CN113639650B - 基于相位累加测量法的光频域反射计式传感解调方法 - Google Patents
基于相位累加测量法的光频域反射计式传感解调方法 Download PDFInfo
- Publication number
- CN113639650B CN113639650B CN202110914517.1A CN202110914517A CN113639650B CN 113639650 B CN113639650 B CN 113639650B CN 202110914517 A CN202110914517 A CN 202110914517A CN 113639650 B CN113639650 B CN 113639650B
- Authority
- CN
- China
- Prior art keywords
- phase
- frequency domain
- strain
- optical frequency
- type sensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000009825 accumulation Methods 0.000 title claims abstract description 24
- 230000003287 optical effect Effects 0.000 title claims abstract description 22
- 238000000691 measurement method Methods 0.000 title claims abstract description 17
- 239000013307 optical fiber Substances 0.000 claims abstract description 19
- 230000008859 change Effects 0.000 claims abstract description 9
- 238000002168 optical frequency-domain reflectometry Methods 0.000 claims description 24
- 239000000835 fiber Substances 0.000 claims description 13
- 230000035772 mutation Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 31
- 238000001228 spectrum Methods 0.000 description 5
- 230000001427 coherent effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
- G01B11/161—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Optical Transform (AREA)
Abstract
本发明属于光纤传感技术领域,尤其涉及基于相位累加测量法的光频域反射计式传感解调方法。本发明提供的基于相位累加测量法的光频域反射计式传感解调方法,通过计算每个相邻扫描周期内的相位差序列,并进行累加实现应变测量,在不会引入额外的噪声干扰同时,兼顾解决了相位解缠绕对最大相位变化值的限制问题,有效地增加了应变测量范围,实现高精度与高空间分辨率的应变测量。
Description
技术领域
本发明属于光纤传感技术领域,尤其涉及基于相位累加测量法的光频域反射计式传感解调方法。
背景技术
分布式光纤传感因具备体积小、耐腐蚀、不受电磁干扰等优点而受到广泛关注,并已应用于各种参数测量,包括应变、温度、振动等。其中,应变测量在土木工程建筑监测、3D形状传感等工业应用中至关重要,因此,其一直是光纤传感领域的研究热点。空间分辨率是应变测量的一个基本指标,目前可实现高空间分辨率应变测量的分布式光纤传感主要有基于布里渊散射的布里渊光时域分析(BOTDA)和基于瑞利散射的光频域反射计(OFDR)。
BOTDA技术依赖于应变与布里渊频移的线性关系,其基本原理是使用一束脉冲泵浦光、一束连续探测光,两束光的频率差在布里渊谱范围内,产生受激布里渊效应,两束光发生能量转移,当两者的频率差等于布里渊频移时能量转移最大。所以通过扫描两束光的频率差,并记录下每个频率差下光纤沿线能量转移大小,便可得到光纤沿线的布里渊频移分布,从而分析出应变信息。该技术可实现几千个微应变的大测量范围,但在厘米级空间分辨率下测量精度一般在十με级别,限制了它在高精度测量场景下的应用。
相较于BOTDA,OFDR技术具有更高的测量精度和灵敏度,是一种理想的应变测量技术。互相关法和相位法是OFDR进行应变测量的两种解调方法。其中,互相关法是将应变前后的采集数据分别作为参考信号和测量信号,对两组信号同时做傅里叶变换,得到频域信号,频域信号经过加窗、傅里叶逆变换获得光谱域信号,最后将二者光谱进行互相关得到光谱偏移量,光谱偏移量和应变成线性关系,便可实现应变传感。与互相关法不同,相位法是通过解调光波相位的变化来获得应变信息,首先提取参考信号和测量信号的相位,通过数学运算获得相位差,再通过解包裹恢复实际的相位差,当光纤某处受到应变影响时,这个位置的相位差就会出现突变,从而得到应变信息。和互相关法相比,使用相位法时不需要进行加窗处理,所以它的空间分辨率理论上可以达到系统空间分辨率的极限,更好地发挥了OFDR在空间分辨率上的优势。
然而,不论是互相关法还是相位法,都有测量范围的限制。使用互相关法时,若应变测量范围较大会造成参考光谱和测量光谱之间的相似性下降,无法准确计算光谱偏移量,导致应变测量出现误差。同样,使用相位法测量大应变时,相位变化会超过解包裹过程最大相位值的限制,造成测量不准。
发明内容
针对上述现有技术的不足,本发明提供了基于相位累加测量法的光频域反射计式传感解调方法,目的是为了解决现有的OFDR技术中,针对应变测量范围较大,互相关法会引起变测量出现误差,相位法引起测量不准的技术问题。
本发明提供的基于相位累加测量法的光频域反射计式传感解调方法,具体技术方案如下:
基于相位累加测量法的光频域反射计式传感解调方法,包括如下步骤:
S1,可调谐激光光源产生等周期性扫描的激光注入到待测光纤中,采集待测光纤的OFDR时域信号;
S2,获取步骤S1中每个扫描周期的OFDR时域信号的真实相位Φi(z),i为激光波长扫描次数,i=1,2,…,n,z为光纤距离;
S3,将相邻扫描周期内获得的Φi(z)相减,得到未解包裹相位差ΔΦi(z),即ΔΦi(z)=Φi+1(z)-Φi(z);
S4,将步骤S3中的未解包裹相位差ΔΦi(z),依次进行解包裹操作得到真实相位差
S5,将步骤S4中所有的相位差依次累加,得到/>即/> 为整个应变加载过程对应的总相位差;
S6,对步骤S5中总相位差进行差分运算,获得待测光纤的应变变化值。
在某些实施方式中,步骤S1中,所述OFDR时域信号为待测光纤产生的瑞利散射光信号与本振光混频后由采集设备获得。
在某些实施方式中,步骤S2中,将每个扫描周期中获得OFDR时域信号记录在光频域中,通过傅里叶变换将频域信号变换到空间域复信号,计算空间域复信号的相位角,再利用解包裹提取每个扫描周期测量信号的真实相位Φi(z)。
在某些实施方式中,步骤S3中,任意相邻点位置的相位差在相邻两次扫描周期中的差值小于2π。
在某些实施方式中,步骤S6中,对总应变进行差分运算,获得整个待测光纤上的差分相对相位,在应变位置会出现相位突变,通过突变进行定位,并且可换算获得应变大小。
本发明具有以下有益效果:本发明技术中的相位累加过程并不会导致噪声的累加,假设计算的相位中含有噪声项那么每个扫描周期测量信号的相位为相邻扫描周期内的相位相减再解包裹,得相位差序列如下:
对上述相位差序列进行累加,可以看到累加时中间过程的相位噪声项都互相抵消,最后只剩下等同于第一个扫描周期和最后一个扫描周期相位相减,这和不使用累加法时参考信号和测量信号直接相减的操作是类似的,因此并不会引入额外的噪声。但是,在互相关法中无法使用累加法,因为噪声会包含在每一次的互相关峰位置中无法消除,再进行累加就会导致噪声逐渐增加,造成测量误差。
相比于现有技术中的相位法只利用应变前后两次测量信号计算相位差,本发明提供的基于相位累加测量法的光频域反射计式传感解调方法,通过计算每个相邻扫描周期内的相位差序列,并进行累加实现应变测量,在不会引入额外的噪声干扰同时,兼顾解决了相位解缠绕对最大相位变化值的限制问题,有效地增加了应变测量范围,实现高精度与高空间分辨率的应变测量。
附图说明
图1是本发明提供的基于上述提供的基于相位累加测量法的光频域反射计式传感解调方法的流程图;
图2是实施例1中的光频域反射计结构示意图;
图3是实施例1中的相位距离曲线;
图4是实施例1中的相位时间曲线图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图1-4,对本发明进一步详细说明。
实施例1
本实施例中的光频域反射测量系统如图2所示,包括可调谐激光器1、第一耦合器2、辅助干涉仪3、第二耦合器4、环形器5、相干探测模块7和处理模块8。可调谐激光器1输出波长扫描的高相干连续波激光,激光器输出光偏振态为线偏振,具体激光器类型可以是DFB、DBR、VCSEL、ECDL等。激光经第一耦合器2分为两束。耦合器2分出的较弱一束激光发送至辅助干涉仪3形成外部时钟信号,辅助干涉仪3可以是迈克尔逊结构干涉仪或马赫曾德尔结构干涉仪。第一耦合器2输出的较强部分首先通过第二耦合器4再次分为两部分,其中较强一部分自环形器5的第一端口进入并从第二端口传入传感光纤6,传感光纤6中产生的背向瑞利散射光自环形器5的第二端口进入并从第三端口与第二耦合器4的较弱光束一起送入相干探测模块7。相干探测模块7的输出信号连接至数据采集和处理模块8从而获得OFDR时域信号。辅助干涉仪3的外时钟信号用于触发采集和处理模块8,以修正光源非线性。
本实施例提供的基于上述提供的基于相位累加测量法的光频域反射计式传感解调方法,具体技术方案如下:
基于相位累加测量法的光频域反射计式传感解调方法,包括如下步骤:
S1,可调谐激光光源产生等周期性扫描的激光注入到待测光纤中,采集待测光纤的OFDR时域信号;
S2,将每个扫描周期中获得OFDR时域信号记录在光频域中,通过傅里叶变换将频域信号变换到空间域复信号,计算空间域复信号的相位角,再利用解包裹提取每个扫描周期OFDR时域信号的真实相位Φi(z),i为激光波长扫描次数,i=1,2,…,n,z为光纤距离;
S3,将相邻扫描周期内获得的Φi(z)相减,得到相位差ΔΦi(z),即ΔΦi(z)=Φi+1(z)-Φi(z),任意相邻点位置的相位差在相邻两次扫描周期中的差值小于2π;
S4,将步骤S3中的相位差ΔΦi(z),依次进行解包裹操作得到真实相位差这个展开相位(即真实相位差)代表两次相邻扫描周期之间的瞬时应变量;
S5,将步骤S4中所有的相位差依次累加,得到/>即/> 为整个应变加载过程对应的总相位差;
S6,对步骤S5中总相位差进行差分运算,获得整个待测光纤上的差分相对相位,在应变位置会出现相位突变,通过突变进行定位,并且可换算获得应变大小,从而获得待测光纤的应变变化值。
当待测光纤6为19m,本实施例提供的OFDR距离分辨率约0.65cm,应变区域在16.6m处宽11.4cm的光纤段上,位移台每次拉伸传感光纤0.01mm,直至0.03mm。测量过程中OFDR系统共扫描4225次,扫描周期为50ms,这4225次扫描获得的时域信号记录在光频域中,通过傅里叶变换将频域信号变换到空间域复信号,计算空间域复信号的相位角,利用解包裹得到每个扫描周期测量信号的真实相位Φ1(z)、Φ2(z)、…Φ4225(z),将相邻扫描周期内获得相位相减,即Φ2(z)-Φ1(z)、Φ3(z)-Φ2(z)、…、Φ4225(z)-Φ4224(z),再通过一次解包裹操作得到相邻扫描周期之间的真实相位差对所有相位差进行累加,从而得到光纤从0拉伸至0.03mm过程中总的相位变化。图3给出了通过该方法计算得到的相位距离曲线,可以看到在16.6-16.714位置处出现相位突变(方框标注处),说明应变加载在此区域。该应变位置被放大并展示于小图,可以看到相邻点之间的弧度差远远大于2π,证明利用本实施例提供的基于上述提供的基于相位累加测量法的光频域反射计式传感解调方法可以突破相位解缠绕对最大相位变化值的限制,实现对大范围的应变测量。如图4所示,相位随时间变化的曲线,图中出现的阶梯型曲线对应了本实施例中的三次拉伸光纤加载应变的过程。
上述仅本发明较佳可行实施例,并非是对本发明的限制,本发明也并不限于上述举例,本技术领域的技术人员,在本发明的实质范围内,所作出的变化、改型、添加或替换,也应属于本发明的保护范围。
Claims (5)
1.基于相位累加测量法的光频域反射计式传感解调方法,其特征在于,包括如下步骤:
S1,可调谐激光光源产生等周期性扫描的激光注入到待测光纤中,采集待测光纤的OFDR时域信号;
S2,获取步骤S1中每个扫描周期的OFDR时域信号的真实相位Φi(z),i为激光波长扫描次数,i=1,2,…,n,z为光纤距离;
S3,将相邻扫描周期内获得的Φi(z)相减,得到未解包裹相位差ΔΦi(z),即ΔΦi(z)=Φi+1(z)-Φi(z);
S4,将步骤S3中的未解包裹相位差ΔΦi(z),依次进行解包裹操作得到真实相位差
S5,将步骤S4中所有的相位差依次累加,得到/>即/>为整个应变加载过程对应的总相位差;
S6,对步骤S5中总相位差进行差分运算,获得待测光纤的应变变化值。
2.根据权利要求1所述的基于相位累加测量法的光频域反射计式传感解调方法,其特征在于,步骤S1中,所述OFDR时域信号为待测光纤产生的瑞利散射光信号与本振光混频后由采集设备获得。
3.根据权利要求1所述的基于相位累加测量法的光频域反射计式传感解调方法,其特征在于,步骤S2中,将每个扫描周期中获得OFDR时域信号记录在光频域中,通过傅里叶变换将频域信号变换到空间域复信号,计算空间域复信号的相位角,再利用解包裹提取每个扫描周期OFDR时域信号的真实相位Φi(z)。
4.根据权利要求1所述的基于相位累加测量法的光频域反射计式传感解调方法,其特征在于,步骤S3中,任意相邻点位置的相位差在相邻两次扫描周期中的差值小于2π。
5.根据权利要求1所述的基于相位累加测量法的光频域反射计式传感解调方法,其特征在于,步骤S6中,对总应变进行差分运算,获得整个待测光纤上的差分相对相位,在应变位置会出现相位突变,通过突变进行定位,并且可换算获得应变大小。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110914517.1A CN113639650B (zh) | 2021-08-10 | 2021-08-10 | 基于相位累加测量法的光频域反射计式传感解调方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110914517.1A CN113639650B (zh) | 2021-08-10 | 2021-08-10 | 基于相位累加测量法的光频域反射计式传感解调方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113639650A CN113639650A (zh) | 2021-11-12 |
CN113639650B true CN113639650B (zh) | 2023-12-12 |
Family
ID=78420547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110914517.1A Active CN113639650B (zh) | 2021-08-10 | 2021-08-10 | 基于相位累加测量法的光频域反射计式传感解调方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113639650B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115523947B (zh) * | 2022-10-08 | 2025-03-18 | 南京航空航天大学 | 基于小波分解的光频域散射分布式光纤传感信息恢复方法 |
CN115560782A (zh) * | 2022-10-18 | 2023-01-03 | 哈尔滨工程大学 | 一种基于周期性相位噪声估计的光频域反射解调方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0946721A (ja) * | 1995-07-31 | 1997-02-14 | Sharp Corp | Pal方式色信号の位相補正装置 |
US5847817A (en) * | 1997-01-14 | 1998-12-08 | Mcdonnell Douglas Corporation | Method for extending range and sensitivity of a fiber optic micro-doppler ladar system and apparatus therefor |
CN1399423A (zh) * | 2001-07-24 | 2003-02-26 | 凌源通讯股份有限公司 | 相位解调器、符号时序回复电路及其方法 |
CN102164003A (zh) * | 2010-12-20 | 2011-08-24 | 武汉虹拓新技术有限责任公司 | 一种色散测量装置 |
CN103944644A (zh) * | 2014-04-09 | 2014-07-23 | 上海交通大学 | 基于匹配延迟采样光相干系统及测量与补偿相位噪声方法 |
CN204142467U (zh) * | 2014-09-20 | 2015-02-04 | 江苏骏龙电力科技股份有限公司 | 一种ofdr实验系统 |
WO2015103887A1 (zh) * | 2014-01-10 | 2015-07-16 | 江苏昂德光电科技有限公司 | 一种3d矩阵式多通道光纤传感解调系统 |
CN105490738A (zh) * | 2016-01-05 | 2016-04-13 | 上海交通大学 | 基于频率合成的光频域反射方法及系统 |
CN110579177A (zh) * | 2019-07-30 | 2019-12-17 | 天津大学 | 基于相对相位变化的光频域反射分布式传感解调方法 |
CN110984247A (zh) * | 2019-11-15 | 2020-04-10 | 河海大学 | 基于ofdr光纤传感的基坑支撑轴力监测预警系统及方法 |
CN111371717A (zh) * | 2018-12-26 | 2020-07-03 | 深圳市力合微电子股份有限公司 | 一种ofdm调制中用对称导频进行相位跟踪的方法 |
CN113108710A (zh) * | 2021-04-14 | 2021-07-13 | 安徽大学 | 基于椭圆拟合的光学低频应变检测系统与检测方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103984184B (zh) * | 2014-05-19 | 2016-08-24 | 上海交通大学 | 光脉冲压缩反射装置 |
-
2021
- 2021-08-10 CN CN202110914517.1A patent/CN113639650B/zh active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0946721A (ja) * | 1995-07-31 | 1997-02-14 | Sharp Corp | Pal方式色信号の位相補正装置 |
US5847817A (en) * | 1997-01-14 | 1998-12-08 | Mcdonnell Douglas Corporation | Method for extending range and sensitivity of a fiber optic micro-doppler ladar system and apparatus therefor |
CN1399423A (zh) * | 2001-07-24 | 2003-02-26 | 凌源通讯股份有限公司 | 相位解调器、符号时序回复电路及其方法 |
CN102164003A (zh) * | 2010-12-20 | 2011-08-24 | 武汉虹拓新技术有限责任公司 | 一种色散测量装置 |
WO2015103887A1 (zh) * | 2014-01-10 | 2015-07-16 | 江苏昂德光电科技有限公司 | 一种3d矩阵式多通道光纤传感解调系统 |
CN103944644A (zh) * | 2014-04-09 | 2014-07-23 | 上海交通大学 | 基于匹配延迟采样光相干系统及测量与补偿相位噪声方法 |
CN204142467U (zh) * | 2014-09-20 | 2015-02-04 | 江苏骏龙电力科技股份有限公司 | 一种ofdr实验系统 |
CN105490738A (zh) * | 2016-01-05 | 2016-04-13 | 上海交通大学 | 基于频率合成的光频域反射方法及系统 |
CN111371717A (zh) * | 2018-12-26 | 2020-07-03 | 深圳市力合微电子股份有限公司 | 一种ofdm调制中用对称导频进行相位跟踪的方法 |
CN110579177A (zh) * | 2019-07-30 | 2019-12-17 | 天津大学 | 基于相对相位变化的光频域反射分布式传感解调方法 |
CN110984247A (zh) * | 2019-11-15 | 2020-04-10 | 河海大学 | 基于ofdr光纤传感的基坑支撑轴力监测预警系统及方法 |
CN113108710A (zh) * | 2021-04-14 | 2021-07-13 | 安徽大学 | 基于椭圆拟合的光学低频应变检测系统与检测方法 |
Non-Patent Citations (1)
Title |
---|
Distributed Fiber Deformation Measurement by High-Accuracy Phase Detection in OFDR Scheme;Shiyuan Zhao等;Journal of lightwave technology;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113639650A (zh) | 2021-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qu et al. | Internet of things infrastructure based on fast, high spatial resolution, and wide measurement range distributed optic-fiber sensors | |
Wang et al. | High sensitivity distributed static strain sensing based on differential relative phase in optical frequency domain reflectometry | |
CN112923960B (zh) | 用于校正非线性调谐效应的光纤参数测量装置 | |
Du et al. | Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR | |
CN110487313A (zh) | 光频域反射技术中光源扫频非线性自校正方法 | |
CN103308151B (zh) | 一种外差式激光测振装置及方法 | |
Qu et al. | Recent advancements in optical frequency-domain reflectometry: A review | |
CN106895790A (zh) | 一种光频域反射中提升分布式光纤传感分辨率方法 | |
CN110048765B (zh) | 一种基于整体最小二乘拟合的φ-otdr定量测量的方法 | |
CN113639650B (zh) | 基于相位累加测量法的光频域反射计式传感解调方法 | |
CN113218320B (zh) | 一种基于距离域补偿的ofdr大应变测量方法 | |
CN106949850A (zh) | 一种高灵敏度高精度的光纤形状传感测量方法及系统 | |
Ba et al. | A high-performance and temperature-insensitive shape sensor based on DPP-BOTDA | |
CN117906519A (zh) | 基于循环移位和小波去噪的相对相位应变解调方法及装置 | |
CN116182729A (zh) | 测量高精度大动态绝对应变量的分布式传感系统及方法 | |
CN111751834A (zh) | 基于光学调频干涉与单频干涉的高速高精度动态测距方法 | |
CN104048617B (zh) | 对偏振态变化不敏感的高精度光纤光栅传感解调方法 | |
CN104776923B (zh) | 基于频率扫描干涉的外时钟信号频率振荡测量方法 | |
CN112082498A (zh) | 基于相位测量法ofdr应变和温度的抑噪传感方法 | |
Hou et al. | Improved path imbalance measurement of a fiber-optic interferometer based on frequency scanning interferometry | |
Zhao et al. | Nonlinear correction in the frequency scanning interferometry system by a fiber resonator | |
CN108801436B (zh) | 基于速度预估相位解调的高速激光测振仪 | |
CN116929422A (zh) | 一种基于ofdr技术的f-p腔传感系统 | |
Ding et al. | Long-range high spatial resolution optical frequency-domain reflectometry based on optimized deskew filter method | |
CN110849586B (zh) | 光纤干涉器参数测量方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |