路可以包括逻辑电路、存储器电路、图像传感器电路等。21A to 21C show five layers of first conductive features 122 and first dielectric layers 124 in the front-side interconnect structure 120. However, it should be understood that the front-side interconnect structure 120 may include any number of first conductive features 122 disposed in any number of first dielectric layers 124. The front-side interconnect structure 120 may be electrically connected to the gate contact 114 and the source/drain contact 112 to form a functional circuit. In some embodiments, the functional circuit formed by the front-side interconnect structure 120 may include a logic circuit, a memory circuit, an image sensor circuit, etc.
在图22A至图22C中,载体衬底180通过第一接合层182A和第二接合层182B(统称为接合层182)接合至前侧互连结构120的顶面。载体衬底180可以是玻璃载体衬底、陶瓷载体衬底、晶圆(例如,硅晶圆)等。载体衬底180可以在随后的处理步骤期间以及在完成的器件中提供结构支撑。22A to 22C , a carrier substrate 180 is bonded to the top surface of the front-side interconnect structure 120 by a first bonding layer 182A and a second bonding layer 182B (collectively referred to as bonding layers 182). The carrier substrate 180 may be a glass carrier substrate, a ceramic carrier substrate, a wafer (e.g., a silicon wafer), etc. The carrier substrate 180 may provide structural support during subsequent processing steps and in a completed device.
在各个实施例中,载体衬底180可以使用诸如电介质至电介质接合等的合适技术接合至前侧互连结构120。电介质至电介质接合可以包括在前侧互连结构120上沉积第一接合层182A。在一些实施例中,第一接合层182A包括通过CVD、ALD、PVD等沉积的氧化硅(例如,高密度等离子体(HDP)氧化物等)。第二接合层182B可以同样是在例如使用CVD、ALD、PVD、热氧化等的接合之前在载体衬底180的表面上形成的氧化物层。其它合适的材料可以用于第一接合层182A和第二接合层182B。In various embodiments, the carrier substrate 180 may be bonded to the front side interconnect structure 120 using a suitable technique such as dielectric-to-dielectric bonding. The dielectric-to-dielectric bonding may include depositing a first bonding layer 182A on the front side interconnect structure 120. In some embodiments, the first bonding layer 182A includes silicon oxide (e.g., high density plasma (HDP) oxide, etc.) deposited by CVD, ALD, PVD, etc. The second bonding layer 182B may also be an oxide layer formed on the surface of the carrier substrate 180 before bonding, for example, using CVD, ALD, PVD, thermal oxidation, etc. Other suitable materials may be used for the first bonding layer 182A and the second bonding layer 182B.
电介质至电介质接合工艺可以进一步包括对第一接合层182A和第二接合层182B中的一个或多个施加表面处理。表面处理可以包括等离子体处理。可以在真空环境中实施等离子体处理。在等离子体处理之后,表面处理可以进一步包括可以施加至接合层182中的一个或多个的清洁工艺(例如,用去离子水等冲洗)。然后,载体衬底180与前侧互连结构120对准,并且两者互相挤压以开始载体衬底180至前侧互连结构120的预接合。可以在室温下(例如,在约21℃和约25℃之间)实施预接合。在预接合之后,可以通过例如将前侧互连结构120和载体衬底180加热至约170℃的温度来施加退火工艺。The dielectric to dielectric bonding process may further include applying a surface treatment to one or more of the first bonding layer 182A and the second bonding layer 182B. The surface treatment may include a plasma treatment. The plasma treatment may be implemented in a vacuum environment. After the plasma treatment, the surface treatment may further include a cleaning process (e.g., rinsing with deionized water, etc.) that may be applied to one or more of the bonding layers 182. Then, the carrier substrate 180 is aligned with the front side interconnect structure 120, and the two are pressed against each other to start the pre-bonding of the carrier substrate 180 to the front side interconnect structure 120. Pre-bonding may be implemented at room temperature (e.g., between about 21°C and about 25°C). After pre-bonding, an annealing process may be applied by, for example, heating the front side interconnect structure 120 and the carrier substrate 180 to a temperature of about 170°C.
进一步在图22A至图22C中,在载体衬底180接合至前侧互连结构120之后,可以翻转器件,从而使得晶体管结构109的背侧向上。晶体管结构109的背侧可以指与晶体管结构109的前侧相对的侧。22A-22C , after the carrier substrate 180 is bonded to the front side interconnect structure 120 , the device may be flipped so that the back side of the transistor structure 109 is facing upward. The back side of the transistor structure 109 may refer to the side opposite the front side of the transistor structure 109 .
在图23A至图23C中,可以对衬底50的背侧施加减薄工艺。减薄工艺可以包括平坦化工艺(例如,机械研磨、CMP等)、回蚀工艺、它们的组合等。减薄工艺可以暴露第一外延材料91的与前侧互连结构120相对的表面。此外,在减薄工艺之后,衬底50的部分可以保留在栅极结构(例如,栅电极102和栅极介电层100)和纳米结构55上方。如图23A至图23C所示,在减薄工艺之后,衬底50、第一外延材料91、STI区域68和鳍66的背面可以彼此齐平。In FIGS. 23A to 23C , a thinning process may be applied to the back side of the substrate 50. The thinning process may include a planarization process (e.g., mechanical grinding, CMP, etc.), an etch-back process, a combination thereof, etc. The thinning process may expose a surface of the first epitaxial material 91 opposite to the front-side interconnect structure 120. In addition, after the thinning process, a portion of the substrate 50 may remain above the gate structure (e.g., the gate electrode 102 and the gate dielectric layer 100) and the nanostructure 55. As shown in FIGS. 23A to 23C , after the thinning process, the back sides of the substrate 50, the first epitaxial material 91, the STI region 68, and the fin 66 may be flush with each other.
在图24A至图24C中,去除并且用第二介电层125代替鳍66和衬底50的剩余部分。可以使用诸如各向同性蚀刻工艺(例如,湿蚀刻工艺)、各向异性蚀刻工艺(例如,干蚀刻工艺)等合适的蚀刻工艺蚀刻鳍66和衬底50。蚀刻工艺可以是对鳍66和衬底50的材料有选择性的蚀刻工艺(例如,以比STI区域68、栅极介电层100、外延源极/漏极区域92和第一外延材料91的材料更快的速率蚀刻鳍66和衬底50的材料)。在蚀刻鳍66和衬底50之后,可以暴露STI区域68、栅极介电层100、外延源极/漏极区域92和第一外延材料91的表面。In FIGS. 24A to 24C , the remaining portions of the fin 66 and the substrate 50 are removed and replaced with the second dielectric layer 125. The fin 66 and the substrate 50 may be etched using a suitable etching process such as an isotropic etching process (e.g., a wet etching process), an anisotropic etching process (e.g., a dry etching process), etc. The etching process may be an etching process that is selective to the materials of the fin 66 and the substrate 50 (e.g., etches the materials of the fin 66 and the substrate 50 at a faster rate than the materials of the STI regions 68, the gate dielectric layer 100, the epitaxial source/drain regions 92, and the first epitaxial material 91). After etching the fin 66 and the substrate 50, the surfaces of the STI regions 68, the gate dielectric layer 100, the epitaxial source/drain regions 92, and the first epitaxial material 91 may be exposed.
然后,在通过去除鳍66和衬底50形成的凹槽中的晶体管结构109的背侧上沉积第二介电层125。可以在STI区域68、栅极介电层100和外延源极/漏极区域92上方沉积第二介电层125。第二介电层125可以物理接触STI区域68、栅极介电层100、外延源极/漏极区域92和第一外延材料91的表面。第二介电层125可以基本类似于以上关于图18A至图18C描述的第二ILD 106。例如,第二介电层125可以由与第二ILD 106相似的材料并且使用与第二ILD106相似的工艺形成。如图24A至图24C所示,CMP工艺等可以用于去除第二介电层125的材料,从而使得第二介电层125的顶面与STI区域68和第一外延材料91的顶面齐平。Then, a second dielectric layer 125 is deposited on the back side of the transistor structure 109 in the recess formed by removing the fin 66 and the substrate 50. The second dielectric layer 125 may be deposited over the STI region 68, the gate dielectric layer 100, and the epitaxial source/drain region 92. The second dielectric layer 125 may physically contact the surfaces of the STI region 68, the gate dielectric layer 100, the epitaxial source/drain region 92, and the first epitaxial material 91. The second dielectric layer 125 may be substantially similar to the second ILD 106 described above with respect to FIGS. 18A to 18C. For example, the second dielectric layer 125 may be formed of a material similar to the second ILD 106 and using a process similar to the second ILD 106. As shown in FIGS. 24A to 24C, a CMP process or the like may be used to remove the material of the second dielectric layer 125 so that the top surface of the second dielectric layer 125 is flush with the top surface of the STI region 68 and the first epitaxial material 91.
在图25A至图25C中,去除第一外延材料91以形成第五凹槽128,并且在第五凹槽128中形成第二硅化物区域129。可以通过可以是各向同性蚀刻工艺(诸如湿蚀刻工艺)的合适的蚀刻工艺去除第一外延材料91。蚀刻工艺可以对第一外延材料91的材料具有高蚀刻选择性。因此,可以在不显著去除第二介电层125、STI区域68或外延源极/漏极区域92的材料的情况下去除第一外延材料91。第五凹槽128可以暴露STI区域68的侧壁、外延源极/漏极区域92的背面和第二介电层125的侧壁。In FIGS. 25A to 25C , the first epitaxial material 91 is removed to form a fifth recess 128, and a second silicide region 129 is formed in the fifth recess 128. The first epitaxial material 91 may be removed by a suitable etching process, which may be an isotropic etching process, such as a wet etching process. The etching process may have a high etching selectivity to the material of the first epitaxial material 91. Thus, the first epitaxial material 91 may be removed without significantly removing the material of the second dielectric layer 125, the STI region 68, or the epitaxial source/drain region 92. The fifth recess 128 may expose the sidewalls of the STI region 68, the back side of the epitaxial source/drain region 92, and the sidewalls of the second dielectric layer 125.
然后,可以在外延源极/漏极区域92的背侧上的第五凹槽128中形成第二硅化物区域129。第二硅化物区域129可以类似于以上关于图19A至图19C描述的第一硅化物区域110。例如,第二硅化物区域129可以由与第一硅化物区域110相似的材料并且使用与第一硅化物区域110相似的工艺形成。Then, a second silicide region 129 may be formed in the fifth recess 128 on the back side of the epitaxial source/drain region 92. The second silicide region 129 may be similar to the first silicide region 110 described above with respect to FIGS. 19A to 19C. For example, the second silicide region 129 may be formed of a similar material and using a similar process as the first silicide region 110.
在图26A至图26C中,在第五凹槽128中形成背侧通孔130。背侧通孔130可以延伸穿过第二介电层125和STI区域68,并且可以通过第二硅化物区域129电耦接至外延源极/漏极区域92。背侧通孔130可以类似于以上关于图20A至图20C描述的源极/漏极接触件112。例如,背侧通孔130可以由与源极/漏极接触件112相似的材料并且使用与源极/漏极接触件112相似的工艺形成。背侧通孔130可以包括钴(Co)、钨(W)、钌(Ru)、铝(Al)、钼(Mo)、钛(Ti)、氮化钛(TiN)、硅化钛(TiSi)、硅化钴(CoSi)、硅化镍(NiSi)、铜(Cu)、氮化钽(TaN)、镍(Ni)、氮化钛硅(TiSiN)、它们的组合等。In FIGS. 26A to 26C , a backside via 130 is formed in the fifth recess 128. The backside via 130 may extend through the second dielectric layer 125 and the STI region 68 and may be electrically coupled to the epitaxial source/drain region 92 through the second silicide region 129. The backside via 130 may be similar to the source/drain contact 112 described above with respect to FIGS. 20A to 20C . For example, the backside via 130 may be formed of a similar material and using a similar process as the source/drain contact 112. The backside via 130 may include cobalt (Co), tungsten (W), ruthenium (Ru), aluminum (Al), molybdenum (Mo), titanium (Ti), titanium nitride (TiN), titanium silicide (TiSi), cobalt silicide (CoSi), nickel silicide (NiSi), copper (Cu), tantalum nitride (TaN), nickel (Ni), titanium silicon nitride (TiSiN), combinations thereof, and the like.
图26D示出了根据一些实施例的沿器件的图1的截面C-C’的截面图。图26D的实施例可以类似于以上关于图26A至图26C描述的实施例,其中相同参考标号指示使用相同工艺形成的相同元件。但是,在图26D中,与背侧通孔130电耦接的外延源极/漏极区域92X具有小于不与背侧通孔130电耦接的外延源极/漏极区域92Y的高度的高度。在一些实施例中,可以在第五凹槽128的形成期间回蚀外延源极/漏极区域92X,如以上关于图25A至图25C所讨论的。因此,与背侧通孔130电耦接的外延源极/漏极区域92X可以具有小于不与背侧通孔130电耦接的外延源极/漏极区域92B的高度的高度。然后,可以在如以上所描述的外延源极/漏极区域92A上方形成第二硅化物区域129和背侧通孔130。FIG26D shows a cross-sectional view along section C-C' of FIG1 of the device according to some embodiments. The embodiment of FIG26D may be similar to the embodiment described above with respect to FIGS. 26A to 26C, where the same reference numerals indicate the same elements formed using the same process. However, in FIG26D, the epitaxial source/drain region 92X electrically coupled to the backside via 130 has a height that is less than the height of the epitaxial source/drain region 92Y that is not electrically coupled to the backside via 130. In some embodiments, the epitaxial source/drain region 92X may be etched back during the formation of the fifth recess 128, as discussed above with respect to FIGS. 25A to 25C. Therefore, the epitaxial source/drain region 92X electrically coupled to the backside via 130 may have a height that is less than the height of the epitaxial source/drain region 92B that is not electrically coupled to the backside via 130. Then, second silicide regions 129 and backside vias 130 may be formed over the epitaxial source/drain regions 92A as described above.
在图27A至图27C中,在第二介电层125、STI区域68和背侧通孔130上方形成第三介电层132,并且在第三介电层132上方形成并且图案化光刻胶134。第三介电层132可以包括介电材料,诸如碳化硅(SiC)、氧化镧(LaO)、氧化铝(AlO)、氮氧化铝(AlON)、氧化锆(ZrO)、氧化铪(HfO)、氮化硅(SiN)、硅(Si)、氧化锌(ZnO)、氮化锆(ZrN)、氧化铝锆(ZrAlO)、氧化钛(TiO)、氧化钽(TaO)、氧化钇(YO)、碳氮化钽(TaCN)、硅化锆(ZrSi)、碳氮氧化硅(SiOCN)、碳氧化硅(SiOC)、碳氮化硅(SiCN)、硅化铪(HfSi)、氧化镧(LaO)、氧化硅(SiO)、它们的组合或它们的多层等。可以使用诸如CVD、ALD、PVD、PECVD等的适当工艺沉积第三介电层132。第三介电层132可以具有从约1nm至约20nm的厚度。可以图案化光刻胶134以形成暴露第三介电层132的顶面的部分的第六凹槽136。27A to 27C , a third dielectric layer 132 is formed over the second dielectric layer 125, the STI regions 68, and the backside vias 130, and a photoresist 134 is formed and patterned over the third dielectric layer 132. The third dielectric layer 132 may include a dielectric material such as silicon carbide (SiC), lanthanum oxide (LaO), aluminum oxide (AlO), aluminum oxynitride (AlON), zirconium oxide (ZrO), hafnium oxide (HfO), silicon nitride (SiN), silicon (Si), zinc oxide (ZnO), zirconium nitride (ZrN), zirconium aluminum oxide (ZrAlO), titanium oxide (TiO), tantalum oxide (TaO), yttrium oxide (YO), tantalum carbonitride (TaCN), zirconium silicide (ZrSi), silicon oxycarbonitride (SiOCN), silicon oxycarbide (SiOC), silicon carbonitride (SiCN), hafnium silicide (HfSi), lanthanum oxide (LaO), silicon oxide (SiO), combinations thereof, or multilayers thereof, and the like. The third dielectric layer 132 may be deposited using a suitable process such as CVD, ALD, PVD, PECVD, etc. The third dielectric layer 132 may have a thickness from about 1 nm to about 20 nm. The photoresist 134 may be patterned to form a sixth recess 136 that exposes a portion of the top surface of the third dielectric layer 132.
在图28A至图28C中,使用诸如湿或干蚀刻、RIE、NBE等或它们的组合的可接受蚀刻工艺将光刻胶134的图案转移至第三介电层132。蚀刻可以是各向异性的。因此,将第六凹槽136转移至第三介电层132。进一步在图28A至图28C中,可以通过诸如湿蚀刻工艺、干蚀刻工艺、平坦化工艺、它们的组合等的可接受的工艺去除光刻胶134。In FIGS. 28A to 28C , the pattern of the photoresist 134 is transferred to the third dielectric layer 132 using an acceptable etching process such as wet or dry etching, RIE, NBE, etc., or a combination thereof. The etching may be anisotropic. Thus, the sixth recess 136 is transferred to the third dielectric layer 132. Further in FIGS. 28A to 28C , the photoresist 134 may be removed by an acceptable process such as a wet etching process, a dry etching process, a planarization process, a combination thereof, etc.
在图29A至图29C中,在第六凹槽136中和第三介电层132上方沉积导电层140和填充材料142以形成导线143。导电层140可以是晶种层、粘合层、阻挡扩散层、它们的组合或它们的多层等。导电层140可以是可选的,并且在一些实施例中可以省略。导电层140可以包括材料,诸如钴(Co)、钨(W)、钌(Ru)、铝(Al)、钼(Mo)、钛(Ti)、氮化钛(TiN)、硅化钛(TiSi)、硅化钴(CoSi)、硅化镍(NiSi)、铜(Cu)、氮化钽(TaN)、镍(Ni)、氮化钛硅(TiSiN)、它们的组合等。导电层140可以具有从约0.5nm至约10nm的厚度。导电层140可以使用例如CVD、ALD、PVD等形成。填充材料142可以包括材料,诸如钴(Co)、钨(W)、钌(Ru)、铝(Al)、钼(Mo)、钛(Ti)、氮化钛(TiN)、硅化钛(TiSi)、硅化钴(CoSi)、硅化镍(NiSi)、铜(Cu)、氮化钽(TaN)、镍(Ni)、氮化钛硅(TiSiN)、它们的组合等。填充材料142可以具有从约0.5nm至约10nm的厚度。填充材料142可使用例如CVD、ALD、PVD、镀等形成。可以实施平坦化工艺(例如,CMP、研磨、回蚀等)以去除导电层140和填充材料142的过量部分,诸如导电层140和填充材料142的形成在第三介电层132上方的部分。因此,导电层140和填充材料142的顶面可以与第三介电层132的顶面齐平。In FIGS. 29A to 29C , a conductive layer 140 and a filling material 142 are deposited in the sixth groove 136 and over the third dielectric layer 132 to form a conductive line 143. The conductive layer 140 may be a seed layer, an adhesion layer, a barrier diffusion layer, a combination thereof, or a multilayer thereof, etc. The conductive layer 140 may be optional and may be omitted in some embodiments. The conductive layer 140 may include materials such as cobalt (Co), tungsten (W), ruthenium (Ru), aluminum (Al), molybdenum (Mo), titanium (Ti), titanium nitride (TiN), titanium silicide (TiSi), cobalt silicide (CoSi), nickel silicide (NiSi), copper (Cu), tantalum nitride (TaN), nickel (Ni), titanium silicon nitride (TiSiN), a combination thereof, etc. The conductive layer 140 may have a thickness from about 0.5 nm to about 10 nm. The conductive layer 140 may be formed using, for example, CVD, ALD, PVD, etc. The filling material 142 may include materials such as cobalt (Co), tungsten (W), ruthenium (Ru), aluminum (Al), molybdenum (Mo), titanium (Ti), titanium nitride (TiN), titanium silicide (TiSi), cobalt silicide (CoSi), nickel silicide (NiSi), copper (Cu), tantalum nitride (TaN), nickel (Ni), titanium silicon nitride (TiSiN), combinations thereof, and the like. The filling material 142 may have a thickness from about 0.5 nm to about 10 nm. The filling material 142 may be formed using, for example, CVD, ALD, PVD, plating, and the like. A planarization process (e.g., CMP, grinding, etch-back, and the like) may be performed to remove excess portions of the conductive layer 140 and the filling material 142, such as portions of the conductive layer 140 and the filling material 142 formed above the third dielectric layer 132. Thus, the top surfaces of the conductive layer 140 and the filling material 142 may be flush with the top surface of the third dielectric layer 132.
在一些实施例中,导线143是电源轨,其是将外延源极/漏极区域92电连接至参考电压、电源电压等的导线。通过将电源轨放置在所得的半导体管芯的背侧而不是半导体管芯的前侧,可以实现优势。例如,可以增大纳米FET的栅极密度和/或前侧互连结构120的互连密度。此外,半导体管芯的背侧可以容纳更宽的电源轨,从而减小电阻并且提高至纳米FET的功率传输效率。例如,导线143的宽度可以是前侧互连结构120的第一级导线(例如,第一导电部件122)的宽度的至少两倍。此外,如下面将更详细讨论的,可以在相邻的导线143之间在与导线143相同的层中形成空气间隔件。空气间隔件可以将导线143彼此隔离,从而减小耦合电容。此外,改善的隔离允许使用更大的器件速度,这提高了器件性能。In some embodiments, the wire 143 is a power rail, which is a wire that electrically connects the epitaxial source/drain region 92 to a reference voltage, a power supply voltage, etc. Advantages can be achieved by placing the power rail on the back side of the resulting semiconductor die instead of the front side of the semiconductor die. For example, the gate density of the nano FET and/or the interconnection density of the front side interconnect structure 120 can be increased. In addition, the back side of the semiconductor die can accommodate a wider power rail, thereby reducing resistance and improving the power transmission efficiency to the nano FET. For example, the width of the wire 143 can be at least twice the width of the first level wire (e.g., the first conductive component 122) of the front side interconnect structure 120. In addition, as will be discussed in more detail below, air spacers can be formed between adjacent wires 143 in the same layer as the wire 143. The air spacers can isolate the wires 143 from each other, thereby reducing coupling capacitance. In addition, improved isolation allows the use of greater device speeds, which improves device performance.
在图30A至图30C中,对第三介电层132实施回蚀工艺。回蚀刻工艺可以对第三介电层132的材料具有高蚀刻选择性,从而使得在不显著去除导线143的情况下蚀刻第三介电层132。回蚀刻工艺可以是各向异性干蚀刻工艺。在一些实施例中,回蚀工艺可以包括诸如C4H6的蚀刻剂,其可以与氢(H2)、氧(O2)、它们的组合等混合。可以在从约5sccm至约200sccm的流速下提供蚀刻剂。可以在从约1mTorr至约100mTorr的压力下、持续从约5秒至约60秒的时间、用从约200V至约1,000V的偏置电压并且用从约50W至约250W的等离子体功率在腔中实施回蚀工艺。在一些实施例中,在回蚀工艺之后,第三介电层132的部分可以保留。例如,在回蚀刻工艺之后,第三介电层132可以具有从约0.5nm至约10nm的厚度。在一些实施例中,回蚀工艺可以完全去除第三介电层132,并且可以暴露STI区域68和第二介电层125的表面。In FIGS. 30A to 30C , an etch-back process is performed on the third dielectric layer 132. The etch-back process may have a high etch selectivity to the material of the third dielectric layer 132, so that the third dielectric layer 132 is etched without significantly removing the conductive line 143. The etch-back process may be an anisotropic dry etch process. In some embodiments, the etch-back process may include an etchant such as C 4 H 6 , which may be mixed with hydrogen (H 2 ), oxygen (O 2 ), combinations thereof, and the like. The etchant may be provided at a flow rate from about 5 sccm to about 200 sccm. The etch-back process may be performed in a chamber at a pressure from about 1 mTorr to about 100 mTorr, for a time from about 5 seconds to about 60 seconds, with a bias voltage from about 200 V to about 1,000 V, and with a plasma power from about 50 W to about 250 W. In some embodiments, after the etch-back process, a portion of the third dielectric layer 132 may remain. For example, after the etch-back process, the third dielectric layer 132 may have a thickness from about 0.5 nm to about 10 nm. In some embodiments, the etch-back process may completely remove the third dielectric layer 132 and may expose the STI region 68 and the surface of the second dielectric layer 125 .
在图31A至图31C中,在图30A至图30C的结构上方形成第四介电层144和第五介电层146。可以在第三介电层132的背面上方、在导电层140的侧壁和背面上方并且在填充材料142的背面上方沉积第四介电层144。可以在第四介电层144上方沉积第五介电层146。第四介电层144和第五介电层146可以包括介电材料,诸如碳化硅(SiC)、氧化镧(LaO)、氧化铝(AlO)、氮氧化铝(AlON)、氧化锆(ZrO)、氧化铪(HfO)、氮化硅(SiN)、硅(Si)、氧化锌(ZnO)、氮化锆(ZrN)、氧化铝锆(ZrAlO)、氧化钛(TiO)、氧化钽(TaO)、氧化钇(YO)、碳氮化钽(TaCN)、硅化锆(ZrSi)、碳氮氧化硅(SiOCN)、碳氧化硅(SiOC)、碳氮化硅(SiCN)、硅化铪(HfSi)、氧化镧(LaO)、氧化硅(SiO)、它们的组合或它们的多层等。第四介电层144和第五介电层146可以由不同的材料组成形成,从而使得可以在随后的处理步骤中选择性蚀刻第五介电层146。可以使用诸如CVD、ALD、PVD、PECVD等的适当工艺沉积第四介电层144和第五介电层146。第四介电层144和第五介电层146的相应厚度可以每个在从约0.5nm至约6nm的范围内。In Figures 31A to 31C, a fourth dielectric layer 144 and a fifth dielectric layer 146 are formed over the structure of Figures 30A to 30C. The fourth dielectric layer 144 may be deposited over the back surface of the third dielectric layer 132, over the sidewall and back surface of the conductive layer 140, and over the back surface of the filling material 142. The fifth dielectric layer 146 may be deposited over the fourth dielectric layer 144. The fourth dielectric layer 144 and the fifth dielectric layer 146 may include dielectric materials such as silicon carbide (SiC), lanthanum oxide (LaO), aluminum oxide (AlO), aluminum oxynitride (AlON), zirconium oxide (ZrO), hafnium oxide (HfO), silicon nitride (SiN), silicon (Si), zinc oxide (ZnO), zirconium nitride (ZrN), zirconium aluminum oxide (ZrAlO), titanium oxide (TiO), tantalum oxide (TaO), yttrium oxide (YO), tantalum carbonitride (TaCN), zirconium silicide (ZrSi), silicon oxycarbonitride (SiOCN), silicon oxycarbide (SiOC), silicon carbonitride (SiCN), hafnium silicide (HfSi), lanthanum oxide (LaO), silicon oxide (SiO), combinations thereof, or multiple layers thereof. The fourth dielectric layer 144 and the fifth dielectric layer 146 may be formed of different material compositions so that the fifth dielectric layer 146 may be selectively etched in a subsequent processing step. The fourth dielectric layer 144 and the fifth dielectric layer 146 may be deposited using a suitable process such as CVD, ALD, PVD, PECVD, etc. The respective thicknesses of the fourth dielectric layer 144 and the fifth dielectric layer 146 may each range from about 0.5 nm to about 6 nm.
在图32A至图32C中,蚀刻第五介电层146以形成第三间隔件147。可以使用诸如各向异性蚀刻工艺(例如,干蚀刻工艺)的合适的蚀刻工艺蚀刻第五介电层146。蚀刻工艺可以对第五介电层146的材料具有高蚀刻选择性,从而使得在不显著去除第四介电层144的材料的情况下蚀刻第五介电层146。在一些实施例中,第五介电层146可以包括二氧化硅(SiO2),并且第四介电层144可以包括氮化硅(SiN)、氧化铝(AlOx)、碳氧化硅(SiOC)等。在一些实施例中,第五介电层146可以包括氮化硅(SiN),并且第四介电层144可以包括二氧化硅(SiO2)、氧化铝(AlOx)、碳氧化硅(SiOC)等。如图32B和图32C所示,第三间隔件147设置在第四介电层144的侧壁上。In FIGS. 32A to 32C , the fifth dielectric layer 146 is etched to form a third spacer 147. The fifth dielectric layer 146 may be etched using a suitable etching process such as an anisotropic etching process (e.g., a dry etching process). The etching process may have a high etching selectivity to the material of the fifth dielectric layer 146, so that the fifth dielectric layer 146 is etched without significantly removing the material of the fourth dielectric layer 144. In some embodiments, the fifth dielectric layer 146 may include silicon dioxide (SiO 2 ), and the fourth dielectric layer 144 may include silicon nitride (SiN), aluminum oxide (AlO x ), silicon oxycarbide (SiOC), etc. In some embodiments, the fifth dielectric layer 146 may include silicon nitride (SiN), and the fourth dielectric layer 144 may include silicon dioxide (SiO 2 ), aluminum oxide (AlO x ), silicon oxycarbide (SiOC), etc. As shown in FIGS. 32B and 32C , the third spacer 147 is disposed on the sidewall of the fourth dielectric layer 144.
在一些实施例中,蚀刻工艺可以包括诸如C4H6的蚀刻剂,其可以与氢(H2)、氧(O2)、它们的组合等混合。可以在从约5sccm至约200sccm的流速下提供蚀刻剂。可以在从约1mTorr至约100mTorr的压力下、持续从约5秒至约60秒的时间、用从约200V至约1,000V的偏置电压并且用从约50W至约250W的等离子体功率在腔中实施回蚀工艺。在蚀刻工艺之后,第三间隔件147可以具有从约0.5nm至约6nm的宽度W1、从约1nm至约20nm的高度H1,并且高度H1与宽度W1的比率可以为从约1至约3。形成具有规定尺寸的第三间隔件147允许密封通过随后去除第三间隔件147形成的凹槽以形成与导线143相邻的空气间隔件。在包括导线143的层中以及在相邻导线143之间形成空气间隔件改善了导线143的隔离,这减小了耦合电容并且允许增大的器件速度。In some embodiments, the etching process may include an etchant such as C 4 H 6 , which may be mixed with hydrogen (H 2 ), oxygen (O 2 ), combinations thereof, and the like. The etchant may be provided at a flow rate of from about 5 sccm to about 200 sccm. The etch back process may be performed in the chamber at a pressure of from about 1 mTorr to about 100 mTorr, for a time of from about 5 seconds to about 60 seconds, with a bias voltage of from about 200 V to about 1,000 V, and with a plasma power of from about 50 W to about 250 W. After the etching process, the third spacer 147 may have a width W 1 of from about 0.5 nm to about 6 nm, a height H 1 of from about 1 nm to about 20 nm, and a ratio of the height H 1 to the width W 1 of from about 1 to about 3. Forming the third spacer 147 having a specified size allows sealing of a groove formed by subsequently removing the third spacer 147 to form an air spacer adjacent to the conductive line 143. Forming air spacers in the layer including the conductive lines 143 and between adjacent conductive lines 143 improves isolation of the conductive lines 143, which reduces coupling capacitance and allows for increased device speed.
在图33A至图33C中,在第四介电层144和第三间隔件147上方形成第六介电层148。第六介电层148可以包括介电材料,诸如碳化硅(SiC)、氧化镧(LaO)、氧化铝(AlO)、氮氧化铝(AlON)、氧化锆(ZrO)、氧化铪(HfO)、氮化硅(SiN)、硅(Si)、氧化锌(ZnO)、氮化锆(ZrN)、氧化铝锆(ZrAlO)、氧化钛(TiO)、氧化钽(TaO)、氧化钇(YO)、碳氮化钽(TaCN)、硅化锆(ZrSi)、碳氮氧化硅(SiOCN)、碳氧化硅(SiOC)、碳氮化硅(SiCN)、硅化铪(HfSi)、氧化镧(LaO)、氧化硅(SiO)、它们的组合或它们的多层等。可以使用诸如CVD、ALD、PVD、PECVD等的适当工艺沉积第六介电层148。第六介电层148可以具有从约0.5nm至约10nm的厚度。In FIGS. 33A to 33C , a sixth dielectric layer 148 is formed over the fourth dielectric layer 144 and the third spacer 147. The sixth dielectric layer 148 may include a dielectric material such as silicon carbide (SiC), lanthanum oxide (LaO), aluminum oxide (AlO), aluminum oxynitride (AlON), zirconium oxide (ZrO), hafnium oxide (HfO), silicon nitride (SiN), silicon (Si), zinc oxide (ZnO), zirconium nitride (ZrN), zirconium aluminum oxide (ZrAlO), titanium oxide (TiO), tantalum oxide (TaO), yttrium oxide (YO), tantalum carbonitride (TaCN), zirconium silicide (ZrSi), silicon oxycarbonitride (SiOCN), silicon oxycarbide (SiOC), silicon carbonitride (SiCN), hafnium silicide (HfSi), lanthanum oxide (LaO), silicon oxide (SiO), combinations thereof, or multiple layers thereof, etc. The sixth dielectric layer 148 may be deposited using a suitable process such as CVD, ALD, PVD, PECVD, etc. The sixth dielectric layer 148 may have a thickness from about 0.5 nm to about 10 nm.
在图34A至图34C中,在第六介电层148上方形成第七介电层150,并且对第七介电层150和第六介电层148实施平坦化工艺。第七介电层150可以包括介电材料,诸如碳化硅(SiC)、氧化镧(LaO)、氧化铝(AlO)、氮氧化铝(AlON)、氧化锆(ZrO)、氧化铪(HfO)、氮化硅(SiN)、硅(Si)、氧化锌(ZnO)、氮化锆(ZrN)、氧化铝锆(ZrAlO)、氧化钛(TiO)、氧化钽(TaO)、氧化钇(YO)、碳氮化钽(TaCN)、硅化锆(ZrSi)、碳氮氧化硅(SiOCN)、碳氧化硅(SiOC)、碳氮化硅(SiCN)、硅化铪(HfSi)、氧化镧(LaO)、氧化硅(SiO)、它们的组合或它们的多层等。可以使用诸如CVD、ALD、PVD、PECVD等的适当工艺沉积第七介电层150。第七介电层150可以具有从约1nm至约20nm的厚度。在一些实施例中,可以省略第六介电层148,并且可以直接在第四介电层144和第三间隔件147上沉积第七介电层150。34A to 34C , a seventh dielectric layer 150 is formed over the sixth dielectric layer 148, and a planarization process is performed on the seventh dielectric layer 150 and the sixth dielectric layer 148. The seventh dielectric layer 150 may include a dielectric material such as silicon carbide (SiC), lanthanum oxide (LaO), aluminum oxide (AlO), aluminum oxynitride (AlON), zirconium oxide (ZrO), hafnium oxide (HfO), silicon nitride (SiN), silicon (Si), zinc oxide (ZnO), zirconium nitride (ZrN), zirconium aluminum oxide (ZrAlO), titanium oxide (TiO), tantalum oxide (TaO), yttrium oxide (YO), tantalum carbonitride (TaCN), zirconium silicide (ZrSi), silicon oxycarbonitride (SiOCN), silicon oxycarbide (SiOC), silicon carbonitride (SiCN), hafnium silicide (HfSi), lanthanum oxide (LaO), silicon oxide (SiO), a combination thereof, or a multilayer thereof. The seventh dielectric layer 150 may be deposited using a suitable process such as CVD, ALD, PVD, PECVD, etc. The seventh dielectric layer 150 may have a thickness from about 1 nm to about 20 nm. In some embodiments, the sixth dielectric layer 148 may be omitted, and the seventh dielectric layer 150 may be deposited directly on the fourth dielectric layer 144 and the third spacer 147.
平坦化工艺可以是诸如CMP、研磨、回蚀等的工艺,并且可以实施以去除第七介电层150和第六介电层148的过量部分。例如,在第四介电层144的在导线143上方延伸的部分上方形成第七介电层150和第六介电层148的部分。因此,第七介电层150和第六介电层148的顶面可以与第四介电层144的顶面齐平。The planarization process may be a process such as CMP, grinding, etch-back, etc., and may be performed to remove excess portions of the seventh dielectric layer 150 and the sixth dielectric layer 148. For example, portions of the seventh dielectric layer 150 and the sixth dielectric layer 148 are formed over a portion of the fourth dielectric layer 144 extending over the conductive line 143. Thus, the top surfaces of the seventh dielectric layer 150 and the sixth dielectric layer 148 may be flush with the top surface of the fourth dielectric layer 144.
在图35A至图35C中,去除第三间隔件147,从而形成第七凹槽152。可以通过使用诸如各向同性蚀刻工艺(例如,湿蚀刻工艺)等合适的蚀刻工艺蚀刻来去除第三间隔件147。蚀刻工艺可以对第三间隔件147的材料具有高蚀刻选择性,从而使得在不显著去除第七介电层150、第六介电层148或第四介电层144的材料的情况下去除第三间隔件147。在一些实施例中,第三间隔件147可以包括二氧化硅(SiO2),并且第七介电层150、第六介电层148和第四介电层144可以包括选自氮化硅(SiN)、氧化铝(AlOx)、碳氧化硅(SiOC)等的材料。在一些实施例中,第三间隔件147可以包括氮化硅(SiN),并且第七介电层150、第六介电层148和第四介电层144可以包括选自二氧化硅(SiO2)、氧化铝(AlOx)、碳氧化硅(SiOC)等的材料。如图35B和图35C所示,去除第三间隔件147,从而使得第七凹槽暴露第六介电层148的侧壁、第四介电层144的侧壁和第四介电层144的背面。In FIGS. 35A to 35C , the third spacer 147 is removed to form the seventh recess 152. The third spacer 147 may be removed by etching using a suitable etching process such as an isotropic etching process (e.g., a wet etching process). The etching process may have a high etching selectivity to the material of the third spacer 147, so that the third spacer 147 is removed without significantly removing the material of the seventh dielectric layer 150, the sixth dielectric layer 148, or the fourth dielectric layer 144. In some embodiments, the third spacer 147 may include silicon dioxide (SiO 2 ), and the seventh dielectric layer 150, the sixth dielectric layer 148, and the fourth dielectric layer 144 may include a material selected from silicon nitride (SiN), aluminum oxide (AlO x ), silicon oxycarbide (SiOC), and the like. In some embodiments, the third spacer 147 may include silicon nitride (SiN), and the seventh dielectric layer 150, the sixth dielectric layer 148, and the fourth dielectric layer 144 may include a material selected from silicon dioxide ( SiO2 ), aluminum oxide ( AlOx ), silicon oxycarbide (SiOC), etc. As shown in FIGS. 35B and 35C, the third spacer 147 is removed so that the seventh recess exposes the sidewalls of the sixth dielectric layer 148, the sidewalls of the fourth dielectric layer 144, and the backside of the fourth dielectric layer 144.
在一些实施例中,蚀刻工艺可以包括诸如三氟化氮(NF3)的蚀刻剂,其可以与氢(H2)、溴化氢(HBr)、它们的组合等混合。可以在从约5sccm至约200sccm的流速下提供蚀刻剂。可以在从约1mTorr至约100mTorr的压力下、持续从约5秒至约180秒的时间、用从约50W至约250W的等离子体功率在腔中实施蚀刻工艺。在蚀刻工艺之后,第七凹槽152可以具有从约0.5nm至约6nm的宽度W1、从约1nm至约20nm的高度H1,并且高度H1与宽度W1的高宽比可以为从约1至约3。形成具有规定尺寸的第七凹槽152允许密封第七凹槽152以形成空气间隔件。在包括导线143的层中以及在相邻导线143之间形成空气间隔件改善了导线143的隔离,这减小了耦合电容并且允许增大的器件速度。In some embodiments, the etching process may include an etchant such as nitrogen trifluoride (NF 3 ), which may be mixed with hydrogen (H 2 ), hydrogen bromide (HBr), combinations thereof, and the like. The etchant may be provided at a flow rate from about 5 sccm to about 200 sccm. The etching process may be performed in a chamber at a pressure from about 1 mTorr to about 100 mTorr, for a time from about 5 seconds to about 180 seconds, with a plasma power from about 50 W to about 250 W. After the etching process, the seventh groove 152 may have a width W 1 from about 0.5 nm to about 6 nm, a height H 1 from about 1 nm to about 20 nm, and an aspect ratio of the height H 1 to the width W 1 may be from about 1 to about 3. Forming the seventh groove 152 having a specified size allows the seventh groove 152 to be sealed to form an air spacer. Forming an air spacer in a layer including the wire 143 and between adjacent wires 143 improves isolation of the wire 143, which reduces coupling capacitance and allows for increased device speed.
在图36A至图36C中,在第七介电层150、第六介电层148、第四介电层144和第七凹槽152上方并且在第七凹槽152的上部中形成第八介电层154,从而密封第七凹槽152并且在其中形成空气间隔件156(也称为气隙)。在一些实施例中,第八介电层154可以称为密封材料。第八介电层154可以包括介电材料,诸如碳化硅(SiC)、氧化镧(LaO)、氧化铝(AlO)、氮氧化铝(AlON)、氧化锆(ZrO)、氧化铪(HfO)、氮化硅(SiN)、硅(Si)、氧化锌(ZnO)、氮化锆(ZrN)、氧化铝锆(ZrAlO)、氧化钛(TiO)、氧化钽(TaO)、氧化钇(YO)、碳氮化钽(TaCN)、硅化锆(ZrSi)、碳氮氧化硅(SiOCN)、碳氧化硅(SiOC)、碳氮化硅(SiCN)、硅化铪(HfSi)、氧化镧(LaO)、氧化硅(SiO)、它们的组合或它们的多层等。可以使用诸如CVD、ALD、PVD、PECVD等的适当工艺沉积第八介电层154。第八介电层154可以具有从约5nm至约10nm的厚度。In FIGS. 36A to 36C , an eighth dielectric layer 154 is formed over the seventh dielectric layer 150, the sixth dielectric layer 148, the fourth dielectric layer 144, and the seventh groove 152 and in the upper portion of the seventh groove 152, thereby sealing the seventh groove 152 and forming an air spacer 156 (also referred to as an air gap) therein. In some embodiments, the eighth dielectric layer 154 may be referred to as a sealing material. The eighth dielectric layer 154 may include a dielectric material such as silicon carbide (SiC), lanthanum oxide (LaO), aluminum oxide (AlO), aluminum oxynitride (AlON), zirconium oxide (ZrO), hafnium oxide (HfO), silicon nitride (SiN), silicon (Si), zinc oxide (ZnO), zirconium nitride (ZrN), zirconium aluminum oxide (ZrAlO), titanium oxide (TiO), tantalum oxide (TaO), yttrium oxide (YO), tantalum carbonitride (TaCN), zirconium silicide (ZrSi), silicon oxycarbonitride (SiOCN), silicon oxycarbide (SiOC), silicon carbonitride (SiCN), hafnium silicide (HfSi), lanthanum oxide (LaO), silicon oxide (SiO), combinations thereof, or multilayers thereof, etc. The eighth dielectric layer 154 may be deposited using a suitable process such as CVD, ALD, PVD, PECVD, etc. The eighth dielectric layer 154 may have a thickness from about 5 nm to about 10 nm.
如图36A至图36C所示,第八介电层154可以部分延伸至第七凹槽152(见图35A至图35C)中以形成空气间隔件156。即使在随后平坦化第八介电层154之后(见图37A至图37C),形成部分延伸至第七凹槽152中的第八介电层154仍提供第八介电层154的材料以密封空气间隔件156。在不填充第七凹槽152的情况下,形成具有以上描述的尺寸和高宽比的第七凹槽152允许第八介电层154部分延伸至第七凹槽152中。形成具有低于规定范围的高宽比的第七凹槽152不允许第八介电层154的足够材料延伸至第七凹槽152中,从而使得在随后的平坦化之后,空气间隔件156不被第八介电层154密封。另一方面,在不形成空气间隔件156的情况下,形成具有大于规定范围的高宽比的第七凹槽152可以允许第八介电层154的材料填充第七凹槽152。在一些实施例中,可以基于用于第八介电层154的材料选择第七凹槽152的高宽比。As shown in FIGS. 36A to 36C , the eighth dielectric layer 154 may partially extend into the seventh recess 152 (see FIGS. 35A to 35C ) to form the air spacer 156. Forming the eighth dielectric layer 154 partially extending into the seventh recess 152 provides material of the eighth dielectric layer 154 to seal the air spacer 156 even after the eighth dielectric layer 154 is subsequently planarized (see FIGS. 37A to 37C ). Forming the seventh recess 152 having the dimensions and aspect ratio described above allows the eighth dielectric layer 154 to partially extend into the seventh recess 152 without filling the seventh recess 152. Forming the seventh recess 152 having an aspect ratio below the specified range does not allow sufficient material of the eighth dielectric layer 154 to extend into the seventh recess 152, so that the air spacer 156 is not sealed by the eighth dielectric layer 154 after subsequent planarization. On the other hand, forming the seventh groove 152 having an aspect ratio greater than a specified range may allow the material of the eighth dielectric layer 154 to fill the seventh groove 152 without forming the air spacer 156. In some embodiments, the aspect ratio of the seventh groove 152 may be selected based on the material used for the eighth dielectric layer 154.
空气间隔件156可以包括气体,诸如在第八介电层154的沉积期间使用的气体或可以扩散至空气间隔件156中的任何其它气体。空气间隔件156可具有低介电常数(例如,k值),诸如接近1的介电常数。空气间隔件156可以设置在与导线143相同的层中,并且可以设置在相邻的导线143之间。如图36B和图36C所示,第四介电层144可以限定空气间隔件156的前侧边界和侧边界,第六介电层可以限定空气间隔件156的侧边界,并且第八介电层154可以限定空气间隔件156的背侧边界。如图36B所示,可以在参考截面B-B’中沿第四介电层144的两个侧壁形成空气间隔件156,并且如图36C所示,可以在参考截面C-C’中沿第四介电层144的第三侧壁形成空气间隔件156。因此,空气间隔件156可以沿第四介电层144的至少三个侧壁延伸。在一些实施例中,空气间隔件156也可以在截面C-C’中沿第四介电层144的与第三侧壁相对的第四侧壁延伸。如图36B和图36C所示,空气间隔件156可以在平行于STI区域68和第二介电层125的背面的方向上与导线143相邻。空气间隔件156可以具有从约0.5nm至约6nm的宽度W2、从约0.5nm至约8nm的高度H2,并且高度H2与宽度W2的高宽比可以为从约1至约2。在不填充空气间隔件156的情况下,空气间隔件156的尺寸可以取决于第七凹槽152的尺寸,并且可以选择为使得空气间隔件156被第八介电层154密封。此外,第八介电层154可以延伸至第七凹槽152中足够的距离,从而使得空气间隔件156在随后处理之后保持密封。因为空气间隔件156具有低介电常数,所以空气间隔件156改善了导线153的隔离,从而减小了耦合电容。此外,改善的隔离度允许使用更高的器件速度,这提高了器件性能。The air spacer 156 may include a gas, such as a gas used during the deposition of the eighth dielectric layer 154 or any other gas that may diffuse into the air spacer 156. The air spacer 156 may have a low dielectric constant (e.g., k value), such as a dielectric constant close to 1. The air spacer 156 may be disposed in the same layer as the conductive line 143, and may be disposed between adjacent conductive lines 143. As shown in FIGS. 36B and 36C, the fourth dielectric layer 144 may define the front and side boundaries of the air spacer 156, the sixth dielectric layer may define the side boundaries of the air spacer 156, and the eighth dielectric layer 154 may define the back boundary of the air spacer 156. As shown in FIG. 36B, the air spacer 156 may be formed along both side walls of the fourth dielectric layer 144 in the reference cross section BB', and as shown in FIG. 36C, the air spacer 156 may be formed along the third side wall of the fourth dielectric layer 144 in the reference cross section CC'. Thus, the air spacer 156 may extend along at least three sidewalls of the fourth dielectric layer 144. In some embodiments, the air spacer 156 may also extend along a fourth sidewall of the fourth dielectric layer 144 opposite to the third sidewall in the cross section CC'. As shown in FIGS. 36B and 36C, the air spacer 156 may be adjacent to the wire 143 in a direction parallel to the back surface of the STI region 68 and the second dielectric layer 125. The air spacer 156 may have a width W2 from about 0.5 nm to about 6 nm, a height H2 from about 0.5 nm to about 8 nm, and an aspect ratio of the height H2 to the width W2 may be from about 1 to about 2. Without filling the air spacer 156, the size of the air spacer 156 may depend on the size of the seventh groove 152, and may be selected so that the air spacer 156 is sealed by the eighth dielectric layer 154. In addition, the eighth dielectric layer 154 may extend into the seventh groove 152 a sufficient distance so that the air spacer 156 remains sealed after subsequent processing. Because air spacers 156 have a low dielectric constant, air spacers 156 improve isolation of conductive lines 153, thereby reducing coupling capacitance. In addition, improved isolation allows higher device speeds to be used, which improves device performance.
在图37A至图38C中,对第八介电层154实施平坦化工艺。平坦化工艺可以是诸如CMP、研磨、回蚀等的工艺。在图37A至图37C所示的实施例中,平坦化工艺去除第八介电层154的部分,从而使得第八介电层154的顶面与第七介电层150、第六介电层148和第四介电层144的顶面齐平。在图38A至图38C所示的实施例中,平坦化工艺也去除了第七介电层150、第六介电层148和第四介电层144的部分。从而使得第八介电层154、第七介电层150、第六介电层148和第四介电层144的顶面与导线143的顶面齐平。在平坦化工艺之后,第八介电层154可以具有从约0.5nm至约5nm的厚度。In FIGS. 37A to 38C , a planarization process is performed on the eighth dielectric layer 154. The planarization process may be a process such as CMP, grinding, etch-back, etc. In the embodiment shown in FIGS. 37A to 37C , the planarization process removes a portion of the eighth dielectric layer 154 so that the top surface of the eighth dielectric layer 154 is flush with the top surfaces of the seventh dielectric layer 150, the sixth dielectric layer 148, and the fourth dielectric layer 144. In the embodiment shown in FIGS. 38A to 38C , the planarization process also removes a portion of the seventh dielectric layer 150, the sixth dielectric layer 148, and the fourth dielectric layer 144. Thus, the top surfaces of the eighth dielectric layer 154, the seventh dielectric layer 150, the sixth dielectric layer 148, and the fourth dielectric layer 144 are flush with the top surface of the conductive line 143. After the planarization process, the eighth dielectric layer 154 may have a thickness from about 0.5 nm to about 5 nm.
在图39A至图39C中,在第七介电层150、第六介电层148、第八介电层154、第四介电层144和导线143上方形成背侧互连结构164的剩余部分。背侧互连结构164可以称为背侧互连结构,因为它在晶体管结构109的背侧(例如,晶体管结构109的与晶体管结构109的前侧相对的侧)上形成。背侧互连结构164可以包括导线143、第三介电层132、第四介电层144、第六介电层148、第七介电层150、第八介电层154和空气间隔件156。39A to 39C , the remaining portion of the backside interconnect structure 164 is formed over the seventh dielectric layer 150, the sixth dielectric layer 148, the eighth dielectric layer 154, the fourth dielectric layer 144, and the conductive line 143. The backside interconnect structure 164 may be referred to as a backside interconnect structure because it is formed on the back side of the transistor structure 109 (e.g., the side of the transistor structure 109 opposite to the front side of the transistor structure 109). The backside interconnect structure 164 may include the conductive line 143, the third dielectric layer 132, the fourth dielectric layer 144, the sixth dielectric layer 148, the seventh dielectric layer 150, the eighth dielectric layer 154, and the air spacer 156.
背侧互连结构164的剩余部分可以包括与用于以上关于图21A至图21C所讨论的前侧互连结构120的那些相同或类似的材料,并且使用与用于以上关于图21A至图21C所讨论的前侧互连结构120的那些相同或类似的工艺形成。特别地,背侧互连结构164可以包括形成在第九介电层160中的第二导电部件162的堆叠层。第二导电部件162可以包括布线(例如,用于布线至随后形成的接触焊盘和外部连接件并且从随后形成的接触焊盘和外部连接件布线)。可以进一步图案化第二导电部件162以包括一个或多个嵌入式无源器件,诸如电阻器、电容器、电感器等。嵌入式无源器件可以与导线143(例如,电源轨)集成以在纳米FET的背侧上提供电路(例如,电源电路)。The remainder of the backside interconnect structure 164 may include the same or similar materials as those used for the frontside interconnect structure 120 discussed above with respect to FIGS. 21A to 21C and may be formed using the same or similar processes as those used for the frontside interconnect structure 120 discussed above with respect to FIGS. 21A to 21C. In particular, the backside interconnect structure 164 may include a stacked layer of second conductive components 162 formed in the ninth dielectric layer 160. The second conductive components 162 may include wiring (e.g., for wiring to and from subsequently formed contact pads and external connectors). The second conductive components 162 may be further patterned to include one or more embedded passive devices, such as resistors, capacitors, inductors, and the like. The embedded passive devices may be integrated with the wires 143 (e.g., power rails) to provide circuits (e.g., power circuits) on the back side of the nanoFET.
在图40A至图40C中,在背侧互连结构164上方形成钝化层166、UBM168和外部连接件170。钝化层166可以包括聚合物,诸如PBO、聚酰亚胺、BCB等。可选地,钝化层166可以包括非有机介电材料,诸如氧化硅、氮化硅、碳化硅、氮氧化硅等。可以通过例如CVD、PVD、ALD等沉积钝化层166。In FIGS. 40A to 40C , a passivation layer 166, UBM 168, and external connector 170 are formed over backside interconnect structure 164. Passivation layer 166 may include a polymer such as PBO, polyimide, BCB, etc. Alternatively, passivation layer 166 may include a non-organic dielectric material such as silicon oxide, silicon nitride, silicon carbide, silicon oxynitride, etc. Passivation layer 166 may be deposited by, for example, CVD, PVD, ALD, etc.
穿过钝化层166至背侧互连结构164中的第二导电部件162形成UBM168,并且在UBM168上形成外部连接件170。UBM 168可包括通过镀工艺等形成的铜、镍、金等的一层或多层。在UBM 168上形成外部连接件170(例如,焊球)。外部连接件170的形成可以包括将焊球放置在UBM 168的暴露部分上并且回流焊球。在一些实施例中,外部连接件170的形成包括实施镀步骤以在最顶部第二导电部件162上方形成焊料区域,并且然后回流焊料区域。UBM 168和外部连接件170可以用于提供至其它电组件(诸如其它器件管芯、再分布结构、印刷电路板(PCB)、母板等)的输入/输出连接。UBM 168和外部连接件170也可以被为背侧输入/输出焊盘,其可以提供至以上描述的纳米FET的信号、电源电压和/或接地连接。A UBM 168 is formed through the passivation layer 166 to the second conductive component 162 in the backside interconnect structure 164, and an external connector 170 is formed on the UBM 168. The UBM 168 may include one or more layers of copper, nickel, gold, etc. formed by a plating process, etc. An external connector 170 (e.g., a solder ball) is formed on the UBM 168. The formation of the external connector 170 may include placing a solder ball on an exposed portion of the UBM 168 and reflowing the solder ball. In some embodiments, the formation of the external connector 170 includes performing a plating step to form a solder area above the top second conductive component 162, and then reflowing the solder area. The UBM 168 and the external connector 170 can be used to provide input/output connections to other electrical components (such as other device dies, redistribution structures, printed circuit boards (PCBs), motherboards, etc.). The UBM 168 and the external connector 170 can also be backside input/output pads, which can provide signals, power supply voltages, and/or ground connections to the nano FETs described above.
实施例可以实现优势。例如,在与导线143相邻的背侧互连结构164中以及相邻导线143之间包括空气间隔件156将导线143隔离、减小了耦合电容并且允许使用更大的器件速度。这提高了器件性能。Embodiments can achieve advantages. For example, including air spacers 156 in backside interconnect structures 164 adjacent to conductive lines 143 and between adjacent conductive lines 143 isolates conductive lines 143, reduces coupling capacitance, and allows for greater device speeds to be used. This improves device performance.
根据实施例,器件包括:第一晶体管结构;前侧互连结构,位于第一晶体管结构的前侧上;以及背侧互连结构,位于第一晶体管结构的背侧上,背侧互连结构包括:第一介电层,位于第一晶体管结构的背侧上;第一通孔,延伸穿过第一介电层,第一通孔电耦接至第一晶体管结构的源极/漏极区域;第一导线,电耦接至第一通孔;以及空气间隔件,在平行于第一介电层的背侧的方向上与第一导线相邻。在实施例中,第一导线是电源线或电接地线。在实施例中,空气间隔件的高度与空气间隔件的宽度的高宽比为从1至2。在实施例中,背侧互连结构还包括:第二介电层,介于空气间隔件和第一导线之间,第二介电层限定空气间隔件的第一边界和空气间隔件的垂直于第一边界的第二边界。在实施例中,背侧互连结构还包括:第三介电层,位于第二介电层上方,第三介电层限定空气间隔件的与第一边界相对的第三边界。在实施例中,背侧互连结构还包括:第四介电层,从第二介电层延伸至第三介电层,第四介电层限定空气间隔件的与第二边界相对的第四边界。在实施例中,导线、第二介电层、第三介电层和第四介电层的背面彼此齐平。According to an embodiment, a device includes: a first transistor structure; a front-side interconnect structure located on the front side of the first transistor structure; and a back-side interconnect structure located on the back side of the first transistor structure, the back-side interconnect structure including: a first dielectric layer located on the back side of the first transistor structure; a first through hole extending through the first dielectric layer, the first through hole electrically coupled to the source/drain region of the first transistor structure; a first conductive line electrically coupled to the first through hole; and an air spacer adjacent to the first conductive line in a direction parallel to the back side of the first dielectric layer. In an embodiment, the first conductive line is a power line or an electrical ground line. In an embodiment, the aspect ratio of the height of the air spacer to the width of the air spacer is from 1 to 2. In an embodiment, the back-side interconnect structure further includes: a second dielectric layer between the air spacer and the first conductive line, the second dielectric layer defining a first boundary of the air spacer and a second boundary of the air spacer perpendicular to the first boundary. In an embodiment, the back-side interconnect structure further includes: a third dielectric layer located above the second dielectric layer, the third dielectric layer defining a third boundary of the air spacer opposite to the first boundary. In an embodiment, the backside interconnect structure further comprises: a fourth dielectric layer extending from the second dielectric layer to the third dielectric layer, the fourth dielectric layer defining a fourth boundary of the air spacer opposite to the second boundary. In an embodiment, the backsides of the conductive line, the second dielectric layer, the third dielectric layer and the fourth dielectric layer are flush with each other.
根据另一实施例,器件包括:晶体管结构;前侧互连结构,位于晶体管结构的前侧上;以及背侧互连结构,位于晶体管结构的背侧上,背侧互连结构包括:导线,通过背侧通孔电耦接至晶体管结构的源极/漏极区域;第一介电层,接触导线的侧面;以及气隙,与第一介电层相邻,第一介电层的侧面限定气隙的第一边界。在实施例中,第一介电层的背面限定气隙的垂直于第一边界的第二边界。在实施例中,第一介电层上方的第二介电层限定气隙的与第一边界相对的第三边界,并且从第一介电层延伸至第二介电层的第三介电层限定气隙的垂直于第一边界的第四边界。在实施例中,第一边界和第三边界的高度与第二边界和第四边界的宽度的高宽比为从1至2。在实施例中,导线是电源线或电接地线。在实施例中,器件还包括:第二介电层,位于晶体管结构的背侧上方,背侧通孔延伸穿过第二介电层,并且导线、第一介电层和气隙位于第二介电层上方。在实施例中,在截面图中,气隙与第一介电层的三个或更多个侧面相邻。According to another embodiment, a device includes: a transistor structure; a front-side interconnect structure located on the front side of the transistor structure; and a back-side interconnect structure located on the back side of the transistor structure, the back-side interconnect structure including: a wire electrically coupled to a source/drain region of the transistor structure through a back-side via; a first dielectric layer contacting a side of the wire; and an air gap adjacent to the first dielectric layer, the side of the first dielectric layer defining a first boundary of the air gap. In an embodiment, the back side of the first dielectric layer defines a second boundary of the air gap perpendicular to the first boundary. In an embodiment, a second dielectric layer above the first dielectric layer defines a third boundary of the air gap opposite to the first boundary, and a third dielectric layer extending from the first dielectric layer to the second dielectric layer defines a fourth boundary of the air gap perpendicular to the first boundary. In an embodiment, the aspect ratio of the height of the first boundary and the third boundary to the width of the second boundary and the fourth boundary is from 1 to 2. In an embodiment, the wire is a power line or an electrical ground line. In an embodiment, the device further comprises: a second dielectric layer located above the back side of the transistor structure, the back side via extending through the second dielectric layer, and the conductive line, the first dielectric layer and the air gap located above the second dielectric layer. In an embodiment, in a cross-sectional view, the air gap is adjacent to three or more sides of the first dielectric layer.
根据又一实施例,方法包括:在第一衬底上形成第一晶体管;暴露第一外延材料,暴露第一外延材料包括减薄第一衬底的背侧;用背侧通孔代替第一外延材料,背侧通孔电耦接至第一晶体管的源极/漏极区域;在背侧通孔上方形成导线,导线电耦接至背侧通孔;形成与导线相邻的伪间隔件;蚀刻伪间隔件以形成第一凹槽;以及密封第一凹槽以形成空气间隔件。在实施例中,形成伪间隔件包括:在导线上方沉积伪间隔件层;以及各向异性蚀刻伪间隔件层以形成伪间隔件。在实施例中,在各向异性蚀刻之后,伪间隔件的高度与伪间隔件的宽度的比率为从1至3。在实施例中,方法还包括:在导线上方形成第一介电层,其中,沿第一介电层的侧壁形成伪间隔件,并且其中,蚀刻伪间隔件暴露第一介电层的表面,第一介电层限定空气间隔件的边界。在实施例中,方法还包括:在伪间隔件上方形成第二介电层;以及平坦化第一介电层、伪间隔件和第二介电层,第二介电层限定空气间隔件的其它边界。在实施例中,密封第一凹槽包括:在第一介电层、第二介电层和第一凹槽上方沉积密封材料;以及平坦化密封材料、第一介电层和第二介电层。According to yet another embodiment, the method includes: forming a first transistor on a first substrate; exposing a first epitaxial material, exposing the first epitaxial material includes thinning the back side of the first substrate; replacing the first epitaxial material with a backside via, the backside via being electrically coupled to the source/drain region of the first transistor; forming a conductive line above the backside via, the conductive line being electrically coupled to the backside via; forming a dummy spacer adjacent to the conductive line; etching the dummy spacer to form a first groove; and sealing the first groove to form an air spacer. In an embodiment, forming the dummy spacer includes: depositing a dummy spacer layer above the conductive line; and anisotropically etching the dummy spacer layer to form the dummy spacer. In an embodiment, after the anisotropic etching, the ratio of the height of the dummy spacer to the width of the dummy spacer is from 1 to 3. In an embodiment, the method also includes: forming a first dielectric layer above the conductive line, wherein the dummy spacer is formed along the sidewall of the first dielectric layer, and wherein etching the dummy spacer exposes a surface of the first dielectric layer, and the first dielectric layer defines the boundary of the air spacer. In an embodiment, the method further comprises: forming a second dielectric layer over the dummy spacer; and planarizing the first dielectric layer, the dummy spacer, and the second dielectric layer, the second dielectric layer defining other boundaries of the air spacer. In an embodiment, sealing the first groove comprises: depositing a sealing material over the first dielectric layer, the second dielectric layer, and the first groove; and planarizing the sealing material, the first dielectric layer, and the second dielectric layer.
上面概述了若干实施例的特征,使得本领域技术人员可以更好地理解本发明的方面。本领域技术人员应该理解,它们可以容易地使用本发明作为基础来设计或修改用于实施与本文所介绍实施例相同的目的和/或实现相同优势的其它工艺和结构。本领域技术人员也应该意识到,这种等同构造并不背离本发明的精神和范围,并且在不背离本发明的精神和范围的情况下,本文中它们可以做出多种变化、替换以及改变。The features of several embodiments are summarized above so that those skilled in the art can better understand aspects of the present invention. Those skilled in the art should understand that they can easily use the present invention as a basis to design or modify other processes and structures for implementing the same purpose and/or achieving the same advantages as the embodiments introduced herein. Those skilled in the art should also appreciate that such equivalent constructions do not deviate from the spirit and scope of the present invention, and that they can make various changes, substitutions and modifications herein without departing from the spirit and scope of the present invention.
Claims (20)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063058660P | 2020-07-30 | 2020-07-30 | |
US63/058,660 | 2020-07-30 | ||
US17/088,002 | 2020-11-03 | ||
US17/088,002 US11557510B2 (en) | 2020-07-30 | 2020-11-03 | Spacers for semiconductor devices including backside power rails |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113675195A CN113675195A (en) | 2021-11-19 |
CN113675195B true CN113675195B (en) | 2024-10-18 |
Family
ID=77411531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110180184.4A Active CN113675195B (en) | 2020-07-30 | 2021-02-08 | Semiconductor device and method for forming the same |
Country Status (7)
Country | Link |
---|---|
US (3) | US11557510B2 (en) |
EP (1) | EP3945551A1 (en) |
JP (1) | JP2022027649A (en) |
KR (1) | KR102594434B1 (en) |
CN (1) | CN113675195B (en) |
DE (1) | DE102020129257B4 (en) |
TW (1) | TWI757063B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12051692B2 (en) * | 2021-02-16 | 2024-07-30 | Intel Corporation | Integrated circuit structure with front side signal lines and backside power delivery |
US12237267B2 (en) * | 2022-01-27 | 2025-02-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Memory devices and methods of manufacturing thereof |
US20230317633A1 (en) * | 2022-03-30 | 2023-10-05 | Win Semiconductors Corp. | Semiconductor chip |
US20240021673A1 (en) * | 2022-07-13 | 2024-01-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150057787A (en) * | 2013-11-20 | 2015-05-28 | 삼성전자주식회사 | Semiconductor devices having through electrodes and methods for fabricating the same |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7560375B2 (en) * | 2004-09-30 | 2009-07-14 | International Business Machines Corporation | Gas dielectric structure forming methods |
US7816231B2 (en) * | 2006-08-29 | 2010-10-19 | International Business Machines Corporation | Device structures including backside contacts, and methods for forming same |
US7910473B2 (en) * | 2008-12-31 | 2011-03-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Through-silicon via with air gap |
US9236267B2 (en) | 2012-02-09 | 2016-01-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Cut-mask patterning process for fin-like field effect transistor (FinFET) device |
US9245799B2 (en) | 2012-05-31 | 2016-01-26 | Intel Deutschland Gmbh | Semiconductor device and method of manufacturing thereof |
US9006829B2 (en) | 2012-08-24 | 2015-04-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Aligned gate-all-around structure |
US9209247B2 (en) | 2013-05-10 | 2015-12-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Self-aligned wrapped-around structure |
US9136332B2 (en) | 2013-12-10 | 2015-09-15 | Taiwan Semiconductor Manufacturing Company Limited | Method for forming a nanowire field effect transistor device having a replacement gate |
US9136106B2 (en) | 2013-12-19 | 2015-09-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for integrated circuit patterning |
US9390965B2 (en) * | 2013-12-20 | 2016-07-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Air-gap forming techniques for interconnect structures |
US9608116B2 (en) | 2014-06-27 | 2017-03-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | FINFETs with wrap-around silicide and method forming the same |
US9412817B2 (en) | 2014-12-19 | 2016-08-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Silicide regions in vertical gate all around (VGAA) devices and methods of forming same |
US9536738B2 (en) | 2015-02-13 | 2017-01-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Vertical gate all around (VGAA) devices and methods of manufacturing the same |
US9666523B2 (en) * | 2015-07-24 | 2017-05-30 | Nxp Usa, Inc. | Semiconductor wafers with through substrate vias and back metal, and methods of fabrication thereof |
US9502265B1 (en) | 2015-11-04 | 2016-11-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Vertical gate all around (VGAA) transistors and methods of forming the same |
US9520482B1 (en) | 2015-11-13 | 2016-12-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of cutting metal gate |
US9799655B1 (en) | 2016-04-25 | 2017-10-24 | International Business Machines Corporation | Flipped vertical field-effect-transistor |
US10211146B2 (en) * | 2016-05-12 | 2019-02-19 | Globalfoundries Inc. | Air gap over transistor gate and related method |
US10157777B2 (en) | 2016-05-12 | 2018-12-18 | Globalfoundries Inc. | Air gap over transistor gate and related method |
US9831346B1 (en) * | 2016-07-27 | 2017-11-28 | GlobalFoundries, Inc. | FinFETs with air-gap spacers and methods for forming the same |
US9780210B1 (en) * | 2016-08-11 | 2017-10-03 | Qualcomm Incorporated | Backside semiconductor growth |
CN119050097A (en) * | 2016-08-26 | 2024-11-29 | 英特尔公司 | Integrated circuit device structure and double-sided manufacturing technique |
KR102687971B1 (en) * | 2016-11-28 | 2024-07-25 | 삼성전자주식회사 | Semiconductor devices and method for fabricating the same |
US10319627B2 (en) | 2016-12-13 | 2019-06-11 | Globalfoundries Inc. | Air-gap spacers for field-effect transistors |
US10534273B2 (en) * | 2016-12-13 | 2020-01-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | Multi-metal fill with self-aligned patterning and dielectric with voids |
US10037912B2 (en) * | 2016-12-14 | 2018-07-31 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and method of manufacturing the same |
US10700207B2 (en) | 2017-11-30 | 2020-06-30 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor device integrating backside power grid and related integrated circuit and fabrication method |
US11011617B2 (en) * | 2018-03-23 | 2021-05-18 | International Business Machines Corporation | Formation of a partial air-gap spacer |
US10535771B1 (en) | 2018-06-25 | 2020-01-14 | Globalfoundries Inc. | Method for forming replacement air gap |
US11742346B2 (en) | 2018-06-29 | 2023-08-29 | Intel Corporation | Interconnect techniques for electrically connecting source/drain regions of stacked transistors |
US11244898B2 (en) * | 2018-06-29 | 2022-02-08 | Taiwan Semiconductor Manufacturing Co., Ltd | Integrated circuit interconnect structures with air gaps |
US20200098857A1 (en) | 2018-09-25 | 2020-03-26 | Semiconductor Components Industries, Llc | Narrow-mesa super-junction mosfet |
US10886378B2 (en) | 2019-01-02 | 2021-01-05 | Globalfoundries Inc. | Method of forming air-gap spacers and gate contact over active region and the resulting device |
JP2020150234A (en) | 2019-03-15 | 2020-09-17 | キオクシア株式会社 | Semiconductor storage device |
US11489043B2 (en) * | 2020-04-27 | 2022-11-01 | Sandisk Technologies Llc | Three-dimensional memory device employing thinned insulating layers and methods for forming the same |
-
2020
- 2020-11-03 US US17/088,002 patent/US11557510B2/en active Active
- 2020-11-06 DE DE102020129257.0A patent/DE102020129257B4/en active Active
- 2020-12-30 KR KR1020200187345A patent/KR102594434B1/en active Active
-
2021
- 2021-01-21 TW TW110102385A patent/TWI757063B/en active
- 2021-02-08 CN CN202110180184.4A patent/CN113675195B/en active Active
- 2021-07-29 EP EP21188620.5A patent/EP3945551A1/en not_active Withdrawn
- 2021-07-29 JP JP2021124793A patent/JP2022027649A/en active Pending
-
2022
- 2022-07-26 US US17/815,080 patent/US20220367241A1/en active Pending
-
2024
- 2024-07-26 US US18/785,934 patent/US20240387249A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150057787A (en) * | 2013-11-20 | 2015-05-28 | 삼성전자주식회사 | Semiconductor devices having through electrodes and methods for fabricating the same |
Also Published As
Publication number | Publication date |
---|---|
US20220367241A1 (en) | 2022-11-17 |
TWI757063B (en) | 2022-03-01 |
US20240387249A1 (en) | 2024-11-21 |
JP2022027649A (en) | 2022-02-10 |
KR102594434B1 (en) | 2023-10-25 |
US20220037192A1 (en) | 2022-02-03 |
US11557510B2 (en) | 2023-01-17 |
DE102020129257A1 (en) | 2022-02-03 |
KR20220015291A (en) | 2022-02-08 |
TW202205597A (en) | 2022-02-01 |
CN113675195A (en) | 2021-11-19 |
EP3945551A1 (en) | 2022-02-02 |
DE102020129257B4 (en) | 2023-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11349004B2 (en) | Backside vias in semiconductor device | |
CN113140546B (en) | Semiconductor device and method for forming the same | |
TWI801824B (en) | Semiconductor device and method of forming thereof | |
CN113675196B (en) | Semiconductor device and method of forming the same | |
CN113517280B (en) | Semiconductor device and method for forming the same | |
US20210376094A1 (en) | Semiconductor devices and methods of forming the same | |
CN113675195B (en) | Semiconductor device and method for forming the same | |
US20240387630A1 (en) | Integrated circuit structure and method for forming the same | |
TWI885414B (en) | Semiconductor device and method of manufacturing thereof | |
US20240274485A1 (en) | Heat dissipation in semiconductor devices | |
CN117393503A (en) | Semiconductor devices and methods of forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |