Preparation method of aluminum-doped Inconel625 alloy applied to oxygen-containing high-temperature chlorine corrosion environment
Technical Field
The invention belongs to the field of high-temperature chlorine corrosion resistant alloy design and performance test, and particularly relates to a preparation method of an aluminum-doped Inconel625 alloy applied to an oxygen-containing high-temperature chlorine corrosion environment.
Background
With the increase of population base, environmental pollution caused by municipal solid waste in countries of the world is serious, the treatment of the municipal solid waste becomes a problem to be solved urgently, and although the popularization of classified recycling of the waste is gradually carried out in recent years, great effect is not seen. The traditional garbage disposal methods mainly comprise landfill, composting and incineration methods. The waste incineration method can be used as a power plant to generate electricity due to the heat generated by the waste incineration method, so that the use of traditional fuels is reduced, and CO is reduced2The emission is beneficial to relieving the pressure of insufficient energy, and good social and economic benefits are achieved. However, the incineration method provides a more severe service condition for the material of the garbage incinerator, and in order to meet the requirement, it is common at present to weld an Inconel625 coating on the surface of the material by surfacing so as to prolong the service life of the incinerator. The high coating cost becomes a very large bottleneck of the method at present, and the research is just for the comprehensive consideration of cost and corrosion resistance to prepare the modified Inconel625 alloy material with higher cost performance.
Disclosure of Invention
In order to achieve the expected aim, the invention provides a preparation method of an aluminum-doped Inconel625 alloy applied to an oxygen-containing high-temperature chlorine corrosion environment, which takes high-purity aluminum metal particles and a domestic Inconel625 welding wire as initial raw materials, adopts a vacuum arc melting technology to prepare the Al-doped Inconel625 alloy (Inconel 625: xAl, x =3, 5, 7 and 10 at.%) and examines the Al-doped Inconel625 alloy in an oxygen-containing HCl atmosphere (N, and N, and N, and S, N, and S, N, and N are respectively2-0.5 % HCl-1.5 % O2-3.0 % CO2) Medium and 600-800 deg.C corrosion behavior.
In order to achieve the purpose, the invention provides the following technical scheme:
a preparation method of an aluminum-doped Inconel625 alloy applied to an oxygen-containing high-temperature chlorine corrosion environment comprises the following steps:
(1) taking an Inconel625 welding wire, carrying out ultrasonic cleaning together with aluminum, and drying to obtain a mixture;
the mass fraction of aluminum in step (1) is as follows Inconel625: xAl, wherein the atomic number percentage content x of the aluminum takes the value as follows: 3at.%, 5 at.%, 7 at.%, or 10 at.%;
(2) and arc melting the mixture to obtain an alloy ingot, and annealing the alloy ingot to obtain the aluminum-doped Inconel625 alloy.
Further, in the step (1) above: preferred values for the mass fraction x of aluminum are: x =10 at.%.
Further, in the step (2) above: the arc melting condition is argon atmosphere, and the current is 180-220A.
Further, in the step (2) above: the annealing is carried out at 900 ℃ for 24 h.
A monitoring method of an aluminum-doped Inconel625 alloy applied to an oxygen-containing high-temperature chlorine corrosion environment comprises the following steps:
detecting the corrosion resistance behavior of the prepared aluminum-doped Inconel625 alloy in an oxygen-containing high-temperature chlorine corrosion environment;
the oxygen-containing high-temperature chlorine corrosion environment is N2-0.5 % 、HCl-1.5 %、 O2-3.0 % CO2600 ℃ and 800 ℃, and the etching time is 200 h.
Compared with the prior art, the invention has the advantages that:
in the present invention, for the Inconel625: xAl (x =3, 5, 7, 10 at.%) alloy, in N2-0.5 % HCl-1.5% O2-3.0% CO2In the corrosive environment atmosphere, the addition of a certain content of Al obviously improves the high-temperature oxidation resistance of the alloy. The corrosion behavior of Inconel625: xAl (x =3, 5, 7, 10 at.%) alloy in an oxidizing, chlorine-containing atmosphere follows an activated oxidation mechanism. The corrosion behaviour of the duplex alloy is more complex, the corrosion behaviour of the Inconel625: xAl (x =3, 5, 7, 10 at.%) alloy is not only related to the Al content of the alloy, but also to its volume fraction. Second phase bodies in Inconel625:7Al alloy, as compared to Inconel625:5Al alloyThe integral number is significantly increased, inhibiting the diffusion of Al, and thus its corrosion resistance is inferior to Inconel625:5Al alloy. The Inconel625:10Al alloy showed the best corrosion resistance with increasing Al content, with a 200 h corrosion weight gain of only 48.46% of the unmodified Inconel625 weight gain at 800 ℃. Therefore, the alloy in the invention achieves the expected goal of improving the corrosion resistance of materials and reducing the cost.
Drawings
FIG. 1 is a technical route flow diagram of the present invention;
fig. 2 is an Inconel625:xAl(x=0, 3, 5, 7, 10 at%) corrosion kinetics curve of the alloy at 800 ℃ for 200 h;
FIG. 3 is a corrosion kinetics curve of an Inconel625 alloy at 600-800 ℃ for 200 h in the present invention;
FIG. 4 is a corrosion kinetics curve of the IInconel625:5Al alloy at 600-;
FIG. 5 is a corrosion kinetics curve of an Inconel625:10Al alloy at 600-800 ℃ for 200 h.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Referring to fig. 1 to 5, in the embodiment of the present invention:
a preparation method of an aluminum-doped Inconel625 alloy applied to an oxygen-containing high-temperature chlorine corrosion environment comprises the following steps:
(1) taking an Inconel625 welding wire, carrying out ultrasonic cleaning together with aluminum, and drying to obtain a mixture;
the mass fraction of aluminum in step (1) is as follows Inconel625: xAl, wherein the atomic number percentage content x of the aluminum takes the value as follows: 3at.%, 5 at.%, 7 at.%, or 10 at.%;
(2) and arc melting the mixture to obtain an alloy ingot, and annealing the alloy ingot to obtain the aluminum-doped Inconel625 alloy.
Further, in the step (1) above: preferred values for the mass fraction x of aluminum are: x =10 at.%.
Further, in the step (2) above: the arc melting condition is argon atmosphere, and the current is 180-220A.
Further, in the step (2) above: the annealing is carried out at 900 ℃ for 24 h.
A monitoring method of an aluminum-doped Inconel625 alloy applied to an oxygen-containing high-temperature chlorine corrosion environment comprises the following steps:
detecting the corrosion resistance behavior of the prepared aluminum-doped Inconel625 alloy in an oxygen-containing high-temperature chlorine corrosion environment;
the oxygen-containing high-temperature chlorine corrosion environment is N2-0.5 % 、HCl-1.5 %、 O2-3.0 % CO2600 ℃ and 800 ℃, and the etching time is 200 h.
For the Inconel625: xAl (x =0, 3, 5, 7, 10 at.%) alloy, in N2-0.5 % HCl-1.5% O2-3.0% CO2In the corrosive environment atmosphere, the addition of a certain content of aluminum obviously improves the high-temperature oxidation resistance of the alloy. The corrosion behavior of Inconel625: xAl (x =0, 3, 5, 7, 10 at.%) alloy in an oxidizing, chlorine-containing atmosphere follows an activated oxidation mechanism.
The corrosion behaviour of the duplex alloy is more complex, the corrosion behaviour of the Inconel625: xAl (x =0, 3, 5, 7, 10 at.%) alloy is not only related to the Al content of the alloy, but also to its volume fraction. The fractional volume of the second phase in the Inconel625:7Al alloy is significantly increased compared to the Inconel625:5Al alloy, inhibiting diffusion of Al, and thus is less corrosion resistant than the Inconel625:5Al alloy. The Inconel625:10Al alloy showed the best corrosion resistance with increasing Al content, with a 200 h corrosion weight gain of only 48.46% of the unmodified Inconel625 weight gain at 800 ℃. Therefore, the alloy in the invention achieves the expected goal of improving the corrosion resistance of materials and reducing the cost.
The above description is only for the preferred embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art should be considered to be within the technical scope of the present invention, and the technical solutions and the inventive concepts thereof according to the present invention should be equivalent or changed within the scope of the present invention.