CN113593881A - 一种液相激光烧蚀法制备钕铁硼复合永磁体的方法 - Google Patents
一种液相激光烧蚀法制备钕铁硼复合永磁体的方法 Download PDFInfo
- Publication number
- CN113593881A CN113593881A CN202110789897.0A CN202110789897A CN113593881A CN 113593881 A CN113593881 A CN 113593881A CN 202110789897 A CN202110789897 A CN 202110789897A CN 113593881 A CN113593881 A CN 113593881A
- Authority
- CN
- China
- Prior art keywords
- permanent magnet
- laser
- composite permanent
- raw material
- iron boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000002131 composite material Substances 0.000 title claims abstract description 19
- 238000000608 laser ablation Methods 0.000 title claims abstract description 17
- 239000007791 liquid phase Substances 0.000 title claims abstract description 14
- 229910001172 neodymium magnet Inorganic materials 0.000 title claims abstract description 9
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 title claims abstract description 8
- 239000002243 precursor Substances 0.000 claims abstract description 15
- 239000002994 raw material Substances 0.000 claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 10
- 239000011259 mixed solution Substances 0.000 claims abstract description 8
- 239000002244 precipitate Substances 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 7
- 238000001914 filtration Methods 0.000 claims abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000002105 nanoparticle Substances 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims abstract description 6
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 4
- 229910052771 Terbium Inorganic materials 0.000 claims abstract description 4
- 238000000227 grinding Methods 0.000 claims abstract description 4
- 229910052738 indium Inorganic materials 0.000 claims abstract description 4
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 238000003825 pressing Methods 0.000 claims abstract description 4
- 238000005303 weighing Methods 0.000 claims abstract description 4
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 3
- 238000002679 ablation Methods 0.000 claims description 10
- 239000002114 nanocomposite Substances 0.000 claims description 6
- 238000004140 cleaning Methods 0.000 claims description 5
- 239000012459 cleaning agent Substances 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 239000000243 solution Substances 0.000 claims description 3
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 3
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 9
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract 1
- 239000000203 mixture Substances 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 11
- 239000002086 nanomaterial Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000001808 coupling effect Effects 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000013077 target material Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
- H01F41/0266—Moulding; Pressing
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
本发明公开了一种液相激光烧蚀法制备钕铁硼复合永磁体的方法。本发明的钕铁硼复合永磁体材料的化学组成式为Nd2Fe14B/α‑Fe,所述的复合物中所涉及的元素有金属Nd、Dy、Tb、In、Nb、Fe、Co。本发明按一定化学计量比称取复合永磁体材料的原材料粉末,经过充分研磨混合之后,将原材料粉末压成块,将压制成的块在一定温条件下预烧,形成前驱体,利用激光烧蚀技术,制备含纳米级颗粒沉淀物的混合溶液,将混合溶液的沉淀物过滤,烘干之后获得钕铁硼复合永磁体材料。该制备方法能够得到表面干净,化学活性好,其晶粒尺寸更小,具有较强的交换耦合强度,磁性能显著提高,并且制备过程简单、安全。
Description
技术领域
本发明涉及一种液相激光烧蚀法制备钕铁硼复合永磁体的方法,属于高性能磁性材料领域。
背景技术
液相激光烧蚀技术作为一种制备纳米粒子的新技术备受关注。液相激光烧蚀(Laser Ablation in Liquid,LAL)是一种简单、绿色的纳米材料制备技术,通常只需在水中或有机液相条件下进行。近年来,LAL已被用于制备一系列具有特殊形貌、微观结构的纳米材料,以及在探索新兴的,在光学、显示、探测、生物等领域的性能和应用中,实现了功能化纳米材料的一步制备。结果表明,液体激光烧蚀也适用于制备复合材料纳米粒子。与传统的纳米材料制备方法相比,液相激光烧蚀法有以下的优势:(1)它是一种“简单且干净”的合成手段,不仅制备过程简单,而且由于减少了副产物的生成,并且简化了反应的前驱物的使用,确保了最终产物很高的纯度,而且具有较高的表面活性;(2)液相激光烧蚀法在温和的条件下能够制备出高温高压的亚稳相;(3)这种制备方法几乎对所有纳米材料都有普适性,研究者可以根据材料的属性来选择所需的靶材和液体来合成纳米颗粒和结构;(4)纳米结构的相、尺寸和形状可以通过改变激光参数和外部条件来合成,而且很多反应一步就能实现,避免了繁杂的后处理。
复合纳米晶磁性材料是近年来开发的一种新型双相永磁材料。它是由高磁晶各向异性的硬磁相和高饱和磁化强度的软磁相在纳米尺度上产生强烈的磁交换耦合作用,使磁体呈现明显的剩磁增强效应(Mr/Ms>0.5)。而剩磁的增强主要是靠纳米晶磁体内晶粒间的强交换耦合作用来实现的。因此,对纳米晶磁体的晶间交换耦合作用的研究已经成为提高该磁体磁性能的主要因素。
微结构计算研究表明,复合纳米晶永磁体的磁性能显著地随软磁相的晶粒尺寸、含量和晶粒形状等因素变化。当软磁相晶粒尺寸足够小时,由于晶界处的交换耦合作用,可以使纳米晶磁体的剩磁和矫顽力显著提升。同时,大量实验数据研究证明,当软磁相的含量为40%,同时晶粒为10nm且均匀分布在晶粒为10~20nm的硬磁相之间时,可以使纳米晶磁体的磁性能得到提高。
本发明采用液相激光烧蚀法,其可在室温下产生高温高压等的极端的环境,通过在高溫高压的极端环境中,来自于靶材和溶液介质的粒子会发生各种反应,而且液体的冷却效果好,能实现高温等离子体的快速冷却,不仅制备过程简单,而且使制备得到的复合纳米晶永磁体表面干净,化学活性好,同时有效抑制结构畸形,提高纳米晶磁体的磁性能得到提高。
发明内容
本发明的目的是为克服现有技术的不足,提供一种利用液相激光烧蚀法的制备过程简单且低耗能和低温度系数以及低时耗的纳米级高性能复合永磁体的制备方法
具体制备包括如下步骤:
(1)配料阶段:按一定化学计量比称取一定量纳米复合永磁体原材料粉末,经过充分研磨混合之后,将粉末压成块;
(2)预烧阶段:将压制成的块在一定温度条件下预烧,形成前驱体;
(3)烧蚀阶段:利用超声清洗剂将前驱体清洗15~30min,干燥后,放入烧杯的靶材支架上,装入异丙酮溶液没过前驱体5~10mm,将烧杯置于旋转转速为30r/min的旋转平台上,采用Nd:YAG激光器三次谐波作为烧蚀激光光源,将激光脉冲光束聚焦在前驱体表面烧蚀10~20min,生成含纳米级颗粒沉淀物的混合溶液;
(4)分离阶段:将混合溶液的沉淀物过滤,并反复清洗3-5次,烘干之后,获得纳米级高性能复合永磁体材料。
具体的,步骤(1)所述的纳米复合永磁体化学式为Nd2Fe14B/α-Fe,所述的粉末为纯度>99.5%的金属Nd、Dy、Tb、In、Nb、Fe、Co粉末,B用FeB为原料,其中FeB中B质量分数为19.83%;Nb用NbFe为原料,NbFe中Nb质量分数为66.3%;其余采用99.99%的高纯金属原料。所述的压成块的大小为直径10~20mm,厚度为2~5mm。
具体的,步骤(2)所述的预烧条件,温度为600~800℃,时间为12~24h。
具体的,步骤(3)所述的激光器为纳秒固体激光器,激光频率为10Hz,波长为1064nm,脉宽为1~7ns,激光脉冲强度为100~350mJ/pulse,光斑直径为1~3mm,所述的清洗剂为色谱纯乙醇。
具体的,步骤(4)所述的过滤方法,采用为离心机过滤,速度为5000~15000rpm。
与快淬法相比,本发明具有如下优势:
(1)新型的激光液相烧蚀纳米复合永磁体材料制备法更简洁,环境更易控制,液体的冷却效果好,能实现高温等离子体的快速冷却,保护了纳米复合永磁体材料,得到分布均匀的纳米微晶结构;
(2)烧蚀后磁体晶界相中由于具有更干净表面和更高化学活性的纳米级稀土磁制冷材料,复合相在纳米晶尺度上将产生强烈的交换耦合作用,将得到较高的理论最大磁能积;
(3)本发明,工艺过程环保简单,易操作,省时节能。
附图说明
图1液相激光烧蚀法靶材系统示意图。
图中:1.纳秒激光、2.反射镜、3.聚焦镜、4.石英玻璃盖、5.液体介质、6.靶材、7.靶材支架、8.旋转平台。
具体实施方式
为更进一步阐述本发明为实现预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如后。
实施例1。
实施例1:,如图1所示,采用一种液相激光烧蚀法制备Nd9Dy0.4Fe80.24InNb0.36Co3B6的方法。本发明的具体步骤如下:
(1)配料阶段:按原子比:Nd:Dy:Fe:Nb:Co:B=9:0.4:80.24:0.36:3:6称取稀土磁性材料的原材料粉末Nd、Dy、Tb、In、Fe、Co,FeB(B质量分数为19.83%)、NbFe(Nb质量分数为66.3%)以及其他高纯金属原料经过充分研磨混合之后,将原材料粉末在15Mpa压力下压成直径为12mm,厚度为5mm的块;
(2)退火阶段:将压制成的块在680℃退火0.5h,形成前驱体;
(3)烧蚀阶段:利用超声清洗剂将前驱体清洗30min,干燥后,放入烧杯的靶材支架上,装入异丙酮没过前驱体10mm,将烧杯置于旋转转速为30r/min的旋转平台上,采用Nd:YAG激光器三次谐波作为烧蚀激光光源,激光频率为10Hz,波长为1064nm,脉宽为1ns,激光脉冲强度为100mJ/pulse,光斑直径为3mm,将激光脉冲光束聚焦在前驱体表面烧蚀10min,生成含纳米级颗粒沉淀物的混合溶液;
(4)分离阶段:将混合溶液的沉淀物采用离心机过滤,并反复清洗5次,离心机速率为15000rpm,之后在150℃条件下烘干,获得纳米级高性能Nd2Fe14B/α-Fe复合磁体材料。
与快淬法制备的Nd9Dy0.4Fe80.24InNb0.36Co3B6的相比,所得纳米复合永磁体其矫顽力控制机理仍为成核机制,但其晶粒尺寸更小,具有较强的交换耦合强度,矫顽力、磁能积得到提升,磁性能显著提高,且制备过程更安全。
Claims (5)
1.一种液相激光烧蚀法制备钕铁硼复合永磁体的方法,其特征在于包括如下步骤:
1)配料阶段:按一定化学计量比称取一定量复合永磁体原材料粉末,经过充分研磨混合之后,将粉末压成块;
2)预烧阶段:将压制成的块在一定温度条件下预烧,形成前驱体;
3)烧蚀阶段:利用超声清洗剂将前驱体清洗15~30min,干燥后,放入烧杯的靶材支架上,装入异丙酮溶液没过前驱体5~10mm,将烧杯置于旋转转速为30r/min的旋转平台上,采用Nd:YAG激光器三次谐波作为烧蚀激光光源,将激光脉冲光束聚焦在前驱体表面烧蚀10~20min,生成含纳米级颗粒沉淀物的混合溶液;
4)分离阶段:将混合溶液的沉淀物过滤,并反复清洗3-5次,烘干之后,获得钕铁硼复合永磁体材料。
2.根据权利要求1所述的方法,步骤(1)所述的纳米复合永磁体化学式为Ndx1Fey1B/α-Fe,所述的粉末为纯度>99.5%的金属Nd、Dy、Tb、In、Nb、Fe、Co粉末,B用FeB为原料,其中FeB中B质量分数为19.83%;Nb用NbFe为原料,NbFe中Nb质量分数为66.3%;其余采用99.99%的高纯金属原料。所述的压成块的大小为直径10~20mm,厚度为2~5mm。
3.根据权利要求1所述的方法,步骤(2)所述的退火条件,温度为600~800℃,时间为0.1~1h。
4.根据权利要求1所述的方法,步骤(3)所述的激光器为纳秒固体激光器,激光频率为10Hz,波长为1064nm,脉宽为1~7ns,激光脉冲强度为100~350mJ/pulse,光斑直径为1~3mm,所述的清洗剂为色谱纯乙醇。
5.根据权利要求1所述的方法,步骤(4)所述的过滤,采用为离心机过滤,速度为5000~15000rpm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110789897.0A CN113593881A (zh) | 2021-07-13 | 2021-07-13 | 一种液相激光烧蚀法制备钕铁硼复合永磁体的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110789897.0A CN113593881A (zh) | 2021-07-13 | 2021-07-13 | 一种液相激光烧蚀法制备钕铁硼复合永磁体的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113593881A true CN113593881A (zh) | 2021-11-02 |
Family
ID=78247575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110789897.0A Pending CN113593881A (zh) | 2021-07-13 | 2021-07-13 | 一种液相激光烧蚀法制备钕铁硼复合永磁体的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113593881A (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000042377A (ko) * | 1998-12-24 | 2000-07-15 | 박호군 | 니오디뮴철붕소/철/니오디뮴철붕소 박막구조의 초미세립 영구자석박막의 제조방법 |
US20150325349A1 (en) * | 2014-05-07 | 2015-11-12 | Siemens Aktiengesellschaft | HIGH PERFORMANCE PERMANENT MAGNET BASED ON MnBi AND METHOD TO MANUFACTURE SUCH A MAGNET |
US20150348685A1 (en) * | 2012-12-24 | 2015-12-03 | Beijing Zhong Ke San Huan Hi-Tech Co.,Ltd | Nd-Fe-B SINTERED MAGNET AND METHODS FOR MANUFACTURING THE SAME |
CN108281246A (zh) * | 2018-02-23 | 2018-07-13 | 江西金力永磁科技股份有限公司 | 一种高性能烧结钕铁硼磁体及其制备方法 |
CN112582167A (zh) * | 2020-12-31 | 2021-03-30 | 杨方宗 | 一种激光烧蚀制备纳米级稀土磁制冷材料的方法 |
-
2021
- 2021-07-13 CN CN202110789897.0A patent/CN113593881A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000042377A (ko) * | 1998-12-24 | 2000-07-15 | 박호군 | 니오디뮴철붕소/철/니오디뮴철붕소 박막구조의 초미세립 영구자석박막의 제조방법 |
US20150348685A1 (en) * | 2012-12-24 | 2015-12-03 | Beijing Zhong Ke San Huan Hi-Tech Co.,Ltd | Nd-Fe-B SINTERED MAGNET AND METHODS FOR MANUFACTURING THE SAME |
US20150325349A1 (en) * | 2014-05-07 | 2015-11-12 | Siemens Aktiengesellschaft | HIGH PERFORMANCE PERMANENT MAGNET BASED ON MnBi AND METHOD TO MANUFACTURE SUCH A MAGNET |
CN108281246A (zh) * | 2018-02-23 | 2018-07-13 | 江西金力永磁科技股份有限公司 | 一种高性能烧结钕铁硼磁体及其制备方法 |
CN112582167A (zh) * | 2020-12-31 | 2021-03-30 | 杨方宗 | 一种激光烧蚀制备纳米级稀土磁制冷材料的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yue et al. | Fabrication of bulk nanostructured permanent magnets with high energy density: challenges and approaches | |
Yang et al. | Single domain SmCo5@ Co exchange-coupled magnets prepared from core/shell Sm [Co (CN) 6]· 4H2O@ GO particles: a novel chemical approach | |
CN107322002B (zh) | 一种稀土氧化物掺杂钨基复合粉体及其制备方法 | |
CN112582167A (zh) | 一种激光烧蚀制备纳米级稀土磁制冷材料的方法 | |
CN103317141A (zh) | 一种金属纳米颗粒的制备方法 | |
JP2017535062A (ja) | Fe−Niに基づくレアアースフリー永久磁性材料 | |
CN111554502A (zh) | 增压扩散热处理制备高矫顽力烧结钕铁硼的方法 | |
Wang et al. | Microwave synthesis of homogeneous YAG nanopowder leading to a transparent ceramic | |
CN104646677A (zh) | 一种磁性粉体的制备方法 | |
CN106997800B (zh) | 一种无稀土MnAlCuC永磁合金及其制备方法 | |
Yang et al. | Strategies for the synthesis of nanostructured SmCo5 magnetic particles for permanent magnetic application | |
Wei et al. | Ultrasonic-assisted surfactant-free synthesis of highly magnetized FeCo alloy nanocrystallite from ferric and cobalt salt | |
EP2475483A1 (en) | Cobalt carbide-based nanoparticle permanent magnet materials | |
CN108831659B (zh) | 一种制备纳米钕铁氮永磁粉末的方法及纳米永磁粉 | |
CN113690042B (zh) | 一种连续制备铝镍钴纳米颗粒的装置与方法 | |
CN102557151B (zh) | 一步还原制备纳米四氧化三铁粉末的方法 | |
CN113593881A (zh) | 一种液相激光烧蚀法制备钕铁硼复合永磁体的方法 | |
CN112712990B (zh) | 一种低熔点金属或合金辅助重稀土元素晶界扩散的方法 | |
Kuchi et al. | Exploiting mechanochemical activation and molten-salt-assisted reduction-diffusion approach in bottom-up synthesis of Sm2Fe17N3 | |
CN101090014A (zh) | 一种制备纳米晶NdFeB各向异性磁粉的方法 | |
CN109087766A (zh) | 一种永磁合金及其制备方法 | |
Ma et al. | Preparation of superparamagnetic ZnFe 2 O 4 submicrospheres via a solvothermal method | |
CN101220447A (zh) | 一种制备Fe-B非晶态合金纳米线方法 | |
CN112382497B (zh) | 一种高矫顽力扩散钐钴复合永磁磁体的制备方法 | |
KR102724423B1 (ko) | 주부합금계 네오디뮴철붕소 자성체재료 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |