[go: up one dir, main page]

CN113637633B - A method to promote the differentiation of mesenchymal stem cells into osteoblasts - Google Patents

A method to promote the differentiation of mesenchymal stem cells into osteoblasts Download PDF

Info

Publication number
CN113637633B
CN113637633B CN202110935409.2A CN202110935409A CN113637633B CN 113637633 B CN113637633 B CN 113637633B CN 202110935409 A CN202110935409 A CN 202110935409A CN 113637633 B CN113637633 B CN 113637633B
Authority
CN
China
Prior art keywords
stem cells
mesenchymal stem
alx1
gene
human
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110935409.2A
Other languages
Chinese (zh)
Other versions
CN113637633A (en
Inventor
王金福
张翠
吴梦瑞
梁海燕
王沁怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Diesen Biotechnology Co ltd
Zhejiang University ZJU
Original Assignee
Hainan Diesen Biotechnology Co ltd
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Diesen Biotechnology Co ltd, Zhejiang University ZJU filed Critical Hainan Diesen Biotechnology Co ltd
Priority to CN202110935409.2A priority Critical patent/CN113637633B/en
Publication of CN113637633A publication Critical patent/CN113637633A/en
Application granted granted Critical
Publication of CN113637633B publication Critical patent/CN113637633B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0654Osteocytes, Osteoblasts, Odontocytes; Bones, Teeth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Rheumatology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention provides a method for promoting mesenchymal stem cells to differentiate into osteoblasts, which comprises the following steps: constructing an expression vector of an ALX1 gene, and transferring the expression vector of the ALX1 gene into the mesenchymal stem cells to obtain the mesenchymal stem cells for efficiently expressing exogenous ALX 1; and taking the mesenchymal stem cells for efficiently expressing the exogenous ALX1, and carrying out directional induction culture by using osteoblast induction liquid to obtain the osteoblast. The mesenchymal stem cells which are constructed by the technology and express ALX1 exogenously are in an osteoblast induced differentiation system, so that the need of external cytokines or special equipment in a culture system is eliminated, and the culture cost of the mesenchymal stem cells for directional induced differentiation into osteoblasts is reduced.

Description

一种促进间充质干细胞向成骨细胞分化的方法A method to promote the differentiation of mesenchymal stem cells into osteoblasts

(一)技术领域(1) Technical field

本发明涉及一种通过ALX1-lncRNA-IGF2通路促进间充质干细胞向成骨细胞分化的方法。The present invention relates to a method for promoting the differentiation of mesenchymal stem cells into osteoblasts through the ALX1-lncRNA-IGF2 pathway.

(二)背景技术(2) Background technology

人体的骨组织存在着具有一定分化潜能的干细胞。相关的研究已经表明,来自于骨髓的间充质干细胞(MSCs)可分化为成骨细胞、软骨细胞、脂肪细胞和心肌细胞等,尤其是间充质干细胞向成骨细胞分化的研究成为基于干细胞的骨损伤修复以及骨组织工程技术发展的重要基础,在医学上将具有成骨细胞移植和骨组织工程化的重大应用价值。Human bone tissue contains stem cells with certain differentiation potential. Relevant research has shown that mesenchymal stem cells (MSCs) from bone marrow can differentiate into osteoblasts, chondrocytes, adipocytes, cardiomyocytes, etc., especially the research on the differentiation of mesenchymal stem cells into osteoblasts has become a stem cell-based research. It is an important foundation for bone damage repair and the development of bone tissue engineering technology. It will have great application value in osteoblast transplantation and bone tissue engineering in medicine.

目前在间充质干细胞定向分化成骨细胞技术方面,采取的主要是添加相关细胞因子,或采取施加力学作用来促进间充质干细胞向成骨细胞分化。添加细胞因子的方法是依据骨分化和发育相关的分子机制,在体外间充质干细胞定向诱导分化培养液中添加骨形态发生蛋白(BMP)和胰岛素样生长因子(IGF2)等细胞因子调节骨分化和发育相关的细胞信号通路活性进行成骨细胞分化诱导。对于力学作用的方法,是在特定的装置(如流体剪切板或灌流装置)中通过培养液流经贴壁的间充质干细胞,从而对间充质干细胞产生一定的流体剪切力,这种流体剪切力作用于细胞的胞外基质和受体,从而将胞外的力学信号转化为胞内的化学信号,再通过调节骨细胞分化和发育相关的细胞信号通路活性,最终促进间充质干细胞向成骨细胞分化。但是这两种技术方法在实际应用上具有一定的局限性,尤其是在临床应用和骨组织工程种子细胞制备上具有诸多的不便:细胞因子方法不但增加成本,而且骨细胞诱导分化效率较低,并不便于临床体内应用;流体剪切力方法需要特殊的设备,且也不适用于体内骨损伤修复治疗。At present, in the technology of directional differentiation of mesenchymal stem cells into osteoblasts, the main methods used are to add relevant cytokines or apply mechanical effects to promote the differentiation of mesenchymal stem cells into osteoblasts. The method of adding cytokines is based on the molecular mechanisms related to bone differentiation and development, and adding bone morphogenetic protein (BMP) and insulin-like growth factor (IGF2) and other cytokines to the in vitro mesenchymal stem cell directed induction differentiation culture medium to regulate bone differentiation. The activity of cell signaling pathways related to development induces osteoblast differentiation. The method of mechanical action is to flow the culture fluid through the adherent mesenchymal stem cells in a specific device (such as a fluid shearing plate or a perfusion device), thereby generating a certain fluid shear force on the mesenchymal stem cells. This fluid shear force acts on the extracellular matrix and receptors of cells, thereby converting extracellular mechanical signals into intracellular chemical signals, and then regulates the activity of cell signaling pathways related to bone cell differentiation and development, ultimately promoting mesenchymal replenishment. Stem cells differentiate into osteoblasts. However, these two technical methods have certain limitations in practical application, especially in clinical applications and preparation of seed cells for bone tissue engineering. The cytokine method not only increases the cost, but also has low bone cell differentiation efficiency. It is not convenient for clinical in vivo application; the fluid shear force method requires special equipment and is not suitable for in vivo bone damage repair treatment.

因此,如果通过大量的基因表达组分析,寻找到新的、骨分化相关的关键分子靶点,并针对新靶点采用新的技术促进成骨细胞分化,则不但可开辟新的干细胞定向分化成骨细胞研究思路,同时对可大大降低体外成骨细胞制备成本,提高成骨细胞分化效率,也可促进骨损伤修复的临床应用研究。Therefore, if new key molecular targets related to bone differentiation are found through a large number of gene expression group analyses, and new technologies are used to promote osteoblast differentiation based on the new targets, it will not only open up new avenues for the directed differentiation of stem cells into osteoblasts. The research ideas of bone cells can also greatly reduce the cost of preparing osteoblasts in vitro, improve the efficiency of osteoblast differentiation, and also promote clinical application research on bone damage repair.

(三)发明内容(3) Contents of the invention

为了有效提高间充质干细胞定向分化成骨细胞的能力,本发明依据在RNA-Seq分析基础上发现一种新的骨分化特异相关的长链非编码RNA(lncRNA),即lncRNAAC132217.4,构建其上游转录因子型盒1(ALX1)的高表达载体,促进间充质干细胞高效表达lncRNA AC132217.4,提高lncRNA-IGF2信号通路活性,目的是提供一种有效促进间充质干细胞定向分化成骨细胞的方法。In order to effectively improve the ability of mesenchymal stem cells to differentiate into osteoblasts, the present invention is based on the discovery of a new bone differentiation-specific long non-coding RNA (lncRNA), namely lncRNAAC132217.4, based on RNA-Seq analysis. The high expression vector of its upstream transcription factor type box 1 (ALX1) promotes the efficient expression of lncRNA AC132217.4 in mesenchymal stem cells and improves the activity of the lncRNA-IGF2 signaling pathway. The purpose is to provide an effective method to promote the directional differentiation of mesenchymal stem cells into osteogenesis. Cell methods.

为了实现上述目的,本发明采用如下技术方案:In order to achieve the above objects, the present invention adopts the following technical solutions:

本发明提供一种促进间充质干细胞向成骨细胞分化的方法,所述方法为:The invention provides a method for promoting the differentiation of mesenchymal stem cells into osteoblasts. The method is:

(1)构建ALX1基因的表达载体,并将所述ALX1基因的表达载体转入所述间充质干细胞中,得到高效表达外源ALX1的间充质干细胞;(1) Construct an expression vector of the ALX1 gene, and transfer the expression vector of the ALX1 gene into the mesenchymal stem cells to obtain mesenchymal stem cells that efficiently express exogenous ALX1;

(2)取步骤(1)制备的所述的高效表达外源ALX1的间充质干细胞用成骨细胞诱导液进行定向诱导培养,得到所述成骨细胞。(2) Take the mesenchymal stem cells that highly express exogenous ALX1 prepared in step (1) and conduct targeted induction culture with an osteoblast induction solution to obtain the osteoblasts.

基因高表达技术是采用慢病毒过表达载体(Plenti-CMV-Puro),目标基因ALX1扩增引物序列为:引物CGC GTC GAC ATG GAG TTT CTG AGC GAG A和CAT GGC CCA TGA AATATT GGC TAG CTA GC。表达载体通过慢病毒包装质粒psPAX2和PMD2G转染293T细胞进行病毒包装后感染第3代间充质干细胞。The high gene expression technology uses lentiviral overexpression vector (Plenti-CMV-Puro), and the target gene ALX1 amplification primer sequence is: primer CGC GTC GAC ATG GAG TTT CTG AGC GAG A and CAT GGC CCA TGA AATATT GGC TAG CTA GC. The expression vector was used to transfect 293T cells with lentiviral packaging plasmids psPAX2 and PMD2G for viral packaging and then infect third-generation mesenchymal stem cells.

进一步,所述间充质干细胞可来自下列组织之一:骨髓、脂肪、新生儿脐带、胎盘等。本发明使用的间充质干细胞为人骨髓间充质干细胞。Furthermore, the mesenchymal stem cells can come from one of the following tissues: bone marrow, fat, newborn umbilical cord, placenta, etc. The mesenchymal stem cells used in the present invention are human bone marrow mesenchymal stem cells.

进一步,所述ALX1基因的表达载体是通过将ALX1基因连接到慢病毒过表达载体上构建而成。Furthermore, the expression vector of the ALX1 gene is constructed by connecting the ALX1 gene to a lentiviral overexpression vector.

优选地,所述ALX1基因的表达载体按如下方法制备:通过引物CGC GTC GAC ATGGAG TTT CTG AGC GAG A和CAT GGC CCA TGA AAT ATT GGC TAG CTA GC对人ALX1基因的cDNA序列进行PCR扩增,得到目的基因,用限制性内切酶SalI和NheI分别对慢病毒过表达载体Plenti-CMV-Puro和所述目的基因进行酶切,得到带粘性末端的目的基因和线性载体,用连接酶将所述带粘性末端的目的基因和线性载体进行连接,得到所述ALX1基因的表达载体(所述ALX1基因的表达载体的序列如SEQ ID NO:2所示)。Preferably, the expression vector of the ALX1 gene is prepared as follows: PCR amplification of the cDNA sequence of the human ALX1 gene is performed with primers CGC GTC GAC ATGGAG TTT CTG AGC GAG A and CAT GGC CCA TGA AAT ATT GGC TAG CTA GC to obtain For the target gene, use restriction endonucleases SalI and NheI to digest the lentiviral overexpression vector Plenti-CMV-Puro and the target gene respectively to obtain the target gene and linear vector with sticky ends. Use ligase to cleave the target gene. The target gene with sticky ends is connected to the linear vector to obtain the expression vector of the ALX1 gene (the sequence of the expression vector of the ALX1 gene is shown in SEQ ID NO: 2).

进一步,本发明的所述人ALX1基因的cDNA序列采用如下方法获得:采用Trizol试剂(Invitrogen,Carlsbad,CA)分离提取人骨髓间充质干细胞总RNA,然后采用cDNA第一链合成试剂盒(Fermentas公司)进行cDNA第一链合成,即获得所述人ALX1基因的cDNA序列。Further, the cDNA sequence of the human ALX1 gene of the present invention is obtained by the following method: using Trizol reagent (Invitrogen, Carlsbad, CA) to isolate and extract total RNA of human bone marrow mesenchymal stem cells, and then using a cDNA first strand synthesis kit (Fermentas Company) performed first-strand cDNA synthesis to obtain the cDNA sequence of the human ALX1 gene.

优选地,所述ALX1基因的表达载体通过Lip8000转导试剂盒(碧云天生物有限公司)转入所述间充质干细胞中。Preferably, the expression vector of the ALX1 gene is transferred into the mesenchymal stem cells through Lip8000 transduction kit (Beyotime Biotechnology Co., Ltd.).

具体地,所述高效表达外源ALX1的间充质干细胞按如下方法得到:所述ALX1基因的表达载体通过慢病毒包装质粒psPAX2和PMD2G转染293T细胞进行病毒包装后,在8μg/mL的1,5-二甲基-1,5-二氮十一亚甲基聚甲溴化物(Polybrene,Sigma,St.Louis,MO)辅助下对间充质干细胞继续培养12个小时,即获得所述的高效表达外源ALX1的间充质干细胞。Specifically, the mesenchymal stem cells that highly express exogenous ALX1 were obtained as follows: the expression vector of the ALX1 gene was transfected into 293T cells with lentiviral packaging plasmids psPAX2 and PMD2G for virus packaging, and then incubated in 1 , the mesenchymal stem cells were continued to be cultured for 12 hours with the assistance of 5-dimethyl-1,5-dizundemethyl bromide (Polybrene, Sigma, St. Louis, MO), and the above results were obtained. Mesenchymal stem cells that highly express exogenous ALX1.

进一步,每升所述成骨细胞诱导液由以下组分组成:900mL DMEM-LG培养液,100mL胎牛血清、100U/ml青霉素、100U/ml链霉素、10mMβ-甘油磷酸钠、50μM抗坏血酸。Further, each liter of the osteoblast induction medium consists of the following components: 900 mL DMEM-LG culture medium, 100 mL fetal calf serum, 100 U/ml penicillin, 100 U/ml streptomycin, 10 mM β-glycerophosphate sodium, and 50 μM ascorbic acid.

进一步,所述定向诱导培养的条件为:37℃,7天。Further, the conditions for the directional induction culture are: 37°C, 7 days.

与现有技术相比,本发明的有益效果主要体现在:Compared with the existing technology, the beneficial effects of the present invention are mainly reflected in:

(1)本发明提供的技术中采用成骨细胞分化特异的长链非编码lncRNAAC132217.4上游特异的转录因子ALX1基因高表达载体转导间充质干细胞,能有效提高间充质干细胞中长链非编码lncRNA AC132217.4的表达,促进了成骨细胞分化特异的IGF2细胞信号通路的活化。(1) In the technology provided by the present invention, the long-chain non-coding lncRNA AC132217.4 upstream specific transcription factor ALX1 gene high-expression vector is used to transduce mesenchymal stem cells, which can effectively improve the long-chain expression of mesenchymal stem cells. The expression of non-coding lncRNA AC132217.4 promotes the activation of the osteoblast differentiation-specific IGF2 cell signaling pathway.

(2)本发明技术构建的外源性表达ALX1的间充质干细胞在成骨细胞诱导分化体系中,省去了培养体系中对外加细胞因子或特殊设备的需要,降低了间充质干细胞定向诱导分化成骨细胞的培养成本。(2) The mesenchymal stem cells expressing exogenous ALX1 constructed by the technology of the present invention are used in the osteoblast induction differentiation system, eliminating the need for external cytokines or special equipment in the culture system, and reducing the orientation of mesenchymal stem cells. Cost of culturing osteoblasts induced to differentiate.

(3)本发明技术产生的间充质干细胞定向诱导分化成骨细胞培养体系与传统的成骨细胞定向诱导分化比较,有效提高了间充质干细胞定向分化成骨细胞的效能。(3) Compared with the traditional directional induction and differentiation of osteoblasts, the mesenchymal stem cell directional induction and differentiation into osteoblast culture system produced by the technology of the present invention effectively improves the efficiency of the directional differentiation of mesenchymal stem cells into osteoblasts.

本发明关键在于依据新的成骨特异性长链非编码lncRNA(lncRNA AC132217.4)及其上游特异性转录因子ALX1的验证,进行ALX1表达载体构建和间充质干细胞转染,制备高效表达ALX1的间充质干细胞,促进间充质干细胞定向分化成骨细胞的能力。表达载体构建、间充质干细胞转染以及成骨细胞定向分化过程中的其他参数,均可采用本领域常规手段进行。The key to the present invention is to construct an ALX1 expression vector and transfect mesenchymal stem cells based on the verification of a new osteogenic-specific long non-coding lncRNA (lncRNA AC132217.4) and its upstream specific transcription factor ALX1, to prepare a highly efficient expression of ALX1 of mesenchymal stem cells, and promote the ability of mesenchymal stem cells to differentiate into bone cells. The expression vector construction, mesenchymal stem cell transfection, and other parameters in the osteoblast directional differentiation process can all be carried out by conventional means in this field.

(四)附图说明(4) Description of drawings

图1.lncRNA AC132217.4随成骨分化的增加其表达量增加:(A)人骨髓间充质干细胞成骨分化中差异表达的LncRNAs。(B-C)AC132217.4随成骨分化表达增加。数据分析依照mean±SD;N≥3;*p<0.05,**p<0.01,**p<0.001。Figure 1. The expression of lncRNA AC132217.4 increases with the increase of osteogenic differentiation: (A) Differentially expressed LncRNAs in the osteogenic differentiation of human bone marrow mesenchymal stem cells. (B-C) AC132217.4 expression increases with osteogenic differentiation. Data analysis is based on mean±SD; N≥3; *p<0.05, **p<0.01, **p<0.001.

图2.绿色荧光蛋白分析ALX1病毒的感染效率Figure 2. Green fluorescent protein analysis of infection efficiency of ALX1 virus

图3.AC132217.4通过调节IGF2基因mRNA的稳定性促进成骨分化:(A)Starbase数据库查验lncRNA AC132217.4下游的潜在靶向性mRNA。(B)定量PCR检测lncRNAAC132217.4敲低后对IGF2基因mRNA的稳定性的影响;(C-D)IGF2敲低对成骨分化分化相关蛋白和基因的影响;(E-F)IGF2敲低对成骨分化ALP活性和茜素红的影响;(G-H)lncRNA AC132217.4敲低的细胞中过表达IGF2对成骨分化分化相关蛋白和基因的影响;(I-J)此成骨分化lncRNAAC132217.4敲低的细胞中过表达IGF2对成骨分化ALP活性和茜素红的影响。ACH:AC132217.4过表达的人骨髓间充质干细胞;CTR:过表达空载的人骨髓间充质干细胞;IGF2shRNA:IGF2敲低的人骨髓间充质干细胞;CTR shRNA:干扰空载质粒感染的人骨髓间充质干细胞。ACH+IGF2 shRNA:AC132217.4过表达的同时IGF2敲低的人骨髓间充质干细胞。标尺:50um.数据分析依照mean±SD;N≥3;*p<0.05,**p<0.01,**p<0.001。Figure 3. AC132217.4 promotes osteogenic differentiation by regulating the stability of IGF2 gene mRNA: (A) Starbase database checks potential targeting mRNA downstream of lncRNA AC132217.4. (B) Quantitative PCR detects the effect of lncRNAAC132217.4 knockdown on the stability of IGF2 gene mRNA; (C-D) The effect of IGF2 knockdown on osteogenic differentiation-related proteins and genes; (E-F) IGF2 knockdown on osteogenic differentiation Effects of ALP activity and alizarin red; (G-H) Effects of overexpression of IGF2 in cells with lncRNA AC132217.4 knockdown on osteogenic differentiation and differentiation-related proteins and genes; (I-J) This osteogenic differentiation of lncRNA AC132217.4 knockdown cells Effects of overexpression of IGF2 on ALP activity and alizarin red in osteogenic differentiation. ACH: human bone marrow mesenchymal stem cells overexpressing AC132217.4; CTR: human bone marrow mesenchymal stem cells overexpressing empty vector; IGF2shRNA: human bone marrow mesenchymal stem cells knocking down IGF2; CTR shRNA: interfering with empty vector plasmid infection of human bone marrow mesenchymal stem cells. ACH+IGF2 shRNA: Human bone marrow mesenchymal stem cells with AC132217.4 overexpression and IGF2 knockdown. Scale bar: 50um. Data analysis is based on mean±SD; N≥3; *p<0.05, **p<0.01, **p<0.001.

图4.ALX1通过结合在lncRNA AC132217.4的启动子处影响其转录水平:(A)人间充质干细胞成骨分化7天后差异表达的转录因子;(B)PROMO数据库预测lncRNA AC132217.4的起始位点上游3000bp内的ALX1的结合位点;(C-D)ALX1敲低对AC132217.4和IGF2表达的影响;(E-F)构建AC132217.4启动子野生型和突变的的报告基因,验证ALX1与AC132217.4启动子的结合位点。ALX1 shRNA1:ALX1干扰序列1敲低的人骨髓间充质干细胞;ALX1 shRNA2:ALX1干扰序列2敲低的人骨髓间充质干细胞;shCTR:干扰空载质粒感染的人骨髓间充质干细胞;WT:野生型的AC132217.4启动子序列的荧光素酶报告基因;MUT:ALX1结合位点突变的AC132217.4启动子序列的荧光素酶报告基因;ALX1H:ALX1过表达的人骨髓间充质干细胞;CTR:过表达空载的人骨髓间充质干细胞。数据分析依照mean±SD;N≥3;*p<0.05,**p<0.01,**p<0.001。Figure 4. ALX1 affects the transcription level of lncRNA AC132217.4 by binding to its promoter: (A) Differentially expressed transcription factors after 7 days of osteogenic differentiation of human mesenchymal stem cells; (B) PROMO database predicts the onset of lncRNA AC132217.4 The binding site of ALX1 within 3000bp upstream of the start site; (C-D) The effect of ALX1 knockdown on the expression of AC132217.4 and IGF2; (E-F) Construction of AC132217.4 promoter wild-type and mutant reporter genes to verify the relationship between ALX1 and Binding site of AC132217.4 promoter. ALX1 shRNA1: human bone marrow mesenchymal stem cells with knockdown of ALX1 interference sequence 1; ALX1 shRNA2: human bone marrow mesenchymal stem cells with knockdown of ALX1 interference sequence 2; shCTR: human bone marrow mesenchymal stem cells infected with interference empty plasmid; WT : Luciferase reporter gene of wild-type AC132217.4 promoter sequence; MUT: Luciferase reporter gene of AC132217.4 promoter sequence with ALX1 binding site mutation; ALX1H: ALX1 overexpressing human bone marrow mesenchymal stem cells ;CTR: overexpressing empty human bone marrow mesenchymal stem cells. Data analysis is based on mean±SD; N≥3; *p<0.05, **p<0.01, **p<0.001.

图5.ALX1过表达促进lncRNA AC132217.4和IGF2的表达:(A)定量PCR检查ALX1过表达对lncRNA AC132217.4和IGF2的基因表达水平的影响。(B)Western检测ALX1过表达对ALX1和IGF2的蛋白表达水平的影响。ALX1H:ALX1过表达的人骨髓间充质干细胞;CTR:过表达空载的人骨髓间充质干细胞。数据分析依照mean±SD;N≥3;*p<0.05,**p<0.01,**p<0.001。Figure 5. ALX1 overexpression promotes the expression of lncRNA AC132217.4 and IGF2: (A) Quantitative PCR examines the effect of ALX1 overexpression on the gene expression levels of lncRNA AC132217.4 and IGF2. (B) Western detection of the effect of ALX1 overexpression on the protein expression levels of ALX1 and IGF2. ALX1H: human bone marrow mesenchymal stem cells overexpressing ALX1; CTR: human bone marrow mesenchymal stem cells overexpressing null. Data analysis is based on mean±SD; N≥3; *p<0.05, **p<0.01, **p<0.001.

图6.ALX1过表达对成骨分化的影响:(A)碱性磷酸酶检测ALX1过表达对成骨分化的影响。(B)茜素红检测ALX1过表达对成骨钙化的影响。ALX1H:ALX1过表达的人骨髓间充质干细胞;CTR:过表达空载的人骨髓间充质干细胞。标尺:50um。Figure 6. Effect of ALX1 overexpression on osteogenic differentiation: (A) Alkaline phosphatase detection of the effect of ALX1 overexpression on osteogenic differentiation. (B) Alizarin red detects the effect of ALX1 overexpression on osteogenic calcification. ALX1H: human bone marrow mesenchymal stem cells overexpressing ALX1; CTR: human bone marrow mesenchymal stem cells overexpressing null. Scale: 50um.

(五)具体实施方式(5) Specific implementation methods

下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:The present invention will be further described below in conjunction with specific embodiments, but the protection scope of the present invention is not limited thereto:

以下细胞培养除特殊说明外培养条件为:在37℃、5%二氧化碳细胞培养箱中进行培养。Unless otherwise specified, the following cell culture conditions are: culture in a 37°C, 5% carbon dioxide cell incubator.

实施例1:基因表达谱分析Example 1: Gene expression profiling analysis

收集第3代人骨髓间充质干细胞,制备成单细胞悬液,以2×104个/培养皿接种于直径30mm的培养皿进行α-MEM培养基贴壁培养,待细胞达到铺层80~90%时,用成骨细胞诱导液(DMEM-LG培养液900mL,添加100mL胎牛血清、100U/ml青霉素、100U/ml链霉素、10mMβ-甘油磷酸钠、50μM抗坏血酸)进行成骨细胞定向诱导。Collect the third generation human bone marrow mesenchymal stem cells, prepare them into single cell suspension, and inoculate them into a 30 mm diameter culture dish at 2×10 4 cells/culture dish for adherent culture in α-MEM medium until the cells reach a layer of 80 ~90%, use osteoblast induction medium (DMEM-LG culture medium 900mL, add 100mL fetal bovine serum, 100U/ml penicillin, 100U/ml streptomycin, 10mM β-glycerophosphate sodium, 50μM ascorbic acid) for osteoblast induction Directional induction.

定向诱导7天后,取分化诱导后的细胞和未经诱导分化的细胞各5×105个细胞,加入1mL的Trizol裂解液中进行细胞裂解,细胞裂解液加入1/5体积的三氯甲烷后,室温静置5min后,13000rpm 4℃离心15分钟后取最上层的水相,加入5/3体积的异丙醇,室温静置10min后,13000rpm 4℃离心10分钟,去上清,加1mL 75%的乙醇后再在4℃下7500rpm离心5分钟,去上清,真空去除残留75%的乙醇后用DEPC水(检测方提供)溶解。经RNA总浓度测定,浓度超过100ng/μl,总量超过1μg后送检测方进行RNA-Seq测试分析。After 7 days of directional induction, take 5 × 10 5 cells each of cells after induction of differentiation and cells without induction of differentiation, and add 1 mL of Trizol lysis solution for cell lysis. Add 1/5 volume of chloroform to the cell lysis solution. , after standing at room temperature for 5 minutes, centrifuge at 13000 rpm and 4°C for 15 minutes, take the uppermost water phase, add 5/3 volume of isopropyl alcohol, let stand at room temperature for 10 minutes, centrifuge at 13000 rpm and 4°C for 10 minutes, remove the supernatant, and add 1 mL 75% ethanol, then centrifuge at 7500 rpm for 5 minutes at 4°C, remove the supernatant, vacuum remove the remaining 75% ethanol, and dissolve it in DEPC water (provided by the tester). After the total RNA concentration is determined, if the concentration exceeds 100ng/μl and the total amount exceeds 1μg, it will be sent to the detection party for RNA-Seq test analysis.

RNA-Seq分析数据存储在NCBI基因表达数据库(可通过GEO系列登入号GSE114117进入)(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi)。分析发现在所有发生表达水平变化的基因中,长链非编码lncRNAAC132217.4表达水平变化极为显著(图1A,B),并通过qRT-PCR方法分析得以证实(图1C)。RNA-Seq analysis data are stored in the NCBI gene expression database (accessible through GEO series accession number GSE114117) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi). The analysis found that among all genes whose expression levels changed, the expression level of long non-coding lncRNA AC132217.4 changed extremely significantly (Figure 1A, B), which was confirmed by qRT-PCR analysis (Figure 1C).

其中图1:(A)人骨髓间充质干细胞成骨分化中差异表达的LncRNAs。(B-C)AC132217.4随成骨分化表达增加。数据分析依照mean±SD;N≥3;*p<0.05,**p<0.01,**p<0.001。Figure 1: (A) Differentially expressed LncRNAs in osteogenic differentiation of human bone marrow mesenchymal stem cells. (B-C) AC132217.4 expression increases with osteogenic differentiation. Data analysis is based on mean±SD; N≥3; *p<0.05, **p<0.01, **p<0.001.

实施例2:lncRNA AC132217.4敲低载体的构建Example 2: Construction of lncRNA AC132217.4 knockdown vector

lncRNA AC132217.4敲低载体由吉玛基因公司购入,采用pGPU6/GFP/Neo载体构建,载体构建采用同源重组的方法。构建成短发夹RNA(shRNA)慢病毒载体如SEQ ID NO:1所示。The lncRNA AC132217.4 knockdown vector was purchased from Jima Gene Company and constructed using the pGPU6/GFP/Neo vector. The vector was constructed using homologous recombination. The short hairpin RNA (shRNA) lentiviral vector is constructed as shown in SEQ ID NO: 1.

实施例3:lncRNA AC132217.4的短发夹RNA(shRNA)慢病毒载体转染间充质干细胞Example 3: Transfection of mesenchymal stem cells with short hairpin RNA (shRNA) lentiviral vector of lncRNA AC132217.4

采用Lip8000转导试剂盒(碧云天生物有限公司)进行重组病毒载体悬浮液的制备和对间充质干细胞的转导。按照试剂盒说明书,采用兼噬性包装细胞系293T细胞(ATCC,Rockefeller,MA)制备重组病毒载体悬浮液,。在8μg/mL的1,5-二甲基-1,5-二氮十一亚甲基聚甲溴化物(Polybrene;Sigma,St.Louis,MO)辅助下,在37℃细胞培养箱中,于10-cm的培养皿(Nunc公司)中对2.0×105个间充质干细胞进行8个小时的重组病毒载体转导。细胞转导效率采用增强绿色荧光蛋白(GFP)进行分析(如图2),其结果表明转导的shRNA能在间充质干细胞内长期表达。Lip8000 transduction kit (Beyotime Biotechnology Co., Ltd.) was used to prepare the recombinant viral vector suspension and transduce mesenchymal stem cells. According to the instructions of the kit, the facultative packaging cell line 293T cells (ATCC, Rockefeller, MA) were used to prepare the recombinant viral vector suspension. With the assistance of 8 μg/mL of 1,5-dimethyl-1,5-diazoundecanepolymethyl bromide (Polybrene; Sigma, St. Louis, MO), in a 37°C cell culture incubator, 2.0 × 10 5 mesenchymal stem cells were transduced with the recombinant viral vector in 10-cm culture dishes (Nunc Corp.) for 8 hours. Cell transduction efficiency was analyzed using enhanced green fluorescent protein (GFP) (Figure 2). The results showed that the transduced shRNA could be expressed in mesenchymal stem cells for a long time.

实施例4:lncRNA AC132217.4对成骨细胞分化特异性分析Example 4: Specific analysis of osteoblast differentiation by lncRNA AC132217.4

通过Starbase数据库查验lncRNA AC132217.4下游的潜在靶向性mRNA,发现胰岛素样生长因子IGF2的mRNA与lncRNA AC132217.4具有最高的生信评分(silign score)(图3A),表明IGF2基因的mRNA可能是lncRNA AC132217.4下游的靶向性mRNA。:Checking the potential targeting mRNA downstream of lncRNA AC132217.4 through the Starbase database, it was found that the mRNA of insulin-like growth factor IGF2 and lncRNA AC132217.4 have the highest silign score (Figure 3A), indicating that the mRNA of the IGF2 gene may be It is the targeting mRNA downstream of lncRNA AC132217.4. :

为验证IGF2基因的mRNA是lncRNA AC132217.4下游的靶向性mRNA,取转染lncRNAAC132217.4的短发夹RNA(shRNA)慢病毒载体的间充质干细胞,采用成骨细胞诱导培养液(DMEM-LG培养液900mL,添加100mL胎牛血清、100U/ml青霉素、100U/ml链霉素、10mMβ-甘油磷酸钠、50μM抗坏血酸)培养7天后用放线菌素D处理以阻断mRNA的合成,由此考察lncRNAAC132217.4敲低后IGF2基因mRNA的稳定性。结果表明,lncRNA AC132217.4敲低后IGF2基因mRNA的稳定性显著下降(图3B)。In order to verify that the mRNA of the IGF2 gene is the targeting mRNA downstream of lncRNA AC132217.4, mesenchymal stem cells transfected with the short hairpin RNA (shRNA) lentiviral vector of lncRNA AC132217.4 were taken and cultured using osteoblast induction medium (DMEM). - 900mL of LG culture medium, add 100mL fetal bovine serum, 100U/ml penicillin, 100U/ml streptomycin, 10mM β-glycerophosphate sodium, 50μM ascorbic acid) and culture for 7 days, then treat with actinomycin D to block the synthesis of mRNA, This was used to examine the stability of IGF2 gene mRNA after knockdown of lncRNAAC132217.4. The results showed that the stability of IGF2 gene mRNA was significantly reduced after knockdown of lncRNA AC132217.4 (Figure 3B).

通过实时定量PCR(Real-time PCR)技术(实时定量PCR的反应体系为:1μl cDNA+1μl引物+8μl超纯水+10μl 2x SYRB定量PCR酶mix;反应条件为:95℃5分钟预变性后40个循环,每个循环95℃10s,60℃40s)分析成骨细胞特异的碱性磷酸酶(ALP)、胶原蛋白1(COL1A1)和Runt相关转录因子2(RUNX2)基因信使RNA(mRNA)的表达水平。ALP、,COL1A1和RUNX2的扩增引物见下表:Through real-time quantitative PCR (Real-time PCR) technology (the reaction system of real-time quantitative PCR is: 1μl cDNA + 1μl primer + 8μl ultrapure water + 10μl 2x SYRB quantitative PCR enzyme mix; the reaction conditions are: 95°C for 5 minutes after pre-denaturation 40 cycles, each cycle 95℃10s, 60℃40s) Analysis of osteoblast-specific alkaline phosphatase (ALP), collagen 1 (COL1A1) and Runt-related transcription factor 2 (RUNX2) gene messenger RNA (mRNA) expression level. The amplification primers for ALP, COL1A1 and RUNX2 are shown in the table below:

免疫印迹(western blot)技术分析COL1A1和骨钙蛋白(OCN)活性以及碱性磷酸酶活性检测技术和茜素红染色技术分析ALP活性与细胞矿化结节,分析lncRNA AC132217.4敲低后间充质干细胞的成骨细胞定向分化能力如图3C-J,显示lncRNA AC132217.4敲低导致间充质干细胞的成骨细胞特异性基因与转录因子的表达水平显著下降,lncRNAAC132217.4敲低的成骨细胞中过表达IGF2后间充质干细胞定向分化成骨细胞的能力恢复表明lncRNA AC132217.4通过调节IGF2基因mRNA的稳定性而提高。Western blot technology was used to analyze COL1A1 and osteocalcin (OCN) activities, alkaline phosphatase activity detection technology and alizarin red staining technology were used to analyze ALP activity and cell mineralization nodules, and lncRNA AC132217.4 knockdown was used to analyze the The osteoblast-directed differentiation ability of mesenchymal stem cells is shown in Figure 3C-J, which shows that knockdown of lncRNA AC132217.4 leads to a significant decrease in the expression levels of osteoblast-specific genes and transcription factors of mesenchymal stem cells. The ability of mesenchymal stem cells to differentiate into osteoblasts was restored after overexpression of IGF2 in osteoblasts, indicating that lncRNA AC132217.4 improved the stability of IGF2 gene mRNA.

图3中:(A)Starbase数据库查验lncRNA AC132217.4下游的潜在靶向性mRNA。(B)定量PCR检测lncRNA AC132217.4敲低后对IGF2基因mRNA的稳定性的影响;(C-D)IGF2敲低对成骨分化分化相关蛋白和基因的影响。(E-F)IGF2敲低对成骨分化ALP活性和茜素红的影响。(G-H)lncRNA AC132217.4敲低的细胞中过表达IGF2对成骨分化分化相关蛋白和基因的影响。(I-J)此成骨分化lncRNA AC132217.4敲低的细胞中过表达IGF2对成骨分化ALP活性和茜素红的影响。ACH:AC132217.4过表达的人骨髓间充质干细胞;CTR:过表达空载的人骨髓间充质干细胞;IGF2 shRNA:IGF2敲低的人骨髓间充质干细胞;CTR shRNA:干扰空载质粒感染的人骨髓间充质干细胞。ACH+IGF2 shRNA:AC132217.4过表达的同时IGF2敲低的人骨髓间充质干细胞。标尺:50um.数据分析依照mean±SD;N≥3;*p<0.05,**p<0.01,**p<0.001。In Figure 3: (A) Starbase database checks potential target mRNA downstream of lncRNA AC132217.4. (B) Quantitative PCR detects the effect of lncRNA AC132217.4 knockdown on the stability of IGF2 gene mRNA; (C-D) The effect of IGF2 knockdown on osteogenic differentiation-related proteins and genes. (E-F) Effects of IGF2 knockdown on ALP activity and alizarin red on osteogenic differentiation. (G-H) Effects of overexpression of IGF2 in lncRNA AC132217.4 knockdown cells on osteogenic differentiation-related proteins and genes. (I-J) Effects of overexpression of IGF2 on osteogenic differentiation ALP activity and alizarin red in cells knockdown of this osteogenic differentiation lncRNA AC132217.4. ACH: Human bone marrow mesenchymal stem cells overexpressing AC132217.4; CTR: Human bone marrow mesenchymal stem cells overexpressing the empty vector; IGF2 shRNA: Human bone marrow mesenchymal stem cells knocking down IGF2; CTR shRNA: Interfering empty plasmid Infected human bone marrow mesenchymal stem cells. ACH+IGF2 shRNA: Human bone marrow mesenchymal stem cells with AC132217.4 overexpression and IGF2 knockdown. Scale bar: 50um. Data analysis is based on mean±SD; N≥3; *p<0.05, **p<0.01, **p<0.001.

实施例5:lncRNA AC132217.4上游特异性转录因子ALX1分析Example 5: Analysis of lncRNA AC132217.4 upstream specific transcription factor ALX1

为了在间充质定向分化成骨细胞期间能增加lncRNA AC132217.4的转录表达水平,依据实施例1中的RNA-Seq技术分析结果寻找AC132217.4上游的潜在特异性转录因子,结果发现有12个上调和17个下调的转录因子(图4A)。然后我们利用PROMO数据库分析了lncRNA AC132217.4启动子区(lncRNA AC132217.4上游约3000bp的基因组区)的转录因子结合位点,发现有8个ALX1高位结合位点(图4B),表明ALX1可能是特异性调控lncRNAAC132217.4表达的转录因子。In order to increase the transcriptional expression level of lncRNA AC132217.4 during the directional differentiation of mesenchymal osteoblasts, we looked for potential specific transcription factors upstream of AC132217.4 based on the RNA-Seq technical analysis results in Example 1, and found that there are 12 17 up-regulated and 17 down-regulated transcription factors (Figure 4A). We then used the PROMO database to analyze the transcription factor binding sites in the promoter region of lncRNA AC132217.4 (the genomic region about 3000 bp upstream of lncRNA AC132217.4) and found 8 high-level binding sites for ALX1 (Figure 4B), indicating that ALX1 may It is a transcription factor that specifically regulates the expression of lncRNAAC132217.4.

为验证上述推测,采用2种独立的ALX1 shRNA去降低ALX1的表达。ALX1 shRNA干扰质粒在pRNAi-U6.2/Lenti Vector空载体的基础上进行构建。ALX1 shRNA引物序列由华大生物公司合成,合成后的上下游引物两端采用磷酸化酶进行磷酸化后退火形成双链结构(磷酸化和退火的体系为:1ul的上游引物+1ul的下游引物+1ul的T4 PNK酶+7ul的超纯水,程序为37℃30min,95℃5min后,按照5℃/min的速度降至25℃),再通过HpaI和XhoI酶切载体和ALX1 shRNA序列后进行连接。ALX1 shRNA引物序列如下表:To verify the above speculation, two independent ALX1 shRNAs were used to reduce the expression of ALX1. ALX1 shRNA interference plasmid was constructed based on pRNAi-U6.2/Lenti Vector empty vector. The ALX1 shRNA primer sequence was synthesized by BGI. Both ends of the synthesized upstream and downstream primers are phosphorylated by phosphorylase and then annealed to form a double-stranded structure (the phosphorylation and annealing system is: 1ul upstream primer + 1ul downstream primer) + 1ul of T4 PNK enzyme + 7ul of ultrapure water, the program is 37℃ for 30min, 95℃ for 5min, then lowered to 25℃ at a rate of 5℃/min), and then digest the vector and ALX1 shRNA sequence by HpaI and XhoI Make a connection. The ALX1 shRNA primer sequence is as follows:

结果表明,与未敲低ALX1的细胞比较,ALX1敲低的细胞中lncRNA AC132217.4表达水平显著降低(图4C-D),荧光素酶报告分析方法验证ALX1可结合于lncRNA AC132217.4基因的启动区(图4E-F)。The results showed that compared with cells without ALX1 knockdown, the expression level of lncRNA AC132217.4 in ALX1 knockdown cells was significantly reduced (Figure 4C-D). The luciferase reporter assay method verified that ALX1 can bind to the lncRNA AC132217.4 gene. Startup zone (Figure 4E-F).

图4中:(A)人间充质干细胞成骨分化7天后差异表达的转录因子;(B)PROMO数据库预测lncRNA AC132217.4的起始位点上游3000bp内的ALX1的结合位点;(C-D)ALX1敲低对AC132217.4和IGF2表达的影响;(E-F)构建AC132217.4启动子野生型和突变的的报告基因,验证ALX1与AC132217.4启动子的结合位点。ALX1 shRNA1:ALX1干扰序列1敲低的人骨髓间充质干细胞;ALX1 shRNA2:ALX1干扰序列2敲低的人骨髓间充质干细胞;shCTR:干扰空载质粒感染的人骨髓间充质干细胞;WT:野生型的AC132217.4启动子序列的荧光素酶报告基因;MUT:ALX1结合位点突变的AC132217.4启动子序列的荧光素酶报告基因;ALX1H:ALX1过表达的人骨髓间充质干细胞;CTR:过表达空载的人骨髓间充质干细胞。数据分析依照mean±SD;N≥3;*p<0.05,**p<0.01,**p<0.001。In Figure 4: (A) Differentially expressed transcription factors after 7 days of osteogenic differentiation of human mesenchymal stem cells; (B) PROMO database predicts the binding site of ALX1 within 3000 bp upstream of the start site of lncRNA AC132217.4; (C-D) Effect of ALX1 knockdown on the expression of AC132217.4 and IGF2; (E-F) Construct wild-type and mutant AC132217.4 promoter reporter genes to verify the binding site of ALX1 and AC132217.4 promoter. ALX1 shRNA1: human bone marrow mesenchymal stem cells with knockdown of ALX1 interference sequence 1; ALX1 shRNA2: human bone marrow mesenchymal stem cells with knockdown of ALX1 interference sequence 2; shCTR: human bone marrow mesenchymal stem cells infected with interference empty plasmid; WT : Luciferase reporter gene of wild-type AC132217.4 promoter sequence; MUT: Luciferase reporter gene of AC132217.4 promoter sequence with ALX1 binding site mutation; ALX1H: ALX1 overexpressing human bone marrow mesenchymal stem cells ;CTR: overexpressing empty human bone marrow mesenchymal stem cells. Data analysis is based on mean±SD; N≥3; *p<0.05, **p<0.01, **p<0.001.

实施例6:ALX1高表达载体构建和间充质干细胞转染Example 6: Construction of ALX1 high expression vector and transfection of mesenchymal stem cells

本发明技术采用Trizol试剂(Invitrogen,Carlsbad,CA)分离提取人骨髓间充质干细胞总RNA,然后采用cDNA第一链合成试剂盒(Fermentas公司)进行cDNA第一链合成,再以cDNA第一链为PCR扩增模板,扩增ALX1基因序列。ALX1基因的扩增引物序列为:CGC GTCGAC ATG GAG TTT CTG AGC GAG A和CAT GGC CCA TGA AAT ATT GGC TAG CTA GC。ALX1的PCR反应的总体积为25μl,95℃5分钟预变性后30个循环,每个循环包括94℃60秒,55℃45秒,72℃60秒。扩增片段长度为981bp。The technology of the present invention uses Trizol reagent (Invitrogen, Carlsbad, CA) to isolate and extract total RNA of human bone marrow mesenchymal stem cells, and then uses a cDNA first strand synthesis kit (Fermentas Company) to synthesize the first strand of cDNA, and then use the first strand of cDNA to Use it as a PCR amplification template to amplify the ALX1 gene sequence. The amplification primer sequences of the ALX1 gene are: CGC GTCGAC ATG GAG TTT CTG AGC GAG A and CAT GGC CCA TGA AAT ATT GGC TAG CTA GC. The total volume of the ALX1 PCR reaction was 25 μl, and 30 cycles were performed after pre-denaturation at 95°C for 5 minutes. Each cycle included 94°C for 60 seconds, 55°C for 45 seconds, and 72°C for 60 seconds. The length of the amplified fragment is 981bp.

PCR反应体系(20μl)为:1μcDNA+1μl引物+8μl超纯水+10μl 2x PCR酶mix。The PCR reaction system (20 μl) is: 1 μl cDNA + 1 μl primer + 8 μl ultrapure water + 10 μl 2x PCR enzyme mix.

ALX1的PCR扩增片段通过SalI和NheI(TaKaRa公司)酶切位点用连接酶(TaKaRa公司)连接到慢病毒过表达载体(Plenti-CMV-Puro)(济南维真生物有限公司)上,构建成ALX1慢病毒过表达载体如SEQ ID NO:2所示。The PCR amplified fragment of ALX1 was connected to the lentiviral overexpression vector (Plenti-CMV-Puro) (Jinan Weizhen Biological Co., Ltd.) (Jinan Weizhen Biological Co., Ltd.) through SalI and NheI (TaKaRa Company) restriction sites and ligase (TaKaRa Company). The ALX1 lentiviral overexpression vector is shown in SEQ ID NO: 2.

构建的ALX1慢病毒过表达载体通过Lip8000转导试剂盒(碧云天生物有限公司)进行重组病毒载体悬浮液的制备和对间充质干细胞的转导。按照试剂盒说明书,采用包装细胞系293T(ATCC,Rockefeller,MA)制备重组病毒载体悬浮液。(病毒包装方案:将15ug的总质粒(ALX1过表达质粒:psPAX2:PMD2G=4:3:1)与750ul的Opti-MEM培养基混匀,之后加入24ul的Lip8000转染试剂(碧云天生物有限公司)混匀,将转染液加入密度为70-90%的10cm皿的293T细胞中,6小时更换新鲜293T细胞培养基(DMEM高糖培养基+10%FBS),72h后收集上清,上清即为病毒原液)在8μg/mL的1,5-二甲基-1,5-二氮十一亚甲基聚甲溴化物(Polybrene;Sigma,St.Louis,MO)辅助下,于6-cm的培养皿(Nunc公司)中对2.0×105个间充质干细胞进行12个小时的重组病毒载体转导。Western blotting验证其过表达效率,结果表明转导的过表达质粒能在间充质干细胞内长期表达。The constructed ALX1 lentiviral overexpression vector was used to prepare the recombinant viral vector suspension and transduce mesenchymal stem cells using the Lip8000 transduction kit (Beyotime Biotechnology Co., Ltd.). According to the instructions of the kit, the packaging cell line 293T (ATCC, Rockefeller, MA) was used to prepare the recombinant viral vector suspension. (Virus packaging scheme: Mix 15ug of total plasmid (ALX1 overexpression plasmid: psPAX2:PMD2G=4:3:1) with 750ul of Opti-MEM medium, then add 24ul of Lip8000 transfection reagent (Beyotime Biotechnology Co., Ltd. Company), mix well, add the transfection solution to 293T cells in a 10cm dish with a density of 70-90%, replace the fresh 293T cell culture medium (DMEM high sugar culture medium + 10% FBS) for 6 hours, and collect the supernatant after 72 hours. The supernatant is the virus stock solution), with the assistance of 8 μg/mL 1,5-dimethyl-1,5-diaz undecanemethylene polymethyl bromide (Polybrene; Sigma, St. Louis, MO), 2.0 × 10 5 mesenchymal stem cells were transduced with the recombinant viral vector in a 6-cm culture dish (Nunc Corporation) for 12 hours. Western blotting verified its overexpression efficiency, and the results showed that the transduced overexpression plasmid could be expressed in mesenchymal stem cells for a long time.

对感染了ALX1过表达质粒的间充质干细胞定量PCR检测分析lncRNA AC132217.4和IGF2的基因表达水平(图5A-B),western和Elisa检测了IGF2的蛋白表达水平,结果发现ALX1的过表达促进了AC132217.4和IGF2的表达水平。Quantitative PCR detection and analysis of the gene expression levels of lncRNA AC132217.4 and IGF2 in mesenchymal stem cells infected with ALX1 overexpression plasmid (Figure 5A-B). The protein expression level of IGF2 was detected by western and Elisa, and the results showed that the overexpression of ALX1 Promoted the expression levels of AC132217.4 and IGF2.

图5中:(A)定量PCR检查ALX1过表达对lncRNA AC132217.4和IGF2的基因表达水平的影响。(B)Western检测ALX1过表达对ALX1和IGF2的蛋白表达水平的影响。ALX1H:ALX1过表达的人骨髓间充质干细胞;CTR:过表达空载的人骨髓间充质干细胞。数据分析依照mean±SD;N≥3;*p<0.05,**p<0.01,**p<0.001。In Figure 5: (A) Quantitative PCR examines the effect of ALX1 overexpression on the gene expression levels of lncRNA AC132217.4 and IGF2. (B) Western detection of the effect of ALX1 overexpression on the protein expression levels of ALX1 and IGF2. ALX1H: human bone marrow mesenchymal stem cells overexpressing ALX1; CTR: human bone marrow mesenchymal stem cells overexpressing null. Data analysis is based on mean±SD; N≥3; *p<0.05, **p<0.01, **p<0.001.

实施例7:转导ALX1高表达载体促进间充质干细胞定向分化成骨细胞能力分析Example 7: Analysis of the ability of transduction of ALX1 high expression vector to promote directional differentiation of mesenchymal stem cells into osteoblasts

将未转染ALX1高表达载体的间充质干细胞与转染ALX1高表达载体的间充质干细胞,消化成单细胞悬液,以3×104个/毫升的密度接种于16孔培养板中,待细胞达到80%-90%融合后,加入用成骨细胞诱导液(DMEM-LG培养液900mL,添加100mL胎牛血清、100U/ml青霉素、100U/ml链霉素、0.1μmol地塞米松、10mMβ-甘油磷酸钠、50μM抗坏血酸)进行成骨细胞定向诱导进行7天的定向诱导。每隔2天换液一次。The mesenchymal stem cells that have not been transfected with the ALX1 high expression vector and the mesenchymal stem cells that have been transfected with the ALX1 high expression vector are digested into a single cell suspension and seeded in a 16-well culture plate at a density of 3×10 4 cells/ml. , after the cells reach 80%-90% confluence, add 900mL of osteoblast induction medium (DMEM-LG culture medium, add 100mL fetal bovine serum, 100U/ml penicillin, 100U/ml streptomycin, 0.1μmol dexamethasone , 10mM β-sodium glycerophosphate, 50μM ascorbic acid) for targeted induction of osteoblasts for 7 days. Change the medium every 2 days.

终止诱导后,碱性磷酸酶染色观察分化效果:所得细胞用PBS(pH 7.2)洗3次,每次1分钟,在室温下用含7.5%蔗糖的1%多聚甲醛固定10~20分钟,然后用碱性磷酸酶试剂盒染色.根据厂家说明,先用底物缓冲液平衡,在新鲜配制的5-溴-4-氯-3-吲跺磷酸/氮蓝四唑(BCIP/NBT)染色液中室温避光的条件下染色30分钟以上,水洗。在100倍倒置显微镜下观察分化细胞如图6A。After terminating the induction, alkaline phosphatase staining was performed to observe the differentiation effect: the resulting cells were washed three times with PBS (pH 7.2) for 1 minute each time, and fixed with 1% paraformaldehyde containing 7.5% sucrose at room temperature for 10 to 20 minutes. Then use an alkaline phosphatase kit for staining. According to the manufacturer's instructions, first balance with substrate buffer and stain with freshly prepared 5-bromo-4-chloro-3-indophosphonate/nitroblue tetrazolium (BCIP/NBT). Dye in the liquid at room temperature and protected from light for more than 30 minutes, then wash with water. Observe differentiated cells under a 100x inverted microscope as shown in Figure 6A.

终止诱导后,茜素红S染色观察分化效果:用PBS(pH 7.2)洗涤分化细胞3次,每次1分钟,4%多聚甲醛固定标本,2%茜素红S染液37℃孵育5分钟,蒸馏水漂洗后观察(图6B)。After termination of induction, Alizarin Red S staining was used to observe the differentiation effect: Wash the differentiated cells 3 times with PBS (pH 7.2), 1 minute each time, fix the specimen with 4% paraformaldehyde, and incubate with 2% Alizarin Red S staining solution at 37°C for 5 minutes, rinse with distilled water and observe (Figure 6B).

图6中:(A)碱性磷酸酶检测ALX1过表达对成骨分化的影响。(B)茜素红检测ALX1过表达对成骨钙化的影响。ALX1H:ALX1过表达的人骨髓间充质干细胞;CTR:过表达空载的人骨髓间充质干细胞。标尺:50um。In Figure 6: (A) Alkaline phosphatase detects the effect of ALX1 overexpression on osteogenic differentiation. (B) Alizarin red detects the effect of ALX1 overexpression on osteogenic calcification. ALX1H: human bone marrow mesenchymal stem cells overexpressing ALX1; CTR: human bone marrow mesenchymal stem cells overexpressing null. Scale: 50um.

综上:To sum up:

(1)本发明技术有效地提高了间充质干细胞定向分化成骨细胞的能力:(1) The technology of the present invention effectively improves the ability of mesenchymal stem cells to differentiate into osteoblasts:

经构建ALX1高表达载体并转染间充质干细胞,能有效提高细胞中长链非编码lncRNA AC132217.4的表达水平,并由此增强了IGF2基因mRNA的稳定性,由此提高了IGF2信号通路的活性,显著促进了间充质干细胞定向分化成骨细胞的效率,与未转染ALX1高表达载体的间充质干细胞相比,定向分化效率提高了68.2%。The ALX1 high expression vector was constructed and transfected into mesenchymal stem cells, which can effectively increase the expression level of long non-coding lncRNA AC132217.4 in the cells, thereby enhancing the stability of IGF2 gene mRNA, thus improving the IGF2 signaling pathway. The activity significantly promoted the efficiency of directional differentiation of mesenchymal stem cells into osteoblasts. Compared with mesenchymal stem cells that were not transfected with the ALX1 high expression vector, the directional differentiation efficiency increased by 68.2%.

(2)本发明技术具有降低间充质干细胞定向诱导分化成骨细胞实验成本的优势:(2) The technology of the present invention has the advantage of reducing the experimental cost of directional induction and differentiation of mesenchymal stem cells into osteoblasts:

经本技术诱导分化以及制备成骨细胞可免除添加相关细胞因子以及特殊设备的需求,有效降低了由昂贵的细胞因子以及特殊设备所造成的高昂成本。Inducing differentiation and preparing osteoblasts through this technology can eliminate the need to add related cytokines and special equipment, effectively reducing the high costs caused by expensive cytokines and special equipment.

(3)本发明技术可应用于临床骨损伤修复治疗和骨组织工程技术的研究:(3) The technology of the present invention can be applied to clinical bone damage repair treatment and research on bone tissue engineering technology:

本发明提供了一种具有高效的成骨细胞分化效率的间充质干细胞定向诱导分化成骨细胞的方法,可为骨组织工程研究和应用提供充足的种子细胞,同时ALX1和lncRNAAC132217.4的高表达技术可应用于临床骨损伤修复及骨不连患者的基因治疗技术研究。The present invention provides a method for directional induction and differentiation of mesenchymal stem cells into osteoblasts with high osteoblast differentiation efficiency, which can provide sufficient seed cells for bone tissue engineering research and application. At the same time, the high levels of ALX1 and lncRNAAC132217.4 Expression technology can be applied to clinical bone damage repair and gene therapy research in patients with nonunion.

序列表sequence list

<110> 浙江大学<110> Zhejiang University

海南迪森生物科技有限责任公司Hainan Disen Biotechnology Co., Ltd.

<120> 一种促进间充质干细胞向成骨细胞分化的方法<120> A method to promote the differentiation of mesenchymal stem cells into osteoblasts

<160> 2<160> 2

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 869<211> 869

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 1<400> 1

gctgggcagt cgggcaggag agggcctatt tcccatgatt ccttcatatt tgcatatacg 60gctgggcagt cgggcaggag agggcctatt tcccatgatt ccttcatatt tgcatatacg 60

atacaaggct gttagagaga taattagaat taatttgact gtaaacacaa agatattagt 120atacaaggct gttagagaga taattagaat taatttgact gtaaacacaa agatattagt 120

acaaaatacg tgacgtagaa agtaataatt tcttgggtag tttgcagttt taaaattatg 180acaaaatacg tgacgtagaa agtaataatt tcttgggtag tttgcagttt taaaattatg 180

ttttaaaatg gactatcata tgcttaccgt aacttgaaag tatttcgatt tcttggcttt 240ttttaaaatg gactatcata tgcttaccgt aacttgaaag tatttcgatt tcttggcttt 240

atatatcttg tggaaaggac gaaacaccgc ttgcaatccc aataaagcat tcaagagatg 300atatatcttg tggaaaggac gaaacaccgc ttgcaatccc aataaagcat tcaagagatg 300

ctttattggg attgcaagct tttttggatc cactagttct agagcggccg ccaccgcggt 360ctttattggg attgcaagct tttttggatc cactagttct agagcggccg ccaccgcggt 360

ggagctccag cttttgttcc ctttagtgag ggttaattgc gcgttaagat acatgatgag 420ggagctccag cttttgttcc ctttagtgag ggttaattgc gcgttaagat acatgatgag 420

tttggacaaa ccacaactag aatgcagtga aaaaaatgct ttatttgaaa tttgtgatgc 480tttggacaaa ccacaactag aatgcagtga aaaaaatgct ttatttgaaa tttgtgatgc 480

tattgcttta tttgtaacca ttataagctg caataaacaa gttaacaaca acaattgcat 540tattgcttta tttgtaacca ttataagctg caataaacaa gttaacaaca acaattgcat 540

tcattttatg tttcaggttc agggggaggt gtgggaggtt ttttaaagca agtaaaacct 600tcattttatg tttcaggttc agggggaggt gtgggaggtt ttttaaagca agtaaaacct 600

ctacaaaatg tggtatggct gattatgatc agttatctag atccggtgga tctgagtccg 660ctacaaaatg tggtatggct gattatgatc agttatctag atccggtgga tctgagtccg 660

gacttgtaca gctcgtccat gccgagagtg atcccggcgg cggtcacgaa ctaaagcagg 720gacttgtaca gctcgtccat gccgagagtg atcccggcgg cggtcacgaa ctaaagcagg 720

accatgtgat cgcgcttctc gttggggtct ttgctcaggc ggactgggtg ctcaggtagt 780accatgtgat cgcgcttctc gttggggtct ttgctcaggc ggactgggtg ctcaggtagt 780

ggttgtcggg cagcagcacg gggccgtcgc cgatggggtg ttctgctggt agtggtcagc 840ggttgtcggg cagcagcacg gggccgtcgc cgatggggtg ttctgctggt agtggtcagc 840

gagctgcacg ctgccgtcct cgaagatgt 869gagctgcacg ctgccgtcct cgaagatgt 869

<210> 2<210> 2

<211> 894<211> 894

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 2<400> 2

cttagccggg cccaataatg attttatttt gactgatagt gacctgttcg ttgcaacaaa 60cttagccggg cccaataatg attttatttt gactgatagt gacctgttcg ttgcaacaaa 60

ttgataagca atgctttttt ataatgccaa ctttgtacaa aaaagcaggc tccaccatgg 120ttgataagca atgctttttt ataatgccaa ctttgtacaa aaaagcaggc tccaccatgg 120

attacaagga cgatgacgac aaactcggat ccatgggaac caattcagtc gacatggagt 180attacaagga cgatgacgac aaactcggat ccatgggaac caattcagtc gacatggagt 180

ttctgagcga gaagtttgcc ctcaagagcc ctccgagtaa aaacagtgac ttttacatgg 240ttctgagcga gaagtttgcc ctcaagagcc ctccgagtaa aaacagtgac ttttacatgg 240

gcgcaggagg tcctctggag cacgttatgg agacgctgga caatgagtcc ttttacagca 300gcgcaggagg tcctctggag cacgttatgg agacgctgga caatgagtcc ttttacagca 300

aagcgtctgc aggcaaatgc gtgcaggcct tcggacccct gccccgcgcc gagcatcacg 360aagcgtctgc aggcaaatgc gtgcaggcct tcggacccct gccccgcgcc gagcatcacg 360

tgcgcttgga gaggacctcg ccctgtcagg acagcagcgt gaactatggg atcactaaag 420tgcgcttgga gaggacctcg ccctgtcagg acagcagcgt gaactatggg atcactaaag 420

tagaaggaca gccccttcac accgaactga atagagctat ggacaactgt aacagtctcc 480tagaaggaca gccccttcac accgaactga atagagctat ggacaactgt aacagtctcc 480

gaatgtctcc cgtgaaaggg atgcaagaga agggagagct ggatgaactt ggggataaat 540gaatgtctcc cgtgaaaggg atgcaagaga agggagagct ggatgaactt ggggataaat 540

gtgatagcaa tgtatccagc agtaagaaac ggaggcaccg aaccaccttc accagtttgc 600gtgatagcaa tgtatccagc agtaagaaac ggaggcaccg aaccaccttc accagtttgc 600

agctagagga gctggagaaa gtctttcaga aaactcatta cccggatgtg tatgtcagag 660agctagagga gctggagaaa gtctttcaga aaactcatta cccggatgtg tatgtcagag 660

aacagcttgc tctgaggaca gagctcactg aggccagggt ccaggtttgg tttcaaaatc 720aacagcttgc tctgaggaca gagctcactg aggccagggt ccaggtttgg tttcaaaatc 720

gaagggccaa atggagaaaa agggaacgtt atggccaaat acaacaagcg aaaagccatt 780gaagggccaa atggagaaaa agggaacgtt atggccaaat acaacaagcg aaaagccatt 780

ttgctgccac ctatgatata tcagttttgc caaggactga cagctaccca cagattcaga 840ttgctgccac ctatgatata tcagttttgc caaggactga cagctaccca cagattcaga 840

acaatttgtg ggcaggaaat gcaagtggtg gttctgtggt tacttcatgc atgt 894acaatttgtg ggcaggaaat gcaagtggtg gttctgtggt tacttcatgc atgt 894

Claims (8)

1. A method for promoting differentiation of mesenchymal stem cells into osteoblasts, the method comprising:
(1) Constructing an expression vector of a human ALX1 gene, and transferring the expression vector of the human ALX1 gene into the mesenchymal stem cells to obtain the mesenchymal stem cells for efficiently expressing exogenous ALX 1; the mesenchymal stem cells are human bone marrow mesenchymal stem cells;
(2) And (3) taking the mesenchymal stem cells which are prepared in the step (1) and efficiently express exogenous ALX1, and carrying out directional induction culture by using osteoblast induction liquid to obtain the osteoblast.
2. The method for promoting differentiation of mesenchymal stem cells into osteoblasts according to claim 1, wherein: the expression vector of the human ALX1 gene is constructed by connecting the human ALX1 gene to a lentivirus over-expression vector.
3. The method for promoting differentiation of mesenchymal stem cells into osteoblasts according to claim 2, wherein the expression vector of human ALX1 gene is prepared as follows: the cDNA sequence of the human ALX1 gene is amplified by PCR through primers CGC GTC GAC ATG GAG TTT CTG AGC GAG A and CAT GGC CCA TGA AAT ATT GGC TAG CTA GC to obtain a target gene, the lentivirus overexpression vector Plenti-CMV-Puro and the target gene are respectively subjected to enzyme digestion by restriction enzymes SalI and NheI to obtain a target gene with an adhesive end and a linear vector, and the target gene with the adhesive end and the linear vector are connected by using a ligase to obtain the expression vector of the human ALX1 gene.
4. The method for promoting differentiation of mesenchymal stem cells into osteoblasts according to claim 3, wherein the cDNA sequence of the human ALX1 gene is obtained by the following method: and (3) separating and extracting total RNA of the human bone marrow mesenchymal stem cells by adopting a Trizol reagent, and then adopting a cDNA first-strand synthesis kit to carry out cDNA first-strand synthesis to obtain the cDNA sequence of the human ALX1 gene.
5. The method for promoting differentiation of mesenchymal stem cells into osteoblasts according to claim 1, wherein: the expression vector of the human ALX1 gene is transferred into the mesenchymal stem cells through a Lip8000 transduction kit.
6. The method for promoting differentiation of mesenchymal stem cells into osteoblasts according to claim 5, wherein the mesenchymal stem cells highly expressing exogenous ALX1 are obtained by: after the expression vector of the human ALX1 gene is transfected into 293T cells through lentiviral packaging plasmid psPAX2 and PMD2G for virus packaging, the mesenchymal stem cells are continuously cultured for 12 hours under the assistance of 8 mug/mL of 1, 5-dimethyl-1, 5-diazaundecene polymethyl bromide, so that the mesenchymal stem cells for efficiently expressing exogenous ALX1 are obtained.
7. The method for promoting differentiation of mesenchymal stem cells into osteoblasts according to claim 1, wherein each liter of the osteoblast inducing liquid consists of the following components: 900mL DMEM-LG broth, 100mL fetal calf serum, 100U/mL penicillin, 100U/mL streptomycin, 10mM sodium beta-glycerophosphate, 50. Mu.M ascorbic acid.
8. The method for promoting differentiation of mesenchymal stem cells into osteoblasts according to claim 1, wherein the conditions of the directional induction culture are as follows: 37℃for 7 days.
CN202110935409.2A 2021-08-16 2021-08-16 A method to promote the differentiation of mesenchymal stem cells into osteoblasts Active CN113637633B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110935409.2A CN113637633B (en) 2021-08-16 2021-08-16 A method to promote the differentiation of mesenchymal stem cells into osteoblasts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110935409.2A CN113637633B (en) 2021-08-16 2021-08-16 A method to promote the differentiation of mesenchymal stem cells into osteoblasts

Publications (2)

Publication Number Publication Date
CN113637633A CN113637633A (en) 2021-11-12
CN113637633B true CN113637633B (en) 2023-11-03

Family

ID=78421965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110935409.2A Active CN113637633B (en) 2021-08-16 2021-08-16 A method to promote the differentiation of mesenchymal stem cells into osteoblasts

Country Status (1)

Country Link
CN (1) CN113637633B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115851608B (en) * 2022-12-23 2023-08-01 广州医科大学附属第二医院 Gene editing mesenchymal stem cell and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1553951A (en) * 2000-11-03 2004-12-08 ���ﰲҽ�ƹɷ����޹�˾ Human cord blood derived unrestricted somatic stem cells (USSC)
CN1818071A (en) * 2005-07-04 2006-08-16 浙江大学 Method for transferring bone marrow filling dry cell by TPO/FL
CN111269942A (en) * 2020-02-28 2020-06-12 中国人民解放军军事科学院军事医学研究院 Application of TGFBI as a marker for regulating osteogenic differentiation of mesenchymal stem cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1553951A (en) * 2000-11-03 2004-12-08 ���ﰲҽ�ƹɷ����޹�˾ Human cord blood derived unrestricted somatic stem cells (USSC)
CN1818071A (en) * 2005-07-04 2006-08-16 浙江大学 Method for transferring bone marrow filling dry cell by TPO/FL
CN111269942A (en) * 2020-02-28 2020-06-12 中国人民解放军军事科学院军事医学研究院 Application of TGFBI as a marker for regulating osteogenic differentiation of mesenchymal stem cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Identification of genes responsible for osteoblast differentiation from human mesodermal progenitor cells;Huilin Qi et al.;pnas;第100卷(第6期);3305-3310 *
Positional identity of murine mesenchymal stem cells resident in different organs is determined in the postsegmentation mesoderm;Bernadett Sagi et al.;Stem cells and development;第21卷(第5期);814-827 *

Also Published As

Publication number Publication date
CN113637633A (en) 2021-11-12

Similar Documents

Publication Publication Date Title
CN108315330B (en) sgRNA of CRISPR-Cas9 system specific targeting human RSPO2 gene, knockout method and application
Deng et al. The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects
Wang et al. Tendon healing in vitro: bFGF gene transfer to tenocytes by adeno-associated viral vectors promotes expression of collagen genes
Lee et al. Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells
Liu et al. Macrophage-derived exosomes promote bone mesenchymal stem cells towards osteoblastic fate through microRNA-21a-5p
CN101117625B (en) Method for evoking differentiation of mesenchyma stem cell and fat stem cell into neurons and special culture medium thereof
CN105483081A (en) MiRNA145-5p-modified umbilical cord mesenchymal stem cell exosome and preparation and application of miRNA145-5p-modified umbilical cord mesenchymal stem cell exosome
CN102174468A (en) Method and application for inducing human umbilical cord mesenchyme stem cells to be differentiated into testicular interstitial cells
WO2011135380A1 (en) Method for evaluating angiogenic potential
Zhuang et al. LncRNA-H19 drives cardiomyocyte senescence by targeting miR-19a/socs1/p53 axis
Ye et al. IRF2‐mediated upregulation of lncRNA HHAS1 facilitates the osteogenic differentiation of bone marrow‐derived mesenchymal stem cells by acting as a competing endogenous RNA
Peng et al. miR-27b-3p suppressed osteogenic differentiation of maxillary sinus membrane stem cells by targeting Sp7
Li et al. MicroRNA‐129‐1‐3p regulates cyclic stretch–induced endothelial progenitor cell differentiation by targeting Runx2
CN113637633B (en) A method to promote the differentiation of mesenchymal stem cells into osteoblasts
Shi et al. Stem cell therapy with CRISPR/Cas9-mediated MALAT1 delivery modulates miR-142 and rescues wound healing in rats with age-associated diabetic foot ulcers
CN109504710B (en) Application of KDM4D
CN103724410B (en) The fusion protein and method of one class regulation and control CCR5 and CXCR4 genes
US20150190532A1 (en) Smooth muscle specific inhibition for anti-restenotic therapy
CN110257380A (en) YAP albumen vascular smooth muscle cells reply mechanical stress stimulation under be proliferated or apoptosis in application
WO2016115671A1 (en) Use of inhibitor expressed by gene imo4 for preparation of external therapeutic drugs of psoriasis
Xie et al. Thrombospondin-1 inhibits ossification of tissue engineered cartilage constructed by ADSCs
CN106065401B (en) Treatment use of the lentivirus mediated CXCR7 high expression engineering endothelial progenitor cells in ischemic disease
Ryu et al. Epidermal growth factor (EGF)-like repeats and discoidin I-like domains 3 (EDIL3): a potential new therapeutic tool for the treatment of keloid scars
CN109055429B (en) A mouse osteoblast-like cell lentiviral vector targeting RunX2 gene and its construction method
CN112618708A (en) hACE2 knock-out RNA interference stem cell vector new corona vaccine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant