CN113602373B - A jumping robot and its test platform in complex terrain environment - Google Patents
A jumping robot and its test platform in complex terrain environment Download PDFInfo
- Publication number
- CN113602373B CN113602373B CN202110877682.4A CN202110877682A CN113602373B CN 113602373 B CN113602373 B CN 113602373B CN 202110877682 A CN202110877682 A CN 202110877682A CN 113602373 B CN113602373 B CN 113602373B
- Authority
- CN
- China
- Prior art keywords
- joint transmission
- knee joint
- robot
- test platform
- hip joint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000009191 jumping Effects 0.000 title claims abstract description 63
- 238000012360 testing method Methods 0.000 title abstract description 40
- 230000005540 biological transmission Effects 0.000 claims description 80
- 210000000629 knee joint Anatomy 0.000 claims description 48
- 210000004394 hip joint Anatomy 0.000 claims description 38
- 210000002414 leg Anatomy 0.000 claims description 24
- 210000000689 upper leg Anatomy 0.000 claims description 12
- 238000004146 energy storage Methods 0.000 claims description 11
- 244000309466 calf Species 0.000 claims description 4
- 239000011664 nicotinic acid Substances 0.000 abstract description 9
- 230000007246 mechanism Effects 0.000 abstract description 6
- 238000013480 data collection Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 35
- 238000013016 damping Methods 0.000 description 6
- 241001416488 Dipodidae Species 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 210000001624 hip Anatomy 0.000 description 3
- 230000003139 buffering effect Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000005486 microgravity Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D57/00—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
- B62D57/02—Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
- G01M99/005—Testing of complete machines, e.g. washing-machines or mobile phones
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种用复杂地形环境下的跳跃机器人及其测试平台。包括跳跃机器人部分和测试平台部分;所述的跳跃机器人部分安装在测试平台部分上;本发明的测试平台部分具有导轨滑块机构,可以平行移动的侧面透明挡板,能够适应不同宽度的被测试机器人。本发明的测试平台部分的模拟地形可变化,包括改变地面水平倾角、地面垂直高度,通过多块地面板搭配组合,可灵活实现模拟复杂地形。机器人可以在地形可变的测试平台上进行连续的侧向跳跃,机器人具有质量轻、稳定性高、驱动简单、机构运动仿生性好的优点;测试平台具有为机器人提供可变地形、保护装置以及进行数据采集等功能。该平台具有调整灵活性强、操作简便等优点。
The invention discloses a jumping robot and a test platform thereof under complex terrain environment. It includes a jumping robot part and a test platform part; the jumping robot part is installed on the test platform part; the test platform part of the present invention has a guide rail slider mechanism, a side transparent baffle that can move in parallel, and can adapt to different widths to be tested robot. The simulated terrain of the test platform part of the present invention can be changed, including changing the horizontal inclination angle of the ground and the vertical height of the ground, and the complex terrain can be simulated flexibly through the combination and combination of multiple ground panels. The robot can perform continuous lateral jumps on the test platform with variable terrain. The robot has the advantages of light weight, high stability, simple driving, and good bionic mechanism movement; the test platform has the advantages of providing variable terrain, protection devices and Data collection and other functions. The platform has the advantages of strong adjustment flexibility and easy operation.
Description
技术领域technical field
本发明属于军事侦察、星际探测等领域,涉及一种用复杂地形环境下的跳跃机器人及其测试平台。The invention belongs to the fields of military reconnaissance, interstellar detection and the like, and relates to a jumping robot and a test platform thereof under complex terrain environment.
背景技术Background technique
近年来,随着世界范围内的自然灾害和人为事故的频发及仿生机器人热度高涨,越来越多的仿生机器人用于探索救援、军事侦察及其他生活领域,并且越来越多的仿生跳跃机器人因具有越障能力强及能耗较小的优点而被广泛关注。In recent years, with the frequent occurrence of natural disasters and man-made accidents around the world and the rising popularity of bionic robots, more and more bionic robots are used for exploration and rescue, military reconnaissance and other life fields, and more and more bionic jumping Robots have attracted wide attention due to their advantages of strong obstacle surmounting ability and low energy consumption.
对于现有的小型跳跃机器人设计,申请(专利)号CN202010455041.5发明的一种《一种储能大小和起跳角度可控的跳跃机器人》虽然可以实现储能-释放等基本环节但存在结构复杂、难以实现稳定连续跳跃。申请(专利)号CN201810267653.4发明的一种《气动肌肉驱动力臂可变的双足跳跃机器人》通过气动和弹簧机构实现储能释放,但是存在体型过大、无法实现在无外部辅助的条件下的跳跃等缺点。For the existing small jumping robot design, the application (patent) No. CN202010455041.5 invented a "jumping robot with controllable energy storage size and take-off angle", although it can realize the basic links such as energy storage and release, but has a complex structure , It is difficult to achieve stable and continuous jumping. Application (patent) No. CN201810267653.4 invented a "Pneumatic Muscle Driving Force Arm Variable Bipedal Jumping Robot" to achieve energy storage release through pneumatic and spring mechanisms, but there is a condition that the body is too large and cannot be realized without external assistance. Disadvantages such as jumping down.
针对上述设计中存在的问题,需要设计出一种小型的、结构简单并且可稳定连续跳跃的机器人,在具有相对简单的结构条件及驱动条件下,研究如何保证跳跃的稳定性并且进行有效测试是本发明的主要研究内容。In view of the problems existing in the above design, it is necessary to design a small robot with simple structure and stable continuous jumping. Under relatively simple structural conditions and driving conditions, it is necessary to study how to ensure the stability of jumping and conduct effective tests. The main research content of the present invention.
本发明是一种用于复杂地形环境下的小型仿生跳鼠双足跳跃机器人,具体来说,是一种在地震灾害或军事冲突突发时,能够作为一种伪装的侦查机器人进行情报搜集等功能,为现代作战指挥提供可靠地一线情报。此外,在星际探测领域中也可以作为着陆机器人,利用其体型小、越障能力强的特点快速适应微重力环境并能够实现复杂地形下连续跳跃,可以进行地形检测、建立通信等活动。The invention is a small bionic jerboa bipedal jumping robot for use in complex terrain environment, specifically, it is a kind of camouflaged reconnaissance robot that can collect intelligence when earthquake disasters or military conflicts break out. function to provide reliable first-line intelligence for modern combat command. In addition, it can also be used as a landing robot in the field of interstellar exploration. It can quickly adapt to the microgravity environment by virtue of its small size and strong obstacle-surmounting ability, and can realize continuous jumping under complex terrain, and can perform activities such as terrain detection and establishment of communication.
同时,本发明是一种专门测试跳跃机器人测试平台,用于测试小型跳跃机器人相关运动学参数和动力学性能,完成机器人跳跃实验周期测试。At the same time, the present invention is a special test platform for testing the jumping robot, which is used to test the relevant kinematic parameters and dynamic performance of the small jumping robot, and complete the periodic test of the robot jumping experiment.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种用于复杂地形环境下的小型仿生跳鼠双足跳跃机器人及其测试平台。因此本发明分为两个部分,一是跳跃机器人部分,二是机器人测试平台部分。机器人可以在地形可变的测试平台上进行连续的侧向跳跃,机器人具有质量轻、稳定性高、驱动简单、机构运动仿生性好的优点;测试平台具有为机器人提供可变地形、保护装置以及进行数据采集等功能。该平台具有调整灵活性强、操作简便等优点。The purpose of the present invention is to provide a small bionic jerboa bipedal jumping robot and its test platform for use in complex terrain environment. Therefore, the present invention is divided into two parts, one is the jumping robot part, and the other is the robot testing platform part. The robot can perform continuous lateral jumps on the test platform with variable terrain. The robot has the advantages of light weight, high stability, simple driving, and good bionic mechanism movement; the test platform has the advantages of providing variable terrain, protection devices and Data collection and other functions. The platform has the advantages of strong adjustment flexibility and easy operation.
一种用复杂地形环境下的跳跃机器人及其测试平台,包括跳跃机器人部分(1)、测试平台部分(2)。跳跃机器人部分(1)包括:动力装置部分(1-1)、膝关节传动部分(1-2)、髋关节传动部分(1-3)、腿部结构部分(1-4)、躯干结构部分(1-5);A jumping robot and a test platform thereof in a complex terrain environment, comprising a jumping robot part (1) and a test platform part (2). The jumping robot part (1) includes: a power device part (1-1), a knee joint transmission part (1-2), a hip joint transmission part (1-3), a leg structure part (1-4), and a trunk structure part (1-5);
测试平台部分(2)包括:底座部分(2-1)、导轨滑块部分(2-2)、可变地形部分(2-3)、侧面挡板部分(2-4)、顶部固定部分(2-5);数据采集部分(2-6)。The test platform part (2) includes: a base part (2-1), a guide rail slider part (2-2), a variable terrain part (2-3), a side baffle part (2-4), a top fixed part ( 2-5); data collection part (2-6).
动力装置部分(1-1)包括2个微型电机(1-1-1)、电机上支架(1-1-2)、电机下支架(1-1-3)、2个支架固定板(1-1-4)、2个电机支架定位销轴(1-1-5)、4个弹性轴套(1-1-6)。动力装置部分(1-1)各零件连接关系为:2个微型电机(1-1-1)直线相对布置,通过电机上支架(1-1-2)和电机下支架(1-1-3)的卡槽将电机固定;左右支架固定板(1-1-4)的卡槽分别与电机上支架(1-1-2)的上表面、电机下支架(1-1-3)下表面配合;左右两根电机支架定位销轴(1-1-5)穿过支架固定板(1-1-4)的定位销孔和微型电机(1-1-1)的定位销孔;弹性轴套(1-1-6)内孔分别与电机支架定位销轴(1-1-5)过盈配合,利用弹性预紧力达到固定效果。The power unit part (1-1) includes two micro motors (1-1-1), an upper motor support (1-1-2), a lower motor support (1-1-3), and two support fixing plates (1 -1-4), 2 motor bracket positioning pins (1-1-5), 4 elastic bushings (1-1-6). The connection relationship of each part of the power unit part (1-1) is as follows: two micro motors (1-1-1) are arranged in a straight line opposite to each other, through the motor upper bracket (1-1-2) and the motor lower bracket (1-1-3) ) to fix the motor; the card slots of the left and right bracket fixing plates (1-1-4) are respectively connected with the upper surface of the upper motor bracket (1-1-2) and the lower surface of the lower motor bracket (1-1-3). Matching; the left and right motor bracket positioning pin shafts (1-1-5) pass through the positioning pin holes of the bracket fixing plate (1-1-4) and the positioning pin holes of the micro motor (1-1-1); elastic shafts The inner holes of the sleeve (1-1-6) are respectively in interference fit with the positioning pins (1-1-5) of the motor bracket, and the elastic pre-tightening force is used to achieve the fixing effect.
膝关节传动部分(1-2)包括左右腿两部分,每部分包括膝关节传动凸轮(1-2-1)、膝关节传动杠杆(1-2-2)、膝关节传动丝绳(1-2-3)。膝关节传动部分(1-2)各零件配合关系为:膝关节传动凸轮(1-2-1)内孔直接与微型电机(1-1-1)减速器单侧输出轴过盈配合;膝关节传动凸轮(1-2-1)外缘与膝关节传动杠杆(1-2-2)形成高副配合;膝关节传动杠杆(1-2-2)内孔与左右支架固定板(1-1-4)定位销孔用膝关节传动杠杆定位轴(1-2-4)连接固定,形成间隙配合,并用弹性轴套(1-2-5)进行轴向定位;膝关节传动丝绳(1-2-3)两端分别连接膝关节传动杠杆(1-2-2)末端与小腿连杆(1-4-4)。The knee joint transmission part (1-2) includes two parts of left and right legs, and each part includes a knee joint transmission cam (1-2-1), a knee joint transmission lever (1-2-2), and a knee joint transmission wire rope (1-2-1). 2-3). The matching relationship of each part of the knee joint transmission part (1-2) is as follows: the inner hole of the knee joint transmission cam (1-2-1) is directly interfered with the unilateral output shaft of the micro motor (1-1-1) reducer; The outer edge of the joint transmission cam (1-2-1) forms a high-level match with the knee joint transmission lever (1-2-2); the inner hole of the knee joint transmission lever (1-2-2) is connected with the left and right bracket fixing plates (1-2-2). 1-4) The positioning pin hole is connected and fixed with the knee joint transmission lever positioning shaft (1-2-4) to form a clearance fit, and the elastic bushing (1-2-5) is used for axial positioning; the knee joint transmission wire rope ( 1-2-3) Both ends are respectively connected to the end of the knee joint transmission lever (1-2-2) and the lower leg connecting rod (1-4-4).
髋关节传动部分(1-3)包括左右腿两部分,每部分包括髋关节传动凸轮(1-3-1)、髋关节传动杠杆(1-3-2)。髋关节传动部分(1-3)各零件配合关系为:髋关节传动凸轮(1-3-1)内孔直接与微型电机(1-1-1)减速器单侧输出轴过盈配合;髋关节传动凸轮(1-3-1)外缘与髋关节传动杠杆(1-3-2)形成高副配合;髋关节传动杠杆(1-3-2)内孔与左右支架固定板(1-1-4)定位销孔用膝关节传动杠杆定位轴(1-2-4)连接固定,形成间隙配合,并用弹性轴套(1-2-5)进行轴向定位。髋关节传动杠杆(1-3-2)末端与髋关节连杆(1-4-1)形成高副配合。The hip joint transmission part (1-3) includes two parts of left and right legs, and each part includes a hip joint transmission cam (1-3-1) and a hip joint transmission lever (1-3-2). The matching relationship between the parts of the hip joint transmission part (1-3) is as follows: the inner hole of the hip joint transmission cam (1-3-1) is directly interfered with the unilateral output shaft of the micro motor (1-1-1) reducer; The outer edge of the joint transmission cam (1-3-1) forms a high-level match with the hip joint transmission lever (1-3-2); the inner hole of the hip joint transmission lever (1-3-2) is connected with the left and right bracket fixing plates (1-3-2). 1-4) The positioning pin hole is connected and fixed with the knee joint drive lever positioning shaft (1-2-4) to form a clearance fit, and the elastic bushing (1-2-5) is used for axial positioning. The end of the hip joint transmission lever (1-3-2) and the hip joint connecting rod (1-4-1) form a high pair of cooperation.
腿部结构部分(1-4)包括左右腿两部分,每部分包括2根髋关节连杆(1-4-1)、2根大腿内侧连杆(1-4-2)、2根大腿外侧连杆(1-4-3)、2根小腿连杆(1-4-4)、2个足底板(1-4-5)、2个底板橡胶层(1-4-6)、2个储能扭簧(1-4-7)、4根关节连杆轴(1-4-8)、16个用于固定连接的弹性轴套(1-4-9)。腿部结构部分(1-4)各零件配合关系为:髋关节连杆(1-4-1)分别与大腿内侧连杆(1-4-2)、大腿外侧连杆(1-4-3)一侧连接;小腿连杆(1-4-4)分别与大腿内侧连杆(1-4-2)、大腿外侧连杆(1-4-3)的另一侧连接;足底板(1-4-5)通过关节连杆轴(1-4-8)与小腿连杆(1-4-4)连接;底板橡胶层(1-4-6)与足底板(1-4-5)下侧平面贴合;储能扭簧(1-4-7)穿过关节连杆轴(1-4-8),引脚分别连接大腿内侧连杆(1-4-2)及小腿连杆(1-4-4)连接。The leg structure part (1-4) includes two parts of left and right legs, each part includes 2 hip joint links (1-4-1), 2 inner thigh links (1-4-2), 2 outer thigh links Link (1-4-3), 2 calf links (1-4-4), 2 soles (1-4-5), 2 rubber layers (1-4-6), 2 Energy storage torsion spring (1-4-7), 4 joint connecting rod shafts (1-4-8), 16 elastic bushings (1-4-9) for fixed connection. The cooperation relationship between the parts of the leg structure part (1-4) is as follows: the hip joint connecting rod (1-4-1) is respectively connected with the inner thigh connecting rod (1-4-2) and the outer thigh connecting rod (1-4-3). ) is connected on one side; the lower leg connecting rod (1-4-4) is connected with the other side of the inner thigh connecting rod (1-4-2) and the outer thigh connecting rod (1-4-3) respectively; -4-5) Connect with the lower leg link (1-4-4) through the joint link shaft (1-4-8); the soleplate rubber layer (1-4-6) is connected with the sole plate (1-4-5) The lower plane fits together; the energy storage torsion spring (1-4-7) passes through the joint link shaft (1-4-8), and the pins are respectively connected to the inner thigh link (1-4-2) and the calf link (1-4-4) Connection.
躯干结构部分(1-5)主要包括躯干主体支架(1-5-1)、主体支架筋板(1-5-2)、弹性轴套(1-5-3)、躯干销轴(1-5-4)、连接凸台(1-5-5)。躯干结构部分(1-5)配合关系为:连接凸台(1-5-5)和电机上支架(1-1-2)过盈配合;弹性轴套(1-5-3)及躯干销轴(1-5-4)将躯干主体支架(1-5-1)和到电机下支架(1-1-3)固定。The torso structure part (1-5) mainly includes the torso main body bracket (1-5-1), the main body bracket rib plate (1-5-2), the elastic bushing (1-5-3), the torso pin shaft (1-5-2) 5-4), connecting boss (1-5-5). The matching relationship of the torso structure part (1-5) is: the connection boss (1-5-5) and the motor upper bracket (1-1-2) have an interference fit; the elastic bushing (1-5-3) and the torso pin The shaft (1-5-4) fixes the torso body bracket (1-5-1) and to the motor lower bracket (1-1-3).
测试平台部分(2)包括底座部分(2-1)、导轨滑块部分(2-2)、可变地形部分(2-3)、侧面挡板部分(2-4)、顶部支架部分(2-5)、传感器支架部分(2-6)。The test platform part (2) includes a base part (2-1), a rail slider part (2-2), a variable terrain part (2-3), a side baffle part (2-4), and a top bracket part (2) -5), the sensor bracket part (2-6).
底座部分(2-1)包括2根底座长支架(2-1-1)、三根底座短支架(2-1-2)、4个支撑垫片(2-1-3)、4个支撑蹄(2-1-4)。底座部分(2-1)各部分配合关系为:底座长支架(2-1-1)及底座短支架(2-1-2)间利用标准梯形螺母及“L”型连接件固定;支撑垫片(2-1-3)与支撑蹄(2-1-4)间用螺纹连接;支撑蹄(2-1-4)与底座长支架(2-1-1)间用螺纹连接。The base part (2-1) includes 2 long base brackets (2-1-1), three base short brackets (2-1-2), 4 support washers (2-1-3), and 4 support shoes (2-1-4). The mating relationship of the base part (2-1) is as follows: the base long bracket (2-1-1) and the base short bracket (2-1-2) are fixed by standard trapezoidal nuts and "L"-shaped connectors; the support pad The sheet (2-1-3) is connected with the support shoe (2-1-4) by screw thread; the support shoe (2-1-4) is connected with the base long bracket (2-1-1) by screw thread.
导轨滑块部分(2-2)包括导轨(2-2-1)、滑块(2-2-2)、固定环(2-2-3)三部分。导轨滑块部分(2-2)各部分配合关系为导轨(2-2-1)通过螺钉连接到底座长支架(2-1-1)两侧;滑块(2-2-2)内孔与导轨(2-2-1)凸缘形成低副配合;固定环(2-2-3)利用紧定螺钉固定在导轨两端,防止滑块(2-2-2)与导轨(2-2-1)脱离。The slide rail part (2-2) includes three parts: a guide rail (2-2-1), a slide block (2-2-2) and a fixing ring (2-2-3). The matching relationship of each part of the guide rail slider part (2-2) is that the guide rail (2-2-1) is connected to both sides of the base long bracket (2-1-1) through screws; the inner hole of the slider (2-2-2) It forms a low pair with the flange of the guide rail (2-2-1); the fixing ring (2-2-3) is fixed on both ends of the guide rail with set screws to prevent the slider (2-2-2) from being in contact with the guide rail (2-2-2). 2-1) Disengage.
可变地形部分(2-3)包括底板支架(2-3-1)、底板(2-3-2)、阻尼铰链(2-3-3)、地形板(2-3-4)、薄膜压力传感器(2-3-5)。可变地形部分(2-3)各部分配合关系为底板支架(2-3-1)通过螺钉和梯形螺母固定到底座部分(2-1);底板(2-3-2)螺钉和标准梯形螺母固定到底板支架(2-3-1)上;3个阻尼铰链(2-3-3)依次交错连接形成铰链组,一端通过螺钉固定到底板(2-3-2)上,另一端通过螺钉连接地形板(2-3-4);薄膜压力传感器(2-3-5)贴合到地形板(2-3-4)上表面。The variable terrain part (2-3) includes the base plate bracket (2-3-1), the base plate (2-3-2), the damping hinge (2-3-3), the terrain plate (2-3-4), the film Pressure sensor (2-3-5). Each part of the variable terrain part (2-3) has a matching relationship as the base plate bracket (2-3-1) is fixed to the base part (2-1) by screws and trapezoidal nuts; the base plate (2-3-2) screws and standard trapezoid Nuts are fixed on the base plate bracket (2-3-1); three damping hinges (2-3-3) are connected in turn to form a hinge group, one end is fixed to the base plate (2-3-2) by screws, and the other end is connected to the base plate (2-3-2) by screws. Connect the terrain board (2-3-4) with screws; the film pressure sensor (2-3-5) is attached to the upper surface of the terrain board (2-3-4).
侧面挡板部分(2-4)包括侧面透明挡板(2-4-1)、挡板支架(2-4-2)。侧面挡板部分(2-4)各部分配合关系为侧面透明挡板(2-4-1)通过螺栓与挡板支架(2-4-2)固定;挡板支架(2-4-2)底面通过螺钉与滑块(2-2-2)顶部连接。The side baffle part (2-4) includes a side transparent baffle (2-4-1) and a baffle bracket (2-4-2). The matching relationship of each part of the side baffle part (2-4) is that the side transparent baffle (2-4-1) is fixed with the baffle bracket (2-4-2) by bolts; the baffle bracket (2-4-2) The bottom surface is connected with the top of the slider (2-2-2) by screws.
顶部支架部分(2-5)包括开口环形支架(2-5-1)、支架杆(2-5-2)、支架连接杆(2-5-3)、电池盒支架(2-5-4)。顶部支架部分(2-5)各部分配合关系为开口环形支架(2-5-1)通过开口槽与侧面透明挡板(2-4-1)连接、螺栓固定;支架杆(2-5-2)与开口环形支架(2-5-1)内孔配合,紧定螺钉固定;支架连接杆(2-5-3)与两根单侧中间开口的支架杆(2-5-2)间隙配合;电池盒支架(2-5-4)与支架连接杆(2-5-3)过渡配合、紧定螺钉固定。The top bracket part (2-5) includes an open ring bracket (2-5-1), a bracket rod (2-5-2), a bracket connecting rod (2-5-3), a battery box bracket (2-5-4) ). The matching relationship of each part of the top bracket part (2-5) is that the open ring bracket (2-5-1) is connected and bolted to the side transparent baffle (2-4-1) through the opening slot; the bracket rod (2-5- 2) Match with the inner hole of the open ring bracket (2-5-1) and fix it with set screws; the gap between the bracket connecting rod (2-5-3) and the two bracket rods (2-5-2) open in the middle of one side Matching; the battery box bracket (2-5-4) and the bracket connecting rod (2-5-3) are transitionally matched and fixed with screws.
传感器支架部分(2-6)包括传感器支架底座(2-6-1)、传感器支架(2-6-2)。传感器支架部分(2-6)各部分配合关系为传感器支架底座(2-6-1)通过螺钉和梯形螺母固定在底座部分(2-1);传感器支架(2-6-2)通过螺钉和梯形螺母固定在传感器支架底座(2-6-1)上。The sensor bracket part (2-6) includes a sensor bracket base (2-6-1) and a sensor bracket (2-6-2). The mating relationship of each part of the sensor bracket part (2-6) is that the sensor bracket base (2-6-1) is fixed on the base part (2-1) by screws and trapezoidal nuts; the sensor bracket (2-6-2) is fixed by screws and The trapezoidal nut is fixed on the sensor bracket base (2-6-1).
本发明的优点在于:The advantages of the present invention are:
1.本发明提出了一种用于复杂地形下小型仿生跳鼠双足跳跃机器人,可通过腿部姿态调整实现平稳缓冲和起跳,能够在野外环境下起到伪装侦查功能。1. The present invention proposes a small bionic jerboa bipedal jumping robot for complex terrain, which can realize smooth buffering and take-off by adjusting the posture of the legs, and can play a camouflage detection function in the field environment.
2.本发明的跳跃机器人,质量轻,仅不到100g,采用微型电机驱动的凸轮-杠杆机构提供动力,并采用电机-扭簧的储能方式实现间歇性跳跃。2. The jumping robot of the present invention is light in weight, only less than 100 g, uses a cam-lever mechanism driven by a micro-motor to provide power, and uses a motor-torsion spring energy storage method to achieve intermittent jumping.
3.本发明的跳跃机器人,运动灵活,通过双侧电机分别控制两侧腿部的髋关节、膝关节,通过电机转速和位置的控制能够灵活调整机器人腿部姿态,实现平稳运动。3. The jumping robot of the present invention is flexible in movement. The hip joints and knee joints of the legs on both sides are controlled respectively by bilateral motors, and the posture of the legs of the robot can be flexibly adjusted by controlling the rotation speed and position of the motors to achieve smooth movement.
4.本发明的测试平台部分具有导轨滑块机构,可以平行移动的侧面透明挡板,能够适应不同宽度的被测试机器人。4. The test platform part of the present invention has a guide rail slider mechanism, a side transparent baffle that can move in parallel, and can adapt to the tested robots of different widths.
5.本发明的测试平台部分的模拟地形可变化,包括改变地面水平倾角、地面垂直高度,通过多块地面板搭配组合,可灵活实现模拟复杂地形。5. The simulated terrain of the test platform part of the present invention can be changed, including changing the horizontal inclination angle of the ground and the vertical height of the ground, and the complex terrain can be simulated flexibly through the combination and combination of multiple ground panels.
附图说明Description of drawings
图1本发明中跳跃机器人及测试平台外部示意图。Fig. 1 is an external schematic diagram of the jumping robot and the test platform in the present invention.
图2本发明中跳跃机器人及测试平台内部示意图。FIG. 2 is a schematic diagram of the interior of the jumping robot and the test platform in the present invention.
图3本发明中跳跃机器人整体结构组成示意图。FIG. 3 is a schematic diagram of the overall structure of the jumping robot in the present invention.
图4本发明中跳跃机器人动力装置部分组成示意图。FIG. 4 is a schematic diagram of the components of the power device of the jumping robot in the present invention.
图5本发明中跳跃机器人动力装置微型电机示意图。FIG. 5 is a schematic diagram of the micro-motor of the jumping robot power device in the present invention.
图6本发明中跳跃机器人动力装置电机上支架示意图。6 is a schematic diagram of the upper bracket of the motor of the jumping robot power device in the present invention.
图7本发明中跳跃机器人动力装置电机下支架示意图。FIG. 7 is a schematic diagram of the lower bracket of the motor of the jumping robot power device in the present invention.
图8本发明中跳跃机器人动力装置支架固定板示意图。FIG. 8 is a schematic diagram of the bracket fixing plate of the jumping robot power device in the present invention.
图9本发明中跳跃机器人动力装置电机支架定位销轴示意图。9 is a schematic diagram of the positioning pin of the motor bracket of the jumping robot power device in the present invention.
图10本发明中跳跃机器人动力装置弹性轴套示意图。FIG. 10 is a schematic diagram of the elastic bushing of the power device of the jumping robot in the present invention.
图11本发明中跳跃机器人膝关节传动部分示意图。Fig. 11 is a schematic diagram of the knee joint transmission part of the jumping robot in the present invention.
图12本发明中跳跃机器人膝关节传动部分膝关节传动凸轮示意图。Figure 12 is a schematic diagram of the knee joint transmission cam of the knee joint transmission part of the jumping robot in the present invention.
图13本发明中跳跃机器人膝关节传动部分膝关节传动杠杆示意图。Figure 13 is a schematic diagram of the knee joint transmission lever of the knee joint transmission part of the jumping robot in the present invention.
图14本发明中跳跃机器人髋关节传动部分示意图。Figure 14 is a schematic diagram of the hip joint transmission part of the jumping robot in the present invention.
图15本发明中跳跃机器人髋关节传动部分膝关节传动凸轮示意图。15 is a schematic diagram of the knee joint transmission cam of the hip joint transmission part of the jumping robot in the present invention.
图16本发明中跳跃机器人髋关节传动部分膝关节传动杠杆示意图。Figure 16 is a schematic diagram of the knee joint transmission lever of the hip joint transmission part of the jumping robot in the present invention.
图17本发明中跳跃机器人腿部结构部分示意图。Fig. 17 is a schematic diagram of a part of the leg structure of the jumping robot in the present invention.
图18本发明中跳跃机器人腿部结构部分髋关节连杆示意图。Figure 18 is a schematic diagram of the hip joint link of the leg structure part of the jumping robot in the present invention.
图19本发明中跳跃机器人腿部结构部分大腿内侧连杆示意图。19 is a schematic diagram of the inner thigh link of the leg structure part of the jumping robot in the present invention.
图20本发明中跳跃机器人腿部结构部分大腿外侧连杆示意图。Figure 20 is a schematic diagram of the outer thigh link of the leg structure part of the jumping robot in the present invention.
图21本发明中跳跃机器人腿部结构部分小腿连杆示意图。Figure 21 is a schematic diagram of the lower leg link of the leg structure part of the jumping robot in the present invention.
图22本发明中跳跃机器人腿部结构部分足底板示意图。Fig. 22 is a schematic diagram of the foot sole plate of the leg structure part of the jumping robot in the present invention.
图23本发明中跳跃机器人腿部结构部分底板橡胶层示意图。Figure 23 is a schematic diagram of the rubber layer of the bottom plate of the leg structure part of the jumping robot in the present invention.
图24本发明中跳跃机器人腿部结构部分储能扭簧示意图。Figure 24 is a schematic diagram of the energy storage torsion spring of the leg structure part of the jumping robot in the present invention.
图25本发明中跳跃机器人躯干结构部分示意图。Fig. 25 is a schematic diagram of the torso structure of the jumping robot in the present invention.
图26本发明中测试平台部分整体示意图。FIG. 26 is an overall schematic diagram of the test platform part of the present invention.
图27本发明中测试平台底座部分示意图。Fig. 27 is a schematic diagram of a part of the base of the test platform in the present invention.
图28本发明中测试平台导轨滑块部分示意图。Figure 28 is a partial schematic diagram of the guide rail slider of the test platform in the present invention.
图29本发明中测试平台可变地形部分示意图。Figure 29 is a schematic diagram of the variable terrain part of the test platform in the present invention.
图30本发明中测试平台可变地形部分阻尼铰链示意图。Figure 30 is a schematic diagram of the damping hinge of the variable terrain part of the test platform in the present invention.
图31本发明中测试平台侧面挡板部分示意图。Fig. 31 is a schematic diagram of the side baffle of the test platform in the present invention.
图32本发明中测试平台侧面挡板部分挡板支架示意图。Figure 32 is a schematic diagram of the baffle bracket of the baffle part of the side baffle of the test platform in the present invention.
图33本发明中测试平台顶部支架部分示意图。Fig. 33 is a schematic diagram of a part of the top bracket of the test platform in the present invention.
图34本发明中测试平台顶部支架部分开口环形支架示意图。Fig. 34 is a schematic diagram of a partially open annular support on the top support of the test platform in the present invention.
图35本发明中测试平台传感器支架部分示意图。Fig. 35 is a partial schematic diagram of the sensor bracket of the test platform in the present invention.
图中:In the picture:
1-跳跃机器人部分2-测试平台部分1- Jump Robot Part 2- Test Platform Part
1-1-动力装置部分;1-2-膝关节传动部分;1-3-髋关节传动部分;1-4-腿部结构部分;1-5-躯干结构部分;2-1-底座部分;2-2-导轨滑块部分;2-3-可变地形部分;2-4-侧面挡板部分;2-5-顶部支架部分;2-6-传感器支架部分;1-1- power unit part; 1-2- knee joint transmission part; 1-3- hip joint transmission part; 1-4- leg structure part; 1-5- trunk structure part; 2-1- base part; 2-2-rail slider part; 2-3-variable terrain part; 2-4-side baffle part; 2-5-top bracket part; 2-6-sensor bracket part;
1-1-1微型电机、1-1-2电机上支架、1-1-3电机下支架、1-1-4支架固定板、1-1-5电机支架定位销轴、1-1-6弹性轴套;1-1-1 micro motor, 1-1-2 motor upper bracket, 1-1-3 motor lower bracket, 1-1-4 bracket fixing plate, 1-1-5 motor bracket positioning pin, 1-1- 6 elastic bushings;
1-2-1膝关节传动凸轮、1-2-2膝关节传动杠杆、1-2-3膝关节传动丝绳;1-2-1 knee joint transmission cam, 1-2-2 knee joint transmission lever, 1-2-3 knee joint transmission wire rope;
1-3-1髋关节传动凸轮、1-3-2髋关节传动杠杆;1-3-1 hip drive cam, 1-3-2 hip drive lever;
1-4-1髋关节连杆、1-4-2大腿内侧连杆、1-4-3大腿外侧连杆、1-4-4小腿连杆、1-4-5足底板、1-4-6底板橡胶层、1-4-7储能扭簧、1-4-8关节连杆轴、1-4-9弹性轴套;1-4-1 Hip Link, 1-4-2 Inner Thigh Link, 1-4-3 Outer Thigh Link, 1-4-4 Calf Link, 1-4-5 Foot Plate, 1-4 -6 bottom rubber layer, 1-4-7 energy storage torsion spring, 1-4-8 joint connecting rod shaft, 1-4-9 elastic bushing;
1-5-1躯干主体支架、1-5-2主体支架筋板、1-5-3弹性轴套、1-5-4躯干销轴、1-5-5连接凸台;1-5-1 Torso main body bracket, 1-5-2 Main body bracket rib plate, 1-5-3 elastic bushing, 1-5-4 torso pin shaft, 1-5-5 connecting boss;
2-1-1底座长支架、2-1-2底座短支架、2-1-3支撑垫片、2-1-4支撑蹄;2-1-1 base long bracket, 2-1-2 base short bracket, 2-1-3 support gasket, 2-1-4 support shoe;
2-2-1导轨、2-2-2滑块、2-2-3固定环;2-2-1 guide rail, 2-2-2 slider, 2-2-3 fixing ring;
2-3-1底板支架、2-3-2底板、2-3-3阻尼铰链、2-3-4地形板、2-3-5薄膜压力传感器、2-3-1 base plate bracket, 2-3-2 base plate, 2-3-3 damping hinge, 2-3-4 terrain plate, 2-3-5 film pressure sensor,
2-4-1侧面透明挡板、2-4-2挡板支架;2-4-1 side transparent baffle, 2-4-2 baffle bracket;
2-5-1开口环形支架、2-5-2支架杆、2-5-3支架连接杆、2-5-4电池盒支架;2-5-1 open ring bracket, 2-5-2 bracket rod, 2-5-3 bracket connecting rod, 2-5-4 battery box bracket;
2-6-1传感器支架底座、2-6-2传感器支架。2-6-1 Sensor bracket base, 2-6-2 Sensor bracket.
具体实施方式Detailed ways
下面结合附图和实施例说明本发明,但本发明并不限于以下实施例。The present invention will be described below with reference to the accompanying drawings and embodiments, but the present invention is not limited to the following embodiments.
实施例1Example 1
参照图1、图3、图26本发明一种用于复杂地形环境下的小型仿生跳鼠双足跳跃机器人及测试平台。包括跳跃机器人部分(1)、测试平台部分(2)。Referring to Figure 1, Figure 3, and Figure 26, the present invention is a small bionic jerboa bipedal jumping robot and a test platform for use in complex terrain environments. It includes a jumping robot part (1) and a test platform part (2).
参照图2,跳跃机器人部分(1)可在测试平台部分(2)上的“V”型地形板(2-3-4)上进行跳跃实验。Referring to Figure 2, the jumping robot part (1) can perform jumping experiments on the "V" shaped terrain board (2-3-4) on the test platform part (2).
参照图11、图14,微型电机(1-1-1)双轴分别驱动膝关节传动凸轮(1-2-1)、髋关节传动凸轮(1-3-1);膝关节传动凸轮(1-2-1)带动膝关节传动杠杆(1-2-2)运动;膝关节传动杠杆(1-2-2)通过膝关节传动丝绳(1-2-3)拉动小腿连杆(1-4-4);同时,髋关节传动凸轮(1-3-1)带动髋关节传动杠杆(1-3-2),从而驱动髋关节连杆(1-4-1);上述并行的两种传动路线共同控制机器人膝关节、髋关节转动,实现小腿连杆(1-4-4)收缩、并将能量储存在储能扭簧(1-4-7)中。在微型电机(1-1-1)一个转动周期内当膝关节传动凸轮(1-2-1)、髋关节传动凸轮(1-3-1)分别同时与膝关节传动杠杆(1-2-2)、髋关节传动杠杆(1-3-2)分离时,储能扭簧(1-4-7)中能量瞬间释放,实现小腿连杆(1-4-4)快速伸展,实现机器人腿部起跳运动。机器人缓冲时重复上述动作,通过控制微型电机(1-1-1)转速及膝关节传动丝绳(1-2-3)长度调整实现跳跃腿部姿态调整。11 and 14, the micro-motor (1-1-1) biaxially drives the knee joint transmission cam (1-2-1), the hip joint transmission cam (1-3-1); the knee joint transmission cam (1) -2-1) Drive the knee joint transmission lever (1-2-2) to move; the knee joint transmission lever (1-2-2) pulls the lower leg connecting rod (1-2-3) through the knee joint transmission wire rope (1-2-3) 4-4); at the same time, the hip joint transmission cam (1-3-1) drives the hip joint transmission lever (1-3-2), thereby driving the hip joint connecting rod (1-4-1); the above two parallel The transmission route jointly controls the rotation of the knee joint and the hip joint of the robot, realizes the contraction of the lower leg link (1-4-4), and stores the energy in the energy storage torsion spring (1-4-7). In one rotation cycle of the micro motor (1-1-1), when the knee joint transmission cam (1-2-1) and the hip joint transmission cam (1-3-1) are simultaneously connected with the knee joint transmission lever (1-2- 2) When the hip joint transmission lever (1-3-2) is separated, the energy in the energy storage torsion spring (1-4-7) is instantly released, and the calf link (1-4-4) is quickly stretched to realize the robot leg Jumping movement. The robot repeats the above actions when buffering, and adjusts the posture of the jumping legs by controlling the rotation speed of the micro motor (1-1-1) and the length adjustment of the knee joint transmission wire rope (1-2-3).
参照图28、图31,滑块(2-2-2)带动固定在其上的侧面透明挡板(2-4-1)实现两个相互平行的的侧面挡板部分(2-4)相对运动,可以改变两个侧面挡板部分(2-4)的垂直距离。Referring to Figure 28 and Figure 31, the slider (2-2-2) drives the side transparent baffle (2-4-1) fixed on it to realize two parallel side baffle parts (2-4) facing each other Movement, the vertical distance of the two side baffle parts (2-4) can be changed.
参照图29、图30,由2组3个阻尼铰链(2-3-3)组成的铰链组连接地形板(2-3-4),通过外力改变其姿态,利用阻尼铰链(2-3-3)可实现自锁功能,可实现单个地形板(2-3-4)的抬升及倾角改变功能,因此线性排列的两个地形板(2-3-4)可组合成“V”型斜面。Referring to Figure 29 and Figure 30, a hinge group consisting of 2 groups of 3 damping hinges (2-3-3) connects the terrain plate (2-3-4), changes its posture through external force, and uses the damping hinges (2-3-4). 3) The self-locking function can be realized, and the lifting and inclination angle change functions of a single terrain plate (2-3-4) can be realized, so the two terrain plates (2-3-4) arranged linearly can be combined into a "V"-shaped slope. .
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110877682.4A CN113602373B (en) | 2021-08-01 | 2021-08-01 | A jumping robot and its test platform in complex terrain environment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110877682.4A CN113602373B (en) | 2021-08-01 | 2021-08-01 | A jumping robot and its test platform in complex terrain environment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113602373A CN113602373A (en) | 2021-11-05 |
CN113602373B true CN113602373B (en) | 2022-09-09 |
Family
ID=78338940
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110877682.4A Active CN113602373B (en) | 2021-08-01 | 2021-08-01 | A jumping robot and its test platform in complex terrain environment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113602373B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115290366B (en) * | 2022-08-04 | 2025-02-25 | 吉林大学 | A motion simulation test device suitable for leg-foot walking device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3674778B2 (en) * | 2001-09-27 | 2005-07-20 | 本田技研工業株式会社 | Leg joint assist device for legged mobile robot |
US9004201B2 (en) * | 2012-04-18 | 2015-04-14 | Board Of Trustees Of Michigan State University | Jumping robot |
CN103569235B (en) * | 2013-11-11 | 2015-09-30 | 哈尔滨工程大学 | Frog hopping robot is imitated in five joints |
CN107472389B (en) * | 2017-08-24 | 2023-06-16 | 中国科学技术大学 | Bouncing robot capable of actively adjusting posture before landing |
CN108394484B (en) * | 2018-02-09 | 2020-07-17 | 北京工业大学 | Locust-simulated jumping robot with gliding function |
CN111152861B (en) * | 2020-01-10 | 2021-03-02 | 燕山大学 | Eight-connecting-rod structure jumping robot with adjustable aerial posture |
-
2021
- 2021-08-01 CN CN202110877682.4A patent/CN113602373B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113602373A (en) | 2021-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107856756B (en) | Variable-configuration bionic quadruped robot | |
CN109528451B (en) | A passive exoskeleton device with hip and knee joints based on clutch time-sharing control | |
Hobbelen et al. | System overview of bipedal robots flame and tulip: Tailor-made for limit cycle walking | |
Nguyen et al. | Design and demonstration of a locust-like jumping mechanism for small-scale robots | |
CN100540385C (en) | Modular mechanical crab | |
CN113602373B (en) | A jumping robot and its test platform in complex terrain environment | |
CN106828654B (en) | A kind of four-leg bionic robot | |
CN106005079B (en) | Single robot leg hopping mechanism with active ankle arthrosis Yu bionical foot | |
CN211076125U (en) | Position and force control hydraulic biped robot lower limb mechanism | |
CN105235766A (en) | Four-footed bio-robot single leg capable of achieving jumping function | |
CN105997439A (en) | Three-freedom-degree angle joint recovery assisting device controlled by electromyographic signals and provided with sphere pairs | |
CN108163080A (en) | Adapt to the electric drive quadruped robot of the high load capability of complicated rugged topography | |
CN109094817B (en) | Carrier-based helicopter self-adaptive landing gear landing simulation system | |
CN104548608A (en) | Bionic kangaroo robot | |
Chen et al. | A gecko inspired wall-climbing robot based on electrostatic adhesion mechanism | |
CN107416063A (en) | A kind of achievable spherical Hexapod Robot for rolling, walking | |
CN102050156A (en) | Bionic hopping robot with two degrees of freedom | |
US20020111113A1 (en) | Self-phase synchronized walking and turning quadruped apparatus | |
CN114475831B (en) | Foot-type multi-mode bionic robot | |
CN101618549A (en) | Novel flexible foot system of human-imitated robot | |
Tomishiro et al. | Design of robot leg with variable reduction ratio crossed four-bar linkage mechanism | |
CN211439974U (en) | Motor-driven hip and knee exoskeleton linkage device | |
CN106882286A (en) | A kind of hydraulic drive type robot leg foot structure | |
CN207889864U (en) | A kind of series-parallel connection pedipulator | |
Zhaoxi | A review of motion control methods and bionic control theory for quadruped robots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |