[go: up one dir, main page]

CN113607621B - 一种煤系复合储层封闭孔隙及连通性的表征方法 - Google Patents

一种煤系复合储层封闭孔隙及连通性的表征方法 Download PDF

Info

Publication number
CN113607621B
CN113607621B CN202110873856.XA CN202110873856A CN113607621B CN 113607621 B CN113607621 B CN 113607621B CN 202110873856 A CN202110873856 A CN 202110873856A CN 113607621 B CN113607621 B CN 113607621B
Authority
CN
China
Prior art keywords
coal
sample
pore volume
samples
plunger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110873856.XA
Other languages
English (en)
Other versions
CN113607621A (zh
Inventor
王阳
向杰
陈尚斌
张彤
曹庆舜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN202110873856.XA priority Critical patent/CN113607621B/zh
Publication of CN113607621A publication Critical patent/CN113607621A/zh
Application granted granted Critical
Publication of CN113607621B publication Critical patent/CN113607621B/zh
Priority to PCT/CN2022/103353 priority patent/WO2023005600A1/zh
Priority to US18/124,703 priority patent/US11781962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/201Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/081Making measurements of geologic samples, e.g. measurements of moisture, pH, porosity, permeability, tortuosity or viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种煤系复合储层封闭孔隙及连通性的表征方法,通过采集典型煤层、泥页岩储层样品,开展柱塞样及不同粒径粉碎样低场核磁共振及核磁共振冻融法实验,获得不同粉碎粒径累计孔隙体积分布及微分孔径分布,通过与柱塞样对比,确定最佳粉碎粒度,初步判断封闭孔隙分布范围;开展粉碎样品的小角X射线散射实验,获得1~100nm孔径范围内总孔隙孔径分布及孔体积,结合低场核磁实验结果计算得到煤系复合储层总孔隙体积及封闭孔隙体积。基于煤系储层岩性组合类型,通过组合煤、泥页岩及致密砂岩不同高度柱塞样,开展多组覆压变因素渗透率实验,表征孔隙发育、岩性组合等多因素影响下煤系复合储层连通性,为煤系储层综合评价提供指导意义。

Description

一种煤系复合储层封闭孔隙及连通性的表征方法
技术领域
本发明属于煤系非常规天然气复合储层开发评价领域,特别是涉及一种煤系复合储层封闭孔隙及连通性的表征方法。
背景技术
煤系地层是沉积于海陆交互或者陆相环境下,除了含有煤层或煤线,还含有成因联系的一套含/富有机质沉积岩系。煤系气既包含以吸附态为主的煤层气,还包含以游离气为主的致密砂岩气及碳酸盐岩气,此外还包含混合态的页岩气。受控于沉积及构造环境,煤系气“生储盖”组合复杂,岩性多样、互层发育且旋回性特征显著。煤系储层主要包含煤层、泥页岩及致密砂岩,以甲烷为主的气体主要赋存在微纳米尺度的孔隙中,孔隙包含连通孔隙及封闭孔隙,其发育影响着煤系气赋存、运移。
现有封闭孔隙及连通性评价表征方法主要是通过将柱塞样逐级破碎成不同粒径的碎样开展孔隙度测试,进而计算出封闭孔隙所占比例;另一种是通过压汞、低温液氮吸附、二氧化碳吸附结合小角散射技术获得1~500nm左右小范围的封闭孔隙发育情况。然而,前者无法揭示碎样中尚未破坏打开的封闭孔隙,后者封闭孔隙表征范围有限。
发明内容
为了解决上述技术问题,本发明提供一种煤系复合储层封闭孔隙及连通性的表征方法,综合柱塞样-粉碎样低场核磁孔隙测试,结合小角X射线散射技术,旨在全尺度范围内揭示煤系煤层、泥页岩、致密砂岩封闭孔隙发育情况,并结合模拟地层条件下的变因素覆压渗透率实验,表征煤系复合储层连通性。
为实现上述目的,本发明提出一种煤系复合储层封闭孔隙及连通性的表征方法,具体包括以下步骤:
S1、将煤系复合储层中的煤层和泥页岩制作成柱塞样,并对所述柱塞样进行核磁共振实验,得到所述柱塞样的孔隙度、累计孔隙体积分布及微分孔径分布;
S2、分别将煤层和泥页岩的柱塞样破碎成不同粒度的粉碎样,并对所述粉碎样进行核磁共振冻融法实验,得到不同粒径累计孔隙体积分布和微分孔径分布;
S3、基于所述柱塞样、所述不同粉碎粒径累计孔隙体积分布和微分孔隙分布,确定煤层和泥页岩中打开封闭孔隙最佳的粉碎粒度;并与所述柱塞样进行对比,计算得出所述柱塞样破碎成所述粉碎样过程中打开的封闭孔隙体积;
S4、分别对煤层和泥页岩的最佳粉碎粒径粉碎样进行小角X射线散射实验,得到孔径范围内的总孔隙的孔径分布及孔体积;
S5、基于柱塞样低场核磁、粉碎样核磁冻融及粉碎样小角X射线散射实验结果,确定煤层和泥页岩的总孔孔隙体积及封闭孔隙体积;
S6、根据实际钻井储层组合情况,制作相同直径、不同高度的煤层、泥页岩和致密砂岩柱塞样,并进行非稳态压降法覆压渗透率实验,定量表征地层压力条件、岩性组合影响下煤系复合储层连通性。
优选地,所述S1具体为:
S11、根据煤系含气系统中水汽分布关系,将所述煤系复合储层按照生储盖组合进行划分,得到煤层、泥页岩及致密砂岩;
S12、采集所述煤层和所述泥页岩的新鲜钻孔样品,并制成多组柱塞样;
S13、对所述柱塞样进行低场核磁共振实验;然后测量横向弛豫时间,并计算所述柱塞样的孔隙度、累计孔隙体积分布及微分孔径分布。
优选地,所述S13中测量所述横向弛豫时间之前还需将低场核磁共振实验所用的柱塞样进行抽真空加压15MPa饱和盐水48h。
优选地,所述S2具体为:
将核磁共振实验后的所述柱塞样进行干燥24h后,并用破碎机破碎;然后用标准网筛筛分成不同粒度粉碎样;最后对所述不同粒度粉碎样进行低场核磁冻融实验,并基于简化的Gibbs-Thomson热力学方程计算得到不同粒径累计孔隙体积分布和微分孔径分布。
优选地,所述核磁共振冻融实验采用蒸馏水为探针液,温度从-33℃逐渐升高为0℃,每个温度点温度时间为5min。
优选地,所述S4具体为:
S41、对煤层和泥页岩的最佳粉碎粒径粉碎样进行小角X射线散射实验,得到二维散射图像;然后使用FIT2D软件将所述二维散射图像转化为散射数据,再根据相同实验环境下标样的相对散射强度数据换算出所述最佳粉碎粒径粉碎样的绝对散射强度;
S42:使用X射线荧光光谱仪测定所述最佳粉碎粒径粉碎样的常量元素含量,并测试所述相同实验环境下标样的的密度数据,计算出所述最佳粉碎粒径粉碎样的总孔隙度、孔隙体积和孔比表面积;
S43:使用基于蒙特卡洛回归原理的McSAS软件,导入所述散射数据,并设置相应参数,得到1~100nm孔径范围内总孔隙的孔径分布及孔体积。
优选地,所述S6具体为:
S61:根据钻井岩心揭示地层岩性、气水分布情况,划分生储盖组合,确定煤系储层垂向上的分布情况,总结几类典型的岩性组合类型;
S62:根据所述岩性组合类型,制作相同直径、垂直于层理方向和不同高度的煤层、泥页岩、致密砂岩柱塞样;
S63:对所述煤层、泥页岩、致密砂岩柱塞样进行非稳态压降法覆压渗透率实验,定量表征地层压力条件、岩性组合影响下煤系复合储层连通性,结合封闭孔隙表征,开展储层评价工作,选出有利煤系复合储层。
与现有技术相比,本发明的有益效果在于:
本发明综合柱塞样-粉碎样低场核磁孔隙测试,结合小角X射线散射技术,旨在全尺度范围内揭示煤系煤层、泥页岩、致密砂岩封闭孔隙发育情况,既可以揭示粉碎样品中尚未破坏打开的封闭孔隙,封闭孔隙的表征范围及精确性大大增加,可以为煤系储层封闭孔隙定量评价提供一种可行实验方法。并结合变因素覆压渗透率实验,表征煤系复合储层连通性。现有单一岩性渗透率测试无法与复杂的煤系储层组合相匹配,而变因素覆压渗透率测试可以系统揭示煤系储层复杂岩性及组合下渗透率特征。结合封闭孔隙评价,两者共同组成本发明一种煤系复合储层封闭孔隙及连通性的表征方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的方法流程图;
图2为本发明实施例的基于低场核磁实验得出的孔隙体积分布及封闭孔隙孔径范围示意图;其中,(a)为基于低场核磁实验得出的孔隙体积分布示意图;(b)为基于低场核磁实验得出的封闭孔隙孔径范围示意图;
图3为本发明实施例的最佳粉碎粒径碎样小角散射与低场核磁孔径分布对比图
图4为本发明实施例的多组复合储层渗透率实验样品示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1
参照图1所示,本发明提供一种煤系复合储层封闭孔隙及连通性的表征方法,主要包括封闭孔隙表征及连通性表征两大部分。其中封闭孔隙表征主要由低场核磁共振、低场核磁冻融及小角X射线散射实验组成,旨在揭示煤系低孔、低渗储层煤、泥页岩的全尺度封闭孔隙,包含从柱塞样破碎成碎样过程中打开的封闭孔隙及粉碎样品中的封闭孔隙。渗透率是储层连通性的直接表现,根据煤系储层垂直向上的分布情况,总结几类典型的岩性组合类型,制作不同组合的煤、泥页岩、致密砂岩柱塞样,组合开展覆压渗透率实验。
具体包括以下步骤:
S1、将煤系复合储层中的煤层和泥页岩制作成柱塞样,并对所述柱塞样进行核磁共振实验,得到所述柱塞样的孔隙度及孔径分布;
S11:根据煤系“三气”含气系统中气水分布关系,划分生储盖组合,采集煤、泥页岩储层新鲜钻孔样品,为了防止破碎,采用线切割方式,垂直于层理方向,制作成多组10mm×20mm的柱塞样;
S12:使用煤、泥页岩柱塞样品开展低场核磁共振实验,将抽真空加压(15MPa)并饱和盐水48h后测量核磁共振T2谱,以反映岩心的总孔隙特征;然后基于公式(1)和公式(2)计算柱塞样总孔隙度及孔径分布;
核磁共振横向弛豫时间T2可以表示为:
Figure BDA0003189997610000071
rc=ρ2FsT2=C2T2 (2)
其中,T2表示为核磁共振横向弛豫事件,ms;ρ2为横向弛豫时率,nm/ms;S为孔隙表面积,nm2;V表示孔隙体积,nm3;Fs表示孔隙几何形状因子;rc表示为孔隙半径,nm;C2表示转化系数。
S2:分别将煤层、泥页岩柱塞样破碎成不同粒度的粉碎样,开展核磁共振冻融法测试,获得不同粉碎粒径累计孔隙体积分布、微分孔径分布等,具体为:
核磁共振的实验样品是可以重复利用的,为了排除样品中残余饱和盐水的影响,将实验后核磁共振柱塞样干燥24h后,用破碎机破碎,并用标准网筛筛分成粒度10~20目(粒径2.000~0.850mm)、20~40目(粒径0.850~0.425mm)、40~60目(粒径0.425~0.250mm)、60~80目(粒径0.250~0.180mm)、80~100目(粒径0.180~0.150mm)、100~200目(粒径0.150~0.075mm),然后开展低场核磁冻融实验,核磁共振冻融实验采用蒸馏水为探针液,温度从-33℃逐渐升高为0℃,每个温度点温度时间为5min,孔径分布计算基于简化的Gibbs-Thomson热力学方程。
Figure BDA0003189997610000081
其中,x为孔隙直径,nm;KGT为熔点下降常数,nm·K;ΔTm为物质熔点变化量,K;
S3、基于所述柱塞样、所述不同粉碎粒径累计孔隙体积分布和微分孔隙分布,确定打开封闭孔隙最佳的粉碎粒度;并与所述柱塞样进行对比,计算得出所述柱塞样破碎成所述粉碎样过程中打开的封闭孔隙体积,如图2所示,图2(a)为基于低场核磁实验得出的孔隙体积分布示意图;图2(b)为基于低场核磁实验得出的封闭孔隙孔径范围示意图。
根据柱塞样和不同粉碎粒径累计孔隙体积分布及微分孔隙分布,获得封闭孔隙主要存在孔径范围,确定打开封闭孔隙最佳的粉碎粒度(粉碎粒度过小时,会破坏煤、泥页岩储层原生连通孔隙,造成孔隙体积偏大),通过与柱塞样对比,计算出柱塞样破碎成粉碎样过程中打开的封闭孔隙体积VF1
VF1=V最佳碎样-V柱塞样 (4)
其中,V最佳碎样为最佳粉碎粒径样品低场核磁冻融法测试孔隙体积;V柱塞样为柱塞样核磁共振孔隙体积。
S4:分别对煤、泥页岩粉末样开展小角X射线散射实验,获得1~100nm孔径范围内总孔隙(连通孔隙+封闭孔隙)的孔径分布及孔体积;
S41:对最佳粉碎粒径碎样,开展小角X射线散射实验,小角X射线散射可以测试1~100nm中所有的连通孔隙和封闭孔隙,对应孔径范围与低场核磁逐级碎样得到封闭孔隙范围大致对应,可以揭示碎样中封闭孔隙发育特征。使用FIT2D软件将二维散射图像转化为散射数据(相对散射强度),再通过相同实验环境下,水、玻璃碳等标样的相对散射强度数据,换算出样品的绝对散射强度;
S42:使用X射线荧光光谱仪测定煤、泥页岩粉碎样中样品的C、H、O、N、S等常量元素含量,并测试煤、泥页岩规则样品的密度数据,根据公式(5)-(7),计算出碎样的总孔隙度、孔隙体积和孔比表面积;
小角X射线散射孔隙度由以下公式计算:
Figure BDA0003189997610000091
其中,P为孔隙度;
Figure BDA0003189997610000092
为通过标准样品校正过的绝对散射强度;re=2.8179×10-13cm为经典的汤姆逊电子半径;Δρe为电子密度差,eA-3
电子密度ρe可以由以下公式得出:
Figure BDA0003189997610000093
其中,ρ为真密度;NA为阿伏伽德罗常数;α为特定元素含量,i;Zi为元素原子序数;Mi为原子质量。
多孔材料比表面积由以下公式计算:
Figure BDA0003189997610000094
其中,Sv为孔比表面积。
粉碎样品的孔径分布曲线使用基于蒙特卡洛回归原理的McSAS软件,通过导入散射数据,调整参数,计算得出。
S43:使用基于蒙特卡洛回归原理的McSAS软件,导入散射数据,设置相应参数,获得1~100nm孔径范围内总孔径分布;如图3所示,小角X射线散射实验的微分孔径分布总体上高于核磁冻融法孔径分布,孔隙体积也揭示碎样中仍然有相当数量封闭性孔隙存在,但是受控于煤、泥页岩有机质分布、矿物组成等差异,煤与泥页岩封闭孔隙孔径发育范围不尽相同,但也集中在微孔-介孔的孔径范围内。
S44:1~100nm孔径范围内封闭孔隙体积VF2
VF2=VSAXS-V最佳碎样(特定孔径范围) (8)
其中,VSAXS为小角X射线散射得出的总孔隙体积,V最佳碎样(特定孔径范围)为最佳粉砂粒径下样品核磁冻融孔隙体积。
值得注意的是,小角X射线散射所得孔体积主体介于1~100nm,此时V最佳碎样(特定孔径范围),应该为小角X射线测试孔径范围内粉碎样品低场核磁冻融所得到的孔隙体积。
S5:综合柱塞样低场核磁、粉碎样核磁冻融及粉碎样小角X射线散射实验结果,确定煤、泥页岩的总孔孔隙体积及封闭孔隙体积;
V=V最佳碎样+VSAXS-V最佳碎样(特定孔径范围) (9)
VF总=VF1+VF2 (10)
其中,V为总孔孔隙体积,VF总为总封闭孔隙体积。
S6:如图4所示,根据实际钻井储层组合情况,制作相同直径、不同高度的煤、泥页岩、致密砂岩柱塞样,分别开展单个及组合状态下非稳态压降法覆压渗透率实验,表征孔隙发育、岩性组合等多因素影响下煤系复合储层连通性。
S61:根据钻井岩心揭示地层岩性、气水分布情况,划分生储盖组合,确定煤系储层垂直向上的分布情况,总结几类典型的岩性组合类型;
S62:根据岩性组合类型,制作相同直径、垂直于层理方向、不同高度的煤、泥页岩、致密砂岩柱塞样;
S63:开展非稳态压降法覆压渗透率实验,定量表征地层压力条件、岩性组合影响下煤系复合储层连通性,结合封闭孔隙表征,开展储层评价工作,优选出有利煤系复合储层。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (5)

1.一种煤系复合储层封闭孔隙及连通性的表征方法,其特征在于,具体包括以下步骤:
S1、将煤系复合储层中的煤层和泥页岩制作成柱塞样,并对所述柱塞样进行核磁共振实验,得到所述柱塞样的孔隙度、累计孔隙体积分布及微分孔径分布;
S2、分别将煤层和泥页岩的柱塞样破碎成不同粒度的粉碎样,并对所述粉碎样进行核磁共振冻融法实验,得到不同粒径累计孔隙体积分布和微分孔径分布;
S3、基于所述柱塞样、所述不同粒径累计孔隙体积分布和微分孔径分布,确定煤层和泥页岩中打开封闭孔隙最佳的粉碎粒径;并与所述柱塞样进行对比,计算得出所述柱塞样破碎成所述粉碎样过程中打开的封闭孔隙体积;
S4、分别对煤层和泥页岩的最佳粉碎粒径粉碎样进行小角X射线散射实验,得到孔径范围内的总孔隙的孔径分布及孔体积;
S5、基于柱塞样的核磁共振实验、核磁共振冻融法实验及粉碎样小角X射线散射实验的实验结果,确定煤层和泥页岩的总孔孔隙体积及封闭孔隙体积;
Figure DEST_PATH_IMAGE002
其中,V为总孔孔隙体积,VF总为总封闭孔隙体积,VF1为柱塞样破碎成粉碎样过程中打开的封闭孔隙体积;
Figure DEST_PATH_IMAGE004
V最佳碎样为最佳粉碎粒径样品核磁共振冻融法测试孔隙体积;V柱塞样为柱塞样核磁共振孔隙体积;
S6、根据实际钻井储层组合情况,制作相同直径、不同高度的煤层、泥页岩和致密砂岩柱塞样,并进行非稳态压降法覆压渗透率实验,定量表征地层压力条件、岩性组合影响下煤系复合储层连通性;
所述S4具体为:
S41、对煤层和泥页岩的最佳粉碎粒径粉碎样进行小角X射线散射实验,得到二维散射图像;然后使用FIT2D软件将所述二维散射图像转化为散射数据,再根据相同实验环境下标样的相对散射强度数据换算出所述最佳粉碎粒径粉碎样的绝对散射强度;
S42:使用X射线荧光光谱仪测定所述最佳粉碎粒径粉碎样的常量元素含量,并测试所述相同实验环境下标样的密度数据,计算出所述最佳粉碎粒径粉碎样的总孔隙度、孔隙体积和孔比表面积;
S43:使用基于蒙特卡洛回归原理的McSAS软件,导入所述散射数据,并设置相应参数,得到1~100nm孔径范围内总孔隙的孔径分布及孔体积;
其中,1~100nm孔径范围内封闭孔隙体积VF2的计算公式为:
Figure DEST_PATH_IMAGE006
VSAXS为小角X射线散射得出的总孔隙体积,V最佳碎样,特定孔径范围为最佳粉碎粒径下样品核磁共振冻融法1~100nm孔径范围内封闭孔隙体积;
所述S6具体为:
S61:根据钻井岩心揭示地层岩性、气水分布情况,划分生储盖组合,确定煤系储层垂向上的分布情况,总结几类典型的岩性组合类型;
S62:根据所述岩性组合类型,制作相同直径、垂直于层理方向和不同高度的煤层、泥页岩、致密砂岩柱塞样;
S63:对所述煤层、泥页岩、致密砂岩柱塞样进行非稳态压降法覆压渗透率实验,定量表征地层压力条件、岩性组合影响下煤系复合储层连通性,结合封闭孔隙表征,开展储层评价工作,选出有利煤系复合储层。
2.根据权利要求1所述的煤系复合储层封闭孔隙及连通性的表征方法,其特征在于,所述S1具体为:
S11、根据煤系含气系统中水汽分布关系,将所述煤系复合储层按照生储盖组合进行划分,得到煤层、泥页岩及致密砂岩;
S12、采集所述煤层和所述泥页岩的新鲜钻孔样品,并制成多组柱塞样;
S13、对所述柱塞样进行核磁共振实验;然后测量横向弛豫时间,并计算所述柱塞样的孔隙度、累计孔隙体积分布及微分孔径分布。
3.根据权利要求2所述的煤系复合储层封闭孔隙及连通性的表征方法,其特征在于,所述S13中测量所述横向弛豫时间之前还需将核磁共振实验所用的柱塞样进行抽真空加压15MPa饱和盐水48h。
4.根据权利要求1所述的煤系复合储层封闭孔隙及连通性的表征方法,其特征在于,所述S2具体为:
将核磁共振实验后的所述柱塞样进行干燥24h后,并用破碎机破碎;然后用标准网筛筛分成不同粒度粉碎样;最后对所述不同粒度粉碎样进行核磁共振冻融实验,并基于简化的Gibbs-Thomson热力学方程计算得到不同粒径累计孔隙体积分布和微分孔径分布。
5.根据权利要求4所述的煤系复合储层封闭孔隙及连通性的表征方法,其特征在于,所述核磁共振冻融实验采用蒸馏水为探针液,温度从-33℃逐渐升高为0℃,每个温度点温度时间为5min。
CN202110873856.XA 2021-07-30 2021-07-30 一种煤系复合储层封闭孔隙及连通性的表征方法 Active CN113607621B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202110873856.XA CN113607621B (zh) 2021-07-30 2021-07-30 一种煤系复合储层封闭孔隙及连通性的表征方法
PCT/CN2022/103353 WO2023005600A1 (zh) 2021-07-30 2022-07-01 一种煤系复合储层封闭孔隙及连通性的表征方法
US18/124,703 US11781962B2 (en) 2021-07-30 2023-03-22 Characterization method of closed pores and connectivity of coal measure composite reservoirs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110873856.XA CN113607621B (zh) 2021-07-30 2021-07-30 一种煤系复合储层封闭孔隙及连通性的表征方法

Publications (2)

Publication Number Publication Date
CN113607621A CN113607621A (zh) 2021-11-05
CN113607621B true CN113607621B (zh) 2022-04-12

Family

ID=78338822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110873856.XA Active CN113607621B (zh) 2021-07-30 2021-07-30 一种煤系复合储层封闭孔隙及连通性的表征方法

Country Status (3)

Country Link
US (1) US11781962B2 (zh)
CN (1) CN113607621B (zh)
WO (1) WO2023005600A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113607621B (zh) 2021-07-30 2022-04-12 中国矿业大学 一种煤系复合储层封闭孔隙及连通性的表征方法
CN115452531A (zh) * 2022-10-18 2022-12-09 西南石油大学 一种微观可视化光刻模型制作方法及其实验流程
CN115808436B (zh) * 2022-12-28 2023-08-22 西南石油大学 利用核磁技术确定致密储层流体相态类型及饱和度的方法
CN117094043B (zh) * 2023-08-22 2024-02-27 东北石油大学 基于3d打印仿真煤层孔裂隙模型的煤粉运移评价方法及系统
CN117825431B (zh) * 2023-11-16 2024-06-04 中国矿业大学 一种基于顺磁离子扩散的煤和岩石孔隙连通性评测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110516016A (zh) * 2019-07-26 2019-11-29 中国矿业大学 一种基于gis技术的煤系气纵向开发层段优选方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4584874A (en) * 1984-10-15 1986-04-29 Halliburton Company Method for determining porosity, clay content and mode of distribution in gas and oil bearing shaly sand reservoirs
US6662631B2 (en) * 1998-08-28 2003-12-16 Interuniversitair Microelektronica Centrum Method and apparatus for characterization of porous films
CN104237103B (zh) * 2014-09-23 2017-10-17 中国石油天然气股份有限公司 一种孔隙连通性定量表征方法及装置
CN105974092A (zh) * 2016-07-08 2016-09-28 重庆科技学院 一种致密储层孔喉全尺度表征及分析方法
CN108956422B (zh) * 2018-07-18 2019-05-10 中国石油大学(华东) 一种致密储层的孔隙度实验测量方法
CN108872045A (zh) * 2018-08-06 2018-11-23 四川杰瑞泰克科技有限公司 一种页岩碎样总孔隙度的测量方法
CN112816392A (zh) * 2021-03-11 2021-05-18 厦门厦钨新能源材料股份有限公司 晶态物质的闭孔孔隙率的分析测试方法
CN113607621B (zh) * 2021-07-30 2022-04-12 中国矿业大学 一种煤系复合储层封闭孔隙及连通性的表征方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110516016A (zh) * 2019-07-26 2019-11-29 中国矿业大学 一种基于gis技术的煤系气纵向开发层段优选方法

Also Published As

Publication number Publication date
US20230258550A1 (en) 2023-08-17
US11781962B2 (en) 2023-10-10
CN113607621A (zh) 2021-11-05
WO2023005600A1 (zh) 2023-02-02

Similar Documents

Publication Publication Date Title
CN113607621B (zh) 一种煤系复合储层封闭孔隙及连通性的表征方法
Dong et al. Porosity characteristics of the Devonian Horn River shale, Canada: Insights from lithofacies classification and shale composition
Ma et al. Shale gas desorption behavior and carbon isotopic variations of gases from canister desorption of two sets of gas shales in south China
Cao et al. Classification and controlling factors of organic pores in continental shale gas reservoirs based on laboratory experimental results
Li et al. Shale pore characteristics and their impact on the gas-bearing properties of the Longmaxi Formation in the Luzhou area
Li et al. Influence of pore structure particularity and pore water on the occurrence of deep shale gas: Wufeng–Longmaxi formation, Luzhou block, Sichuan basin
Caiwei et al. Heterogeneity and influencing factors of marine gravity flow tight sandstone under abnormally high pressure: A case study from the Miocene Huangliu Formation reservoirs in LD10 area, Yinggehai Basin, South China Sea
Zhang et al. Experimental study of coal flow characteristics under mining disturbance in China
Qiu et al. Difference in pore structure characteristics between condensate and dry shale gas reservoirs: Insights from the pore contribution of different matrix components
Yue et al. Quantitative characterization, classification, and influencing factors of the full range of pores in weathering crust volcanic reservoirs: Case study in bohai bay basin, China
Zhang et al. Pore structure and fractal characteristics of coal-bearing Cretaceous Nenjiang shales from Songliao Basin, Northeast China
Guo et al. Pore Structure and Permeability Characterization of High‐rank Coal Reservoirs: A Case of the Bide‐Santang Basin, Western Guizhou, South China
Zhang et al. Experimental study on permeability characteristics of gas-containing raw coal under different stress conditions
Xiao et al. Coupling control of organic and inorganic rock components on porosity and pore structure of lacustrine shale with medium maturity: A case study of the Qingshankou Formation in the southern Songliao Basin
Zhang et al. Composition effect on the pore structure of transitional shale: a case study of the Permian Shanxi formation in the Daning–Jixian block at the eastern margin of the Ordos Basin
Hou et al. The effects of shale composition and pore structure on gas adsorption potential in highly mature marine shales, Lower Paleozoic, central Yangtze, China
Lu et al. Quantitative characterization and differences of the pore structure in lacustrine siliceous shale and argillaceous shale: A case study of the Upper Triassic Yanchang Formation shales in the southern Ordos Basin, China
Huafeng et al. Filling characteristics, reservoir features and exploration significance of a volcanostratigraphic sequence in a half-graben basin---a case analysis of the Wangfu Rift Depression in Songliao Basin, NE China
Wang et al. Experimental study on fractal characteristics of fault filling medium in the tunnel and relationship between fractal dimension and permeability coefficient
Hu et al. Study on influencing factors and mechanism of pore compressibility of tight sandstone reservoir—A case study of upper carboniferous in ordos basin
Dong et al. Factors Influencing the Pore Structure and Gas‐Bearing Characteristics of Shales: Insights from the Longmaxi Formation, Southern Sichuan Basin and Northern Yunnan‐Guizhou Depression, China
Song et al. New insights into the role of system sealing capacity in shale evolution under conditions analogous to geology: Implications for nanopore evolution
Luo et al. Factors controlling shale reservoirs and development potential evaluation: a case study
Zhao et al. Accumulation characteristics and controlling factors of the Tugeerming gas reservoir in the eastern Kuqa Depression of the Tarim Basin, northwest China
Liang et al. Effect of disturbed coal pore structure on gas adsorption characteristics: mercury intrusion porosimetry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant