CN113618488B - A method of centering the center of rotation of the B-axis and the center of the circular arc of the cutting edge - Google Patents
A method of centering the center of rotation of the B-axis and the center of the circular arc of the cutting edge Download PDFInfo
- Publication number
- CN113618488B CN113618488B CN202110965569.1A CN202110965569A CN113618488B CN 113618488 B CN113618488 B CN 113618488B CN 202110965569 A CN202110965569 A CN 202110965569A CN 113618488 B CN113618488 B CN 113618488B
- Authority
- CN
- China
- Prior art keywords
- center
- tool
- axis
- rotation
- tool setting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/20—Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
- B23Q15/22—Control or regulation of position of tool or workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/24—Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
- B23Q17/2428—Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring existing positions of tools or workpieces
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Machine Tool Sensing Apparatuses (AREA)
Abstract
本发明公开一种B轴回转中心和刀刃圆弧中心对中方法,用于刀具侧置装夹,包括以下步骤:粗对刀,利用CCD相机在线对刀,进行初步对中;精对刀,使用刀具摆动加工方法在工件表面切出一个完整的结构单元,获得所述结构单元的二维轮廓曲线,根据所述二维轮廓曲线计算B轴回转中心;根据计算的B轴回转中心移动刀具,如果移动后的X、Z位置偏差在可接受范围内,则完成精对刀,否则,重复精对刀的过程直至B轴回转中心和刀刃圆弧中心X、Z位置偏差在可接受范围内;本发明先利用CCD相机在线对刀,进行初步对中,再进行试切对刀进行精对刀,能够实现刀具侧置装夹方式的对刀,并且,精对刀过程可以通过计算将误差量化,重复进行调整以达到预期的精度。
The invention discloses a centering method for a B-axis rotation center and a blade arc center, which is used for tool side device clamping. Use the tool swing machining method to cut out a complete structural unit on the surface of the workpiece, obtain the two-dimensional contour curve of the structural unit, and calculate the B-axis rotation center according to the two-dimensional contour curve; move the tool according to the calculated B-axis rotation center, If the X, Z position deviation after moving is within the acceptable range, then finish the fine tool setting, otherwise, repeat the fine tool setting process until the B axis rotation center and the X, Z position deviation of the blade arc center are within the acceptable range; In the present invention, the CCD camera is used for on-line tool setting, preliminary centering is performed, and then trial cutting is performed to perform precise tool setting, which can realize tool setting by means of side device clamping, and the precision tool setting process can quantify the error by calculation. , repeat the adjustment to achieve the desired accuracy.
Description
技术领域technical field
本发明涉及超精密加工技术领域,特别是涉及一种B轴回转中心和刀刃圆弧中心对中方法。The invention relates to the technical field of ultra-precision machining, in particular to a method for centering a B-axis rotation center and a blade arc center.
背景技术Background technique
目前,用于刀具刀尖和B轴工作台旋转中心对心的方法有CCD相机在线对刀和试切削法对刀。其中,CCD相机在线对刀是将圆弧金刚石刀具处于CCD相机视野下,旋转B轴使刀具处于三个不同的位置,移动刀具使同一个点在这三个位置都与CCD视野中心重合,利用三点法自动计算出B轴回转中心,而刀具圆弧半径已知,由此调整刀具位置,使刀刃圆弧中心与B轴回转中心重合;试切法对刀是使圆弧金刚石刀具一边随B轴摆动,一边沿X方向运动,切出一道槽,由于圆弧半径固定,若刀具中心与B轴回转中心重合,切出的槽理论上深度一致,但由于存在偏差,切出的槽深度不均匀,可通过沟槽深度计算对心的偏差值,进而进行调整。At present, there are CCD camera online tool setting and trial cutting method for tool nose and B-axis table rotation center alignment methods. Among them, the CCD camera online tool setting is to place the arc diamond tool in the field of view of the CCD camera, rotate the B axis to make the tool in three different positions, and move the tool to make the same point coincide with the center of the CCD field of view in these three positions. The three-point method automatically calculates the center of rotation of the B-axis, and the radius of the tool arc is known, so the tool position is adjusted so that the center of the arc of the blade coincides with the center of rotation of the B-axis. The B axis swings and moves along the X direction to cut out a groove. Since the arc radius is fixed, if the center of the tool coincides with the rotation center of the B axis, the depth of the cut groove is theoretically the same, but due to deviation, the depth of the cut groove If it is not uniform, it can be adjusted by calculating the deviation value of the center by the groove depth.
上述现有的对刀方法仅适用于前刀面向上的刀具装夹方式,并不适合于刀具侧置装置的刀刃圆弧中心和B轴旋转中心对刀。具体的,CCD在线对刀受到CCD相机放置角度偏差以及镜头放大倍数和对焦清晰度的影响,计算B轴旋转中心精确度不足存在一定的误差,且用于微球面透镜加工的刀具摆动加工方法需要将刀具侧置装夹,刀具侧置装夹后利用CCD观察更难以精确对刀刃最前点进行对焦,所产生的误差更大。The above-mentioned existing tool setting method is only suitable for the tool clamping method with the rake face upward, and is not suitable for the tool setting of the blade arc center and the B-axis rotation center of the tool side device. Specifically, the CCD online tool setting is affected by the deviation of the placement angle of the CCD camera, the magnification of the lens and the focus definition. There is a certain error in the calculation of the insufficient accuracy of the B-axis rotation center, and the tool swing processing method for microspherical lens processing needs to be It is more difficult to accurately focus on the frontmost point of the cutting edge by using CCD observation after the tool side is clamped, and the resulting error is greater.
申请公布号为CN 106001641 A的中国专利公开了一种基于激光为基准的数控车虚拟试切法对刀装置及对刀方法,在以基准刀建立工件坐标系后,再以可调激光装置及投影板确认虚拟工件的直径和长度,并以此虚拟工件为“切削”对象进行“试切”对刀,该方案的对刀过程与实际试切法相似,但其实远离真实工件,不会发生撞到事故,也无需像真实试切法那样,在每把车刀车削工件后都要进行测量,而是在车刀对准基准点后直接输入虚拟工件的坐标值即可,大大减少对刀过程中的繁琐工作量,但是,该方案也只局限于将车刀移动到已知位置,并不能将车刀与其所在的回转中心进行对中。The Chinese patent with the application publication number CN 106001641 A discloses a tool setting device and tool setting method based on a laser-based virtual trial cutting method of a numerically controlled car. After the workpiece coordinate system is established with the reference tool, the adjustable laser device and The projection board confirms the diameter and length of the virtual workpiece, and uses the virtual workpiece as the "cutting" object to perform "trial cutting" tool setting. The tool setting process of this solution is similar to the actual trial cutting method, but it is far away from the real workpiece and will not happen. In the event of an accident, there is no need to measure each turning tool after turning the workpiece, as in the real trial cutting method, but directly input the coordinate value of the virtual workpiece after the turning tool is aligned with the reference point, which greatly reduces tool setting. However, this solution is limited to moving the turning tool to a known position, and cannot align the turning tool with the center of rotation where it is located.
申请公布号为CN 111975021 A的中国专利公开了一种超精密车削刀具中心与B轴回转中心对正方法,所采用的超精密车削装置包括X轴运动导轨、Z轴运动导轨、主轴、旋转平台,考虑到需要满足旋转平台回转中心与刀具中心完全对正,引入虚拟轴,即不需完全对正旋转平台回转中心和刀具中心,只需得到两者之间的位置关系,通过X轴运动导轨和Z轴运动导轨的运动进行补偿,达到完全对正,该方案不再强行追求将刀具中心和B轴回转中心对正,而是用试切的方式测量出相对位置关系,通过一系列数学计算使得装置在未对正的情况下也能很好地实现目标功能,也就是说,该方案只是在最初使用时通过试切确定出相对位置,并没有进行实际意义上的对中。The Chinese Patent Application Publication No. CN 111975021 A discloses a method for aligning an ultra-precision turning tool center with a B-axis rotary center. The ultra-precision turning device used includes an X-axis motion guide, a Z-axis motion guide, a main shaft, and a rotating platform. , Considering that the center of rotation of the rotating platform and the center of the tool need to be completely aligned, the virtual axis is introduced, that is, it is not necessary to completely align the center of rotation of the rotating platform and the center of the tool, but only the positional relationship between the two needs to be obtained. Compensate with the movement of the Z-axis motion guide rail to achieve complete alignment. This scheme no longer pursues forcibly aligning the tool center and the B-axis rotation center, but measures the relative positional relationship by trial cutting, through a series of mathematical calculations Therefore, the device can well achieve the target function even if the device is not aligned, that is to say, the solution only determines the relative position through trial cutting during initial use, and does not perform alignment in the actual sense.
因此,如何能够实现刀具侧置装夹的B轴回转中心和刀刃圆弧中心对中是亟待解决的技术问题。Therefore, how to realize the centering of the B-axis rotation center of the tool side device and the center of the blade arc is an urgent technical problem to be solved.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种B轴回转中心和刀刃圆弧中心对中方法,以解决上述现有技术存在的问题,先利用CCD相机在线对刀,进行初步对中,再进行试切对刀进行精对刀,能够实现刀具侧置装夹方式的对刀,并且,精对刀过程可以通过计算将误差量化,重复进行调整以达到预期的精度。The purpose of the present invention is to provide a centering method for the center of rotation of the B-axis and the arc center of the blade, so as to solve the problems existing in the above-mentioned prior art, firstly use a CCD camera to perform on-line tool setting, perform preliminary centering, and then perform trial cutting and tool setting The precision tool setting can realize the tool setting method of the tool side device, and the precision tool setting process can quantify the error through calculation, and repeat the adjustment to achieve the expected accuracy.
为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides the following scheme:
本发明提供一种B轴回转中心和刀刃圆弧中心对中方法,用于刀具侧置装夹,包括以下步骤:The invention provides a method for centering the B-axis rotation center and the arc center of the cutting edge, which is used for the tool side device clamping, and includes the following steps:
粗对刀,在CCD相机视野下利用CCD相机在线对刀,进行初步对中;Coarse tool setting, use the CCD camera to set the tool online under the field of view of the CCD camera, and perform preliminary alignment;
精对刀,使用刀具摆动加工方法在工件表面切出一个完整的结构单元,获得所述结构单元的二维轮廓曲线,根据所述二维轮廓曲线计算B轴回转中心;Precise tool setting, use the tool swing machining method to cut out a complete structural unit on the surface of the workpiece, obtain the two-dimensional contour curve of the structural unit, and calculate the B-axis rotation center according to the two-dimensional contour curve;
根据计算的B轴回转中心移动刀具,如果移动后的X、Z位置偏差在可接受范围内,则完成精对刀,否则,重复精对刀的过程直至B轴回转中心和刀刃圆弧中心X、Z位置偏差在可接受范围内。Move the tool according to the calculated B-axis rotation center, if the X, Z position deviation after moving is within the acceptable range, then finish the fine tool setting, otherwise, repeat the fine tool setting process until the B-axis rotation center and the edge arc center X , Z position deviation is within the acceptable range.
优选地,粗对刀时,转动B轴使刀具处于三个不同的位置,在每个位置刀尖与CCD相机视场中心重合,根据三点原理计算B轴回转中心位置,移动刀具,实现B轴回转中心和刀刃圆弧中心的初步对中。Preferably, during rough tool setting, rotate the B-axis to make the tool in three different positions, at each position the tool tip coincides with the center of the CCD camera's field of view, calculate the B-axis rotation center position according to the three-point principle, move the tool, and realize B Preliminary alignment of the center of rotation of the shaft and the center of the circular arc of the blade.
优选地,刀具的三个位置间隔90°。Preferably, the three positions of the tool are spaced 90° apart.
优选地,精对刀时,刀具在切削工件后需要退回粗对刀的位置后再进行刀具移动调整。Preferably, during fine tool setting, after cutting the workpiece, the tool needs to return to the position of rough tool setting before adjusting the tool movement.
优选地,所述结构单元为凹椭球面。Preferably, the structural unit is a concave ellipsoid.
优选地,在切出所述结构单元时,刀具在Z向进给一个确定的切深,随B轴旋转去除工件材料完成切削。Preferably, when cutting out the structural unit, the tool feeds a certain depth of cut in the Z direction, and rotates with the B axis to remove the workpiece material to complete the cutting.
优选地,所述二维轮廓曲线为刀尖轨迹所形成的轮廓曲线。Preferably, the two-dimensional contour curve is a contour curve formed by a tool nose trajectory.
优选地,根据所述二维轮廓曲线,由给定的切深位置点、刀具切入点和刀具切出点三点计算B轴回转中心。Preferably, according to the two-dimensional contour curve, the center of rotation of the B-axis is calculated from three points of a given depth-of-cut position point, a cutting-in point of the tool, and a cutting-out point of the tool.
优选地,可接受范围为小于1μm。Preferably, the acceptable range is less than 1 μm.
优选地,利用基恩士3D激光扫描显微镜在竖直方向逐层扫描获得所述结构单元的三维立体图像,再由所述三维立体图像获得所述二维轮廓曲线。Preferably, the 3D stereoscopic image of the structural unit is obtained by layer-by-layer scanning in the vertical direction with a 3D laser scanning microscope from Keyence, and then the 2D contour curve is obtained from the 3D stereoscopic image.
本发明相对于现有技术取得了以下技术效果:The present invention has achieved the following technical effects with respect to the prior art:
(1)本发明先利用CCD相机在线对刀,进行初步对中,再进行试切对刀进行精对刀,能够实现刀具侧置装夹方式的对刀,并且,精对刀过程通过刀具摆动加工方法切削出一个完整的结构单元后再获得该结构单元的二维轮廓曲线,根据二维轮廓曲线计算B轴回转中心,可以通过计算将误差量化,重复进行试切,重复进行计算和调整能够达到预期的精度;(1) In the present invention, the CCD camera is used for on-line tool setting, preliminary centering is performed, and then trial cutting is performed to perform fine tool setting, which can realize tool setting in the way of tool side device clamping, and the fine tool setting process is through the tool swinging. The machining method cuts out a complete structural unit and then obtains the two-dimensional contour curve of the structural unit. According to the two-dimensional contour curve, the B-axis rotation center can be calculated. The error can be quantified by calculation, repeated trial cutting, repeated calculation and adjustment can be achieve the desired accuracy;
(2)本发明在进行粗对刀时,将刀具的三个位置指定为间隔90°,只需测量刀尖Z坐标就可计算出B轴中心位置,能够避免参数较多引入的测量误差较大,降低了测量误差的影响,提高了计算结果的精确度,从而能够获得更精确的粗对刀效果;(2) In the present invention, when performing rough tool setting, the three positions of the tool are designated as an interval of 90°, and the center position of the B axis can be calculated only by measuring the Z coordinate of the tool nose, which can avoid the measurement error caused by many parameters. It reduces the influence of measurement error and improves the accuracy of calculation results, so that more accurate rough tool setting effect can be obtained;
(3)本发明利用CCD相机在线对刀进行粗对刀,以及利用试切法对刀进行精对刀,采用了两种对刀方式相结合的对刀方法,能够降低对于CCD相机的对刀精度的要求,同时,降低只采用试切法对刀的繁琐步骤,既达到了较高的对刀精度又减少了对刀的操作步骤;(3) In the present invention, the CCD camera is used for online tool setting to perform rough tool setting, and the trial cutting method is used to perform fine tool setting, and a tool setting method combining two tool setting methods is adopted, which can reduce the tool setting for the CCD camera. At the same time, it reduces the tedious steps of only using the trial cutting method for tool setting, which not only achieves higher tool setting accuracy but also reduces the operation steps of tool setting;
(4)本发明通过获得试切得到的结构单元的二维轮廓曲线,在在二维轮廓曲线上通过给定的切深位置点、刀具切入点和刀具切出点三点计算B轴回转中心,能够利用成熟的算法进行精确的计算,进而获得精确的B轴回转中心的计算结果,再根据计算结果调整刀具的位置,能够实现精确的调整。(4) In the present invention, the two-dimensional contour curve of the structural unit obtained by the trial cutting is obtained, and the B-axis rotation center is calculated on the two-dimensional contour curve through the three points of the given depth of cut position point, the cut-in point of the tool and the cut-out point of the tool , can use the mature algorithm for accurate calculation, and then obtain the accurate calculation result of the B-axis rotation center, and then adjust the position of the tool according to the calculation result, which can achieve accurate adjustment.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为刀具装夹及机床运动轴示意图;Figure 1 is a schematic diagram of tool clamping and machine tool movement axes;
图2为图1中I处放大示意图;Fig. 2 is the enlarged schematic diagram at I place in Fig. 1;
图3为刀刃结构示意图;Fig. 3 is a schematic diagram of a blade structure;
图4为CCD相机粗对刀示意图;Figure 4 is a schematic diagram of the rough tool setting of the CCD camera;
图5为试切法精对刀示意图;Fig. 5 is the schematic diagram of fine knife setting by trial cutting method;
其中,1、刀刃;11、刀尖;12、刀刃圆弧中心;2、工件。Among them, 1, the blade; 11, the tip; 12, the arc center of the blade; 2, the workpiece.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明的目的是提供一种B轴回转中心和刀刃圆弧中心对中方法,以解决现有技术存在的问题,先利用CCD相机在线对刀,进行初步对中,再进行试切对刀进行精对刀,能够实现刀具侧置装夹方式的对刀,并且,精对刀过程可以通过计算将误差量化,重复进行调整以达到预期的精度。The purpose of the present invention is to provide a centering method for the center of rotation of the B-axis and the arc center of the blade, so as to solve the problems existing in the prior art. The fine tool setting can realize the tool setting by the tool side clamping method, and the precision tool setting process can quantify the error through calculation, and repeat the adjustment to achieve the expected accuracy.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
结合图1~3所示,本发明提供一种B轴回转中心和刀刃圆弧中心12对中方法,用于刀具侧置装夹,刀具侧置装夹即为前刀面是侧向装夹的方式,且对于本发明来说,刀具的刀刃1是圆弧形的,具有刀尖11(刀刃1圆弧的最前点)和刀刃圆弧中心12。在B轴上可以安装由XB、YB、ZB手动位移台和刀架组成的刀具位置调节装置,用于对刀调节,保证刀尖11和C轴中心高度一致以及刀刃圆弧中心12处于B轴回转中心位置,XB、YB、ZB手动位移台可实现三个方向上行程20mm,分辨率1μm的高精度调节,刀架用于摆动车削刀具的侧置装夹。对中方法包括以下步骤:1 to 3, the present invention provides a method for centering the B-axis rotation center and the
粗对刀,在CCD相机视野下利用CCD相机在线对刀,对刀的方式可以采用现有技术中关于CCD相机在线对刀的方式,具体的,可以采用三点法经计算确定B轴回转中心,移动刀具后进行初步对中;需要说明的是,由于CCD相机是位于刀具的上方的,而刀具采用的是侧置装夹的方式,因此,在刀具侧置装夹后无法在CCD相机下直接看到刀刃1圆弧,此时,可以先实现刀尖11的对心,再移动一个刀刃1圆弧的半径的长度,就实现了刀刃圆弧中心12的对心。For rough tool setting, the CCD camera is used for on-line tool setting under the field of view of the CCD camera. The tool setting method can adopt the method of on-line tool setting with CCD camera in the prior art. Specifically, the three-point method can be used to determine the B-axis rotation center by calculation. , perform preliminary alignment after moving the tool; it should be noted that since the CCD camera is located above the tool, and the tool is clamped on the side, therefore, after the tool is clamped on the side, it cannot be placed under the CCD camera. The arc of the
精对刀,由于CCD相机摆放时的倾斜偏差和分辨率的限制,在完成了刀刃圆弧中心12和B轴回转中心的初步调整后,还需用试切法进行更精确的可量化调整;具体的,使用刀具摆动加工方法在工件2表面切出一个完整的结构单元,此处所说的刀具摆动加工方法,是指刀具沿着B轴旋转摆动,在由工件2的一侧移动到另一侧的过程中,当从工件2的一侧到达工件2时,刀刃1与工件2接触并随着刀具的摆动对工件2进行切削,在刀刃1摆动到工件2的另一侧后即完成对工件2的摆动切削;而由于刀刃1与工件2接触的位置开始是一个圆弧切削的过程,因此,一个完整的结构单元即为一个完整的凹球面(由于存在刀刃圆弧中心12和B轴回转中心相对位置的偏差,实际为凹椭球面);利用3D扫描或激光扫描等手段获得结构单元的三维立体图像,然后测量得到结构单元的二维轮廓曲线,由二维轮廓曲线经计算(例如采用三点确定圆心的算法)后可以得到B轴回转中心。For precise tool setting, due to the inclination deviation and the limitation of resolution when the CCD camera is placed, after completing the preliminary adjustment of the
根据计算的B轴回转中心移动刀具,如果移动后的X、Z位置偏差在可接受范围内,则完成精对刀,此时对刀过程结束,否则,重复精对刀的过程直至B轴回转中心和刀刃圆弧中心12的X、Z位置偏差在可接受范围内,因此,本发明可以通过计算将误差量化,重复进行试切,重复进行计算和调整能够达到预期的精度。此处所说的可接受范围,指的是与工件2加工的精度相关的要求。本发明利用CCD相机在线对刀进行粗对刀,以及利用试切法对刀进行精对刀,采用了两种对刀方式相结合的对刀方法,能够降低对于CCD相机的对刀精度的要求,同时,降低只采用试切法对刀的繁琐步骤,既达到了较高的对刀精度又减少了对刀的操作步骤。Move the tool according to the calculated B-axis rotation center. If the X and Z position deviations after moving are within the acceptable range, the fine tool setting is completed, and the tool setting process ends at this time. Otherwise, the fine tool setting process is repeated until the B axis rotates. The X, Z position deviation between the center and the
粗对刀时,刀具与B轴的对刀过程是基于三点确定圆心的原理,在CCD相机视场下,转动B轴使刀具处于三个不同的位置,在这三个位置刀尖11与CCD相机视场中心的十字标记重合,从而利用CCD相机获得三个位置的坐标,再根据三点原理计算B轴回转中心位置,即根据三个不同位置的X和Z坐标,计算刀具的实际旋转中心(B轴回转中心),然后再移动刀具,实现B轴回转中心和刀刃圆弧中心12的初步对中。During rough tool setting, the tool setting process between the tool and the B axis is based on the principle of three points to determine the center of the circle. Under the field of view of the CCD camera, rotate the B axis to make the tool in three different positions. The cross marks at the center of the field of view of the CCD camera are coincident, so that the coordinates of the three positions are obtained by the CCD camera, and then the position of the rotation center of the B-axis is calculated according to the three-point principle, that is, the actual rotation of the tool is calculated according to the X and Z coordinates of the three different positions center (B-axis rotation center), and then move the tool to achieve preliminary alignment between the B-axis rotation center and the
如果测量三个位置的X和Z坐标,参数较多,引入的测量误差较大,为了降低测量误差的影响,将刀具的三个位置指定为间隔90°,此时,只需测量刀尖11的Z坐标就可计算出B轴旋转中心位置。If the X and Z coordinates of the three positions are measured, there are many parameters, and the introduced measurement error is large. In order to reduce the influence of the measurement error, the three positions of the tool are specified as the interval of 90°. At this time, only the
如图4所示,为简化分析过程,将刀刃1与主轴垂直的初始位置设为零点A(0,0),将刀具分别顺时针和逆时针旋转90°,得到B(x1,z1)、C(x2,z2),B轴回转中心坐标为O(a,b)。As shown in Figure 4, in order to simplify the analysis process, the initial position of the
A、B、C三点与圆心O坐标的数学关系为:The mathematical relationship between the three points A, B, and C and the coordinates of the circle center O is:
a2+b2=R2 a 2 +b 2 =R 2
(x1-a)2+(z1-b)2=R2 (x 1 -a) 2 +(z 1 -b) 2 =R 2
(a-x2)2+(b-z2)2=R2 (ax 2 ) 2 +(bz 2 ) 2 =R 2
由图中几何关系,x1和x2又可写为:From the geometric relationship in the figure, x 1 and x 2 can be written as:
将x1和x2代入前式,求解可得到圆心坐标O中的a,b分别为:Substitute x 1 and x 2 into the previous formula, and the solution can obtain a and b in the center coordinate O, respectively:
即B轴回转中心坐标为:That is, the coordinates of the center of rotation of the B-axis are:
计算出B轴回转中心后利用XB、ZB位移台调整刀具,相对于A(0,0)点位置X方向移动Z方向移动调整后,再次旋转B轴时,刀尖11在CCD视场下始终处于十字标记中心,再移动一个刀刃1圆弧的半径的长度,此时,便完成了刀具位置的粗调节,这一方法操作简单,且减小了测量误差对于对刀结果的影响。After calculating the rotation center of the B axis, use the X B , Z B stage to adjust the tool and move it in the X direction relative to the A(0,0) point position Move in the Z direction After adjustment, when the B-axis is rotated again, the
粗对刀过程中,由于不需要对工件2表面进行切削,因此,刀具远离工件2表面,而为了精对刀(试切法对刀)需要切削工件2表面,X方向和Z方向都需要移动一定的距离x’和z’,因此,精对刀时,由试切加工的二维轮廓曲线算出的更精确的值不能直接调,而要将机床的X轴和Z轴退回x’和z’的距离,返回粗对刀的位置,再利用位移台,按照计算得到的数值进行调整,此时才能完成精对刀的过程。In the process of rough tool setting, since there is no need to cut the surface of
精对刀过程中试切所得到的结构单元,一个结构单元即为一个凹球面,根据切削的深度的不同,所得到的凹球面的大小有所不同,需要说明的是,由于刀刃圆弧中心12和B轴回转中心的相对位置存在偏差,并不能保证为绝对的凹球面,因此试切所得到的结构单元实际为凹椭球面。For the structural unit obtained by trial cutting in the process of fine tool setting, a structural unit is a concave spherical surface. The size of the obtained concave spherical surface varies according to the depth of cutting. There is a deviation in the relative positions of the rotation centers of the 12 and B axes, which cannot be guaranteed to be an absolute concave sphere. Therefore, the structural unit obtained by trial cutting is actually a concave ellipsoid.
在切出结构单元时,采用的是摆动切削的方法,需要刀具在Z向进给一个确定的切深,然后刀具随B轴旋转,利用刀刃1与工件2接触去除工件2材料完成切削。When cutting out the structural unit, the method of swing cutting is adopted, which requires the tool to feed a certain depth of cut in the Z direction, and then the tool rotates with the B axis, and the
精对刀过程中所得到的二维轮廓曲线为刀尖11轨迹所形成的轮廓曲线,也就是刀尖11绕B轴回转中心旋转切削工件2所得到的轮廓曲线。The two-dimensional contour curve obtained in the process of fine tool setting is the contour curve formed by the trajectory of the
如图5所示,根据二维轮廓曲线,由给定的切深位置点、刀具切入点和刀具切出点三点能够根据三点法计算B轴回转中心。以工件2表面为Z向的0点,由给定的Z向切深位置(x0,z0)、刀刃1旋转的切入切出位置(x1,0)和(x2,0)三点由以下公式计算:As shown in Figure 5, according to the two-dimensional contour curve, the center of rotation of the B-axis can be calculated according to the three-point method from the three points of the given depth of cut position point, the cutting point of the tool and the cutting point of the tool. Taking the surface of
即经过试切后所得到的B轴回转中心坐标O(a1,b1)为:That is, the B-axis rotation center coordinate O(a 1 , b 1 ) obtained after the trial cutting is:
以上各式中的u、v、k1、k2是计算的中间参数,为了简化公式所采用的替代符号,与计算结果无关。u, v, k 1 , and k 2 in the above formulas are the intermediate parameters of the calculation, and the substitute symbols used to simplify the formula have nothing to do with the calculation result.
再据此对刀刃圆弧中心12位置进行微调,重复此试切削和计算调整过程,直至计算得到的X和Z方向对心偏差在可接受范围内,此时试切出的结构单元是一个近似规则的凹球面,即完成了刀刃圆弧中心12和B轴回转中心的对中。Based on this, fine-tune the position of the
精对刀后,可接受范围可以为小于1μm,即经过精对刀后,在达到刀刃圆弧中心12和B轴回转中心相对位置小于1μm后停止精确对刀。After the fine tool setting, the acceptable range can be less than 1μm, that is, after the fine tool setting, the precise tool setting is stopped when the relative position of the
在获得结构单元的二维轮廓曲线时,可以利用基恩士3D激光扫描显微镜(VK-X100)在竖直方向逐层扫描获得结构单元的三维立体图像,例如z方向的扫描节距是5nm,再由三维立体图像获得二维轮廓曲线。When obtaining the two-dimensional contour curve of the structural unit, you can use the KEYENCE 3D laser scanning microscope (VK-X100) to scan layer by layer in the vertical direction to obtain the three-dimensional stereo image of the structural unit. For example, the scanning pitch in the z direction is 5nm, Then, the two-dimensional contour curve is obtained from the three-dimensional stereo image.
本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。In the present invention, specific examples are used to illustrate the principles and implementations of the present invention, and the descriptions of the above embodiments are only used to help understand the method and the core idea of the present invention; There will be changes in the specific implementation manner and application scope of the idea of the invention. In conclusion, the contents of this specification should not be construed as limiting the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110965569.1A CN113618488B (en) | 2021-08-23 | 2021-08-23 | A method of centering the center of rotation of the B-axis and the center of the circular arc of the cutting edge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110965569.1A CN113618488B (en) | 2021-08-23 | 2021-08-23 | A method of centering the center of rotation of the B-axis and the center of the circular arc of the cutting edge |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113618488A CN113618488A (en) | 2021-11-09 |
CN113618488B true CN113618488B (en) | 2022-10-04 |
Family
ID=78387177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110965569.1A Active CN113618488B (en) | 2021-08-23 | 2021-08-23 | A method of centering the center of rotation of the B-axis and the center of the circular arc of the cutting edge |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113618488B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114383507B (en) * | 2022-01-14 | 2024-10-08 | 山西双环重工集团有限公司 | Measurement scribing method |
CN114952425B (en) * | 2022-05-27 | 2023-06-27 | 南方科技大学 | Method for processing aspheric surface by linear blade |
CN115338692B (en) * | 2022-08-18 | 2024-02-20 | 山东大学 | A processing method for four-axis linkage normal swing cutting of integrated multi-mirror free-form surface |
CN115741224B (en) * | 2022-12-08 | 2023-12-01 | 天津大学 | A method for correcting errors of rotation radius and rotation angle of ultra-precision flying cutting tools |
CN118789362B (en) * | 2024-09-13 | 2025-01-28 | 江西联创电子有限公司 | Tool setting method based on on-site microscope |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102256735A (en) * | 2008-12-19 | 2011-11-23 | 沃依特专利有限责任公司 | Machine tool and method for producing gearing |
CN103801989A (en) * | 2014-03-10 | 2014-05-21 | 太原理工大学 | Airborne automatic measurement system for determining origin of coordinates of workpiece according to image processing |
CN106338970A (en) * | 2016-11-17 | 2017-01-18 | 沈阳工业大学 | Servo system control method for five-shaft linked numerically controlled machine tool |
CN108332946A (en) * | 2018-01-16 | 2018-07-27 | 广东工业大学 | A kind of reflection focal length in microlens array mold turnery processing is in position detecting method |
CN111975021A (en) * | 2020-07-17 | 2020-11-24 | 天津大学 | A method of aligning ultra-precision turning tool center and B-axis rotation center |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011113758B4 (en) * | 2011-09-18 | 2020-12-31 | Mag Ias Gmbh | Method and device for finishing workpieces |
-
2021
- 2021-08-23 CN CN202110965569.1A patent/CN113618488B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102256735A (en) * | 2008-12-19 | 2011-11-23 | 沃依特专利有限责任公司 | Machine tool and method for producing gearing |
CN103801989A (en) * | 2014-03-10 | 2014-05-21 | 太原理工大学 | Airborne automatic measurement system for determining origin of coordinates of workpiece according to image processing |
CN106338970A (en) * | 2016-11-17 | 2017-01-18 | 沈阳工业大学 | Servo system control method for five-shaft linked numerically controlled machine tool |
CN108332946A (en) * | 2018-01-16 | 2018-07-27 | 广东工业大学 | A kind of reflection focal length in microlens array mold turnery processing is in position detecting method |
CN111975021A (en) * | 2020-07-17 | 2020-11-24 | 天津大学 | A method of aligning ultra-precision turning tool center and B-axis rotation center |
Also Published As
Publication number | Publication date |
---|---|
CN113618488A (en) | 2021-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113618488B (en) | A method of centering the center of rotation of the B-axis and the center of the circular arc of the cutting edge | |
US10040139B2 (en) | Wire electric discharge machine performing turning tool machining, turning tool machining method with wire electric discharge machine, and program creation apparatus for wire electric discharge machine that performs turning tool machining | |
CN109465502B (en) | Method and apparatus for shaving teeth | |
CN107253102A (en) | A kind of precision grinding machining method of special-shaped thin wall labyrinth workpiece | |
CN113695645A (en) | Vertical offset correction method for micro-diameter diamond ball-end milling cutter | |
KR20100009503A (en) | Method and apparatus for machining v grooves | |
CN106514494B (en) | A kind of ball-end grinding wheel precise dressing method based on Bi_arc fitting error compensation | |
CN111975021A (en) | A method of aligning ultra-precision turning tool center and B-axis rotation center | |
US20100280650A1 (en) | Machining apparatus and machining method | |
KR101155055B1 (en) | Raster cutting technology for ophthalmic lenses | |
CN108345267B (en) | Method for determining tool interference area in single-point diamond turning and related device | |
CN104864811A (en) | In-situ measurement method for complex curved surface of blade | |
CN111975015A (en) | Ultra-precise turning method with uniformly distributed tool contacts | |
CN101623847B (en) | Diamond ball head grinding wheel electric sparkle dressing cutter adjustment method based on two-time cutter adjustment process | |
CN115365941B (en) | Automatic workpiece pose calibration method for optical polishing | |
CN118752091B (en) | Polyhedron cutting method, apparatus, equipment and storage medium for machine tool | |
CN110497088A (en) | Laser processing error control method for flexible conformal antenna based on surface mapping | |
CN110315389B (en) | A compensation method for sawing error of a numerically controlled corner sawing machine | |
JP2002001568A (en) | Parameter setting method for laser beam machining head of nc control three-dimensional laser beam machine and nc control three-dimensional laser beam machine | |
JP2004106049A (en) | Manufacturing method by three-dimensional laser beam machine, and method for preparing nc-program of three-dimensional laser beam machining | |
JP2021166258A (en) | Workpiece processing method | |
CN107368033B (en) | Blade number milling control method and control device | |
CN113970293B (en) | Accurate on-machine measurement method and system for point laser | |
CN110605485B (en) | Method for searching center of pipe with section having two unparallel straight line edges | |
Gospodnetic | CNC Machining of Propeller to Better than Class Tolerances |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |