CN113588760B - 一种比率型电化学检测亚硝酸根离子的方法 - Google Patents
一种比率型电化学检测亚硝酸根离子的方法 Download PDFInfo
- Publication number
- CN113588760B CN113588760B CN202110759834.0A CN202110759834A CN113588760B CN 113588760 B CN113588760 B CN 113588760B CN 202110759834 A CN202110759834 A CN 202110759834A CN 113588760 B CN113588760 B CN 113588760B
- Authority
- CN
- China
- Prior art keywords
- opd
- ratio
- nitrite
- nitrite ions
- electrochemical detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- -1 nitrite ions Chemical class 0.000 title claims abstract description 29
- 238000002848 electrochemical method Methods 0.000 title description 3
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 claims abstract description 55
- 239000000523 sample Substances 0.000 claims abstract description 52
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims abstract description 38
- 238000001514 detection method Methods 0.000 claims abstract description 33
- 239000000243 solution Substances 0.000 claims abstract description 30
- 230000003647 oxidation Effects 0.000 claims abstract description 29
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 29
- 239000008351 acetate buffer Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000011259 mixed solution Substances 0.000 claims abstract description 12
- 238000001903 differential pulse voltammetry Methods 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 238000000835 electrochemical detection Methods 0.000 claims description 21
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims 3
- 238000007650 screen-printing Methods 0.000 claims 2
- 235000013305 food Nutrition 0.000 abstract description 9
- 230000005518 electrochemistry Effects 0.000 abstract 1
- 229940005654 nitrite ion Drugs 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000011258 core-shell material Substances 0.000 description 4
- 238000002484 cyclic voltammetry Methods 0.000 description 4
- 238000006193 diazotization reaction Methods 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- 238000004611 spectroscopical analysis Methods 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- PQTCMBYFWMFIGM-UHFFFAOYSA-N gold silver Chemical group [Ag].[Au] PQTCMBYFWMFIGM-UHFFFAOYSA-N 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000004502 linear sweep voltammetry Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012621 metal-organic framework Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 3
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- WCDSVWRUXWCYFN-UHFFFAOYSA-N 4-aminobenzenethiol Chemical compound NC1=CC=C(S)C=C1 WCDSVWRUXWCYFN-UHFFFAOYSA-N 0.000 description 1
- AKCOXFGRLZSRRR-UHFFFAOYSA-N 5-[4-(4-carboxyphenyl)phenyl]benzene-1,3-dicarboxylic acid Chemical compound C1(=CC(=CC(=C1)C(=O)O)C(=O)O)C1=CC=C(C=C1)C1=CC=C(C=C1)C(=O)O AKCOXFGRLZSRRR-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910001429 cobalt ion Inorganic materials 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 238000007728 cost analysis Methods 0.000 description 1
- 229940109275 cyclamate Drugs 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical compound OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001318 differential pulse voltammogram Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 229910001448 ferrous ion Inorganic materials 0.000 description 1
- 238000002795 fluorescence method Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 150000004005 nitrosamines Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 229910052709 silver Chemical group 0.000 description 1
- 239000004332 silver Chemical group 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000001075 voltammogram Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
本发明属于分析化学技术领域,涉及一种比率型电化学检测亚硝酸根离子的方法,包括:向1 mL离心管中加入50μL 10 mM邻苯二胺溶液、900μL 0.1 M醋酸盐缓冲液,摇匀;分别加入50μL不同浓度的NO2 ‑,在体系内的最终浓度分别为10μM、20μM、50μM、100μM、200μM、300μM;利用差分脉冲伏安法测量混合溶液的氧化信号值,记录NO2 ‑和OPD探针的氧化信号值,并以NO2 ‑浓度为横坐标,以两者的比值(INitrite/IOPD)为纵坐标,绘制标准工作曲线;用差分脉冲伏安法测定混合溶液中待测样品和OPD探针的氧化信号值,与标准工作曲线对比,即可测得NO2 ‑浓度。本发明检测条件温和、可检测10~300μM,检测限低至4.7μM,实现对环境和食品中亚硝酸根离子的高灵敏、高准确性、高选择性和低成本检测。
Description
技术领域
本发明属于分析化学技术领域,涉及亚硝酸根离子的检测,尤其涉及一种比率型电化学检测亚硝酸根离子的方法。
背景技术
亚硝酸盐在食品加工中常被用作防腐剂或着色剂。然而,食品和饮用水中过量的亚硝酸盐会对人体健康构成巨大威胁,它可以与氨基酸反应,形成具有强致癌作用的亚硝胺。此外,长期摄入含有过量亚硝酸盐的食物会降低血红蛋白的携氧能力,导致组织缺氧症。鉴于其危害,世界卫生组织已规定饮用水中的亚硝酸根离子浓度不得超过65μM,因此,开发可靠、方便、低成本的亚硝酸盐检测方法对保障食品安全和人体健康具有非常重要的意义。
目前亚硝酸根离子的检测方法主要有光谱法、色谱法、荧光法以及SERS技术等方法。例如:
中国专利CN212059916U《一种亚硝酸根检测系统》公开了一种检测亚硝酸根的光谱法。亚硝酸根在酸性介质中与甜蜜素反应生成环己烯,环己烯在光谱法检测端的尖端放电微等离子体区域被裂解并激发,该光谱法利用反应生成的环己烯发射出的碳特征原子发射谱线计算环己烯的含量,最终实现对亚硝酸根的间接检测。
中国专利CN103760262B《利用单泵阀切换技术测定食品中亚硝酸根的离子色谱方法》公开了一种利用单泵阀切换技术检测亚硝酸根的离子色谱法。样品经过处理后,首先经预分离柱-淋洗系统-抑制器-电导池后,得出高浓度氯离子与待检测成分亚硝酸根的出峰时间,然后将处理后的高浓度氯离子及待检测成分亚硝酸根经预分离柱-连接切换阀上的分析柱-抑制器-电导池后,在色谱软件上得到样品检测的色谱图,最终实现对亚硝酸根的定性、定量检测。
中国专利CN108931505B《基于稀土族金属有机骨架材料的亚硝酸根离子的检测方法》公开了一种基于稀土族金属有机骨架材料检测亚硝酸根的荧光法。该方法以稀土盐Tb(NO3)3·4H2O为稀土源,以对三联苯-3,4″,5-三羧酸为配体,利用水热法合成了具有独特荧光发射性能的稀土族金属有机骨架材料,将该金属有机骨架材料作为荧光探针,最终实现针对亚硝酸根的定量分析检测。
中国专利CN109975268A《基于金银核壳纳米颗粒SERS技术检测亚硝酸根离子的方法》公开了一种基于金银核壳纳米颗粒检测亚硝酸根的SERS技术,该方法首先制备金银核壳纳米颗粒溶液,然后配制不同浓度的亚硝酸根标准溶液,分别加入对氨基苯硫酚溶液和1-萘胺,再加入金银核壳纳米颗粒溶液,利用拉曼光谱仪,建立拉曼信号强度对应亚硝酸根离子浓度的标准曲线,通过将待测样品的拉曼信号与标准曲线对比,最终实现对亚硝酸根的定量检测。
上述已公开的亚硝酸根离子检测方法虽然具有一定的检测效果,但仍具有以下缺点和不足:
(1)有些检测仪器设备相对昂贵,检测操作步骤相对复杂;
(2)有些检测试剂成本相对较高,检测环境条件要求严苛。
发明内容
为解决上述已有技术存在的问题与不足,本发明旨在提供一种比率型电化学检测亚硝酸根离子的方法。
为实现上述目的,本发明所使用的技术方案是:
一种基于比率型电化学检测亚硝酸根离子的方法,包括如下步骤:
(1)向1mL离心管中加入50μL 10mM的邻苯二胺(OPD)溶液、900μL0.1M醋酸盐缓冲液,摇匀;
(2)向上述混合溶液中分别加入50μL不同浓度的亚硝酸根离子(NO2 -),保证溶液总体积为1mL,反应0.5~6min,优选1min;其中,所述NO2 -在体系内的最终浓度分别为10μM、20μM、50μM、100μM、200μM、300μM;
(3)利用电化学检测装置的差分脉冲伏安法(DPV)测量混合溶液的氧化信号值,其中初始电位:0V;最终电位:1.0V;电位增加幅度:4mV;振幅:50mV;脉冲持续时间:50ms;脉冲周期:0.5s,记录NO2 -和OPD探针的氧化信号值,并以NO2 -浓度为横坐标,以两者的比值(INitrite/IOPD)为纵坐标,绘制标准工作曲线;
(4)将待测样品重复步骤(1)~(3),用差分脉冲伏安法(DPV)测定混合溶液中待测样品和OPD探针的氧化信号值,其中初始电位:0V;最终电位:1.0V;电位增加幅度:4mV;振幅:50mV;脉冲持续时间:50ms;脉冲周期:0.5s,通过将待测样品与OPD探针的氧化信号的比值与标准工作曲线对比,即可得到待测样品中的NO2 -浓度。
本发明较优公开例中,步骤(1)中所述醋酸盐缓冲液的pH值为3。
本发明较优公开例中,步骤(3)中所述电化学检测装置,其中的电极为丝网印刷裸碳电极、金颗粒修饰电极、钯颗粒修饰电极、铂颗粒修饰电极,优选丝网印刷裸碳电极。
本发明较优公开例中,步骤(4)中待测样品的可测浓度范围为10~300μM,检测限为4.7μM。
OPD探针与NO2 -在酸性介质中会快速发生重氮化反应,导致游离的OPD浓度下降,随着NO2 -的增加,OPD探针的氧化信号逐渐减弱,而NO2 -的氧化信号逐渐增强,从而实现对亚硝酸根离子的定量检测。
本发明所用试剂、丝网印刷裸碳电极均为市售。
在本说明书中,术语“OPD”是化合物“邻苯二胺”的缩写名称,二者可互换使用。
在本说明书中,术语“NO2 -”是指亚硝酸根离子,二者可互换使用。
有益效果
本发明公开了将OPD作为探针,用于亚硝酸根离子的比率型电化学检测;该检测过程条件温和、反应迅速、检测成本低、操作简单;通过比率型模式校准OPD探针+NO2 -体系检测亚硝酸根离子,检测限低至4.7μM,可检测范围宽至10~300μM;利用OPD探针与NO2 -在酸性环境中发生重氮化反应检测亚硝酸根离子,可实现对亚硝酸根离子的高灵敏、高准确性、高选择性和低成本分析以及对环境和食品水中的亚硝酸根离子的检测。
附图说明
图1.OPD探针和NO2 -在丝网印刷裸碳电极上的循环伏安图;
图2.含有不同浓度NO2 -的OPD探针+NO2 -体系的线性扫描伏安图;
图3.不同电极对OPD探针+NO2 -体系的比率电化学响应图;
图4.OPD探针+NO2 -体系的pH缓冲液优化图;
图5.OPD探针+NO2 -体系的时间优化图;
图6.OPD探针+NO2 -体系检测不同浓度NO2 -的效果图,其中A:反应1min时的差分脉冲伏安图;B:INitrite/IOPD与NO2 -浓度的线性关系图;
图7.OPD探针+NO2 -体系检测NO2 -的选择性效果图。
具体实施方式
为了使本发明的目的、技术方案以及优点更加清晰明了,下面将结合实施例对本发明进行详细说明,以便本领域技术人员更好地理解本发明,但并不局限于以下实施例。
实施例1
OPD探针和NO2 -的电化学行为探究的应用实验
(1)取1000μL pH=3的醋酸盐缓冲液(0.1M)加入到1mL离心管中,摇匀后,利用电化学检测装置的循环伏安法(CV)测量电化学信号(电位窗口:0-1.0V;扫描速率:50mV/s);
(2)取50μL 10mM的OPD溶液加入到950μL pH=3的醋酸盐缓冲液(0.1M)中,摇匀后,利用电化学检测装置的循环伏安法(CV)测量电化学信号(电位窗口:0-1.0V;扫描速率:50mV/s);
(3)取50μL 5mM的NO2 -溶液加入到950μL pH=3的醋酸盐缓冲液(0.1M)中,摇匀后,利用电化学检测装置的循环伏安法(CV)测量电化学信号(电位窗口:0-1.0V;扫描速率:50mV/s)。
图1记录了醋酸盐缓冲液、醋酸盐缓冲液+OPD、醋酸盐缓冲液+NO2 -的循环伏安图。由图可知,醋酸盐缓冲液在0-1.0V的电位窗口范围内没有明显的氧化信号,醋酸盐缓冲液+OPD在0-1.0V区间内的较低电位处呈现出一个明显的氧化信号,醋酸盐缓冲液+NO2 -在0-1.0V区间内的较高电位处呈现出一个明显的氧化信号。
实施例2
NO2 -对OPD探针+NO2 -体系的影响
(1)分别向1mL离心管中加入50μL 10mM的OPD溶液、900μL pH=3的醋酸盐缓冲液(0.1M),摇匀;
(2)向上述混合溶液中分别加入50μL不同浓度的NO2 -溶液并摇匀,反应1min后,利用电化学检测装置的线性扫描伏安法(LSV)测量电化学信号(电位窗口:0-1.0V;扫描速率:50mV/s)。
结果如图2所示,图2中随着NO2 -浓度的增加,OPD的氧化信号逐渐降低,NO2 -的氧化信号逐渐增强。这是因为亚硝酸根离子与OPD在酸性介质中会发生重氮化反应,导致游离的OPD浓度下降。
实施例3
不同电极对OPD探针+NO2 -体系的比率电化学响应
(1)分别向1mL离心管中加入50μL 10mM的OPD溶液、900μL pH=3的醋酸盐缓冲液(0.1M),摇匀;
(2)向上述混合溶液中分别加入50μL 5mM的NO2 -溶液并摇匀,反应1min后,使用不同电极,利用电化学检测装置的差分脉冲伏安法(DPV)测量电化学信号(初始电位:0V;最终电位:1.0V;电位增加幅度:4mV;振幅:50mV;脉冲持续时间:50ms;脉冲周期:0.5s),记录NO2 -和OPD探针的氧化信号值。
结果如图3所示,相比裸碳电极,Au、Pd和Pt等修饰的电极对OPD探针+NO2 -体系的比率电化学响应均得到不同程度的提升,这是由于这些贵金属修饰的电极具有较好的电催化活性,能改善响应电流信号。但是在相同条件下,NO2 -与OPD探针的氧化信号比值(INitrite/IOPD)未发生明显改变。
实施例4
OPD探针+NO2 -体系在不同pH电解液中的电化学响应
(1)分别向1mL离心管中加入50μL 10mM的OPD溶液、900μL 0.1M不同pH值的醋酸盐缓冲液,摇匀;
(2)再加入50μL 5mM的NO2 -溶液并摇匀,反应1min后,利用电化学检测装置的线性扫描伏安法(LSV)测量电化学信号(电位窗口:0-1.0V;扫描速率:50mV/s)。
结果如图4所示,图4中随着pH值的增加,OPD探针的氧化信号逐渐向低电位移动。在pH 1.0电解液中,在0-1.0V窗口中只观察到微弱的OPD探针信号,而无亚硝酸根离子的信号;在pH 5.0电解液中,观察到显著的OPD探针信号,也无亚硝酸根离子的信号。相比之下,在pH 3.0电解液中,既观察到较显著的OPD探针信号,也观察到明显的亚硝酸根离子信号。
实施例5
NO2 -与OPD的反应时间对OPD探针+NO2 -体系的影响
(1)取50μL 10mM的OPD溶液加入到900μL pH=3的醋酸盐缓冲液(0.1M)中,摇匀;
(2)再加入50μL 5mM的NO2 -溶液,摇匀后,利用电化学检测装置的线性扫描伏安法(LSV)测量不同反应时间段的电化学信号(电位窗口:0-1.0V;扫描速率:50mV/s)。
结果如图5所示,图5中随着反应时间的延长,OPD探针和亚硝酸根离子的氧化信号均向高电位移动,氧化电流均逐渐减弱,这是因为随着时间的延长,两者发生重氮化反应的程度加深,导致自由的OPD和亚硝酸根离子浓度均降低。
实施例6
利用OPD探针+NO2 -体系检测NO2 -的浓度
(1)分别向1mL离心管中加入50μL 10mM的OPD溶液、900μL pH=3的醋酸盐缓冲液(0.1M),摇匀;
(2)向上述混合溶液中分别加入50μL不同浓度的NO2 -溶液并摇匀,保证溶液总体积为1mL,反应1min;所述NO2 -在体系内的最终浓度分别为10μM、20μM、50μM、100μM、200μM、300μM;
(3)利用电化学检测装置的差分脉冲伏安法(DPV)测量电化学信号(初始电位:0V;最终电位:1.0V;电位增加幅度:4mV;振幅:50mV;脉冲持续时间:50ms;脉冲周期:0.5s),记录NO2 -和OPD探针的氧化信号值,并以NO2 -浓度为横坐标,以两者的比值(INitrite/IOPD)为纵坐标,绘制标准工作曲线。
利用本比率型电化学法对于NO2 -浓度检测的结果如图6所示。其中,图6A表明随着NO2 -浓度的增加,OPD的氧化信号电流值逐渐减小,NO2 -的氧化信号电流值逐渐减小。图6B是INitrite/IOPD与NO2 -浓度的线性关系图,表明该方法对于NO2 -浓度的可检测范围为10μM~300μM,有良好的检测效果。
实施例7
利用OPD探针+NO2 -体系检测NO2 -的选择性
(1)分别向1mL离心管中加入50μL 10mM的OPD溶液、900μL pH=3的醋酸盐缓冲液(0.1M),摇匀;
(2)向第一个离心管的上述混合液中加入50μL 1mM的NO2 -,其余离心管的上述混合液中加入50μL 2mM不同种类的阳离子和阴离子,保证溶液总体积为1mL,在室温下反应1min。
结果如图7所示,图7是用OPD探针+NO2 -体系检测NO2 -的选择性的柱状图,柱状图从左到右依次为亚硝酸根(NO2 -)、亚铁离子(Fe3+)、铁离子(Fe3+)、汞离子(Hg2+)、镍离子(Ni2 +)、铜离子(Cu2+)、钙离子(Ca2+)、镁离子(Mg2+)、钠离子(Na+)、钴离子(Co3+)、铬离子(Cr3+)、锰离子(Mn2+)、锌离子(Zn2+)、硫酸根离子(SO4 2-)、碳酸根离子(CO3 -)、硝酸根离子(NO3 -)、氯离子(Cl-)、溴离子(Br-)、磷酸氢根离子(HPO4 3-)、亚硫酸根离子(SO3 2-)。从图中可以看出只有NO2 -可以显著增强离子与OPD探针的氧化信号的比值,其他离子共存时不会对该比值产生较大影响。
实施例8
利用OPD探针+NO2 -体系检测环境和食品水中的NO2 -浓度
(1)对河水和腌酸水进行实验前的预处理,获得的样品用常规滤纸过滤;
(2)分别向1mL离心管中加入50μL 10mM的OPD溶液、900μL pH=3的醋酸盐缓冲液(0.1M),摇匀;
(3)再向上述混合液中分别加入50μL处理后的河水和腌酸水,保证溶液总体积为1mL,在室温下反应1min;
(4)利用电化学检测装置的差分脉冲伏安法(DPV)测定上述混合溶液中实际样品和OPD探针的电化学信号(初始电位:0V;最终电位:1.0V;电位增加幅度:4mV;振幅:50mV;脉冲持续时间:50ms;脉冲周期:0.5s),记录实际样品和OPD探针的氧化信号值。
其测定结果如表1所示:
表1本发明所公开方法对实际样品的检测结果
由上表可知,OPD探针+NO2 -体系对实际样品中亚硝酸根含量的变化响应迅速,可实现亚硝酸根离子的高灵敏、高准确性、高选择性和低成本分析以及对环境和食品水中的亚硝酸根检测。
以上所述,仅为本发明较佳的具体实施方式,并非因此限制本发明的专利范围。凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (7)
1.一种基于比率型电化学检测亚硝酸根离子的方法,其特征在于,包括如下步骤:
(1)向1 mL离心管中加入50μL 10 mM的邻苯二胺OPD溶液、900μL 0.1M 醋酸盐缓冲液,摇匀;
(2)向上述混合溶液中分别加入50μL不同浓度的亚硝酸根离子NO2 -,保证溶液总体积为1mL,反应0.5~6min;其中,所述NO2 -在体系内的最终浓度分别为10μM、20μM、50μM、100μM、200μM、300μM;
(3)利用电化学检测装置的差分脉冲伏安法DPV测量混合溶液的氧化信号值,其中初始电位:0 V;最终电位:1.0 V;电位增加幅度:4mV;振幅:50mV;脉冲持续时间:50ms;脉冲周期:0.5 s,记录NO2 -和OPD探针的氧化信号值,并以NO2 -浓度为横坐标,以两者的比值INitrite/IOPD为纵坐标,绘制标准工作曲线;
(4)将待测样品重复步骤(1)~(3),用差分脉冲伏安法DPV测定混合溶液中待测样品和OPD探针的氧化信号值,其中初始电位:0 V;最终电位:1.0 V;电位增加幅度:4mV;振幅:50mV;脉冲持续时间:50ms;脉冲周期:0.5s,通过将待测样品与OPD探针的氧化信号的比值与标准工作曲线对比,即可得到待测样品中的NO2 -浓度。
2.根据权利要求1所述的基于比率型电化学检测亚硝酸根离子的方法,其特征在于:步骤(1)中所述醋酸盐缓冲液的pH值为3。
3.根据权利要求1所述的基于比率型电化学检测亚硝酸根离子的方法,其特征在于:步骤(2)中所述反应1min。
4.根据权利要求1所述的基于比率型电化学检测亚硝酸根离子的方法,其特征在于:步骤(3)中所述电化学检测装置,其中的电极为丝网印刷裸碳电极、金颗粒修饰电极、钯颗粒修饰电极、铂颗粒修饰电极。
5.根据权利要求4所述的基于比率型电化学检测亚硝酸根离子的方法,其特征在于:步骤(3)中所述电化学检测装置,其中的电极为丝网印刷裸碳电极。
6.根据权利要求1所述的基于比率型电化学检测亚硝酸根离子的方法,其特征在于:步骤(4)中待测样品的可测浓度范围为10~300μM。
7.根据权利要求1所述的基于比率型电化学检测亚硝酸根离子的方法,其特征在于:步骤(4)中待测样品的检测限为4.7μM。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110759834.0A CN113588760B (zh) | 2021-07-05 | 2021-07-05 | 一种比率型电化学检测亚硝酸根离子的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110759834.0A CN113588760B (zh) | 2021-07-05 | 2021-07-05 | 一种比率型电化学检测亚硝酸根离子的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113588760A CN113588760A (zh) | 2021-11-02 |
CN113588760B true CN113588760B (zh) | 2023-06-13 |
Family
ID=78246026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110759834.0A Active CN113588760B (zh) | 2021-07-05 | 2021-07-05 | 一种比率型电化学检测亚硝酸根离子的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113588760B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8609125D0 (en) * | 1985-04-15 | 1986-05-21 | Universite Des Sciences Et Tec | Determination of nitrite |
FR2692675A1 (fr) * | 1992-06-19 | 1993-12-24 | Zellweger Uster Ag | Procédé et dispositif de dosage ampérométrique en continu des nitrates/nitrites d'un milieu aqueux. |
CN110987843A (zh) * | 2019-11-19 | 2020-04-10 | 江苏大学 | 基于双金属mof纳米类氧化酶的磷酸根比色检测法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2106746A1 (en) * | 2008-04-02 | 2009-10-07 | National University of Ireland, Maynooth | Monitoring target endogenous species |
US20140200411A1 (en) * | 2013-01-11 | 2014-07-17 | Surmodics, Inc. | Conductive polymers and uses |
-
2021
- 2021-07-05 CN CN202110759834.0A patent/CN113588760B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8609125D0 (en) * | 1985-04-15 | 1986-05-21 | Universite Des Sciences Et Tec | Determination of nitrite |
FR2692675A1 (fr) * | 1992-06-19 | 1993-12-24 | Zellweger Uster Ag | Procédé et dispositif de dosage ampérométrique en continu des nitrates/nitrites d'un milieu aqueux. |
CN110987843A (zh) * | 2019-11-19 | 2020-04-10 | 江苏大学 | 基于双金属mof纳米类氧化酶的磷酸根比色检测法 |
Non-Patent Citations (2)
Title |
---|
Şener Sağlam等.Electrochemical sensor for nitroaromatic type energetic materials using gold nanoparticles/poly(o-phenylenediamine–aniline) film modified glassy carbon electrode.《Talanta》.2015,第139卷第181-188页. * |
Tsung Yang Ho等.Using Diazotization Reaction to Develop Portable Liquid-Crystal- Based Sensors for Nitrite Detection.《ACS Omega》.2020,第5卷第11809−11816页. * |
Also Published As
Publication number | Publication date |
---|---|
CN113588760A (zh) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111269715B (zh) | 一种比率荧光探针及其在可视化检测谷胱甘肽中的应用 | |
Krolicka et al. | Study on catalytic adsorptive stripping voltammetry of trace cobalt at bismuth film electrodes | |
CN104597019B (zh) | 一种基于碳量子点/二氧化锰纳米片层的原位复合体系及其用于检测谷胱甘肽含量的使用方法 | |
Lu et al. | Voltammetric determination of mercury (II) in aqueous media using glassy carbon electrodes modified with novel calix [4] arene | |
CN110763740B (zh) | 基于Fe3O4@MnO2和碳点的电化学和荧光双信号传感器检测过氧化氢的方法 | |
Zheng et al. | Flow-injection electrogenerated chemiluminescence determination of epinephrine using luminol | |
CN110297025A (zh) | 一种纳米级Ni-Fe普鲁士蓝类似物材料及其制备方法与电化学检测邻硝基酚的应用 | |
CN108344792B (zh) | 一种水体中总砷快速检测方法 | |
Imdadullah et al. | Solvent extraction and chemiluminescence determination of gold in silver alloy with luminol in reverse micelles | |
CN110006968B (zh) | 基于快速扫描循环伏安技术检测汞离子的电化学生物传感器的制备方法及其应用 | |
CN103063728A (zh) | 一种基于石墨烯/壳聚糖修饰电极同时测定四氯邻苯二酚和四氯对苯二酚的电化学方法 | |
Barek et al. | Voltammetric Determination of N, N‐Dimethyl‐4‐amine‐carboxyazobenzene at a Silver Solid Amalgam Electrode | |
Khaloo et al. | Voltammetric and potentiometric study of cysteine at cobalt (II) phthalocyanine modified carbon-paste electrode | |
CN113588760B (zh) | 一种比率型电化学检测亚硝酸根离子的方法 | |
Majid et al. | An amperometric method for the determination of trace mercury (II) by formation of complexes with L-tyrosine | |
Gholivand et al. | Highly selective adsorptive cathodic stripping voltammetric determination of uranium in the presence of pyromellitic acid | |
CN100406882C (zh) | 毛细管电泳安培检测安非他明的方法 | |
Korolczuk et al. | Determination of traces of cobalt in the presence of nioxime and cetyltrimethylammonium bromide by adsorptive stripping voltammetry | |
El-Maali et al. | Use of adsorptive stripping voltammetry at the glassy carbon electrode for the simultaneous determination of magnesium (II) and aluminium (III): Application to some industrial samples | |
CN107036992B (zh) | 基于分析物催化纳米颗粒合成反应的Ag+比色检测方法 | |
Heyrovský | The development of polarographic analysis | |
Alipázaga et al. | S (IV) induced autoxidation of Cu (II)/tetraglycine complexes in the presence of aldehydes: mechanistic considerations and analytical applications | |
Cruickshank et al. | Rare elements electrochemistry: The development of a novel electrochemical sensor for the rapid detection of europium in environmental samples using gold electrode modified with 2-pyridinol-1-oxide | |
Taher et al. | Indirect determination of trace copper (II) by adsorptive stripping voltammetry with zincon at a carbon paste electrode | |
CN102841122A (zh) | 一种LiFePO4/C复合正极材料Fe2+含量快速分析方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |