CN113644158B - Upper incident light type infrared sensor element and its manufacturing method - Google Patents
Upper incident light type infrared sensor element and its manufacturing method Download PDFInfo
- Publication number
- CN113644158B CN113644158B CN202110914145.2A CN202110914145A CN113644158B CN 113644158 B CN113644158 B CN 113644158B CN 202110914145 A CN202110914145 A CN 202110914145A CN 113644158 B CN113644158 B CN 113644158B
- Authority
- CN
- China
- Prior art keywords
- type electrode
- ohmic contact
- layer
- compound semiconductor
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000004065 semiconductor Substances 0.000 claims abstract description 165
- 239000000758 substrate Substances 0.000 claims abstract description 124
- 150000001875 compounds Chemical class 0.000 claims abstract description 123
- 238000000034 method Methods 0.000 claims abstract description 37
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 239000012790 adhesive layer Substances 0.000 claims abstract description 18
- 239000010410 layer Substances 0.000 claims description 202
- 239000013078 crystal Substances 0.000 claims description 56
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 48
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 claims description 47
- 229910052751 metal Inorganic materials 0.000 claims description 34
- 239000002184 metal Substances 0.000 claims description 34
- 238000010521 absorption reaction Methods 0.000 claims description 25
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 17
- 229920001721 polyimide Polymers 0.000 claims description 17
- 235000012239 silicon dioxide Nutrition 0.000 claims description 16
- 230000000903 blocking effect Effects 0.000 claims description 15
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 13
- 230000007547 defect Effects 0.000 claims description 13
- 239000010703 silicon Substances 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 239000003822 epoxy resin Substances 0.000 claims description 12
- 229920000647 polyepoxide Polymers 0.000 claims description 12
- 239000011241 protective layer Substances 0.000 claims description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 11
- 239000000377 silicon dioxide Substances 0.000 claims description 11
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 11
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 11
- 229910002027 silica gel Inorganic materials 0.000 claims description 10
- 239000000741 silica gel Substances 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000004642 Polyimide Substances 0.000 claims description 6
- 229910052785 arsenic Inorganic materials 0.000 claims description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 5
- 229910052733 gallium Inorganic materials 0.000 claims description 5
- 239000010453 quartz Substances 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims 2
- 239000000499 gel Substances 0.000 claims 1
- 238000001259 photo etching Methods 0.000 claims 1
- 239000010408 film Substances 0.000 description 107
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 16
- 239000000463 material Substances 0.000 description 15
- 229910000673 Indium arsenide Inorganic materials 0.000 description 12
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 12
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 10
- 238000005530 etching Methods 0.000 description 10
- 229910052804 chromium Inorganic materials 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000000206 photolithography Methods 0.000 description 6
- 229910052787 antimony Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 4
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- -1 InSb compound Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000003486 chemical etching Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/223—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PIN barrier
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/10—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
- G01J5/20—Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
- G01J5/22—Electrical features thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/16—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of types provided for in two or more different subclasses of H10B, H10D, H10F, H10H, H10K or H10N, e.g. forming hybrid circuits
- H01L25/167—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of types provided for in two or more different subclasses of H10B, H10D, H10F, H10H, H10K or H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/221—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PN homojunction
- H10F30/2215—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PN homojunction the devices comprising active layers made of only Group III-V materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/222—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PN heterojunction
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/127—The active layers comprising only Group III-V materials, e.g. GaAs or InP
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/139—Manufacture or treatment of devices covered by this subclass using temporary substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
技术领域Technical Field
本申请公开内容涉及半导体技术领域,尤其涉及一种上入光式红外传感器元件以及相应的制造方法。The disclosure of the present application relates to the field of semiconductor technology, and in particular to a top-incident infrared sensor element and a corresponding manufacturing method.
背景技术Background technique
红外传感器已经广泛应用于各个领域,例如通过检测人而使得照明、空调以及电视等家用电器自动开关的人体传感器以及防范用的监视传感器等等。另外,红外传感器还可以用于检测甲烷等可燃易爆气体的泄漏。Infrared sensors have been widely used in various fields, such as human sensors that automatically turn on and off household appliances such as lighting, air conditioning, and televisions by detecting people, as well as surveillance sensors for prevention, etc. In addition, infrared sensors can also be used to detect the leakage of flammable and explosive gases such as methane.
现有的一种类型的红外传感器是利用热电效应的热电型红外传感器。由于其中的热电元件阻抗极高,容易受到电磁噪声及热波动的影响。因此,需要使用金属外壳封装等进行屏蔽。此外,I-V变换电路中必须要有大的电阻和电容,因此难以小型化。One type of existing infrared sensor is a pyroelectric infrared sensor that uses the pyroelectric effect. Since the pyroelectric element has a very high impedance, it is easily affected by electromagnetic noise and thermal fluctuations. Therefore, it needs to be shielded by a metal shell package. In addition, the I-V conversion circuit must have large resistance and capacitance, so it is difficult to miniaturize.
另一种类型的红外传感器是量子型的,HgCdTe(MCT)及InSb系列是通常使用的材料。其必须使用液氮、液氦或利用帕尔贴效应的电子冷却等将传感器冷却。一般,量子型红外传感器可以达到热电传感器的100倍或更高的灵敏度。另外,元件电阻可以小到数十~数百欧姆,很少受电子噪声及热波动的影响。但是,对于封装而言,由于必须冷却到低温,所以需使用牢固的金属封装。Another type of infrared sensor is the quantum type, and HgCdTe (MCT) and InSb series are commonly used materials. The sensor must be cooled using liquid nitrogen, liquid helium, or electronic cooling using the Peltier effect. Generally, quantum infrared sensors can achieve a sensitivity 100 times or more of that of thermoelectric sensors. In addition, the element resistance can be as small as tens to hundreds of ohms, and is rarely affected by electronic noise and thermal fluctuations. However, for packaging, since it must be cooled to a low temperature, a strong metal package must be used.
对于InSb系列,根据要检测的波长研究InAsxSb1-x的混晶层。例如,尝试使用InSb基板在其上将InSb的一部分置换为As的外延生长法等。For the InSb series, mixed crystal layers of InAs x Sb 1-x are studied according to the wavelength to be detected. For example, an epitaxial growth method is attempted using an InSb substrate and replacing a portion of InSb with As.
此外,提出了在集成了读出及信号处理电路的基板之上使用红外传感器部分生长的单片结构。然而,在信号处理电路上生长作为红外传感器核心的化合物半导体薄膜的技术极为困难,不容易得到可用作实用器件的膜。在信号处理电路运行时产生的热成为对在其上以单片方式形成的红外传感器部分的热波动的噪声而出现产生错误信号的问题。所以,为了抑制这一热波动的影响,必须利用液氮等使整个传感器冷却。这样的冷却限制了红外传感器的使用。In addition, a monolithic structure using an infrared sensor part grown on a substrate integrated with a readout and signal processing circuit is proposed. However, the technology of growing a compound semiconductor thin film as the core of the infrared sensor on a signal processing circuit is extremely difficult, and it is not easy to obtain a film that can be used as a practical device. The heat generated when the signal processing circuit is running becomes noise to the thermal fluctuation of the infrared sensor part formed thereon in a monolithic manner, and the problem of generating an erroneous signal occurs. Therefore, in order to suppress the influence of this thermal fluctuation, the entire sensor must be cooled using liquid nitrogen or the like. Such cooling limits the use of infrared sensors.
发明内容Summary of the invention
鉴于上述,本发明的目的在于提供一种可在室温下工作,不易受暗电流、电磁噪声以及热波动的影响的紧凑型上入光式红外传感器元件以及其制造方法。In view of the above, an object of the present invention is to provide a compact top-illuminated infrared sensor element that can operate at room temperature and is not easily affected by dark current, electromagnetic noise, and thermal fluctuations, and a method for manufacturing the same.
本发明的发明人发现通过将化合物半导体叠层的电阻变小、将红外光子吸收叠层的面缺陷密度减小至100/cm2以下、以及使得该化合物半导体叠层和处理从该化合物半导体叠层输出的电信号的集成电路集成在同一基板上,并且封装在同一封装体内,可以在室温下进行检测。另外,通过这样的方式,可以使得本发明的红外传感器不易受暗电流、电磁噪声和热波动的影响。在本发明中,可以使得红外传感器电路中的化合物半导体叠层电阻小,信号输出电路中的电阻和电容可以很小,从而允许上入光式红外传感器元件小型化。The inventors of the present invention have found that by reducing the resistance of the compound semiconductor stack, reducing the surface defect density of the infrared photon absorption stack to less than 100/ cm2 , and integrating the compound semiconductor stack and the integrated circuit that processes the electrical signal output from the compound semiconductor stack on the same substrate and encapsulating them in the same package, detection can be performed at room temperature. In addition, in this way, the infrared sensor of the present invention can be made less susceptible to dark current, electromagnetic noise and thermal fluctuations. In the present invention, the resistance of the compound semiconductor stack in the infrared sensor circuit can be made small, and the resistance and capacitance in the signal output circuit can be very small, thereby allowing the miniaturization of the top-input infrared sensor element.
根据本发明的一个方面,提供了一种上入光式红外传感器元件,所述上入光式红外传感器元件包括:According to one aspect of the present invention, there is provided a top-light type infrared sensor element, the top-light type infrared sensor element comprising:
至少一个化合物半导体叠层,所述至少一个化合物半导体叠层能够检测波长大于等于1微米的红外线并输出表示该检测的电信号;at least one compound semiconductor stack capable of detecting infrared light having a wavelength of 1 micrometer or more and outputting an electrical signal indicative of the detection;
含有IC电路的基板,所述IC电路对从所述至少一个化合物半导体叠层输出的电信号进行处理并进行运算以获得检测结果;A substrate containing an IC circuit, wherein the IC circuit processes an electrical signal output from the at least one compound semiconductor stack and performs calculations to obtain a detection result;
粘结层,所述粘结层将至少一个化合物半导体叠层键合到含有IC电路的基板上;an adhesive layer that bonds at least one compound semiconductor stack to a substrate containing an IC circuit;
其中,所述至少一个化合物半导体叠层的电极与IC电路的引线端电连接。Wherein, the electrode of the at least one compound semiconductor stack is electrically connected to the lead terminal of the IC circuit.
在一个示例中,所述至少一个化合物半导体叠层中的一个化合物半导体叠层从上至下依次包括:N型电极、N型电极欧姆接触及电流导通层、P-N或P-i-N型光子吸收层、载流子阻挡层、P型电极欧姆接触及电流导通层以及位于P型电极欧姆接触及电流导通层的一部分上的P型电极。In one example, one of the at least one compound semiconductor stack includes, from top to bottom, an N-type electrode, an N-type electrode ohmic contact and current conduction layer, a P-N or P-i-N type photon absorption layer, a carrier blocking layer, a P-type electrode ohmic contact and current conduction layer, and a P-type electrode located on a portion of the P-type electrode ohmic contact and current conduction layer.
在一个示例中,所述P型电极欧姆接触及电流导通层包括第一P型电极欧姆接触及电流导通层和第二P型电极欧姆接触及电流导通层,第一P型电极欧姆接触及电流导通层位于第二P型电极欧姆接触及电流导通层上,所述第二P型电极欧姆接触及电流导通层的尺寸大于第一P型电极欧姆接触及电流导通层,所述第二P型电极欧姆接触及电流导通层未被第一P型电极欧姆接触及电流导通层的部分上设置有P型电极;In one example, the P-type electrode ohmic contact and current conducting layer includes a first P-type electrode ohmic contact and current conducting layer and a second P-type electrode ohmic contact and current conducting layer, the first P-type electrode ohmic contact and current conducting layer is located on the second P-type electrode ohmic contact and current conducting layer, the size of the second P-type electrode ohmic contact and current conducting layer is larger than the first P-type electrode ohmic contact and current conducting layer, and a P-type electrode is disposed on a portion of the second P-type electrode ohmic contact and current conducting layer not covered by the first P-type electrode ohmic contact and current conducting layer;
所述N型电极与IC电路的负极引线端的电连接以及所述P型电极与IC电路的正极引线端的电连接通过金属打线连接或通过光刻形成的多层金属互连线连接。The electrical connection between the N-type electrode and the negative lead terminal of the IC circuit and the electrical connection between the P-type electrode and the positive lead terminal of the IC circuit are connected by metal wire bonding or multi-layer metal interconnection lines formed by photolithography.
在一个示例中,所述P型电极包括Au、Ge、Ni、Ti、Cr、Cu或它们的合金形成的金属电极;In one example, the P-type electrode includes a metal electrode formed of Au, Ge, Ni, Ti, Cr, Cu or an alloy thereof;
所述第一P型电极欧姆接触及电流导通层和第二P型电极欧姆接触及电流导通层是p型重掺杂的化合物半导体膜;The first P-type electrode ohmic contact and current conducting layer and the second P-type electrode ohmic contact and current conducting layer are p-type heavily doped compound semiconductor films;
所述载流子阻挡层包括p型掺杂的包含Ga、Al、In、Sb或As的化合物半导体膜或包括Sb的化合物半导体膜;The carrier blocking layer includes a p-type doped compound semiconductor film containing Ga, Al, In, Sb or As or a compound semiconductor film including Sb;
所述P-N或P-i-N光子吸收层包括P-N或P-i-N型轻掺杂的InSb、GaAs、InAs、InGaAs、GaAsSb或InGaP化合物半导体膜;The P-N or P-i-N photon absorption layer comprises a P-N or P-i-N type lightly doped InSb, GaAs, InAs, InGaAs, GaAsSb or InGaP compound semiconductor film;
所述N型电极欧姆接触及电流导通层包括n型重掺杂的InSb、GaAs、InAs、InGaAs、GaAsSb或InGaP化合物半导体膜;The N-type electrode ohmic contact and current conducting layer include an n-type heavily doped InSb, GaAs, InAs, InGaAs, GaAsSb or InGaP compound semiconductor film;
所述N型电极包括Au、Ge、Ni、Ti、Cr、Cu或它们的合金形成的金属电极。The N-type electrode includes a metal electrode formed of Au, Ge, Ni, Ti, Cr, Cu or an alloy thereof.
在一个示例中,所述化合物半导体叠层由以下步骤制造得到:In one example, the compound semiconductor stack is manufactured by the following steps:
在半导体单晶衬底上异质依次外延生长多个化合物半导体膜,分别形成含有晶格缓冲牺牲层的N型电极欧姆接触及电流导通层、P-N或P-i-N型光子吸收层、载流子阻挡层、第一P型电极欧姆接触及电流导通层和第二P型电极欧姆接触及电流导通层;Hetero-epitaxially growing a plurality of compound semiconductor films on a semiconductor single crystal substrate in sequence, respectively forming an N-type electrode ohmic contact and current conducting layer containing a lattice buffer sacrificial layer, a P-N or P-i-N type photon absorption layer, a carrier blocking layer, a first P-type electrode ohmic contact and current conducting layer, and a second P-type electrode ohmic contact and current conducting layer;
在第二P型电极欧姆接触及电流导通层和基板的至少一个上涂覆粘结层,并且通过粘结层将它们面对面键合在一起;Coating an adhesive layer on at least one of the second P-type electrode ohmic contact and the current conducting layer and the substrate, and bonding them face to face through the adhesive layer;
选择性移除半导体单晶衬底和N型电极欧姆接触及电流导通层中的晶格缓冲牺牲层,Selectively remove the lattice buffer sacrificial layer in the semiconductor single crystal substrate, N-type electrode ohmic contact and current conduction layer,
其中,所述半导体单晶衬底采用GaAs、InP、GaN或Si单晶衬底,所述化合物半导体膜包括InSb、GaAs、InAs、InGaAs、InAlSb、GaAsSb或InGaP,所述粘结层包括氮化硅膜、氧化硅膜、氧化铝膜、氮氧化硅膜、环氧树脂、硅胶、二氧化硅和聚酰亚胺膜中的任一种,所述基板包括含有IC电路的Si基晶圆、石英衬底、氧化铝衬底、氮化铝衬底、聚酰亚胺柔性衬底中的任一种。Among them, the semiconductor single crystal substrate adopts GaAs, InP, GaN or Si single crystal substrate, the compound semiconductor film includes InSb, GaAs, InAs, InGaAs, InAlSb, GaAsSb or InGaP, the bonding layer includes any one of silicon nitride film, silicon oxide film, aluminum oxide film, silicon oxynitride film, epoxy resin, silica gel, silicon dioxide and polyimide film, and the substrate includes any one of Si-based wafer containing IC circuit, quartz substrate, aluminum oxide substrate, aluminum nitride substrate, polyimide flexible substrate.
在一个示例中,仅移除半导体单晶衬底的所述N型电极欧姆接触及电流导通层的迁移率大于40000cm2/Vs,所述N型电极欧姆接触及电流导通层的厚度为500nm-10μm;In one example, the mobility of the N-type electrode ohmic contact and the current conducting layer removed from the semiconductor single crystal substrate is greater than 40000 cm 2 /Vs, and the thickness of the N-type electrode ohmic contact and the current conducting layer is 500 nm-10 μm;
同时移除半导体单晶衬底和N型电极欧姆接触及电流导通层中的晶格质量较差的晶格缓冲牺牲层,N型电极欧姆接触及电流导通层的迁移率大于50000cm2/Vs且小于78000cm2/Vs,所述N型电极欧姆接触及电流导通层的厚度为100nm-9μm;At the same time, a lattice buffer sacrificial layer with poor lattice quality in the semiconductor single crystal substrate and the N-type electrode ohmic contact and the current conducting layer is removed, the mobility of the N-type electrode ohmic contact and the current conducting layer is greater than 50000 cm2 /Vs and less than 78000 cm2 /Vs, and the thickness of the N-type electrode ohmic contact and the current conducting layer is 100nm-9μm;
P-N或P-i-N型光子吸收层的面缺陷密度小于等于10-100/cm2。The surface defect density of the PN or PiN type photon absorption layer is less than or equal to 10-100/cm 2 .
在一个示例中,所述上入光式红外传感器元件还包括用于覆盖化合物半导体叠层的保护层,但是至少暴露出N型电极和P型电极的一部分;In one example, the top-incident infrared sensor element further includes a protection layer for covering the compound semiconductor stack, but at least a portion of the N-type electrode and the P-type electrode is exposed;
所述保护层包括氮化硅膜、氧化硅膜、氧化铝膜、氮氧化硅膜、环氧树脂、硅胶、二氧化硅和聚酰亚胺膜中的任一种。The protective layer includes any one of a silicon nitride film, a silicon oxide film, an aluminum oxide film, a silicon oxynitride film, an epoxy resin, a silica gel, silicon dioxide, and a polyimide film.
在一个示例中,所述含有IC电路的基板是刚性的或柔性的;In one example, the substrate containing the IC circuit is rigid or flexible;
所述基板和粘结层之间还设置有反射膜。A reflective film is also arranged between the substrate and the bonding layer.
在一个示例中,所述至少一个化合物半导体叠层以面阵列、线阵列或四象限的形式布置在基板上。In one example, the at least one compound semiconductor stack is arranged on the substrate in the form of a planar array, a linear array, or four quadrants.
根据本发明的另一方面,提供了一种制造上入光式红外传感器元件的方法,所述方法包括:According to another aspect of the present invention, there is provided a method for manufacturing a top-incident infrared sensor element, the method comprising:
制造至少一个化合物半导体叠层,所述至少一个化合物半导体叠层能够检测波长大于等于1微米的红外线并输出表示该检测的电信号;manufacturing at least one compound semiconductor stack capable of detecting infrared light having a wavelength of 1 micrometer or more and outputting an electrical signal indicative of the detection;
提供含有IC电路的基板,所述IC电路对从所述至少一个化合物半导体叠层输出的电信号进行处理并进行运算以获得检测结果;Providing a substrate containing an IC circuit, wherein the IC circuit processes the electrical signal output from the at least one compound semiconductor stack and performs calculations to obtain a detection result;
设置粘结层将至少一个化合物半导体叠层键合到含有IC电路的基板上;Providing an adhesive layer to bond at least one compound semiconductor stack to a substrate containing an IC circuit;
其中,所述至少一个化合物半导体叠层的电极与IC电路的引线端电连接。Wherein, the electrode of the at least one compound semiconductor stack is electrically connected to the lead terminal of the IC circuit.
通过下文中参照附图对本公开的实施例所作的描述,本公开的其它目的和优点将显而易见,并可帮助对本公开有全面的理解。Other objects and advantages of the present disclosure will be apparent from the following description of the embodiments of the present disclosure with reference to the accompanying drawings, and will help to have a comprehensive understanding of the present disclosure.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
本发明的这些和/或其他方面和优点从下面结合附图对优选实施例的描述中将变得明显和容易理解,其中:These and/or other aspects and advantages of the present invention will become apparent and readily understood from the following description of preferred embodiments in conjunction with the accompanying drawings, in which:
图1是根据本发明的一个实施例的上入光式红外传感器元件的横截面结构示意图;FIG1 is a schematic diagram of a cross-sectional structure of a top-light-incident infrared sensor element according to an embodiment of the present invention;
图2A示出在半导体单晶衬底上异质外延生长具有红外感测功能的化合物半导体材料叠层的横截面结构示意图;FIG2A is a schematic diagram showing a cross-sectional structure of a compound semiconductor material stack having an infrared sensing function grown heteroepitaxially on a semiconductor single crystal substrate;
图2B示出了在具有IC电路的基板上制造反射膜的横截面结构示意图;FIG2B shows a schematic cross-sectional structure diagram of manufacturing a reflective film on a substrate having an IC circuit;
图2C示出在图2B的结构基础上涂覆粘结层后的横截面结构示意图;FIG2C is a schematic diagram showing a cross-sectional structure after a bonding layer is applied to the structure of FIG2B ;
图2D示出将图2A示出的结构与图2C示出的结构键合在一起的横截面结构示意图;FIG2D is a schematic cross-sectional view showing the structure shown in FIG2A and the structure shown in FIG2C bonded together;
图2E示出在图2D的结构基础上选择性移除原用于异质外延生长化合物半导体叠层的半导体单晶衬底并且蚀刻掉部分半导体叠层之后的横截面结构示意图;FIG2E is a schematic cross-sectional view of the structure of FIG2D after selectively removing the semiconductor single crystal substrate originally used for heteroepitaxial growth of the compound semiconductor stack and etching away a portion of the semiconductor stack;
图2F示出在图2E的结构基础上制造出电极的横截面结构示意图;FIG2F is a schematic diagram showing a cross-sectional structure of an electrode manufactured based on the structure of FIG2E ;
图2G示出在图2F的结构基础上制造保护层并且将化合物半导体底层的电极与IC电路的引线端电连接后的横截面结构示意图。FIG. 2G is a schematic cross-sectional view showing a structure after manufacturing a protection layer based on the structure of FIG. 2F and electrically connecting the electrode of the compound semiconductor bottom layer to the lead terminal of the IC circuit.
具体实施方式Detailed ways
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。The technical solution of the present invention is further specifically described below by examples and in conjunction with the accompanying drawings. In the specification, the same or similar reference numerals indicate the same or similar components. The following description of the embodiments of the present invention with reference to the accompanying drawings is intended to explain the overall inventive concept of the present invention and should not be construed as a limitation of the present invention.
图1示出了根据本发明的一个实施例的上入光式红外传感器元件的横截面结构示意图。该上入光式红外传感器元件100包括含有IC电路的基板10,为了简便起见,未示出基板10上的IC电路,但是示出了IC电路的正引线端11和负引线端12。基板10上通过粘结层30设置有化合物半导体叠层,该化合物半导体叠层能够检测波长大于等于1微米的红外线并输出表示该检测的电信号。IC电路对从所述化合物半导体叠层输出的电信号进行处理并进行运算以获得检测结果。FIG1 shows a schematic cross-sectional structure diagram of a top-light-incident infrared sensor element according to an embodiment of the present invention. The top-light-incident infrared sensor element 100 includes a substrate 10 containing an IC circuit. For the sake of simplicity, the IC circuit on the substrate 10 is not shown, but the positive lead terminal 11 and the negative lead terminal 12 of the IC circuit are shown. A compound semiconductor stack is provided on the substrate 10 through an adhesive layer 30. The compound semiconductor stack can detect infrared rays with a wavelength greater than or equal to 1 micron and output an electrical signal representing the detection. The IC circuit processes the electrical signal output from the compound semiconductor stack and performs calculations to obtain a detection result.
在示例中,通过粘结层30将化合物半导体叠层键合到含有IC电路的基板10上。所述粘结层30根据具体应用对于超过特定波长的红外光子是“透明的”,包括氮化硅膜、氧化硅膜、氧化铝膜、氮氧化硅膜、环氧树脂、硅胶、二氧化硅和聚酰亚胺膜中的任一种。所述化合物半导体叠层的电极13、14与IC电路的引线端12、11分别电连接。In the example, the compound semiconductor stack is bonded to the substrate 10 containing the IC circuit through the bonding layer 30. The bonding layer 30 is "transparent" to infrared photons exceeding a specific wavelength according to the specific application, and includes any one of silicon nitride film, silicon oxide film, aluminum oxide film, silicon oxynitride film, epoxy resin, silica gel, silicon dioxide and polyimide film. The electrodes 13 and 14 of the compound semiconductor stack are electrically connected to the lead terminals 12 and 11 of the IC circuit respectively.
可选地,还可以设置一保护层80,其覆盖化合物半导体叠层,但是至少暴露出N型电极13和P型电极14的一部分。所述保护层80包括氮化硅膜、氧化硅膜、氧化铝膜、氮氧化硅膜、环氧树脂、硅胶、二氧化硅和聚酰亚胺膜中的任一种。Optionally, a protective layer 80 may be provided, which covers the compound semiconductor stack but exposes at least a portion of the N-type electrode 13 and the P-type electrode 14. The protective layer 80 includes any one of a silicon nitride film, a silicon oxide film, an aluminum oxide film, a silicon oxynitride film, an epoxy resin, a silica gel, silicon dioxide, and a polyimide film.
需要说明的是,化合物半导体叠层是检测入射的红外线并将其检测结果作为电信号输出的单元,即红外传感器。由于在本发明中,将其与带有IC电路的基板集成在一起,因此构成了红外传感器元件。所述IC电路是在基板10上或内部形成多个电路元件的电路,是处理从化合物半导体叠层输出的红外线的检测信号(电信号)而进行预定运算的单元。在实施例中,本发明通过设置粘结层30而将IC电路和化合物半导体叠层等相互连接并集成在同一个基板上。It should be noted that the compound semiconductor stack is a unit that detects incident infrared rays and outputs the detection result as an electrical signal, i.e., an infrared sensor. Since it is integrated with a substrate with an IC circuit in the present invention, an infrared sensor element is formed. The IC circuit is a circuit with multiple circuit elements formed on or inside the substrate 10, and is a unit that processes the detection signal (electrical signal) of infrared rays output from the compound semiconductor stack and performs a predetermined operation. In the embodiment, the present invention connects the IC circuit and the compound semiconductor stack to each other and integrates them on the same substrate by providing an adhesive layer 30.
在一个示例中,所述基板10可以包括IC电路的Si基晶圆、其他半导体基板、金属基板、石英基板、氧化铝衬底、氮化铝衬底、聚酰亚胺柔性衬底中的任一种,并且根据具体应用对于超过特定波长的红外光是“透明的”。In one example, the substrate 10 may include any one of a Si-based wafer of an IC circuit, other semiconductor substrates, a metal substrate, a quartz substrate, an aluminum oxide substrate, an aluminum nitride substrate, and a polyimide flexible substrate, and may be "transparent" to infrared light exceeding a specific wavelength depending on the specific application.
如图1所示,该化合物半导体叠层从上至下依次包括:N型电极13、N型电极欧姆接触及电流导通层70、光子吸收层60、载流子阻挡层(用于抑制暗电流)50、P型电极欧姆接触及电流导通层(在本示例中,P型电极欧姆接触及电流导通层包括第一P型电极欧姆接触及电流导通层41和第二P型电极欧姆接触及电流导通层42)。所述光子吸收层60例如是P-N型或P-i-N型光子吸收层。As shown in FIG1 , the compound semiconductor stack includes, from top to bottom, an N-type electrode 13, an N-type electrode ohmic contact and current conducting layer 70, a photon absorption layer 60, a carrier blocking layer (for suppressing dark current) 50, a P-type electrode ohmic contact and current conducting layer (in this example, the P-type electrode ohmic contact and current conducting layer include a first P-type electrode ohmic contact and current conducting layer 41 and a second P-type electrode ohmic contact and current conducting layer 42). The photon absorption layer 60 is, for example, a P-N type or P-i-N type photon absorption layer.
由于考虑到后续的化合物半导体叠层从原本生长的衬底上反转贴附在基板10上,因此设置成所述第二P型电极欧姆接触及电流导通层42的尺寸大于第一P型电极欧姆接触及电流导通层41,所述第二P型电极欧姆接触及电流导通层42未被第一P型电极欧姆接触及电流导通层41的部分上设置有P型电极14。Considering that the subsequent compound semiconductor stack is reversed from the originally grown substrate and attached to the substrate 10, the size of the second P-type electrode ohmic contact and current conduction layer 42 is set to be larger than the first P-type electrode ohmic contact and current conduction layer 41, and a P-type electrode 14 is provided on the portion of the second P-type electrode ohmic contact and current conduction layer 42 not covered by the first P-type electrode ohmic contact and current conduction layer 41.
结合后续的描述可知,通过这样的设置可以在后续选择性移除原本生长化合物半导体叠层的衬底之后通过光刻蚀刻的方式形成化合物半导体叠层,同时还可以设置成第二P型电极欧姆接触及电流导通层42的尺寸更大,从而便于设置P型电极14。Combined with the subsequent description, it can be seen that through such a setting, a compound semiconductor stack can be formed by photolithography and etching after the substrate on which the compound semiconductor stack was originally grown is selectively removed. At the same time, the size of the second P-type electrode ohmic contact and the current conduction layer 42 can be set to be larger, thereby facilitating the setting of the P-type electrode 14.
可以理解,也可以仅设置一个一体的P型电极欧姆接触及电流导通层,在后续的蚀刻过程中,使得其形成可以放置P型电极14的台阶部即可,其形状与第一P型电极欧姆接触及电流导通层41和第二P型电极欧姆接触及电流导通层42叠置在一起形成的形状相同或相似。It is understandable that only one integrated P-type electrode ohmic contact and current conduction layer may be provided, and in the subsequent etching process, a step portion is formed on which the P-type electrode 14 can be placed, and its shape is the same as or similar to the shape formed by stacking the first P-type electrode ohmic contact and current conduction layer 41 and the second P-type electrode ohmic contact and current conduction layer 42 together.
所述N型电极13与IC电路的负极引线端12通过金属打线电连接,同理所述P型电极14与IC电路的正极引线端11也通过金属打线电连接。可替代地,前述的电连接也可以通过光刻方式形成的多层金属互连线来实现,从而提高了连接的可靠性,并且简化了工艺。The N-type electrode 13 is electrically connected to the negative lead terminal 12 of the IC circuit through a metal wire, and similarly, the P-type electrode 14 is electrically connected to the positive lead terminal 11 of the IC circuit through a metal wire. Alternatively, the aforementioned electrical connection can also be achieved by a multi-layer metal interconnection formed by photolithography, thereby improving the reliability of the connection and simplifying the process.
在一个示例中,所述P型电极14包括Au、Ge、Ni、Ti、Cr、Cu或它们的合金形成的金属电极,优选地采用Ti/Au金属电极;所述第一P型电极欧姆接触及电流导通层41和第二P型电极欧姆接触及电流导通层42是p型重掺杂的化合物半导体膜,例如是厚度为0.5μm的p+InSb;所述载流子阻挡层50包括p型掺杂的包含Ga、Al、In、Sb或As的化合物半导体膜,优选地采用InAlSb,例如是厚度为50nm的p+Al0.17In0.83Sb或p+GaAsSb;所述光子吸收层60包括P-N或P-i-N型轻掺杂的InSb、GaAs、InAs、InGaAs、GaAsSb或InGaP化合物半导体膜,例如是厚度为1μm的p-InSb或厚度为1μm的p-InSb加厚度为1μm的n-InSb;所述N电极欧姆接触及电流导通层70包括N型重掺杂的InSb、GaAs、InAs、InGaAs、GaAsSb或InGaP化合物半导体膜,例如是厚度为0.5μm的n+InSb;所述N型电极13包括Au、Ge、Ni、Ti、Cr、Cu或它们的合金形成的金属电极,优选地采用Ti/Au金属电极。在本实例中,保护层80可以是Si3N4钝化层、SiO2、环氧树脂、硅胶或聚酰亚胺。In one example, the P-type electrode 14 includes a metal electrode formed of Au, Ge, Ni, Ti, Cr, Cu or an alloy thereof, preferably a Ti/Au metal electrode; the first P-type electrode ohmic contact and current conducting layer 41 and the second P-type electrode ohmic contact and current conducting layer 42 are p-type heavily doped compound semiconductor films, for example, p+InSb with a thickness of 0.5 μm; the carrier blocking layer 50 includes a p-type doped compound semiconductor film containing Ga, Al, In, Sb or As, preferably InAlSb, for example, p+Al 0.17 In 0.83 with a thickness of 50 nm. Sb or p+GaAsSb; the photon absorption layer 60 comprises a PN or PiN type lightly doped InSb, GaAs, InAs, InGaAs, GaAsSb or InGaP compound semiconductor film, for example, a p-InSb with a thickness of 1 μm or a p-InSb with a thickness of 1 μm plus an n-InSb with a thickness of 1 μm; the N-electrode ohmic contact and current conduction layer 70 comprises an N-type heavily doped InSb, GaAs, InAs, InGaAs, GaAsSb or InGaP compound semiconductor film, for example, a n+InSb with a thickness of 0.5 μm; the N-type electrode 13 comprises a metal electrode formed of Au, Ge, Ni, Ti, Cr, Cu or an alloy thereof, preferably a Ti/Au metal electrode. In this example, the protective layer 80 may be a Si 3 N 4 passivation layer, SiO 2 , epoxy resin, silica gel or polyimide.
应当理解,前述的化合物半导体叠层中的各个化合物半导体膜、保护层等的材料以及厚度等设置在此处仅仅是一个示例,本领域技术人员可以根据需要选择任何可行的材料或合适的厚度,而不限于此处示出的示例。It should be understood that the materials and thicknesses of the various compound semiconductor films, protective layers, etc. in the aforementioned compound semiconductor stack are merely examples, and those skilled in the art may select any feasible material or suitable thickness as needed, without being limited to the examples shown here.
所述化合物半导体叠层由以下步骤制造得到:The compound semiconductor stack is manufactured by the following steps:
在半导体单晶衬底上异质依次外延生长多个化合物半导体膜,分别形成N型电极欧姆接触及电流导通层70(包含用于异质外延生长的晶体质量较差的晶格缓冲牺牲层71、以及在晶格缓冲牺牲层71之上的晶体质量优异的P型电极欧姆接触及电流导通层72)、光子吸收层60、载流子阻挡层50、第一P型电极欧姆接触及电流导通层41和第二P型电极欧姆接触及电流导通层42;所述P-N或P-i-N型(InSb红外)光子吸收层60的面缺陷密度小于等于10-100/cm2。A plurality of compound semiconductor films are heteroepitaxially grown in sequence on a semiconductor single crystal substrate to form an N-type electrode ohmic contact and current conducting layer 70 (including a lattice buffer sacrificial layer 71 with poor crystal quality for heteroepitaxial growth, and a P-type electrode ohmic contact and current conducting layer 72 with excellent crystal quality on the lattice buffer sacrificial layer 71), a photon absorption layer 60, a carrier blocking layer 50, a first P-type electrode ohmic contact and current conducting layer 41 and a second P-type electrode ohmic contact and current conducting layer 42; the surface defect density of the PN or PiN type (InSb infrared) photon absorption layer 60 is less than or equal to 10-100/ cm2 .
在第二P型电极欧姆接触及电流导通层42和基板10的至少一个上涂覆粘结层30,并且通过粘结层30将它们面对面键合在一起;Coating an adhesive layer 30 on at least one of the second P-type electrode ohmic contact and current conducting layer 42 and the substrate 10, and bonding them face to face through the adhesive layer 30;
选择性移除半导体单晶衬底和N型电极欧姆接触及电流导通层70的一部分,即通过腐蚀的方式选择性移除晶体质量较差的晶格缓冲牺牲层71;Selectively remove the semiconductor single crystal substrate, the N-type electrode ohmic contact and a portion of the current conducting layer 70, that is, selectively remove the lattice buffer sacrificial layer 71 with poor crystal quality by etching;
其中,所述半导体单晶衬底可以采用GaAs、InP、GaN、Si等任何合适的单晶衬底,所述化合物半导体膜包括InSb、GaAs、InAs、InGaAs、InAlSb、GaAsSb或InGaP。所述粘结层30包括氮化硅膜、氧化硅膜、氧化铝膜、氮氧化硅膜、环氧树脂、硅胶、二氧化硅和聚酰亚胺膜中的任一种。在本实施例中,仅移除半导体单晶衬底的所述N型电极欧姆接触及电流导通层72的迁移率大于40000cm2/Vs,所述N型电极欧姆接触及电流导通层72的厚度为500nm-10μm,优选地1μm-3μm。同时移除半导体单晶衬底和N型电极欧姆接触及电流导通层的晶格缓冲牺牲层71后的N型电极欧姆接触及电流导通层72的迁移率得到大幅提升,大于50000cm2/Vs且小于78000cm2/Vs,所述N型电极欧姆接触及电流导通层72的厚度为100nm-9μm,优选地300nm-2μm。The semiconductor single crystal substrate may be any suitable single crystal substrate such as GaAs, InP, GaN, Si, etc., and the compound semiconductor film includes InSb, GaAs, InAs, InGaAs, InAlSb, GaAsSb or InGaP. The bonding layer 30 includes any one of silicon nitride film, silicon oxide film, aluminum oxide film, silicon oxynitride film, epoxy resin, silica gel, silicon dioxide and polyimide film. In this embodiment, the mobility of the N-type electrode ohmic contact and current conducting layer 72 removed from the semiconductor single crystal substrate is greater than 40000 cm2 /Vs, and the thickness of the N-type electrode ohmic contact and current conducting layer 72 is 500nm-10μm, preferably 1μm-3μm. After the semiconductor single crystal substrate and the lattice buffer sacrificial layer 71 of the N-type electrode ohmic contact and current conducting layer are removed at the same time, the mobility of the N-type electrode ohmic contact and current conducting layer 72 is greatly improved, which is greater than 50000 cm2 /Vs and less than 78000 cm2 /Vs. The thickness of the N-type electrode ohmic contact and current conducting layer 72 is 100nm-9μm, preferably 300nm-2μm.
所述含有IC电路的基板10是刚性的或柔性的。所述刚性的基板10可以硅基基板、石英衬底、氧化铝衬底、氮化铝衬底;所述柔性基板是由聚酰亚胺或聚酯薄膜为基材制成。The substrate 10 containing the IC circuit is rigid or flexible. The rigid substrate 10 can be a silicon-based substrate, a quartz substrate, an aluminum oxide substrate, or an aluminum nitride substrate; the flexible substrate is made of polyimide or polyester film as a base material.
在基板10和粘结层30之间还可以设置反射膜20,该反射膜20将从上方穿过化合物半导体叠层的入射光的至少一部分以反射光的方式再次进入到化合物半导体叠层,从而提高了该红外传感器的检测效率。在一个示例中,该反射膜20可以包括金属反射膜或多层介质反射膜。金属反射膜20位于入射光的正下方,可以与金属电极通过光刻及镀膜方式分别制造,两者之间无电学连接。可以理解,如果基板10自身为金属制成且自带较佳的反射功能,则不再需要设置反射膜。A reflective film 20 may also be provided between the substrate 10 and the bonding layer 30, and the reflective film 20 may reflect at least a portion of the incident light that passes through the compound semiconductor stack from above and enter the compound semiconductor stack again in the form of reflected light, thereby improving the detection efficiency of the infrared sensor. In one example, the reflective film 20 may include a metal reflective film or a multilayer dielectric reflective film. The metal reflective film 20 is located directly below the incident light and may be manufactured separately from the metal electrode by photolithography and coating, and there is no electrical connection between the two. It is understood that if the substrate 10 itself is made of metal and has a better reflective function, it is no longer necessary to provide a reflective film.
可以用于制造化合物半导体叠层的材料GaAs、InSb以及InAs等在室温下具有不同红外波长的吸收率,其中InSb材料在室温下可以吸收大于等于1微米波长的红外光子,并且其电子迁移率最高,可达到78000cm2/Vs,因而作为本发明最适合的实施例材料之一。Materials that can be used to manufacture compound semiconductor stacks, such as GaAs, InSb and InAs, have different infrared wavelength absorption rates at room temperature. Among them, InSb material can absorb infrared photons with a wavelength greater than or equal to 1 micron at room temperature, and has the highest electron mobility, which can reach 78,000 cm 2 /Vs. Therefore, it is one of the most suitable embodiment materials of the present invention.
在本发明的一个实施例中,InSb等化合物半导体膜的制造方式有两种,一种是采用蒸镀的方式将InSb材料蒸镀于云母片或氧化硅衬底上来获得多晶InSb膜。这种方法制造的InSb膜虽然制造成本比较低,但是质量比较差,迁移率一般仅为15000cm2/Vs到30000cm2/Vs,光电性能很差,达不到对于红外光子吸收及探测的预期要求。另一种制造方式是在半绝缘InSb单晶衬底上采用同质外延生长的方式进行制造,可以获得高质量的InSb单晶膜,这样制造的InSb单晶膜质量较高、基本满足红外光子的探测需求。但是由于半绝缘InSb单晶衬底生产工艺很不成熟,目前还没有办法用于大规模的生产制造。In one embodiment of the present invention, there are two methods for manufacturing compound semiconductor films such as InSb. One is to obtain a polycrystalline InSb film by evaporating the InSb material onto a mica sheet or a silicon oxide substrate. Although the InSb film manufactured by this method has a relatively low manufacturing cost, the quality is relatively poor. The mobility is generally only 15,000 cm 2 /Vs to 30,000 cm 2 /Vs, and the photoelectric performance is very poor, which does not meet the expected requirements for infrared photon absorption and detection. Another manufacturing method is to use homoepitaxial growth on a semi-insulating InSb single crystal substrate to obtain a high-quality InSb single crystal film. The InSb single crystal film manufactured in this way has high quality and basically meets the detection requirements of infrared photons. However, since the production process of semi-insulating InSb single crystal substrates is very immature, there is currently no way to use it for large-scale production.
因此,在化合物半导体叠层的制造中,通常选用其它半导体单晶衬底,例如GaAs衬底或Si衬底。这些替代性的半导体单晶衬底虽然成本相对便宜,但是由于与InSb存在较大的晶格失配,因此会导致在这样的替代性半导体单晶衬底上生长出来的InSb单晶膜的质量下降,迁移率与在InSb单晶衬底上获得的InSb单晶膜相比下降很多,一般在30000cm2/Vs到50000cm2/Vs之间。更为致命的是,这样的InSb单晶膜缺陷面密度很大,一般在10000/cm2以上,导致红外光子P-N或P-i-N结暗电流极大,无法达到红外光子探测所需的信噪比。Therefore, in the manufacture of compound semiconductor stacks, other semiconductor single crystal substrates are usually selected, such as GaAs substrates or Si substrates. Although these alternative semiconductor single crystal substrates are relatively cheap, due to the large lattice mismatch with InSb, the quality of the InSb single crystal film grown on such alternative semiconductor single crystal substrates will be reduced, and the mobility will be much lower than that of the InSb single crystal film obtained on the InSb single crystal substrate, generally between 30000cm2 /Vs and 50000cm2 /Vs. More fatally, the defect surface density of such InSb single crystal film is very large, generally above 10000/ cm2 , resulting in extremely large dark current of infrared photon PN or PiN junction, and it is impossible to achieve the signal-to-noise ratio required for infrared photon detection.
因为InSb膜与半导体单晶衬底之间存在较大的晶格失配,所以一开始生长出来的InSb膜质量很差,缺陷密度大且迁移率非常低。随着InSb膜材料厚度增加,晶格质量会不断变好,缺陷密度逐渐变少且迁移率增加。Because there is a large lattice mismatch between the InSb film and the semiconductor single crystal substrate, the quality of the InSb film grown at the beginning is very poor, with a large defect density and very low mobility. As the thickness of the InSb film material increases, the lattice quality will continue to improve, the defect density will gradually decrease, and the mobility will increase.
为了达到面缺陷密度小于等于10-100/cm2且高于50000cm2/Vs的电子迁移率,一般要求InSb膜的生长厚度超过1-2μm,但是此时由于InSb膜厚度很厚,将导致部分红外光子被晶体质量较差的InSb膜吸收,显著降低最终制造出的红外光子探测器件的量子效率。In order to achieve an electron mobility of less than or equal to 10-100/ cm2 and higher than 50000cm2 /Vs, the InSb film is generally required to be grown with a thickness of more than 1-2μm. However, since the InSb film is very thick, part of the infrared photons will be absorbed by the InSb film with poor crystal quality, significantly reducing the quantum efficiency of the infrared photon detection device finally manufactured.
通常,与衬底失配引起的薄膜的晶体缺陷在衬底的界面附近是明显的。虽然伴随着薄膜的生长,晶体缺陷的密度逐步减少,但晶体缺陷浓度高且电子迁移率降低。若形成几微米量级的薄膜,则界面附近的缺陷产生的影响变得很微小,但在制作器件时,由于InSb膜厚度很厚,将导致部分红外光子被晶体质量较差的InSb膜吸收,显著降低最终制造出的红外光子探测器件的量子效率。Usually, the crystal defects of the film caused by the mismatch with the substrate are obvious near the interface of the substrate. Although the density of crystal defects gradually decreases with the growth of the film, the concentration of crystal defects is high and the electron mobility is reduced. If a film of several microns is formed, the impact of defects near the interface becomes very small, but when manufacturing devices, due to the thick InSb film thickness, some infrared photons will be absorbed by the InSb film with poor crystal quality, significantly reducing the quantum efficiency of the infrared photon detection device finally manufactured.
本发明的下述实施例提供了一种上入光式红外传感器元件和制造方法,其中化合物半导体叠层与信号处理电路板集成在一起,化合物半导体叠层与现有技术相比具有晶体缺陷密度小、高迁移率并且同时具有较高的光子吸收效率,并且形成的器件厚度相对较小。The following embodiments of the present invention provide a top-incident infrared sensor element and a manufacturing method, in which a compound semiconductor stack is integrated with a signal processing circuit board. Compared with the prior art, the compound semiconductor stack has a low crystal defect density, high mobility and simultaneously has a high photon absorption efficiency, and the thickness of the formed device is relatively small.
在图1中,仅示出一个化合物半导体叠层,还可以在基板10上以面阵列的形式、线阵列的形式或四象限的形式布置至少一个化合物半导体叠层,从而可以实现检测待测物体的位置或二维图像。在布置至少一个化合物半导体叠层时,它们可以与IC电路集成在一起,实现了单个电路芯片控制多个化合物半导体叠层。In FIG1 , only one compound semiconductor stack is shown, and at least one compound semiconductor stack may be arranged in a planar array, a linear array, or a four-quadrant array on the substrate 10, so that the position or two-dimensional image of the object to be detected can be detected. When at least one compound semiconductor stack is arranged, they can be integrated with an IC circuit, so that a single circuit chip controls multiple compound semiconductor stacks.
参见图2A-2G,示出了根据本发明实施例所述的上入光式红外传感器元件的制造流程图。2A-2G , which show a manufacturing flow chart of a top-incident infrared sensor element according to an embodiment of the present invention.
具体地,如图2A所示,在半导体单晶衬底90上采用外延方式(例如金属有机化学气相沉积(MOCVD)或分子束外延(MBE))生长化合物半导体膜,该化合物半导体膜70包括质量较差的第一部分(晶格缓冲牺牲层71)和质量较好的第二部分(N型电极欧姆接触及电流导通层72,在图中以虚线示意性地示出分界线)。在一个示例中,半导体单晶衬底可以采用GaAs、InP、GaN、Si等任何合适的单晶衬底。化合物半导体膜可以包括由In、Sb、As、Ga和P等构成的二元、三元、四元材料,例如GaAs、InAs、InSb、InGaAs、InGaP、InGaAsP等材料,优选地InSb膜。Specifically, as shown in FIG2A , a compound semiconductor film is grown on a semiconductor single crystal substrate 90 by epitaxy (e.g., metal organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE)), and the compound semiconductor film 70 includes a first portion (lattice buffer sacrificial layer 71) of poor quality and a second portion (N-type electrode ohmic contact and current conduction layer 72, the boundary line is schematically shown by a dotted line in the figure). In one example, the semiconductor single crystal substrate can be any suitable single crystal substrate such as GaAs, InP, GaN, Si, etc. The compound semiconductor film can include binary, ternary, and quaternary materials composed of In, Sb, As, Ga, and P, such as GaAs, InAs, InSb, InGaAs, InGaP, InGaAsP, etc., preferably InSb film.
以下将以InSb为例进行示例说明。在一个示例中,通过外延生长的方式分别形成多个化合物半导体膜,分别形成N型电极欧姆接触及电流导通层72、光子吸收层60、载流子阻挡层50、第一P型电极欧姆接触及电流导通层41和第二P型电极欧姆接触及电流导通层42。InSb is used as an example for illustration. In one example, multiple compound semiconductor films are formed by epitaxial growth to form an N-type electrode ohmic contact and current conducting layer 72, a photon absorption layer 60, a carrier blocking layer 50, a first P-type electrode ohmic contact and current conducting layer 41, and a second P-type electrode ohmic contact and current conducting layer 42.
如图2B所示,在含有IC电路的基板10上通过涂覆或溅射等方式来形成反射膜20。As shown in FIG. 2B , a reflective film 20 is formed on a substrate 10 including an IC circuit by coating, sputtering or the like.
如图2C所示,在第二P型电极欧姆接触及电流导通层42和/或反射膜20上涂覆一层粘结剂以形成一层粘结层30。在一个示例中,采用涂覆或刮胶的方式将聚酰亚胺或环氧树脂等粘结剂进行涂覆。2C, a layer of adhesive is coated on the second P-type electrode ohmic contact and current conducting layer 42 and/or the reflective film 20 to form an adhesive layer 30. In one example, the adhesive such as polyimide or epoxy resin is coated by coating or scraping.
如图2D所示,随后,通过该粘结层30将第二P型电极欧姆接触及电流导通层42与基板10上的反射膜20面对面键合在一起,所述基板10包括任何一种适合于霍尔元件的具体应用的集成电路,例如可以是包含适当的集成电路的硅基晶圆。当然,也可以将粘结剂涂敷到基板10的反射膜20上或将粘结剂同时涂敷到第二P型电极欧姆接触及电流导通层42和反射膜20上,本领域技术人员可以根据需要选择所述基板10的材料,而不限于此处所述的示例。As shown in FIG2D , the second P-type electrode ohmic contact and current conducting layer 42 are then bonded face-to-face with the reflective film 20 on the substrate 10 through the adhesive layer 30. The substrate 10 includes any integrated circuit suitable for the specific application of the Hall element, for example, a silicon-based wafer including a suitable integrated circuit. Of course, the adhesive may also be applied to the reflective film 20 of the substrate 10 or the adhesive may be applied to both the second P-type electrode ohmic contact and current conducting layer 42 and the reflective film 20. Those skilled in the art may select the material of the substrate 10 as needed, without being limited to the examples described herein.
如图2E所示,选择性移除半导体单晶衬底90以暴露出N型电极欧姆接触及电流导通层70的背面。在一个示例中,可以采用机械研磨或化学腐蚀的方式。此处所述的机械研磨可以是传统的半导体研磨设备,化学腐蚀的溶液可以采用磷酸和双氧水混合溶液,或者盐酸溶液。本领域技术人员可以理解,此处的机械研磨或化学腐蚀可以采用本领域中已知的其它可替代方式。As shown in FIG2E , the semiconductor single crystal substrate 90 is selectively removed to expose the back side of the N-type electrode ohmic contact and the current conducting layer 70. In one example, mechanical grinding or chemical etching can be used. The mechanical grinding described here can be a conventional semiconductor grinding device, and the chemical etching solution can be a mixed solution of phosphoric acid and hydrogen peroxide, or a hydrochloric acid solution. Those skilled in the art will appreciate that the mechanical grinding or chemical etching here can be performed by other alternative methods known in the art.
去除掉暴露出的N型电极欧姆接触及电流导通层70的刚生长的质量不好的第一部分(即晶格缓冲牺牲层71),以留下高质量的第二部分(N型电极欧姆接触及电流导通层72)。在一个示例中,可以采用干法或湿法刻蚀的方式将暴露出的N型电极欧姆接触及电流导通层70的第一部分去除掉,即将之前在半导体单晶衬底60上先生长出的第一部分移除掉,该第一部分由于晶格失配而导致质量较差,因此可以保留住高质量(例如高迁移率)的第二部分。此处所述的干法刻蚀可以是离子束刻蚀等,而湿法刻蚀可以是采用任何合适的溶液进行刻蚀。The first part of the exposed N-type electrode ohmic contact and current conducting layer 70 that has just grown and has poor quality (i.e., the lattice buffer sacrificial layer 71) is removed to leave the second part (N-type electrode ohmic contact and current conducting layer 72) with high quality. In one example, the first part of the exposed N-type electrode ohmic contact and current conducting layer 70 can be removed by dry or wet etching, that is, the first part previously grown on the semiconductor single crystal substrate 60 is removed. The first part has poor quality due to lattice mismatch, so the second part with high quality (e.g., high mobility) can be retained. The dry etching described here can be ion beam etching, etc., and the wet etching can be etching using any suitable solution.
本领域技术人员应当理解,采用本发明所述的方式可以根据器件的设计要求来选择化合物半导体膜的迁移率和厚度,从而对于化合物半导体膜的迁移率和厚度提供了很大的选择柔性,从而可以同时获得迁移率较高并且厚度较薄(较高的方块电阻)的化合物半导体膜。Those skilled in the art should understand that the method described in the present invention can be used to select the mobility and thickness of the compound semiconductor film according to the design requirements of the device, thereby providing great flexibility in selection of the mobility and thickness of the compound semiconductor film, so that a compound semiconductor film with higher mobility and thinner thickness (higher square resistance) can be obtained at the same time.
通过图形化蚀刻的方式蚀刻掉(例如半导体台面蚀刻工艺蚀刻掉)化合物半导体叠层中的N型电极欧姆接触及电流导通层72、光子吸收层60、载流子阻挡层50、第一P型电极欧姆接触及电流导通层41的右端部分,从而获得如图所示的台面结构,其中第二P型电极欧姆接触及电流导通层42的尺寸大于第一P型电极欧姆接触及电流导通层41。The N-type electrode ohmic contact and current conduction layer 72, the photon absorption layer 60, the carrier blocking layer 50, and the right end portion of the first P-type electrode ohmic contact and current conduction layer 41 in the compound semiconductor stack are etched away by graphical etching (for example, etching away by a semiconductor mesa etching process), thereby obtaining a mesa structure as shown in the figure, wherein the size of the second P-type electrode ohmic contact and current conduction layer 42 is larger than that of the first P-type electrode ohmic contact and current conduction layer 41.
如图2F所示,在N型电极欧姆接触及电流导通层70和第二P型电极欧姆接触及电流导通层42上分别或同时通过光刻以及金属lift-off工艺制造出N型电极13和P型电极14。As shown in FIG. 2F , an N-type electrode 13 and a P-type electrode 14 are manufactured on the N-type electrode ohmic contact and current conducting layer 70 and the second P-type electrode ohmic contact and current conducting layer 42 respectively or simultaneously by photolithography and metal lift-off processes.
在一个示例中,首先采用电子束蒸发或磁控溅射等沉积方式形成金属电极层,金属电极层的材料可以包括Au、Ge、Ni、Ti、Cr、Cu或它们的合金等;然后采用剥离或蚀刻的方式由金属电极层来形成电极13、14;可选地对所述电极13、14进行退火工艺,从而在电极和化合物半导体叠层之间形成更好的欧姆接触。当然,本领域技术人员可以采用任何本领域已知的方式来形成电极13、14,本发明在此不再累述。In one example, a metal electrode layer is first formed by a deposition method such as electron beam evaporation or magnetron sputtering, and the material of the metal electrode layer may include Au, Ge, Ni, Ti, Cr, Cu or their alloys; then, electrodes 13 and 14 are formed from the metal electrode layer by stripping or etching; the electrodes 13 and 14 are optionally annealed to form a better ohmic contact between the electrode and the compound semiconductor stack. Of course, those skilled in the art can form electrodes 13 and 14 by any method known in the art, and the present invention will not be repeated here.
如图2G所示,通过金属打线15和16分别电连接N型电极13和负引线端12、P型电极14和正引线端11。As shown in FIG. 2G , the N-type electrode 13 and the negative lead terminal 12 , and the P-type electrode 14 and the positive lead terminal 11 are electrically connected through metal bonding wires 15 and 16 , respectively.
并且,在化合物半导体叠层和电极13、14的至少一部分表面(例如整个表面)上制造一层保护层80。Furthermore, a protective layer 80 is formed on at least a portion of the surface (eg, the entire surface) of the compound semiconductor stack and the electrodes 13 , 14 .
保护层80可以防止化合物半导体叠层在后续制程工艺中受损,同时阻止水汽、杂质粒子等进入。所述保护层80包括氮化硅膜、氧化硅膜、氧化铝膜、氮氧化硅膜、环氧树脂、硅胶、二氧化硅和聚酰亚胺膜中的任一种。可以通过等离子体增强化学气相沉积(PECVD)、溅射或其他常规成膜方式,利用光致抗蚀剂图案作为掩模形成。The protective layer 80 can prevent the compound semiconductor stack from being damaged in the subsequent process and prevent water vapor, foreign particles, etc. from entering. The protective layer 80 includes any one of a silicon nitride film, a silicon oxide film, an aluminum oxide film, a silicon oxynitride film, an epoxy resin, a silica gel, a silicon dioxide, and a polyimide film. It can be formed by plasma enhanced chemical vapor deposition (PECVD), sputtering, or other conventional film forming methods, using a photoresist pattern as a mask.
采用本发明图2A-2G的实施例制造的化合物半导体叠层,如果所述化合物半导体膜是由InSb材料制成时,该化合物半导体膜的迁移率可以超过60000cm2/Vs,同时,该化合物半导体膜的方块电阻可以设计成想要的数值,从而最终能够获得高灵敏度、低功耗的InSb化合物半导体叠层。The compound semiconductor stack manufactured by the embodiment of Figures 2A-2G of the present invention, if the compound semiconductor film is made of InSb material, the mobility of the compound semiconductor film can exceed 60,000 cm2 /Vs. At the same time, the square resistance of the compound semiconductor film can be designed to a desired value, thereby ultimately obtaining a high-sensitivity, low-power consumption InSb compound semiconductor stack.
可替代地,也可以在另外的半导体单晶衬底上生长了化合物半导体膜之后先不再继续外延生长后续的化合物半导体膜,而是将其通过粘结层(例如下述的粘结层30)粘结到基板10上,并选择性地移除该另外的半导体单晶衬底和刚开始生长的品质不好的化合物半导体膜,从而在基板10上仅留下质量良好的部分,作为第二P型电极欧姆接触及电流导通层42,其迁移率大于50000cm2/Vs且小于78000cm2/Vs,所述P型电极欧姆接触及电流导通层的厚度为100nm-9μm。可以理解,在品质良好的P型电极欧姆接触及电流导通层上继续外延生长后续的多个层(例如第二P型电极欧姆接触及电流导通层41、载流子阻挡层50、光子吸收层60、N型电极欧姆接触及电流导通层72)可以获得与同质外延生长类似的品质的化合物半导体膜,从而进一步提高所得的化合物半导体叠层的品质。此时,由于要满足后续外延生长化合物半导体膜,采用的粘结层需要是二氧化硅或氮化硅等耐高温的材料。Alternatively, after growing a compound semiconductor film on another semiconductor single crystal substrate, the subsequent compound semiconductor film may not be epitaxially grown, but may be bonded to the substrate 10 via a bonding layer (e.g., the bonding layer 30 described below), and the other semiconductor single crystal substrate and the poor quality compound semiconductor film that has just grown may be selectively removed, thereby leaving only a good quality portion on the substrate 10 as a second P-type electrode ohmic contact and current conduction layer 42, the mobility of which is greater than 50,000 cm2 /Vs and less than 78,000 cm2 /Vs, and the thickness of the P-type electrode ohmic contact and current conduction layer is 100nm-9μm. It can be understood that by continuing to epitaxially grow subsequent multiple layers (such as the second P-type electrode ohmic contact and current conducting layer 41, the carrier blocking layer 50, the photon absorption layer 60, the N-type electrode ohmic contact and current conducting layer 72) on the good quality P-type electrode ohmic contact and current conducting layer, a compound semiconductor film of similar quality to homoepitaxial growth can be obtained, thereby further improving the quality of the obtained compound semiconductor stack. At this time, in order to meet the requirements of the subsequent epitaxial growth of the compound semiconductor film, the bonding layer used needs to be a high temperature resistant material such as silicon dioxide or silicon nitride.
综上,本发明的发明人发现通过将化合物半导体叠层的电阻变小、以及使得该化合物半导体叠层和处理从该化合物半导体叠层输出的电信号的集成电路集成在同一基板上,并且封装在同一封装体内,可以在室温下进行检测。另外,通过这样的方式,可以使得本发明的红外传感器元件不易受暗电流、电磁噪声和热波动的影响。在本发明中,可以使得红外传感器电路中的化合物半导体叠层电阻小,从而信号输出电路中的电阻和电容可以很小,从而允许红外传感器元件小型化。In summary, the inventors of the present invention have found that by reducing the resistance of the compound semiconductor stack, and integrating the compound semiconductor stack and the integrated circuit that processes the electrical signal output from the compound semiconductor stack on the same substrate, and encapsulating them in the same package, detection can be performed at room temperature. In addition, in this way, the infrared sensor element of the present invention can be made less susceptible to dark current, electromagnetic noise and thermal fluctuations. In the present invention, the resistance of the compound semiconductor stack in the infrared sensor circuit can be made small, so that the resistance and capacitance in the signal output circuit can be very small, thereby allowing the infrared sensor element to be miniaturized.
本发明还根据以下方面提供了多个实施例,具体如下:The present invention also provides a plurality of embodiments according to the following aspects, which are specifically as follows:
方面1:一种制造上入光式红外传感器元件的方法,所述方法包括:Aspect 1: A method for manufacturing a top-incident infrared sensor element, the method comprising:
制造至少一个化合物半导体叠层,所述至少一个化合物半导体叠层能够检测波长大于等于1微米的红外线并输出表示该检测的电信号;manufacturing at least one compound semiconductor stack capable of detecting infrared light having a wavelength of 1 micrometer or more and outputting an electrical signal indicative of the detection;
提供含有IC电路的基板,所述IC电路对从所述至少一个化合物半导体叠层输出的电信号进行处理并进行运算以获得检测结果;Providing a substrate containing an IC circuit, wherein the IC circuit processes the electrical signal output from the at least one compound semiconductor stack and performs calculations to obtain a detection result;
设置粘结层将至少一个化合物半导体叠层键合到含有IC电路的基板上;Providing an adhesive layer to bond at least one compound semiconductor stack to a substrate containing an IC circuit;
其中,所述至少一个化合物半导体叠层的电极与IC电路的引线端电连接。Wherein, the electrode of the at least one compound semiconductor stack is electrically connected to the lead terminal of the IC circuit.
方面2:根据方面1所述的方法,其中,Aspect 2: The method according to aspect 1, wherein:
所述至少一个化合物半导体叠层中的一个化合物半导体叠层从上至下依次包括:N型电极、N型电极欧姆接触及电流导通层、P-N或P-i-N型光子吸收层、载流子阻挡层、P型电极欧姆接触及电流导通层以及位于P型电极欧姆接触及电流导通层的一部分上的P型电极。One of the at least one compound semiconductor stack comprises, from top to bottom, an N-type electrode, an N-type electrode ohmic contact and current conduction layer, a P-N or P-i-N type photon absorption layer, a carrier blocking layer, a P-type electrode ohmic contact and current conduction layer, and a P-type electrode located on a portion of the P-type electrode ohmic contact and current conduction layer.
方面3:根据方面2所述的方法,其中,Aspect 3: The method according to aspect 2, wherein:
所述P型电极欧姆接触及电流导通层包括第一P型电极欧姆接触及电流导通层和第二P型电极欧姆接触及电流导通层,第一P型电极欧姆接触及电流导通层位于第二P型电极欧姆接触及电流导通层上,所述第二P型电极欧姆接触及电流导通层的尺寸大于第一P型电极欧姆接触及电流导通层,所述第二P型电极欧姆接触及电流导通层未被第一P型电极欧姆接触及电流导通层的部分上设置有P型电极;The P-type electrode ohmic contact and current conducting layer comprises a first P-type electrode ohmic contact and current conducting layer and a second P-type electrode ohmic contact and current conducting layer, the first P-type electrode ohmic contact and current conducting layer is located on the second P-type electrode ohmic contact and current conducting layer, the size of the second P-type electrode ohmic contact and current conducting layer is larger than the first P-type electrode ohmic contact and current conducting layer, and a P-type electrode is disposed on a portion of the second P-type electrode ohmic contact and current conducting layer not covered by the first P-type electrode ohmic contact and current conducting layer;
所述N型电极与IC电路的负极引线端的电连接以及所述P型电极与IC电路的正极引线端的电连接通过金属打线连接或通过光刻形成的多层金属互连线连接。The electrical connection between the N-type electrode and the negative lead terminal of the IC circuit and the electrical connection between the P-type electrode and the positive lead terminal of the IC circuit are connected by metal wire bonding or multi-layer metal interconnection lines formed by photolithography.
方面4:根据方面2所述的方法,其中,Aspect 4: The method according to aspect 2, wherein:
所述P型电极包括Au、Ge、Ni、Ti、Cr、Cu或它们的合金形成的金属电极,优选地采用Ti/Au金属电极;The P-type electrode comprises a metal electrode formed of Au, Ge, Ni, Ti, Cr, Cu or an alloy thereof, preferably a Ti/Au metal electrode;
所述第一P型电极欧姆接触及电流导通层和第二P型电极欧姆接触及电流导通层是p型重掺杂的化合物半导体膜;The first P-type electrode ohmic contact and current conducting layer and the second P-type electrode ohmic contact and current conducting layer are p-type heavily doped compound semiconductor films;
所述载流子阻挡层包括p型重掺杂的包含Ga、Al、In、Sb、As的化合物半导体膜,优选地采用InAlSb化合物半导体膜;The carrier blocking layer comprises a p-type heavily doped compound semiconductor film containing Ga, Al, In, Sb, and As, preferably an InAlSb compound semiconductor film;
所述光子吸收层包括P-N或P-i-N轻掺杂的InSb、GaAs、InAs、InGaAs、GaAsSb或InGaP化合物半导体膜,优选地采用InSb化合物半导体膜;The photon absorption layer comprises a P-N or P-i-N lightly doped InSb, GaAs, InAs, InGaAs, GaAsSb or InGaP compound semiconductor film, preferably an InSb compound semiconductor film;
所述N型电极欧姆接触及电流导通层包括n型重掺杂的InSb、GaAs、InAs、InGaAs、GaAsSb或InGaP化合物半导体膜,优选地采用InSb化合物半导体膜;The N-type electrode ohmic contact and current conducting layer include an n-type heavily doped InSb, GaAs, InAs, InGaAs, GaAsSb or InGaP compound semiconductor film, preferably an InSb compound semiconductor film;
所述N型电极包括Au、Ge、Ni、Ti、Cr、Cu或它们的合金形成的金属电极,优选地采用Ti/Au金属电极。The N-type electrode includes a metal electrode formed of Au, Ge, Ni, Ti, Cr, Cu or an alloy thereof, preferably a Ti/Au metal electrode.
方面5:根据方面4所述的方法,其中,Aspect 5: The method according to aspect 4, wherein:
所述化合物半导体叠层由以下步骤制造得到:The compound semiconductor stack is manufactured by the following steps:
在半导体单晶衬底上异质依次外延生长多个化合物半导体膜,分别形成含有晶格缓冲牺牲层的N型电极欧姆接触及电流导通层、P-i-N型光子吸收层、载流子阻挡层、第一P型电极欧姆接触及电流导通层和第二P型电极欧姆接触及电流导通层;Hetero-epitaxially growing a plurality of compound semiconductor films on a semiconductor single crystal substrate in sequence, respectively forming an N-type electrode ohmic contact and current conducting layer containing a lattice buffer sacrificial layer, a P-i-N type photon absorption layer, a carrier blocking layer, a first P-type electrode ohmic contact and current conducting layer, and a second P-type electrode ohmic contact and current conducting layer;
在第二P型电极欧姆接触及电流导通层和基板的至少一个上涂覆粘结层,并且通过粘结层将它们面对面键合在一起;Coating an adhesive layer on at least one of the second P-type electrode ohmic contact, the current conducting layer and the substrate, and bonding them face to face through the adhesive layer;
选择性移除半导体单晶衬底和N型电极欧姆接触及电流导通层中的晶格缓冲牺牲层,Selectively remove the lattice buffer sacrificial layer in the semiconductor single crystal substrate, N-type electrode ohmic contact and current conduction layer,
其中,in,
所述半导体单晶衬底采用GaAs、InP、GaN、Si等任何合适的单晶衬底,所述化合物半导体膜包括InSb、GaAs、InAs、InGaAs或InGaP、InAlSb、GaAsSb或InGaP,所述粘结层包括氮化硅膜、氧化硅膜、氧化铝膜、氮氧化硅膜、环氧树脂、硅胶、二氧化硅和聚酰亚胺膜中的任一种,所述基板包括含有IC电路的Si基晶圆、石英衬底、氧化铝衬底、氮化铝衬底、聚酰亚胺柔性衬底中的任一种。The semiconductor single crystal substrate adopts any suitable single crystal substrate such as GaAs, InP, GaN, Si, etc., the compound semiconductor film includes InSb, GaAs, InAs, InGaAs or InGaP, InAlSb, GaAsSb or InGaP, the bonding layer includes any one of silicon nitride film, silicon oxide film, aluminum oxide film, silicon oxynitride film, epoxy resin, silica gel, silicon dioxide and polyimide film, and the substrate includes any one of Si-based wafer containing IC circuit, quartz substrate, aluminum oxide substrate, aluminum nitride substrate, polyimide flexible substrate.
方面6:根据方面5所述的方法,其中,Aspect 6: The method according to aspect 5, wherein:
仅移除半导体单晶衬底之后N型电极欧姆接触及电流导通层的迁移率大于40000cm2/Vs,所述N型电极欧姆接触及电流导通层的厚度为500nm-10μm,优选地1μm-3μm;After only the semiconductor single crystal substrate is removed, the mobility of the N-type electrode ohmic contact and the current conducting layer is greater than 40000 cm 2 /Vs, and the thickness of the N-type electrode ohmic contact and the current conducting layer is 500nm-10μm, preferably 1μm-3μm;
同时移除半导体单晶衬底和N型电极欧姆接触及电流导通层中晶体质量较差的晶格缓冲牺牲层,N型电极欧姆接触及电流导通层的迁移率得到大幅提高,迁移率大于50000cm2/Vs且小于78000cm2/Vs,所述N型电极欧姆接触及电流导通层的厚度为100nm-9μm,优选地300nm-2μm;P-N或P-i-N型(InSb红外)光子吸收层的面缺陷密度小于等于10-100/cm2。At the same time, the lattice buffer sacrificial layer with poor crystal quality in the semiconductor single crystal substrate, the N-type electrode ohmic contact and the current conducting layer is removed, and the mobility of the N-type electrode ohmic contact and the current conducting layer is greatly improved, the mobility is greater than 50000cm2 /Vs and less than 78000cm2 /Vs, the thickness of the N-type electrode ohmic contact and the current conducting layer is 100nm-9μm, preferably 300nm-2μm; the surface defect density of the PN or PiN type (InSb infrared) photon absorption layer is less than or equal to 10-100/ cm2 .
方面7:根据方面1-6中任一个所述的方法,其中,Aspect 7: The method according to any one of aspects 1-6, wherein:
所述上入光式红外传感器元件还包括用于覆盖化合物半导体叠层的保护层,但是至少暴露出N型电极和P型电极的一部分;The top-incident infrared sensor element further includes a protective layer for covering the compound semiconductor stack, but at least a portion of the N-type electrode and the P-type electrode is exposed;
所述保护层包括氮化硅膜、氧化硅膜、氧化铝膜、氮氧化硅膜、环氧树脂、硅胶、二氧化硅和聚酰亚胺膜中的任一种。The protective layer includes any one of a silicon nitride film, a silicon oxide film, an aluminum oxide film, a silicon oxynitride film, an epoxy resin, a silica gel, silicon dioxide, and a polyimide film.
方面8:根据方面1-7中任一个所述的方法,其中,Aspect 8: The method according to any one of aspects 1-7, wherein:
所述含有IC电路的基板是刚性的或柔性的;The substrate containing the IC circuit is rigid or flexible;
所述基板和粘结层之间还设置有反射膜。A reflective film is also arranged between the substrate and the bonding layer.
方面9:根据方面1-8中任一个所述的方法,其中,Aspect 9: The method according to any one of aspects 1-8, wherein:
所述至少一个化合物半导体叠层以面阵列、线阵列或四象限的形式布置在基板上。The at least one compound semiconductor stack is arranged on the substrate in the form of a planar array, a linear array or four quadrants.
虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。Although some embodiments of the present general inventive concept have been shown and described, it will be appreciated by those skilled in the art that changes may be made to these embodiments without departing from the principles and spirit of the present general inventive concept, the scope of which is defined by the claims and their equivalents.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110914145.2A CN113644158B (en) | 2021-08-10 | 2021-08-10 | Upper incident light type infrared sensor element and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110914145.2A CN113644158B (en) | 2021-08-10 | 2021-08-10 | Upper incident light type infrared sensor element and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113644158A CN113644158A (en) | 2021-11-12 |
CN113644158B true CN113644158B (en) | 2024-04-12 |
Family
ID=78420508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110914145.2A Active CN113644158B (en) | 2021-08-10 | 2021-08-10 | Upper incident light type infrared sensor element and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113644158B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1853281A (en) * | 2003-09-09 | 2006-10-25 | 旭化成株式会社 | Infrared sensor IC, infrared sensor and manufacturing method thereof |
CN102332456A (en) * | 2011-10-11 | 2012-01-25 | 清华大学 | Optical detector integrated device and preparation method |
JP2012146806A (en) * | 2011-01-12 | 2012-08-02 | Irspec Corp | Lattice mismatched infrared compound semiconductor photodetector |
CN103843158A (en) * | 2012-05-30 | 2014-06-04 | 住友电气工业株式会社 | Light receiving element, semiconductor epitaxial wafer, detecting apparatus, and light receiving element manufacturing method |
CN108022985A (en) * | 2017-11-02 | 2018-05-11 | 天津大学 | Extension wavelength mesa avalanche photodide and preparation method thereof |
CN112038418A (en) * | 2020-09-11 | 2020-12-04 | 南京大学 | High-wavelength-selectivity ultraviolet detector and manufacturing method thereof |
JP2021057365A (en) * | 2019-09-26 | 2021-04-08 | 旭化成エレクトロニクス株式会社 | Infrared sensor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6465860B2 (en) * | 1998-09-01 | 2002-10-15 | Kabushiki Kaisha Toshiba | Multi-wavelength semiconductor image sensor and method of manufacturing the same |
-
2021
- 2021-08-10 CN CN202110914145.2A patent/CN113644158B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1853281A (en) * | 2003-09-09 | 2006-10-25 | 旭化成株式会社 | Infrared sensor IC, infrared sensor and manufacturing method thereof |
CN101459203A (en) * | 2003-09-09 | 2009-06-17 | 旭化成电子材料元件株式会社 | Infrared sensor IC, infrared sensor and method for producing same |
JP2012146806A (en) * | 2011-01-12 | 2012-08-02 | Irspec Corp | Lattice mismatched infrared compound semiconductor photodetector |
CN102332456A (en) * | 2011-10-11 | 2012-01-25 | 清华大学 | Optical detector integrated device and preparation method |
CN103843158A (en) * | 2012-05-30 | 2014-06-04 | 住友电气工业株式会社 | Light receiving element, semiconductor epitaxial wafer, detecting apparatus, and light receiving element manufacturing method |
CN108022985A (en) * | 2017-11-02 | 2018-05-11 | 天津大学 | Extension wavelength mesa avalanche photodide and preparation method thereof |
JP2021057365A (en) * | 2019-09-26 | 2021-04-08 | 旭化成エレクトロニクス株式会社 | Infrared sensor |
CN112038418A (en) * | 2020-09-11 | 2020-12-04 | 南京大学 | High-wavelength-selectivity ultraviolet detector and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN113644158A (en) | 2021-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4086875B2 (en) | Infrared sensor IC, infrared sensor and manufacturing method thereof | |
JP3257687B2 (en) | Electro-optical detector array and method of manufacturing the same | |
US9076702B2 (en) | Frontside-illuminated barrier infrared photodetector device and methods of fabricating the same | |
US8338200B2 (en) | Frontside-illuminated inverted quantum well infrared photodetector devices and methods of fabricating the same | |
CN108831879B (en) | Hybrid integrated dual-band multispectral shortwave infrared detector | |
CN113629164B (en) | Downward incident infrared sensor element and manufacturing method thereof | |
US4422091A (en) | Backside illuminated imaging charge coupled device | |
JP4084958B2 (en) | Manufacturing method of semiconductor light receiving device | |
CN216054741U (en) | Down-incident light type infrared sensor | |
JP2008103742A (en) | Infrared sensor ic | |
CN110763344A (en) | A GaN-based photothermal detection thin film element | |
CN113644158B (en) | Upper incident light type infrared sensor element and its manufacturing method | |
Dehe et al. | InGaAs/InP thermoelectric infrared sensor utilizing surface bulk micromachining technology | |
JP2009206357A (en) | Compound semiconductor device and method for manufacturing compound semiconductor device | |
JP6774792B2 (en) | Infrared device | |
KR101944360B1 (en) | Ultraviolet detector | |
CN216054742U (en) | Up-light-entering infrared sensor | |
EP1912259A1 (en) | A quantum dot thermistor structure and use thereof | |
US7973379B2 (en) | Photovoltaic ultraviolet sensor | |
JP4138853B2 (en) | Infrared sensor IC | |
CN106653929A (en) | Semiconductor type carbon nanotube infrared light detecting and imaging device | |
CN111933722B (en) | A kind of photodetector and preparation method | |
JP7600451B1 (en) | Infrared device and method for manufacturing the same | |
CN222547938U (en) | A planar relaxor germanium sensor | |
JP2000323742A (en) | Infrared detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |