CN113594359B - Phase-change superlattice material and phase-change memory unit thereof - Google Patents
Phase-change superlattice material and phase-change memory unit thereof Download PDFInfo
- Publication number
- CN113594359B CN113594359B CN202110755173.4A CN202110755173A CN113594359B CN 113594359 B CN113594359 B CN 113594359B CN 202110755173 A CN202110755173 A CN 202110755173A CN 113594359 B CN113594359 B CN 113594359B
- Authority
- CN
- China
- Prior art keywords
- phase
- material layer
- change
- change memory
- semiconductor material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 123
- 239000004065 semiconductor Substances 0.000 claims abstract description 61
- 239000007769 metal material Substances 0.000 claims abstract description 40
- 230000008859 change Effects 0.000 claims abstract description 35
- 239000011701 zinc Substances 0.000 claims abstract description 13
- 239000011572 manganese Substances 0.000 claims abstract description 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 7
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims abstract description 7
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 7
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 7
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 7
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052753 mercury Inorganic materials 0.000 claims abstract description 6
- 239000010410 layer Substances 0.000 claims description 109
- 239000013078 crystal Substances 0.000 claims description 17
- 230000006911 nucleation Effects 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 239000011247 coating layer Substances 0.000 claims description 9
- 230000007704 transition Effects 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 7
- 230000002441 reversible effect Effects 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 230000009471 action Effects 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 238000010899 nucleation Methods 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 238000009792 diffusion process Methods 0.000 claims description 3
- GSJBKPNSLRKRNR-UHFFFAOYSA-N $l^{2}-stannanylidenetin Chemical compound [Sn].[Sn] GSJBKPNSLRKRNR-UHFFFAOYSA-N 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 2
- 238000000034 method Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 239000012782 phase change material Substances 0.000 description 5
- 229910052714 tellurium Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/231—Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/882—Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
- H10N70/8828—Tellurides, e.g. GeSbTe
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Semiconductor Memories (AREA)
Abstract
本申请公开了一种相变超晶格材料及其相变存储器单元,所述相变超晶格材料包含半导体材料层与半金属材料层,所述半导体材料层为(AxTe1‑x)y(Sb0.4Te0.6)1‑y,所述半金属材料层AxTe1‑x,其中所述A为钪Sc、钇Y、锰Mn、锌Zn、镉Cd、汞Hg中的一种,x为0.4至0.7,y为0至0.6。本申请基于半导体材料层制备的相变存储器单元具有较高的相变速度,可以提高写操作速度;且基于半导体材料层与半金属材料层制备的相变存储器单元具有较好的逻辑值区分特性,有效提升基于半导体材料层与半金属材料层制备的相变存储器单元的可用性。
The application discloses a phase-change superlattice material and a phase-change memory unit thereof, the phase-change superlattice material includes a semiconductor material layer and a semi-metal material layer, and the semiconductor material layer is (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1‑y , the semi-metal material layer A x Te 1‑x , wherein A is one of scandium Sc, yttrium Y, manganese Mn, zinc Zn, cadmium Cd, mercury Hg species, x ranges from 0.4 to 0.7, and y ranges from 0 to 0.6. The phase change memory cell prepared based on the semiconductor material layer of the present application has a relatively high phase change speed, which can increase the writing operation speed; and the phase change memory cell prepared based on the semiconductor material layer and the semi-metal material layer has better logic value discrimination characteristics , effectively improving the usability of phase-change memory cells prepared based on semiconductor material layers and semi-metal material layers.
Description
技术领域technical field
本申请涉及半导体信息功能材料技术领域,尤其涉及一种相变超晶格材料及其相变存储器单元。The present application relates to the technical field of semiconductor information functional materials, in particular to a phase change superlattice material and a phase change memory unit thereof.
背景技术Background technique
存储器是目前半导体市场的重要组成部分,是信息技术的基石,无论在生活中还是在国民经济中发挥着重要的作用。信息量伴随着社会发展急剧增加,高数据存储密度的存储器的研发成为存储器研究者的重要任务。其中,相变存储器由于具有高速读取、高可擦写次数、非易失性、元件尺寸小、功耗低、抗强震动和抗辐射等优点,被国际半导体工业协会认为最有可能取代目前的闪存存储器而成为未来存储器主流产品的器件和最先成为商用产品的器件。在相变存储器中,利用了相变材料在非晶和多晶之间的可逆转变来实现上述的电阻变化。常用的相变存储材料体系主要有Ge-Sb-Te、Si-Sb-Te、Ag-In-Sb-Te等。但当前相变存储材料体系存在写操作速度慢以及阻值波动性大,导致器件阻值分布范围不集中,不利于对逻辑值“0”和“1”的区分的问题,导致基于当前相变存储材料体系形成的相变存储器单元的可用性较低。Memory is an important part of the current semiconductor market and the cornerstone of information technology, playing an important role in both life and the national economy. With the rapid increase of the amount of information along with social development, the research and development of memory with high data storage density has become an important task for memory researchers. Among them, phase change memory is considered by the International Semiconductor Industry Association to be the most likely to replace the current The device that will become the mainstream product of future memory and the device that will be the first to become a commercial product. In the phase-change memory, the reversible transition between amorphous and polycrystalline phase-change materials is used to realize the above-mentioned resistance change. Commonly used phase change memory material systems mainly include Ge-Sb-Te, Si-Sb-Te, Ag-In-Sb-Te, etc. However, the current phase change memory material system has the problem of slow write operation speed and large resistance fluctuation, which leads to the non-concentrated distribution range of device resistance, which is not conducive to the distinction between logical values "0" and "1". The usability of the phase change memory cells formed by the storage material system is low.
发明内容Contents of the invention
本申请的主要目的在于提供一种相变超晶格材料及其相变存储器单元,旨在解决基于当前相变存储材料体系形成的相变存储器单元的可用性较低的技术问题。The main purpose of the present application is to provide a phase-change superlattice material and its phase-change memory unit, aiming at solving the technical problem of low availability of phase-change memory units formed based on the current phase-change memory material system.
为实现上述目的,本申请实施例提供一种相变超晶格材料,所述相变超晶格材料包含半导体材料层与半金属材料层,所述半导体材料层为(AxTe1-x)y(Sb0.4Te0.6)1-y,所述半金属材料层为AxTe1-x,其中A为钪Sc、钇Y、锰Mn、锌Zn、镉Cd、汞Hg中的一种,x为0.4至0.7,y为0至0.6。In order to achieve the above object, the embodiment of the present application provides a phase-change superlattice material, the phase-change superlattice material comprises a semiconductor material layer and a half-metal material layer, and the semiconductor material layer is (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y , the semi-metal material layer is A x Te 1-x , wherein A is one of scandium Sc, yttrium Y, manganese Mn, zinc Zn, cadmium Cd, mercury Hg , x is from 0.4 to 0.7, and y is from 0 to 0.6.
可选地,所述半导体材料层与所述半金属材料层交替堆垛,堆垛次数在5次至20次之间。Optionally, the semiconductor material layer and the half-metal material layer are alternately stacked, and the stacking times are between 5 and 20 times.
可选地,所述半导体材料层的初始态为亚稳定态的立方相晶体结构。Optionally, the initial state of the semiconductor material layer is a metastable cubic phase crystal structure.
可选地,所述半金属材料层为与所述半导体材料层相同的立方相晶体结构。Optionally, the semi-metal material layer has the same cubic phase crystal structure as the semiconductor material layer.
可选地,所述半导体材料层的厚度为0nm至20nm。Optionally, the thickness of the semiconductor material layer is 0 nm to 20 nm.
为实现上述目的,本申请还提供一种相变存储器单元,所述相变存储器单元包括底电极、顶电极和上述的相变超晶格材料,所述相变超晶格材料设置于所述底电极和所述顶电极之间;其中,所述底电极的材料包含铝Al、钨W和锡TiN中的任意一种,所述顶电极的材料包含Al、W和TiN中的任意一种。In order to achieve the above object, the present application also provides a phase-change memory cell, which includes a bottom electrode, a top electrode, and the above-mentioned phase-change superlattice material, and the phase-change superlattice material is arranged on the Between the bottom electrode and the top electrode; wherein, the material of the bottom electrode comprises any one of aluminum Al, tungsten W and tin TiN, and the material of the top electrode comprises any one of Al, W and TiN .
可选地,所述相变存储器单元还包括衬底和介质包覆层,其中,所述介质包覆层的材料包含二氧化硅SiO2和氮化硅Si3N4中的任意一种。Optionally, the phase change memory unit further includes a substrate and a dielectric coating layer, wherein the material of the dielectric coating layer includes any one of silicon dioxide SiO 2 and silicon nitride Si 3 N 4 .
可选地,所述底电极设置于所述衬底,所述介质包覆层包覆于所述底电极、所述相变超晶格材料与所述顶电极的外围。Optionally, the bottom electrode is disposed on the substrate, and the dielectric coating layer wraps around the bottom electrode, the phase-change superlattice material, and the top electrode.
可选地,所述相变存储器单元为限制型结构相变存储器单元或T型结构相变存储器单元。Optionally, the phase-change memory cell is a phase-change memory cell with a restricted structure or a phase-change memory cell with a T-type structure.
本申请实施例提供一种相变超晶格材料及其相变存储器单元,所述相变超晶格材料包含半导体材料层与半金属材料层,所述半导体材料层为(AxTe1-x)y(Sb0.4Te0.6)1-y,所述半金属材料层AxTe1-x,其中A为钪Sc、钇Y、锰Mn、锌Zn、镉Cd、汞Hg中的一种,x为0.4至0.7,y为0至0.6。本申请中半导体材料层(AxTe1-x)y(Sb0.4Te0.6)1-y包含作为成核中心的AxTe1-x和可以反复可逆相变的Sb0.4Te0.6材料,因此半导体材料层可以在成核中心的作用下提高成核速度,使得该半导体材料层本身具有较高的相变速度,使得基于该半导体材料层制备的相变存储器单元具有较高的相变速度,可以提高写操作速度;同时,半金属材料层AxTe1-x还可以限制半导体材料层(AxTe1-x)y(Sb0.4Te0.6)1-y扩散,确保(AxTe1-x)y(Sb0.4Te0.6)1-y可以实现在准二维尺度范围内进行相变,有效抑制相变材料三维尺度范围相变时极易产生的阻值波动性大的问题,使得基于半导体材料层与半金属材料层制备的相变存储器单元具有较好的逻辑值区分特性,有效提升基于半导体材料层与半金属材料层制备的相变存储器单元的可用性。Embodiments of the present application provide a phase-change superlattice material and a phase-change memory cell thereof, the phase-change superlattice material includes a semiconductor material layer and a semi-metal material layer, and the semiconductor material layer is (A x Te 1- x ) y (Sb 0.4 Te 0.6 ) 1-y , the semi-metal material layer A x Te 1-x , wherein A is one of scandium Sc, yttrium Y, manganese Mn, zinc Zn, cadmium Cd, and mercury Hg , x is from 0.4 to 0.7, and y is from 0 to 0.6. In this application, the semiconductor material layer (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y contains A x Te 1-x as a nucleation center and Sb 0.4 Te 0.6 material that can undergo repeated reversible phase transitions, so The semiconductor material layer can increase the nucleation speed under the action of the nucleation center, so that the semiconductor material layer itself has a higher phase change speed, so that the phase change memory unit prepared based on the semiconductor material layer has a higher phase change speed, can improve the writing operation speed; at the same time, the half-metal material layer A x Te 1-x can also limit the semiconductor material layer (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y diffusion, ensuring that (A x Te 1 -x ) y (Sb 0.4 Te 0.6 ) 1-y can achieve phase change in the quasi-two-dimensional scale range, effectively suppressing the problem of large resistance fluctuations that are easily generated when phase change materials are phase-change in the three-dimensional scale range, making The phase-change memory cell prepared based on the semiconductor material layer and the semi-metal material layer has good logic value discrimination characteristics, and effectively improves the usability of the phase-change memory cell prepared based on the semiconductor material layer and the semi-metal material layer.
附图说明Description of drawings
图1为本申请限制型结构的相变存储器单元结构示意图;FIG. 1 is a schematic structural diagram of a phase-change memory cell with a restricted structure in the present application;
图2为本申请T型结构的相变存储器单元结构示意图;FIG. 2 is a schematic structural diagram of a phase-change memory cell with a T-shaped structure in the present application;
图3为基于化合物GST相变材料的存储器单元的电学操作性能曲线图;Fig. 3 is a graph showing the electrical operation performance of a memory cell based on a compound GST phase-change material;
图4为本申请基于相变超晶格材料的存储器单元的电学操作性能曲线图。FIG. 4 is a graph of the electrical operation performance of the memory cell based on the phase-change superlattice material of the present application.
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization, functional features and advantages of the present application will be further described in conjunction with the embodiments and with reference to the accompanying drawings.
具体实施方式Detailed ways
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。It should be understood that the specific embodiments described here are only used to explain the present application, and are not intended to limit the present application.
为了更好的理解上述技术方案,下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。In order to better understand the above-mentioned technical solutions, exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided for more thorough understanding of the present disclosure and to fully convey the scope of the present disclosure to those skilled in the art.
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。In order to better understand the above-mentioned technical solution, the above-mentioned technical solution will be described in detail below in conjunction with the accompanying drawings and specific implementation methods.
本申请提供一种相变超晶格材料,相变超晶格材料至少包含具有信息存储功能的半导体材料层和结构性能稳定的半金属材料层这两种性能差异较大的材料,本申请实施例的相变超晶格材料中半导体材料层为(AxTe1-x)y(Sb0.4Te0.6)1-y,半金属材料层为AxTe1-x,其中Te(tellurium)为碲,A为Sc(Scandium,钪)、Y(Yttrium,钇)、Mn(Manganese,锰)、Zn(zinc,锌)、Cd(Cadmium,镉)、Hg(Hydrargyrum,汞)中的一种,例如若A为Sc,则半导体材料层为(ScxTe1-x)y(Sb0.4Te0.6)1-y,半金属材料层为ScxTe1-x;若A为Y,则半导体材料层为(YxTe1-x)y(Sb0.4Te0.6)1-y,半金属材料层为YxTe1-x。x为0.4至0.7,例如x为0.4、0.5、0.6、0.7等,y为0至0.6,例如y为0.1、0.2、0.3、0.4、0.5、0.6等。例如,若x为0.5,y为0.5,且A为Sc,则半导体材料层为(Sc0.5Te0.5)0.6(Sb0.4Te0.6)0.4,半金属材料层为Sc0.5Te0.5。The application provides a phase-change superlattice material, which at least includes a semiconductor material layer with an information storage function and a semi-metallic material layer with stable structural properties, two materials with large performance differences. The implementation of this application In the example phase change superlattice material, the semiconductor material layer is (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y , and the half-metal material layer is A x Te 1-x , where Te(tellurium) is Tellurium, A is one of Sc (Scandium, scandium), Y (Yttrium, yttrium), Mn (Manganese, manganese), Zn (zinc, zinc), Cd (Cadmium, cadmium), Hg (Hydrargyrum, mercury), For example, if A is Sc, the semiconductor material layer is (Sc x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y , and the half-metal material layer is Sc x Te 1-x ; if A is Y, the semiconductor material layer is The layer is (Y x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y , and the semi-metal material layer is Y x Te 1-x . x is 0.4 to 0.7, for example, x is 0.4, 0.5, 0.6, 0.7, etc., y is 0 to 0.6, for example, y is 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, etc. For example, if x is 0.5, y is 0.5, and A is Sc, then the semiconductor material layer is (Sc 0.5 Te 0.5 ) 0.6 (Sb 0.4 Te 0.6 ) 0.4 , and the half-metal material layer is Sc 0.5 Te 0.5 .
需要说明的是,本申请中相变超晶格材料由多层半导体材料层与多层半金属材料层交替堆垛而成,堆垛次数在5次至20次之间,例如半导体材料层与半金属材料层交替堆垛的次数可以为5次、10次、15次、20次等,本实施例中堆垛次数可以优选为10次。It should be noted that the phase-change superlattice material in this application is formed by stacking alternately multiple layers of semiconductor material layers and layers of semi-metallic materials, and the number of stacking times is between 5 and 20 times, for example, the layers of semiconductor materials and layers of semi-metal materials The number of alternate stacking of semi-metal material layers may be 5 times, 10 times, 15 times, 20 times, etc., and the number of stacking times in this embodiment may preferably be 10 times.
进一步需要说明的是,本申请的相变超晶格材料中半导体材料层的初始态为亚稳定态的立方相晶体结构,并且半金属材料层始终为与半导体材料层相同的立方相晶体结构。可以理解地,本申请相变超晶格材料中组成半导体材料的Sb0.4Te0.6材料具有两种晶体态,分别是亚稳态的立方相晶体结构和稳态的六方相晶体结构。本申请通过控制Sb0.4Te0.6的初始态为立方相晶体结构,令Sb0.4Te0.6在非晶态结构与立方相晶体结构之间进行可逆相转变,比其在非晶态结构与六方相晶体结构之间进行相转变所需的速度更快、功耗更低。同时立方相晶体结构AxTe1-x也能够进一步确保Sb0.4Te0.6在非晶态结构与立方相晶体结构之间进行可逆相变。在半导体材料层(AxTe1-x)y(Sb0.4Te0.6)1-y内部有随机分布的AxTe1-x,另一方面,为了进一步提高AxTe1-x的成核诱导作用,在与(AxTe1-x)y(Sb0.4Te0.6)1-y相邻的位置设计生长了AxTe1-x半金属材料层,可以提升相变超晶格材料的相转变速度,可以提高基于该半导体材料层制备的相变存储器单元写操作速度。It should be further noted that the initial state of the semiconductor material layer in the phase-change superlattice material of the present application is a metastable cubic phase crystal structure, and the half-metal material layer always has the same cubic phase crystal structure as the semiconductor material layer. It can be understood that the Sb 0.4 Te 0.6 material constituting the semiconductor material in the phase-change superlattice material of the present application has two crystal states, namely a metastable cubic phase crystal structure and a stable hexagonal phase crystal structure. This application controls the initial state of Sb 0.4 Te 0.6 to be a cubic phase crystal structure, so that Sb 0.4 Te 0.6 can undergo a reversible phase transition between an amorphous structure and a cubic phase crystal structure, which is better than that between an amorphous structure and a hexagonal phase crystal The phase transitions between structures need to be faster and consume less power. At the same time, the cubic phase crystal structure A x Te1 -x can further ensure the reversible phase transition of Sb 0.4 Te 0.6 between the amorphous structure and the cubic phase crystal structure. There are randomly distributed A x Te 1-x inside the semiconductor material layer (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y . On the other hand, in order to further improve the nucleation of A x Te 1-x Induction effect, the A x Te 1- x semi-metal material layer is designed and grown at the position adjacent to (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y , which can improve the phase change superlattice material The phase transition speed can improve the write operation speed of the phase change memory cell prepared based on the semiconductor material layer.
进一步需要说明的是,本实施例中半导体材料层的厚度为0nm至20nm,例如半导体材料层的厚度可以为3nm、5nm、10nm、15nm、20nm等,本实施例中可以优选为3nm;同时,本实施例中半金属材料层的厚度为6nm至20nm,例如半金属材料层的厚度可以为6nm、8nm、10nm、15nm、18nm、20nm等,本实施例中可以优选为8nm。It should be further noted that the thickness of the semiconductor material layer in this embodiment is 0nm to 20nm, for example, the thickness of the semiconductor material layer can be 3nm, 5nm, 10nm, 15nm, 20nm, etc., and it can be preferably 3nm in this embodiment; at the same time, In this embodiment, the thickness of the half-metal material layer is 6nm to 20nm. For example, the thickness of the half-metal material layer can be 6nm, 8nm, 10nm, 15nm, 18nm, 20nm, etc. In this embodiment, it can be preferably 8nm.
在本申请第一实施例中,(AxTe1-x)y(Sb0.4Te0.6)1-y层的厚度范围为0nm至20nm,AxTe1-x层的厚度范围为6nm至20nm,(AxTe1-x)y(Sb0.4Te0.6)1-y层与AxTe1-x层的堆垛次数为5次至20次。具体地,半金属材料层为Y0.5Te0.5,其厚度优选为8nm;半导体材料层为(Y0.5Te0.5)0.5(Sb0.4Te0.6)0.5,其厚度优选为3nm;Y0.5Te0.5与(AxTe1-x)y(Sb0.4Te0.6)1-y之间的堆垛次数优选为10次。同时,相变超晶格材料中的半导体材料层和半金属材料层经一定的工艺确保初始态为立方相晶体结构,以此得到相变超晶格材料。In the first embodiment of the present application, the (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y layer has a thickness ranging from 0 nm to 20 nm, and the A x Te 1-x layer has a thickness ranging from 6 nm to 20 nm , (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y layer and A x Te 1-x layer are stacked 5 to 20 times. Specifically, the semi-metal material layer is Y 0.5 Te 0.5 , and its thickness is preferably 8 nm; the semiconductor material layer is (Y 0.5 Te 0.5 ) 0.5 (Sb 0.4 Te 0.6 ) 0.5 , and its thickness is preferably 3 nm; Y 0.5 Te 0.5 and ( The stacking times between A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y is preferably 10 times. At the same time, the semiconductor material layer and the semi-metal material layer in the phase change superlattice material are guaranteed to have a cubic phase crystal structure in the initial state through a certain process, so as to obtain the phase change superlattice material.
在本申请第二实施例中,半导体材料层为(Sc0.4Te0.6)0.5(Sb0.4Te0.6)0.5,其厚度优选为5nm,所述半金属层为Sc0.4Te0.6,其厚度优选为10nm,堆叠次数优选为10次。同时,所述相变超晶格材料中的半导体材料层和半金属材料层经一定的工艺确保初始态为立方相晶体结构,以此得到相变超晶格材料。In the second embodiment of the present application, the semiconductor material layer is (Sc 0.4 Te 0.6 ) 0.5 (Sb 0.4 Te 0.6 ) 0.5 , and its thickness is preferably 5 nm, and the semi-metal layer is Sc 0.4 Te 0.6 , and its thickness is preferably 10 nm , the number of stacking is preferably 10 times. At the same time, the semiconductor material layer and the half-metal material layer in the phase change superlattice material are guaranteed to have a cubic phase crystal structure in the initial state through a certain process, so as to obtain the phase change superlattice material.
本申请还提出一种相变存储器单元,本申请中相变存储器单元至少包括底电极、顶电极和上述的相变超晶格材料,并且还可以包含衬底和介质包覆层。其中,相变超晶格材料设置于底电极和顶电极之间。介质包覆层包覆于底电极、相变超晶格材料与顶电极的外围。The present application also proposes a phase-change memory unit. In the present application, the phase-change memory unit at least includes a bottom electrode, a top electrode, and the above-mentioned phase-change superlattice material, and may also include a substrate and a dielectric coating layer. Wherein, the phase change superlattice material is arranged between the bottom electrode and the top electrode. The dielectric coating layer covers the periphery of the bottom electrode, the phase change superlattice material and the top electrode.
进一步需要说明的是,本申请中相变存储器单元可以为限制型结构相变存储器单元或T型结构相变存储器单元,并且相变存储器单元中低电极的材料包含Al(Aluminium,铝)、W(Tungsten,钨)和TiN(锡)中的任意一种,例如,低电极的材料可以为Al,也可以为W,还可以为TiN。相变存储器单元中顶电极的材料包含Al、W和TiN中的任意一种,例如,顶电极的材料可以为Al,也可以为W,还可以为TiN。相变存储器单元中介质包覆层的材料包含二氧化硅SiO2和氮化硅Si3N4中的任意一种,例如,介质包覆层的材料可以为二氧化硅SiO2,也可以为氮化硅Si3N4。It should be further noted that the phase-change memory cell in the present application can be a phase-change memory cell with a restricted structure or a phase-change memory cell with a T-type structure, and the material of the low electrode in the phase-change memory cell includes Al (Aluminium, aluminum), W (Tungsten, tungsten) and TiN (tin), for example, the material of the lower electrode may be Al, W, or TiN. The material of the top electrode in the phase change memory cell includes any one of Al, W and TiN, for example, the material of the top electrode may be Al, W or TiN. The material of the dielectric coating layer in the phase-change memory unit includes any one of silicon dioxide SiO 2 and silicon nitride Si 3 N 4 , for example, the material of the dielectric coating layer can be silicon dioxide SiO 2 , or it can be Silicon nitride Si 3 N 4 .
可以理解地,参照图1与图2,图1为本申请限制型结构的相变存储器单元结构示意图,图2为本申请T型结构的相变存储器单元结构示意图;图1中1为第一相变超晶格材料结构,2为第二相变超晶格材料结构,1(a)为第一(AxTe1-x)y(Sb0.4Te0.6)1-y层,2(a)为第二(AxTe1-x)y(Sb0.4Te0.6)1-y层,1(b)为第一AxTe1-x层,2(b)为第二AxTe1-x层,101为顶电极,102为相变超晶格材料,103为底电极,104为介质包覆层。图2中1为第一相变超晶格材料结构,2为第二相变超晶格材料结构,1(a)为第一(AxTe1-x)y(Sb0.4Te0.6)1-y层,2(a)为第二(AxTe1-x)y(Sb0.4Te0.6)1-y层,1(b)为第一AxTe1-x层,2(b)为第二AxTe1-x层,201为顶电极,202为相变超晶格材料,203为底电极,204为介质包覆层。由图1与图2可知,相变超晶格材料包括第一(AxTe1-x)y(Sb0.4Te0.6)1-y层1(a)、位于第一(AxTe1-x)y(Sb0.4Te0.6)1-y层1(a)上的第一AxTe1-x层1(b)、位于第一AxTe1-x层1(b)上的第二(AxTe1-x)y(Sb0.4Te0.6)1-y层2(a)、位于第二(AxTe1-x)y(Sb0.4Te0.6)1-y层2(a)上的第二AxTe1-x2(b)……以此类推,可以周期性重复该结构,直至符合需要的相变超晶格材料的堆垛次数。同时,相变超晶格材料中的半导体材料层和半金属材料层经一定的工艺确保初始态为立方相晶体结构。Understandably, referring to FIG. 1 and FIG. 2, FIG. 1 is a schematic structural diagram of a phase-change memory cell with a restricted structure in the present application, and FIG. 2 is a schematic structural diagram of a phase-change memory cell with a T-shaped structure in the present application; 1 in FIG. 1 is the first Phase-change superlattice material structure, 2 is the second phase-change superlattice material structure, 1(a) is the first (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y layer, 2(a ) is the second (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y layer, 1(b) is the first A x Te 1-x layer, 2(b) is the second A x Te 1 -x layer, 101 is a top electrode, 102 is a phase-change superlattice material, 103 is a bottom electrode, and 104 is a dielectric coating layer. In Figure 2, 1 is the first phase-change superlattice material structure, 2 is the second phase-change superlattice material structure, 1(a) is the first (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1 -y layer, 2(a) is the second (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y layer, 1(b) is the first A x Te 1-x layer, 2(b) is the second A x Te 1-x layer, 201 is the top electrode, 202 is the phase-change superlattice material, 203 is the bottom electrode, and 204 is the dielectric cladding layer. It can be known from Figure 1 and Figure 2 that the phase change superlattice material includes the first (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y layer 1(a), located in the first (A x Te 1- x ) y (Sb 0.4 Te 0.6 ) 1-y layer 1(a) on the first A x Te 1-x layer 1(b), on the first A x Te 1-x layer 1(b) Two (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y layer 2(a), in the second (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y layer 2(a ) on the second A x Te 1-x 2(b)... By analogy, this structure can be repeated periodically until the required stacking times of the phase change superlattice material are met. At the same time, the semiconductor material layer and the semi-metal material layer in the phase-change superlattice material are guaranteed to have a cubic phase crystal structure in the initial state through a certain process.
参照图3和图4,图3与图4分别为基于化合物GST(Ge2Sb2Te5)相变材料的存储器单元的电学操作性能曲线图与本申请基于相变超晶格材料的存储器单元的电学操作性能曲线图。图3中横坐标为脉冲电压,单位为V(伏特),其坐标轴数值包括1、2、3、4、5;纵坐标为电阻,单位为Ω(欧姆),其坐标轴数值包括104、105、106,且三条折线分别为300ns、200ns、100ns对应的折线。图4中横坐标为脉冲电压,单位为V(伏特),其坐标轴数值包括0、1、2;纵坐标为电阻,单位为Ω(欧姆),其坐标轴数值包括103、104、105、106,且三条折线分别为30ns、10ns、0.8ns对应的折线。根据图3与图4的对比可以看出,本申请的相变存储器单元可以在更小的电压脉冲作用下实现可逆相变,相变速度更快,同时高低阻值波动性更小。With reference to Fig. 3 and Fig. 4, Fig. 3 and Fig. 4 are respectively based on compound GST (Ge 2 Sb 2 Te 5 ) electrical operation performance curve diagram of the memory cell of the phase-change material and the memory cell of the present application based on the phase-change superlattice material Electrical performance curves. In Figure 3, the abscissa is the pulse voltage, the unit is V (volt), and its coordinate axis values include 1, 2, 3, 4, 5; the ordinate is resistance, and the unit is Ω (ohm), and its coordinate axis values include 10 4 , 10 5 , 10 6 , and the three broken lines are the broken lines corresponding to 300ns, 200ns, and 100ns respectively. In Figure 4, the abscissa is the pulse voltage, the unit is V (volt), and its coordinate axis values include 0, 1, 2; the ordinate is resistance, and its unit is Ω (ohm), and its coordinate axis values include 10 3 , 10 4 , 10 5 , 10 6 , and the three broken lines are the broken lines corresponding to 30ns, 10ns, and 0.8ns respectively. According to the comparison between FIG. 3 and FIG. 4 , it can be seen that the phase change memory cell of the present application can realize reversible phase change under the action of a smaller voltage pulse, the phase change speed is faster, and the fluctuation of high and low resistance values is smaller at the same time.
综上所述,本申请实施例提供一种相变超晶格材料及其相变存储器单元,所述相变超晶格材料包含半导体材料层与半金属材料层,所述半导体材料层为(AxTe1-x)y(Sb0.4Te0.6)1-y,所述半金属材料层AxTe1-x,其中A为钪Sc、钇Y、锰Mn、锌Zn、镉Cd、汞Hg中的一种,x为0.4至0.7,y为0至0.6。本申请中半导体材料层(AxTe1-x)y(Sb0.4Te0.6)1-y包含作为成核中心的AxTe1-x和可以反复可逆相变的Sb0.4Te0.6材料,因此半导体材料层可以在成核中心的作用下提高成核速度,使得该半导体材料层本身具有较高的相变速度,使得基于该半导体材料层制备的相变存储器单元具有较高的相变速度,可以提高写操作速度;同时,半金属材料层AxTe1-x还可以限制半导体材料层(AxTe1-x)y(Sb0.4Te0.6)1-y扩散,确保(AxTe1-x)y(Sb0.4Te0.6)1-y可以实现在准二维尺度范围内进行相变,有效抑制相变材料三维尺度范围相变时极易产生的阻值波动性大的问题,使得基于半导体材料层与半金属材料层制备的相变存储器单元具有较好的逻辑值区分特性,有效提升基于半导体材料层与半金属材料层制备的相变存储器单元的可用性。In summary, embodiments of the present application provide a phase-change superlattice material and a phase-change memory cell thereof, the phase-change superlattice material includes a semiconductor material layer and a semi-metal material layer, and the semiconductor material layer is ( A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y , the semi-metal material layer A x Te 1-x , wherein A is scandium Sc, yttrium Y, manganese Mn, zinc Zn, cadmium Cd, mercury One of Hg, x is 0.4 to 0.7, y is 0 to 0.6. In this application, the semiconductor material layer (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y contains A x Te 1-x as a nucleation center and Sb 0.4 Te 0.6 material that can undergo repeated reversible phase transitions, so The semiconductor material layer can increase the nucleation speed under the action of the nucleation center, so that the semiconductor material layer itself has a higher phase change speed, so that the phase change memory unit prepared based on the semiconductor material layer has a higher phase change speed, can improve the writing operation speed; at the same time, the half-metal material layer A x Te 1-x can also limit the semiconductor material layer (A x Te 1-x ) y (Sb 0.4 Te 0.6 ) 1-y diffusion, ensuring that (A x Te 1 -x ) y (Sb 0.4 Te 0.6 ) 1-y can achieve phase change in the quasi-two-dimensional scale range, effectively suppressing the problem of large resistance fluctuations that are easily generated when phase change materials are phase-change in the three-dimensional scale range, making The phase-change memory cell prepared based on the semiconductor material layer and the semi-metal material layer has good logic value discrimination characteristics, and effectively improves the usability of the phase-change memory cell prepared based on the semiconductor material layer and the semi-metal material layer.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, in this document, the term "comprising", "comprising" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。The serial numbers of the above embodiments of the present application are for description only, and do not represent the advantages and disadvantages of the embodiments.
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。The above are only preferred embodiments of the present application, and are not intended to limit the patent scope of the present application. All equivalent structures or equivalent process transformations made by using the description of the application and the accompanying drawings are directly or indirectly used in other related technical fields. , are all included in the patent protection scope of the present application in the same way.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110755173.4A CN113594359B (en) | 2021-07-01 | 2021-07-01 | Phase-change superlattice material and phase-change memory unit thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110755173.4A CN113594359B (en) | 2021-07-01 | 2021-07-01 | Phase-change superlattice material and phase-change memory unit thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113594359A CN113594359A (en) | 2021-11-02 |
CN113594359B true CN113594359B (en) | 2023-08-29 |
Family
ID=78245790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110755173.4A Active CN113594359B (en) | 2021-07-01 | 2021-07-01 | Phase-change superlattice material and phase-change memory unit thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113594359B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115867122A (en) * | 2022-11-28 | 2023-03-28 | 深圳大学 | A threshold switch material, threshold switch device and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6858277B1 (en) * | 1999-03-15 | 2005-02-22 | Matsushita Electric Industrial Co., Ltd. | Information recording medium and method for manufacturing the same |
CN108987567A (en) * | 2018-06-05 | 2018-12-11 | 深圳大学 | Phase transformation superlattice film, phase-changing memory unit and preparation method thereof |
CN109585649A (en) * | 2018-10-30 | 2019-04-05 | 同济大学 | Class superlattices germanium antimony/zinc antimony nano phase change film and its preparation and application |
CN110098322A (en) * | 2018-01-30 | 2019-08-06 | 中国科学院上海微系统与信息技术研究所 | C adulterates Sc-Sb-Te phase-change storage material, phase-changing memory unit and preparation method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7449225B2 (en) * | 2002-09-13 | 2008-11-11 | Panasonic Corporation | Information recording medium and method for manufacturing the same |
JP6162031B2 (en) * | 2013-11-26 | 2017-07-12 | 株式会社日立製作所 | Phase change memory and semiconductor recording / reproducing apparatus |
US11031435B2 (en) * | 2019-06-17 | 2021-06-08 | Western Digital Technologies, Inc. | Memory device containing ovonic threshold switch material thermal isolation and method of making the same |
-
2021
- 2021-07-01 CN CN202110755173.4A patent/CN113594359B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6858277B1 (en) * | 1999-03-15 | 2005-02-22 | Matsushita Electric Industrial Co., Ltd. | Information recording medium and method for manufacturing the same |
CN110098322A (en) * | 2018-01-30 | 2019-08-06 | 中国科学院上海微系统与信息技术研究所 | C adulterates Sc-Sb-Te phase-change storage material, phase-changing memory unit and preparation method thereof |
CN108987567A (en) * | 2018-06-05 | 2018-12-11 | 深圳大学 | Phase transformation superlattice film, phase-changing memory unit and preparation method thereof |
CN109585649A (en) * | 2018-10-30 | 2019-04-05 | 同济大学 | Class superlattices germanium antimony/zinc antimony nano phase change film and its preparation and application |
Non-Patent Citations (1)
Title |
---|
王鑫等.相变材料的研究进展.功能材料.2019,第50卷(第2期),第2070-2075页. * |
Also Published As
Publication number | Publication date |
---|---|
CN113594359A (en) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4303316B2 (en) | Single cell memory element | |
KR102607859B1 (en) | Phase change memory device including two-dimensional material and method of operating the same | |
US9276202B2 (en) | Phase-change storage unit containing TiSiN material layer and method for preparing the same | |
US7632456B2 (en) | Phase change material for high density non-volatile memory | |
CN101752497B (en) | Phase-change storage unit with low power consumption and high stability and preparation method thereof | |
WO2012079296A1 (en) | Multilayer phase change material with low thermal conductivity | |
WO2005041303A1 (en) | Resistance change element, manufacturing method thereof, memory including the element, and drive method of the memory | |
CN108987567A (en) | Phase transformation superlattice film, phase-changing memory unit and preparation method thereof | |
WO2022217860A1 (en) | Method for inducing crystallization of chalcogenide phase change material and application thereof | |
CN113594359B (en) | Phase-change superlattice material and phase-change memory unit thereof | |
CN101299453A (en) | Nano composite phase-changing material and preparation method thereof | |
CN103367365B (en) | Little grain three-dimensional memory | |
CN101521260B (en) | A kind of nanocomposite phase change material and preparation method thereof | |
CN110910933B (en) | Three-dimensional memory and reading method thereof | |
CN103594621B (en) | A kind of phase-change memory cell and preparation method thereof | |
CN113629099B (en) | Phase change memory and method of manufacturing the same | |
CN108666416B (en) | Phase change memory cell and method of making the same | |
WO2012097565A1 (en) | Phase change memory cell and manufacture method thereof | |
CN113611798B (en) | Multilayer phase-change film and preparation method of phase-change memory unit thereof | |
CN104716260A (en) | Sb-Te-Cr phase-change material, phase-change storage unit and manufacturing method thereof | |
CN115589770A (en) | Superlattice phase change film and phase change memory | |
CN102386327A (en) | Preparation method of phase-change material | |
CN114883485A (en) | Phase change material layer structure, preparation method thereof and phase change memory | |
CN203871380U (en) | Heating electrode and phase change memory structure | |
CN1866496A (en) | Method for preparing nanoelectronic memory by electron beam exposure and mechanochemical polishing process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |