CN113578299B - A silicon-aluminum-zirconium composite oxide, catalytic cracking catalyst and preparation method and application thereof - Google Patents
A silicon-aluminum-zirconium composite oxide, catalytic cracking catalyst and preparation method and application thereof Download PDFInfo
- Publication number
- CN113578299B CN113578299B CN202010366147.8A CN202010366147A CN113578299B CN 113578299 B CN113578299 B CN 113578299B CN 202010366147 A CN202010366147 A CN 202010366147A CN 113578299 B CN113578299 B CN 113578299B
- Authority
- CN
- China
- Prior art keywords
- aluminum
- zirconium
- catalytic cracking
- zeolite
- cracking catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 102
- 239000003054 catalyst Substances 0.000 title claims abstract description 98
- -1 silicon-aluminum-zirconium Chemical compound 0.000 title claims abstract description 84
- 238000004523 catalytic cracking Methods 0.000 title claims abstract description 78
- 238000002360 preparation method Methods 0.000 title abstract description 12
- 239000011148 porous material Substances 0.000 claims abstract description 42
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 25
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000000295 fuel oil Substances 0.000 claims abstract description 14
- 229910004298 SiO 2 Inorganic materials 0.000 claims abstract description 12
- 239000010457 zeolite Substances 0.000 claims description 123
- 229910021536 Zeolite Inorganic materials 0.000 claims description 121
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 116
- 239000002002 slurry Substances 0.000 claims description 81
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 54
- 239000008367 deionised water Substances 0.000 claims description 50
- 229910021641 deionized water Inorganic materials 0.000 claims description 50
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 46
- 229910052782 aluminium Inorganic materials 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 39
- 239000000203 mixture Substances 0.000 claims description 39
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 36
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 33
- 238000003756 stirring Methods 0.000 claims description 27
- 239000002253 acid Substances 0.000 claims description 26
- 239000007787 solid Substances 0.000 claims description 26
- 239000002904 solvent Substances 0.000 claims description 25
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 22
- 229910052726 zirconium Inorganic materials 0.000 claims description 22
- 238000001035 drying Methods 0.000 claims description 21
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 21
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 21
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 21
- 238000002156 mixing Methods 0.000 claims description 19
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 18
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 claims description 18
- 239000005995 Aluminium silicate Substances 0.000 claims description 17
- 235000012211 aluminium silicate Nutrition 0.000 claims description 17
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 claims description 17
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 17
- 150000002910 rare earth metals Chemical class 0.000 claims description 17
- 239000011230 binding agent Substances 0.000 claims description 16
- 239000004927 clay Substances 0.000 claims description 16
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 15
- 229910052698 phosphorus Inorganic materials 0.000 claims description 15
- 239000011574 phosphorus Substances 0.000 claims description 15
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 claims description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 9
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 150000002894 organic compounds Chemical class 0.000 claims description 8
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 7
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 7
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 7
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 7
- 229920005610 lignin Polymers 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 5
- 229920000297 Rayon Polymers 0.000 claims description 5
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 claims description 5
- 229920000609 methyl cellulose Polymers 0.000 claims description 5
- 239000001923 methylcellulose Substances 0.000 claims description 5
- 235000010981 methylcellulose Nutrition 0.000 claims description 5
- 229910017604 nitric acid Inorganic materials 0.000 claims description 5
- 235000019353 potassium silicate Nutrition 0.000 claims description 5
- ZGSOBQAJAUGRBK-UHFFFAOYSA-N propan-2-olate;zirconium(4+) Chemical compound [Zr+4].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] ZGSOBQAJAUGRBK-UHFFFAOYSA-N 0.000 claims description 5
- 239000000741 silica gel Substances 0.000 claims description 5
- 229910002027 silica gel Inorganic materials 0.000 claims description 5
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 claims description 4
- 239000004113 Sepiolite Substances 0.000 claims description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 4
- 239000000440 bentonite Substances 0.000 claims description 4
- 229910000278 bentonite Inorganic materials 0.000 claims description 4
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 4
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 4
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 4
- 229910052624 sepiolite Inorganic materials 0.000 claims description 4
- 235000019355 sepiolite Nutrition 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 3
- DUFCMRCMPHIFTR-UHFFFAOYSA-N 5-(dimethylsulfamoyl)-2-methylfuran-3-carboxylic acid Chemical compound CN(C)S(=O)(=O)C1=CC(C(O)=O)=C(C)O1 DUFCMRCMPHIFTR-UHFFFAOYSA-N 0.000 claims description 3
- RFRMMZAKBNXNHE-UHFFFAOYSA-N 6-[4,6-dihydroxy-5-(2-hydroxyethoxy)-2-(hydroxymethyl)oxan-3-yl]oxy-2-(hydroxymethyl)-5-(2-hydroxypropoxy)oxane-3,4-diol Chemical compound CC(O)COC1C(O)C(O)C(CO)OC1OC1C(O)C(OCCO)C(O)OC1CO RFRMMZAKBNXNHE-UHFFFAOYSA-N 0.000 claims description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 3
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 3
- 235000019253 formic acid Nutrition 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 3
- 235000006408 oxalic acid Nutrition 0.000 claims description 3
- 239000008107 starch Substances 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims description 3
- ZXAUZSQITFJWPS-UHFFFAOYSA-J zirconium(4+);disulfate Chemical compound [Zr+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZXAUZSQITFJWPS-UHFFFAOYSA-J 0.000 claims description 3
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 claims description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 2
- 125000005630 sialyl group Chemical group 0.000 claims 5
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 238000005336 cracking Methods 0.000 abstract description 30
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 8
- 239000000243 solution Substances 0.000 description 42
- 150000001336 alkenes Chemical class 0.000 description 41
- 230000000052 comparative effect Effects 0.000 description 31
- 238000006243 chemical reaction Methods 0.000 description 29
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 22
- 239000003502 gasoline Substances 0.000 description 20
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 18
- 235000011114 ammonium hydroxide Nutrition 0.000 description 18
- 230000000694 effects Effects 0.000 description 16
- 229910052814 silicon oxide Inorganic materials 0.000 description 16
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 13
- 239000002808 molecular sieve Substances 0.000 description 12
- 238000001354 calcination Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 239000003921 oil Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- 239000011734 sodium Substances 0.000 description 7
- 239000012670 alkaline solution Substances 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000000499 gel Substances 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 238000006276 transfer reaction Methods 0.000 description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 4
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 4
- 239000000571 coke Substances 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000005909 Kieselgur Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 229920000223 polyglycerol Polymers 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 229910052665 sodalite Inorganic materials 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- UVGLBOPDEUYYCS-UHFFFAOYSA-N silicon zirconium Chemical compound [Si].[Zr] UVGLBOPDEUYYCS-UHFFFAOYSA-N 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 238000004846 x-ray emission Methods 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-L L-tartrate(2-) Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O FEWJPZIEWOKRBE-JCYAYHJZSA-L 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- NGPGDYLVALNKEG-UHFFFAOYSA-N azanium;azane;2,3,4-trihydroxy-4-oxobutanoate Chemical compound [NH4+].[NH4+].[O-]C(=O)C(O)C(O)C([O-])=O NGPGDYLVALNKEG-UHFFFAOYSA-N 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- YGQOQTHHZXZSJE-UHFFFAOYSA-L cyclopentanecarboxylate;nickel(2+) Chemical compound [Ni+2].[O-]C(=O)C1CCCC1.[O-]C(=O)C1CCCC1 YGQOQTHHZXZSJE-UHFFFAOYSA-L 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004537 pulping Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/08—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/651—50-500 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/66—Pore distribution
- B01J35/69—Pore distribution bimodal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/12—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/084—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7007—Zeolite Beta
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
本发明涉及一种硅铝锆复合氧化物、催化裂化催化剂及其制备方法和应用,以硅铝锆复合氧化物的干基重量为基准,硅铝锆复合氧化物含有40‑90重量%的Al2O3、15‑55重量%的ZrO2和2‑20重量%的SiO2,孔径为10‑60nm的孔体积占总孔体积的70%以上,微反活性指数为30以上。含有本发明的硅铝锆复合氧化物的催化裂化催化剂具有良好的重油裂化能力、碳四烯烃选择性和抗重金属污染性能。The invention relates to a silicon-aluminum-zirconium composite oxide, a catalytic cracking catalyst and a preparation method and application thereof. Based on the dry weight of the silicon-aluminum-zirconium composite oxide, the silicon-aluminum-zirconium composite oxide contains 40-90% by weight of Al. 2 O 3 , 15-55 wt% ZrO 2 and 2-20 wt% SiO 2 , the pore volume with a pore diameter of 10-60nm accounts for more than 70% of the total pore volume, and the microreactivity index is more than 30. The catalytic cracking catalyst containing the silicon-aluminum-zirconium composite oxide of the present invention has good heavy oil cracking ability, carbon tetraolefin selectivity and heavy metal pollution resistance.
Description
技术领域Technical Field
本发明涉及一种硅铝锆复合氧化物、催化裂化催化剂及其制备方法和应用。The invention relates to a silicon-aluminum-zirconium composite oxide, a catalytic cracking catalyst, and a preparation method and application thereof.
背景技术Background Art
随着环保意识的增强,车用汽油质量标准不断升级换代。车用汽油新标准暨GB17930-2016明确规定从2019年起将在全国范围分阶段实施国Ⅵ标准汽油,与国Ⅴ标准相比,国Ⅵ标准下汽油的苯、芳烃、烯烃含量都将降低,目前我国汽油调和组分方案已难以满足要求。由于烷基化汽油辛烷值高,烯烃、芳烃、苯含量为零,在国Ⅵ标准下,相对传统的催化汽油和重整汽油,是很好的汽油调和组分,在汽油调和组分中的比例将会大幅提高。烷基化装置的主要原料是异丁烷和碳四烯烃。全球近70%的碳四烯烃来自催化裂化装置,并且由催化裂化装置生产碳四烯烃馏分技术具有投资少、成本低的优势,不少公司试图从催化裂化过程获取更大量的碳四烯烃产率。With the increase of environmental awareness, the quality standards of automotive gasoline are constantly upgraded. The new standard for automotive gasoline, GB17930-2016, clearly stipulates that the National VI standard gasoline will be implemented in stages across the country from 2019. Compared with the National V standard, the benzene, aromatics and olefin contents of gasoline under the National VI standard will be reduced. At present, my country's gasoline blending component scheme has been difficult to meet the requirements. Due to the high octane number of alkylated gasoline and zero olefin, alkylated gasoline is a good gasoline blending component relative to traditional catalytic gasoline and reforming gasoline under the National VI standard, and its proportion in gasoline blending components will be greatly increased. The main raw materials of the alkylation unit are isobutane and C4 olefins. Nearly 70% of the world's C4 olefins come from catalytic cracking units, and the technology of producing C4 olefin fractions from catalytic cracking units has the advantages of low investment and low cost. Many companies are trying to obtain a larger amount of C4 olefin yield from the catalytic cracking process.
催化裂化催化剂直接影响到反应物的转化和产物的分布,在催化裂化过程中具有重要的作用。Y型分子筛是催化裂化催化剂的主要活性组元,由六方柱笼、方钠石笼(又称β笼)和超笼组成,由于六方柱笼和方钠石笼的动力学直径只有0.26nm,除水分子外,包括N2、O2及所有有机物分子的动力学直径均大于0.26nm,不能进入六方柱笼和方钠石笼,因此只有超笼(动力学直径0.81nm)中的酸中心对有机分子的吸附、活化和反应是可利用的。常规Y型分子筛经各种方法抽铝和/或补硅后,得到超稳Y型分子筛(USY)。USY分子筛的骨架铝数量减少,晶胞常数缩小,酸中心之间的距离加大,酸强度提高,酸密度降低,不利于双分子的氢转移反应,相对有利于裂化反应,裂化反应与氢转移反应之比提高,所以与稀土改性Y型分子筛相比,USY的汽油辛烷值高、干气及焦炭产率低、碳四烯烃的选择性高。USY中引人稀土,能够增加USY的活性,但烯烃选择性受到一定的损失。这主要是由于稀土离子的存在增加了B酸中心数,并使分子筛晶胞常数不易收缩。通常,无稀土USY分子筛具有较低的氢转移反应性能和较高的碳四烯烃选择性,高稀土常规Y型分子筛具有高的氢转移反应活性及低的碳四烯烃选择性。Catalytic cracking catalyst directly affects the conversion of reactants and the distribution of products, and plays an important role in the catalytic cracking process. Y-type molecular sieve is the main active component of catalytic cracking catalyst, which is composed of hexagonal prism cage, sodalite cage (also known as β cage) and super cage. Since the kinetic diameter of hexagonal prism cage and sodalite cage is only 0.26nm, except for water molecules, the kinetic diameters of N2 , O2 and all organic molecules are greater than 0.26nm and cannot enter the hexagonal prism cage and sodalite cage. Therefore, only the acid center in the super cage (kinetic diameter 0.81nm) is available for the adsorption, activation and reaction of organic molecules. Conventional Y-type molecular sieve is extracted with aluminum and/or supplemented with silicon by various methods to obtain ultra-stable Y-type molecular sieve (USY). The number of skeleton aluminum of USY molecular sieve is reduced, the unit cell constant is reduced, the distance between acid centers is increased, the acid strength is improved, and the acid density is reduced, which is not conducive to the hydrogen transfer reaction of bimolecules, but is relatively conducive to cracking reaction. The ratio of cracking reaction to hydrogen transfer reaction is improved, so compared with rare earth modified Y type molecular sieve, USY has high gasoline octane number, low dry gas and coke yield, and high selectivity of C4 olefins. The introduction of rare earth into USY can increase the activity of USY, but the olefin selectivity suffers a certain loss. This is mainly due to the presence of rare earth ions that increase the number of B acid centers and make the molecular sieve unit cell constant difficult to shrink. Generally, rare earth-free USY molecular sieve has lower hydrogen transfer reaction performance and higher C4 olefin selectivity, and high rare earth conventional Y type molecular sieve has high hydrogen transfer reaction activity and low C4 olefin selectivity.
为了增产低碳烯烃,人们通常在催化剂中加入具有MFI结构的沸石。与Y型分子筛相比,MFI结构沸石能选择性地把FCC汽油馏分中的直链和短支链烷烃在其孔道内进行裂化和异构化,生成C3-C5的烯烃,从而提高低碳烯烃产率。美国Engelhard公司于1993年首次在美国专利USP5243121中公开了增产异丁烯和异戊烯的裂化催化剂,通过水热处理来降低裂化催化剂中Y沸石的晶胞尺寸,可以提高催化剂在烃裂化时对产品中烯烃的选择性,催化剂中还可以加入相当量的ZSM-5沸石作为助剂,不但可以降低生焦量,而且可以提高活性。US3758403公开了以ZSM-5和大孔沸石(主要是Y型沸石)为活性组元的催化剂,在提高汽油辛烷值的同时也增加了C3、C4烯烃的产率,其中大孔沸石对原料进行裂化生成汽油、柴油,ZSM-5择形分子筛进一步将其裂化成低碳烯烃。磷改性可以改善沸石表面酸性,提高择形选择性。USP5171921公开了一种用磷改性的ZSM-5沸石,该沸石具有20~60的硅铝比,用含磷化合物浸渍后经500~700℃水蒸气处理后,用于C3~C20烃转化成C2~C5烯烃的反应时,相对不用磷处理的HZSM-5有更高的活性。In order to increase the production of low-carbon olefins, people usually add zeolites with MFI structure to the catalyst. Compared with Y-type molecular sieves, MFI structure zeolites can selectively crack and isomerize the straight-chain and short-branched alkanes in the FCC gasoline fraction in its pores to generate C3-C5 olefins, thereby increasing the yield of low-carbon olefins. In 1993, Engelhard Company of the United States first disclosed a cracking catalyst for increasing the production of isobutylene and isopentene in US Patent USP5243121. By reducing the unit cell size of Y zeolite in the cracking catalyst through hydrothermal treatment, the selectivity of the catalyst for olefins in the product during hydrocarbon cracking can be improved. A considerable amount of ZSM-5 zeolite can also be added to the catalyst as an additive, which can not only reduce the amount of coke, but also improve the activity. US3758403 discloses a catalyst with ZSM-5 and large-pore zeolite (mainly Y-type zeolite) as active components, which increases the yield of C3 and C4 olefins while improving the octane number of gasoline. The large-pore zeolite cracks the raw materials to produce gasoline and diesel, and the ZSM-5 shape-selective molecular sieve further cracks them into low-carbon olefins. Phosphorus modification can improve the surface acidity of zeolite and improve shape selectivity. USP5171921 discloses a phosphorus-modified ZSM-5 zeolite, which has a silicon-aluminum ratio of 20 to 60. After being impregnated with a phosphorus-containing compound and treated with 500 to 700°C steam, it is used for the reaction of converting C3 to C20 hydrocarbons into C2 to C5 olefins. It has higher activity than HZSM-5 that is not treated with phosphorus.
β沸石由于其结构的特殊性,兼具酸催化特性和结构选择性,近年来已迅速发展为一种新型的催化材料。将β沸石应用于催化裂化催化剂生产低碳烯烃的报道也很多。美国专利US4837396公开了一种含有β沸石和Y沸石的催化剂,将含有金属离子型化合物作为稳定剂提高催化剂的水热稳定和机械强度。该稳定剂可以直接与β沸石作用,也可以在制备过程中引入。CN1055105C公开了一种多产异丁烯和异戊烯的裂化催化剂,含有磷和稀土的五元环高硅沸石6~30重%,USY沸石5~20重%,β沸石1~5重%,粘土30~60重%和无机氧化物15~30重%,该催化剂在催化裂化的工艺条件下具有多产异丁烯和异戊烯的特点,同时可联产高辛烷值汽油。CN104998681A公开了一种提高低碳烯烃浓度的催化裂化助剂及其制备方法,该助剂包括硼改性的含磷和金属的β分子筛、无机氧化物粘结剂、VIII族金属添加剂、磷添加剂以及任选的粘土。该催化裂化助剂应用于石油烃的催化裂化,能增加催化裂化液化气中异丁烯的浓度,减少焦炭的产量。Due to the particularity of its structure, β zeolite has both acid catalytic properties and structural selectivity, and has rapidly developed into a new type of catalytic material in recent years. There are also many reports on the application of β zeolite in catalytic cracking catalysts to produce light olefins. U.S. Patent No. 4,837,396 discloses a catalyst containing β zeolite and Y zeolite, and a metal ion compound is used as a stabilizer to improve the hydrothermal stability and mechanical strength of the catalyst. The stabilizer can directly act on the β zeolite or be introduced during the preparation process. CN1055105C discloses a cracking catalyst for producing more isobutylene and isopentene, containing 6 to 30% by weight of a five-membered ring high-silicon zeolite containing phosphorus and rare earth, 5 to 20% by weight of USY zeolite, 1 to 5% by weight of β zeolite, 30 to 60% by weight of clay and 15 to 30% by weight of an inorganic oxide. The catalyst has the characteristics of producing more isobutylene and isopentene under the process conditions of catalytic cracking, and can also co-produce high-octane gasoline. CN104998681A discloses a catalytic cracking aid for increasing the concentration of light olefins and a preparation method thereof, wherein the aid comprises a boron-modified phosphorus- and metal-containing beta molecular sieve, an inorganic oxide binder, a Group VIII metal additive, a phosphorus additive, and optional clay. The catalytic cracking aid is applied to the catalytic cracking of petroleum hydrocarbons, can increase the concentration of isobutylene in the catalytic cracking liquefied gas, and reduce the yield of coke.
催化剂的活性组分固然重要,但基质的作用也不容忽视。一般认为,催化剂基质应具有较大的孔径、适宜的活性和良好的水热稳定性,以使催化剂能经受苛刻的水热操作条件并对重质原料油进行预裂化。The active components of the catalyst are important, but the role of the matrix cannot be ignored. It is generally believed that the catalyst matrix should have a large pore size, suitable activity and good hydrothermal stability so that the catalyst can withstand harsh hydrothermal operating conditions and pre-cracking heavy crude oil.
氧化铝的制备工艺简单,比表面积高,机械强度好,孔径适宜,是目前应用最广泛的催化剂载体之一。氧化锆由于同时具有酸性和碱性表面中心,氧化性和还原性,及良好的离子交换性能,作为载体或催化剂在催化领域显示出独特的催化活性和选择性。CN00123133.2公开了一种含锆氧化铝载体及其制备方法,通过在载体的成型过程中以混捏的形式加入含锆化合物制得含锆氧化铝载体;该载体酸性维持在一个较为稳定的阶段,红外酸度为0.25~0.32mmol/g,孔分布集中在中孔范围。CN200710158366.1公开了一种复合氧化物载体及制备方法,将氧化铝、二氧化硅和氧化锆的前驱体与碱溶液共沉淀,添加表面活性剂改善孔结构和酸碱性,得到的沉淀物经洗涤、过滤、高温焙烧得到复合氧化物粉体,再挤条成型即得该载体。所得载体的孔结构和酸碱性可调范围广,比表面200~500m2/g,孔容为0.4~1.2mL/g,NH3-TPD总酸量0.2~0.8mmol/g。CN200710158368.0公开了一种含硅和锆的氧化铝干胶粉的制备方法,在含铝化合物溶液与沉淀剂成胶反应后,在控制适宜pH值等条件下加入含锆化合物溶液,在加入含锆化合物之前、之后或同时加入含硅化合物,然后经洗涤、过滤、干燥后得到含硅和锆的氧化铝干胶。Alumina has a simple preparation process, high specific surface area, good mechanical strength, and suitable pore size. It is one of the most widely used catalyst carriers. Zirconium oxide has both acidic and alkaline surface centers, oxidizing and reducing properties, and good ion exchange properties. As a carrier or catalyst, it shows unique catalytic activity and selectivity in the field of catalysis. CN00123133.2 discloses a zirconium-containing alumina carrier and a preparation method thereof. The zirconium-containing alumina carrier is prepared by adding a zirconium-containing compound in the form of kneading during the molding process of the carrier; the acidity of the carrier is maintained at a relatively stable stage, the infrared acidity is 0.25-0.32 mmol/g, and the pore distribution is concentrated in the mesopore range. CN200710158366.1 discloses a composite oxide carrier and a preparation method. The precursors of alumina, silicon dioxide and zirconium oxide are co-precipitated with an alkaline solution, and a surfactant is added to improve the pore structure and acidity and alkalinity. The obtained precipitate is washed, filtered, and high-temperature calcined to obtain a composite oxide powder, and then extruded to obtain the carrier. The pore structure and acidity and alkalinity of the obtained carrier are adjustable in a wide range, with a specific surface area of 200-500m2 /g, a pore volume of 0.4-1.2mL/g, and a total NH3 - TPD acid content of 0.2-0.8mmol/g. CN200710158368.0 discloses a method for preparing a silicon- and zirconium-containing alumina dry gel powder, wherein after the aluminum-containing compound solution and the precipitant are gelled, the zirconium-containing compound solution is added under conditions such as controlling an appropriate pH value, and the silicon-containing compound is added before, after or simultaneously with the zirconium-containing compound, and then the silicon- and zirconium-containing alumina dry gel is obtained after washing, filtering, and drying.
可以看出,上述现有技术制备的各种催化剂/助剂用于催化裂化过程中,均在一定程度上达到增产低碳烯烃的目的,往往存在以下问题:一是在增加丙烯和丁烯的同时,液化气产率也增加,导致液化气中丙烯或者丁烯的浓度变化不大;另一方面,在增加丁烯的同时,丙烯产率也增加,导致丁烯的选择性变差。It can be seen that the various catalysts/auxiliaries prepared by the above-mentioned prior art are used in the catalytic cracking process to a certain extent to achieve the purpose of increasing the production of light olefins, but often have the following problems: first, while increasing propylene and butene, the yield of liquefied gas also increases, resulting in little change in the concentration of propylene or butene in the liquefied gas; on the other hand, while increasing butene, the yield of propylene also increases, resulting in poor butene selectivity.
从催化裂化过程碳四烯烃的生成和转化机理分析,催化裂化过程碳四烯烃的生成主要来自两个方面,一是原料中烃类大分子经单分子裂化反应或双分子裂化反应生成的活性中间体进行裂化的产物,二是裂化反应中形成的低碳数烯烃进行二次反应的产物。催化裂化过程中生成的碳四烯烃可进一步发生裂化反应、异构反应、二聚反应和氢转移反应。From the analysis of the formation and conversion mechanism of C4 olefins in the catalytic cracking process, the formation of C4 olefins in the catalytic cracking process mainly comes from two aspects: one is the product of the cracking of active intermediates generated by the monomolecular cracking reaction or bimolecular cracking reaction of hydrocarbon macromolecules in the raw materials, and the other is the product of the secondary reaction of low-carbon olefins formed in the cracking reaction. The C4 olefins generated in the catalytic cracking process can further undergo cracking reactions, isomerization reactions, dimerization reactions and hydrogen transfer reactions.
发明内容Summary of the invention
本发明的目的是提供一种硅铝锆复合氧化物、催化裂化催化剂及其制备方法和应用,本发明的催化裂化催化剂具有良好的重油裂化能力、碳四烯烃选择性和抗重金属污染性能。The purpose of the present invention is to provide a silicon-aluminum-zirconium composite oxide, a catalytic cracking catalyst, and a preparation method and application thereof. The catalytic cracking catalyst of the present invention has good heavy oil cracking ability, C4 olefin selectivity and resistance to heavy metal pollution.
为了实现上述目的,本发明第一方面提供一种硅铝锆复合氧化物,以所述硅铝锆复合氧化物的干基重量为基准,所述硅铝锆复合氧化物含有30-80重量%的Al2O3、15-55重量%的ZrO2和2-20重量%的SiO2,孔径范围为10-60nm的孔体积占总孔体积的70%以上,微反活性指数为30以上,所述孔径是指孔直径。In order to achieve the above-mentioned object, the first aspect of the present invention provides a silicon-aluminum-zirconium composite oxide, which contains 30-80 weight % of Al 2 O 3 , 15-55 weight % of ZrO 2 and 2-20 weight % of SiO 2 based on the dry weight of the silicon-aluminum-zirconium composite oxide, the pore volume with a pore diameter range of 10-60 nm accounts for more than 70% of the total pore volume, and the micro-reaction activity index is more than 30, and the pore diameter refers to the pore diameter.
可选地,以所述硅铝锆复合氧化物的干基重量为基准,所述硅铝锆复合氧化物含有40-75重量%的Al2O3、15-50重量%的ZrO2和5-15重量%的SiO2。Optionally, based on the dry weight of the silicon-aluminum-zirconium composite oxide, the silicon-aluminum-zirconium composite oxide contains 40-75 wt % of Al 2 O 3 , 15-50 wt % of ZrO 2 and 5-15 wt % of SiO 2 .
可选地,所述硅铝锆复合氧化物的孔径范围为10-60nm的孔体积占所述总孔体积的75-85%。Optionally, the pore volume of the silicon-aluminum-zirconium composite oxide with a pore diameter range of 10-60 nm accounts for 75-85% of the total pore volume.
可选地,所述硅铝锆复合氧化物的所述微反活性指数为35-50。Optionally, the micro-reaction activity index of the silicon-aluminum-zirconium composite oxide is 35-50.
本发明第二方面提供一种催化裂化催化剂,以所述催化裂化催化剂的干基重量为基准,所述催化裂化催化剂含有10-50重量%的Y型沸石、1-30重量%的β沸石、1-20重量%的ZSM-5沸石、3-40重量%的硅铝锆复合氧化物、10-70重量%的粘土和5-30重量%的粘结剂,所述硅铝锆复合氧化物为权利要求1或2所述的硅铝锆复合氧化物。A second aspect of the present invention provides a catalytic cracking catalyst, which contains, based on the dry weight of the catalytic cracking catalyst, 10-50 weight % of Y-type zeolite, 1-30 weight % of β zeolite, 1-20 weight % of ZSM-5 zeolite, 3-40 weight % of silicon-aluminum-zirconium composite oxide, 10-70 weight % of clay and 5-30 weight % of binder, wherein the silicon-aluminum-zirconium composite oxide is the silicon-aluminum-zirconium composite oxide according to claim 1 or 2.
可选地,所述催化裂化催化剂含有10-40重量%的所述Y型沸石、5-30重量%的所述β沸石、2-15重量%的所述ZSM-5沸石、5-35重量%的所述硅铝锆复合氧化物、10-55重量%的所述粘土和5-25重量%的所述粘结剂。Optionally, the catalytic cracking catalyst contains 10-40 wt% of the Y-type zeolite, 5-30 wt% of the β zeolite, 2-15 wt% of the ZSM-5 zeolite, 5-35 wt% of the silicon-aluminum-zirconium composite oxide, 10-55 wt% of the clay and 5-25 wt% of the binder.
可选地,所述Y型沸石选自含磷和/或稀土的Y型沸石、超稳Y沸石,以及,含磷和/或稀土的超稳Y沸石中的一种或几种;Optionally, the Y-type zeolite is selected from one or more of a Y-type zeolite containing phosphorus and/or rare earth, an ultrastable Y zeolite, and an ultrastable Y zeolite containing phosphorus and/or rare earth;
所述β沸石选自氢型β沸石和/或改性β沸石,所述改性β沸石含有磷、铁和稀土金属元素中的一种或几种;The beta zeolite is selected from hydrogen beta zeolite and/or modified beta zeolite, and the modified beta zeolite contains one or more of phosphorus, iron and rare earth metal elements;
所述ZSM-5沸石选自氢型ZSM-5沸石和/或含改性元素的ZSM-5型沸石,所述改性元素为磷、稀土和铁中的一种或几种;The ZSM-5 zeolite is selected from hydrogen-type ZSM-5 zeolite and/or ZSM-5 zeolite containing a modifying element, and the modifying element is one or more of phosphorus, rare earth and iron;
所述粘土选自高岭土、累托土、硅藻土、蒙脱土、膨润土和海泡石中的一种或者几种;The clay is selected from one or more of kaolin, rectorite, diatomaceous earth, montmorillonite, bentonite and sepiolite;
所述粘结剂选自铝溶胶、硅溶胶、硅铝复合溶胶、磷酸铝溶胶和酸化拟薄水铝石中的一种或几种。The binder is selected from one or more of aluminum sol, silica sol, silica-aluminum composite sol, aluminum phosphate sol and acidified pseudo-boehmite.
本发明第三方面提供一种制备本发明第一方面提供的硅铝锆复合氧化物的方法,该方法包括:The third aspect of the present invention provides a method for preparing the silicon-aluminum-zirconium composite oxide provided by the first aspect of the present invention, the method comprising:
(1)将含锆化合物、碳源与第一溶剂混合,调节混合物的pH值为5-10,并于15-40℃下搅拌0.5-4小时,得到第一浆料;所述碳源包括天然高分子有机化合物和/或半合成高分子有机化合物;(1) mixing a zirconium-containing compound, a carbon source and a first solvent, adjusting the pH value of the mixture to 5-10, and stirring at 15-40° C. for 0.5-4 hours to obtain a first slurry; the carbon source comprises a natural high molecular organic compound and/or a semi-synthetic high molecular organic compound;
(2)使铝源、第二溶剂和酸溶液在15-60℃下混合0.5-4小时,得到第二浆料;(2) mixing the aluminum source, the second solvent and the acid solution at 15-60° C. for 0.5-4 hours to obtain a second slurry;
(3)将所述第一浆料、所述第二浆料和硅源在0-40℃下混合0.1-2小时,进行第一干燥和/或第一焙烧。(3) Mixing the first slurry, the second slurry and the silicon source at 0-40° C. for 0.1-2 hours, and performing a first drying and/or a first calcination.
可选地,步骤(1)中,所述含锆化合物、所述碳源与所述第一溶剂用量的重量比为1:(0.01-0.20):(4-20),优选为1:(0.05-0.20):(5-15);所述含锆化合物以氧化锆计。Optionally, in step (1), the weight ratio of the zirconium-containing compound, the carbon source and the first solvent is 1:(0.01-0.20):(4-20), preferably 1:(0.05-0.20):(5-15); the zirconium-containing compound is calculated as zirconium oxide.
可选地,步骤(1)中,调节所述混合物的pH值为5-9。Optionally, in step (1), the pH value of the mixture is adjusted to 5-9.
可选地,步骤(2)中,所述酸溶液的浓度为2-45重量%;所述铝源和所述酸溶液用量的重量比为1:(0.01-0.3),优选为(0.06-0.25),所述铝源以氧化铝计。Optionally, in step (2), the concentration of the acid solution is 2-45 wt %; the weight ratio of the aluminum source to the acid solution is 1:(0.01-0.3), preferably (0.06-0.25), and the aluminum source is calculated as alumina.
可选地,步骤(3)包括:将所述第一浆料和所述第二浆料在15-40℃下搅拌混合0.1-1小时,在得到的混合物中加入所述硅源,于15-40℃下继续搅拌0.1-1小时。Optionally, step (3) comprises: stirring and mixing the first slurry and the second slurry at 15-40° C. for 0.1-1 hour, adding the silicon source to the obtained mixture, and continuing to stir at 15-40° C. for 0.1-1 hour.
可选地,所述含锆化合物选自四氯化锆、硫酸锆、硝酸锆、氧氯化锆、醋酸锆和异丙醇锆中的一种或几种;Optionally, the zirconium-containing compound is selected from one or more of zirconium tetrachloride, zirconium sulfate, zirconium nitrate, zirconium oxychloride, zirconium acetate and zirconium isopropoxide;
所述碳源选自淀粉、木质素、粘胶纤维、甲基纤维素、羟丙基甲基纤维素、羟乙基纤维素和羧甲基纤维素中的一种或几种;The carbon source is selected from one or more of starch, lignin, viscose fiber, methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose and carboxymethyl cellulose;
所述铝源选自拟薄水铝石、薄水铝石、氢氧化铝和氧化铝中的一种或几种;The aluminum source is selected from one or more of pseudo-boehmite, boehmite, aluminum hydroxide and aluminum oxide;
所述硅源选自硅溶胶、硅胶和水玻璃中的一种或几种;The silicon source is selected from one or more of silica sol, silica gel and water glass;
所述第一溶剂和第二溶剂各自独立地选自去离子水、乙醇和丙酮中的一种或几种;The first solvent and the second solvent are each independently selected from one or more of deionized water, ethanol and acetone;
所述酸溶液选自盐酸溶液、硫酸溶液、硝酸溶液、磷酸溶液、甲酸溶液、乙酸溶液、草酸溶液和柠檬酸溶液中的一种或几种。The acid solution is selected from one or more of hydrochloric acid solution, sulfuric acid solution, nitric acid solution, phosphoric acid solution, formic acid solution, acetic acid solution, oxalic acid solution and citric acid solution.
可选地,所述第一干燥的温度为80-200℃;所述第一焙烧的温度为300-700℃,时间为0.5-5小时。Optionally, the temperature of the first drying is 80-200° C.; the temperature of the first calcining is 300-700° C., and the time is 0.5-5 hours.
本发明第四方面提供一种制备本发明第二方面提供的催化裂化催化剂的方法,该方法包括:将所述Y型沸石、所述β沸石、所述ZSM-5沸石、所述硅铝锆复合氧化物、所述粘土、所述粘结剂和所述第三溶剂混合,将得到的第三浆料进行造粒,并进行第二干燥和/或第二焙烧;所述硅铝锆复合氧化物为本发明第一方面提供的硅铝锆复合氧化物。The fourth aspect of the present invention provides a method for preparing the catalytic cracking catalyst provided by the second aspect of the present invention, the method comprising: mixing the Y-type zeolite, the β zeolite, the ZSM-5 zeolite, the silica-aluminum-zirconium composite oxide, the clay, the binder and the third solvent, granulating the obtained third slurry, and performing a second drying and/or a second calcination; the silica-aluminum-zirconium composite oxide is the silica-aluminum-zirconium composite oxide provided by the first aspect of the present invention.
可选地,所述第三浆料的固含量为15-60重量%,所述硅铝锆复合氧化物以氧化硅、氧化锆和氧化铝的总和计;Optionally, the solid content of the third slurry is 15-60% by weight, and the silicon-aluminum-zirconium composite oxide is calculated as the sum of silicon oxide, zirconium oxide and aluminum oxide;
所述第三溶剂为去离子水和/或脱阳离子水。The third solvent is deionized water and/or decationized water.
可选地,所述第二干燥的温度为60-200℃;所述第二焙烧的温度为350-650℃,时间为0.5-5小时。Optionally, the second drying temperature is 60-200° C.; the second calcining temperature is 350-650° C., and the time is 0.5-5 hours.
本发明第五方面提供一种本发明第一方面提供的硅铝锆复合氧化物或第二方面提供的催化裂化催化剂在重质油催化裂化中的应用。The fifth aspect of the present invention provides an application of the silicon-aluminum-zirconium composite oxide provided in the first aspect of the present invention or the catalytic cracking catalyst provided in the second aspect in the catalytic cracking of heavy oil.
通过上述技术方案,本发明的硅铝锆复合氧化物具有优异的孔径分布和活性,含有该硅铝锆复合氧化物的催化裂化催化剂具有良好的重油裂化性能,可以提高对碳四烯烃的选择性和产率。Through the above technical scheme, the silicon-aluminum-zirconium composite oxide of the present invention has excellent pore size distribution and activity, and the catalytic cracking catalyst containing the silicon-aluminum-zirconium composite oxide has good heavy oil cracking performance and can improve the selectivity and yield of C4 olefins.
本发明的方法可以制备得到具有良好的催化性能的硅铝锆复合氧化物和催化裂化催化剂。The method of the invention can prepare silicon-aluminum-zirconium composite oxide and catalytic cracking catalyst with good catalytic performance.
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。Other features and advantages of the present invention will be described in detail in the following detailed description.
具体实施方式DETAILED DESCRIPTION
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。The specific embodiments of the present invention are described in detail below. It should be understood that the specific embodiments described herein are only used to illustrate and explain the present invention, and are not used to limit the present invention.
本发明第一方面提供一种硅铝锆复合氧化物,以硅铝锆复合氧化物的干基重量为基准,硅铝锆复合氧化物含有30-80重量%的Al2O3、15-55重量%的ZrO2和2-20重量%的SiO2,孔径范围为10-60nm的孔体积占总孔体积的70%以上,微反活性指数为30以上,孔径是指孔直径。其中,微反活性指数根据ASTM D3907标准方法测量得到。The first aspect of the present invention provides a silicon-aluminum-zirconium composite oxide, which contains 30-80 wt% Al 2 O 3 , 15-55 wt% ZrO 2 and 2-20 wt% SiO 2 based on the dry weight of the silicon-aluminum-zirconium composite oxide, the pore volume with a pore diameter range of 10-60 nm accounts for more than 70% of the total pore volume, and the micro-reaction activity index is more than 30, and the pore diameter refers to the pore diameter. The micro-reaction activity index is measured according to the ASTM D3907 standard method.
本发明的硅铝锆复合氧化物具有优异的孔径分布和活性以及良好的抗重金属污染能力,能够有效地捕捉原料中的重金属,避免重金属对分子筛活性组分的破坏,能够提高催化裂化反应过程中重质油大分子的预裂化反应,将其与催化裂化催化剂的分子筛组分结合,有利于为生产碳四烯烃提供更多的前身物,提高碳四烯烃的选择性和产率。The silicon-aluminum-zirconium composite oxide of the present invention has excellent pore size distribution and activity as well as good resistance to heavy metal pollution, can effectively capture heavy metals in raw materials, avoid heavy metal damage to the active components of molecular sieves, and can improve the pre-cracking reaction of heavy oil macromolecules during the catalytic cracking reaction. Combining it with the molecular sieve component of the catalytic cracking catalyst is beneficial to provide more precursors for the production of C4 olefins, thereby improving the selectivity and yield of C4 olefins.
在一种优选的具体实施方式中,以硅铝锆复合氧化物的干基重量为基准,硅铝锆复合氧化物含有40-75重量%的Al2O3、15-50重量%的ZrO2和5-15重量%的SiO2。In a preferred embodiment, the silicon-aluminum-zirconium composite oxide contains 40-75 wt% Al 2 O 3 , 15-50 wt% ZrO 2 and 5-15 wt% SiO 2 , based on the dry weight of the silicon-aluminum-zirconium composite oxide.
在一种具体实施方式中,硅铝锆复合氧化物的孔径范围为10-60nm的孔体积可以占总孔体积的75-85%。In a specific embodiment, the pore volume of the silicon-aluminum-zirconium composite oxide with a pore diameter ranging from 10 to 60 nm may account for 75 to 85% of the total pore volume.
在一种具体实施方式中,硅铝锆复合氧化物的微反活性指数可以为35-50。In a specific embodiment, the micro-reaction activity index of the silicon-aluminum-zirconium composite oxide may be 35-50.
本发明第二方面提供一种催化裂化催化剂,以催化裂化催化剂的干基重量为基准,催化裂化催化剂含有10-50重量%的Y型沸石、1-30重量%的β沸石、1-20重量%的ZSM-5沸石、3-40重量%的硅铝锆复合氧化物、10-70重量%的粘土和5-30重量%的粘结剂,硅铝锆复合氧化物为本发明第一方面提供的硅铝锆复合氧化物。The second aspect of the present invention provides a catalytic cracking catalyst, which contains, based on the dry weight of the catalytic cracking catalyst, 10-50 weight % of Y-type zeolite, 1-30 weight % of β zeolite, 1-20 weight % of ZSM-5 zeolite, 3-40 weight % of silicon-aluminum-zirconium composite oxide, 10-70 weight % of clay and 5-30 weight % of binder, and the silicon-aluminum-zirconium composite oxide is the silicon-aluminum-zirconium composite oxide provided by the first aspect of the present invention.
本发明的催化裂化催化剂具有良好的催化性能和抗重金属污染能力,能够提高对碳四烯烃的选择性和产率,可以促进重质油大分子的裂化过程,降低油浆和柴油产率、提高汽油产率。将本发明的催化裂化催化剂用于重质油的催化裂化过程时,重质油的转化率高,碳四烯烃的产率和选择性高。The catalytic cracking catalyst of the present invention has good catalytic performance and heavy metal pollution resistance, can improve the selectivity and yield of C4 olefins, can promote the cracking process of heavy oil macromolecules, reduce the yield of slurry oil and diesel, and improve the yield of gasoline. When the catalytic cracking catalyst of the present invention is used in the catalytic cracking process of heavy oil, the conversion rate of heavy oil is high, and the yield and selectivity of C4 olefins are high.
在一种优选的具体实施方式中,催化裂化催化剂含有10-40重量%的Y型沸石、5-30重量%的β沸石、2-15重量%的ZSM-5沸石、5-35重量%的硅铝锆复合氧化物、10-55重量%的粘土和5-25重量%的粘结剂。In a preferred embodiment, the catalytic cracking catalyst contains 10-40 wt% of Y-type zeolite, 5-30 wt% of β zeolite, 2-15 wt% of ZSM-5 zeolite, 5-35 wt% of silicon-aluminum-zirconium composite oxide, 10-55 wt% of clay and 5-25 wt% of binder.
根据本发明,Y型沸石、β沸石和ZSM-5沸石为本领域的技术人员所熟知的,例如,Y型沸石可以选自含磷和/或稀土的Y型沸石、超稳Y沸石,以及,含磷和/或稀土的超稳Y沸石中的一种或几种。β沸石可以选自氢型β沸石和/或改性β沸石,改性β沸石可以含有磷、铁和稀土金属元素中的一种或几种。ZSM-5沸石可以选自氢型ZSM-5沸石和/或含改性元素的ZSM-5型沸石,改性元素为磷、稀土和铁中的一种或几种。According to the present invention, Y-type zeolite, beta zeolite and ZSM-5 zeolite are well known to those skilled in the art, for example, Y-type zeolite can be selected from one or more of Y-type zeolite containing phosphorus and/or rare earth, ultrastable Y zeolite, and ultrastable Y zeolite containing phosphorus and/or rare earth. Beta zeolite can be selected from hydrogen beta zeolite and/or modified beta zeolite, and the modified beta zeolite can contain one or more of phosphorus, iron and rare earth metal elements. ZSM-5 zeolite can be selected from hydrogen ZSM-5 zeolite and/or ZSM-5 zeolite containing modifying elements, and the modifying elements are one or more of phosphorus, rare earth and iron.
根据本发明,粘土为本领域的技术人员所常规采用的,例如可以选自高岭土、累托土、硅藻土、蒙脱土、膨润土和海泡石中的一种或者几种的混合物。According to the present invention, the clay is commonly used by those skilled in the art, and can be selected from, for example, kaolin, rectorite, diatomaceous earth, montmorillonite, bentonite and sepiolite, or a mixture of several thereof.
根据本发明,粘结剂为本领域的技术人员所常规采用的,可以通过商购或按照现有方法制备,优选地,粘结剂选自铝溶胶、硅溶胶、硅铝复合溶胶、磷酸铝溶胶和酸化拟薄水铝石中的一种或几种。其中,酸化拟薄水铝石的制备方法为本领域的技术人员公知,例如采用盐酸酸化拟薄水铝石时,盐酸(以36%盐酸计)与拟薄水铝石(以氧化铝计)的质量为0.10-0.20。磷酸铝溶胶可按照专利CN1008974C和CN1083512A提供的方法制备,硅溶胶可按照美国专利US3957689和US3867308提供的方法制备。According to the present invention, the binder is conventionally used by those skilled in the art, and can be purchased commercially or prepared according to existing methods. Preferably, the binder is selected from one or more of aluminum sol, silica sol, silica-aluminum composite sol, aluminum phosphate sol and acidified pseudo-boehmite. Among them, the preparation method of acidified pseudo-boehmite is well known to those skilled in the art. For example, when hydrochloric acid is used to acidify pseudo-boehmite, the mass of hydrochloric acid (calculated as 36% hydrochloric acid) and pseudo-boehmite (calculated as alumina) is 0.10-0.20. Aluminum phosphate sol can be prepared according to the methods provided in patents CN1008974C and CN1083512A, and silica sol can be prepared according to the methods provided in US Pat. Nos. 3,957,689 and 3,867,308.
本发明第三方面提供一种制备本发明第一方面提供的硅铝锆复合氧化物的方法,该方法包括:The third aspect of the present invention provides a method for preparing the silicon-aluminum-zirconium composite oxide provided by the first aspect of the present invention, the method comprising:
(1)将含锆化合物、碳源与第一溶剂混合,调节混合物的pH值为5-10,并于15-40℃下搅拌0.5-4小时,得到第一浆料;碳源包括天然高分子有机化合物和/或半合成高分子有机化合物;(1) mixing a zirconium-containing compound, a carbon source and a first solvent, adjusting the pH value of the mixture to 5-10, and stirring at 15-40° C. for 0.5-4 hours to obtain a first slurry; the carbon source comprises a natural high molecular organic compound and/or a semi-synthetic high molecular organic compound;
(2)使铝源、第二溶剂和酸溶液在15-60℃下混合0.5-4小时,得到第二浆料;(2) mixing the aluminum source, the second solvent and the acid solution at 15-60° C. for 0.5-4 hours to obtain a second slurry;
(3)将第一浆料、第二浆料和硅源在0-40℃下混合0.1-2小时,进行第一干燥和/或第一焙烧。(3) The first slurry, the second slurry and the silicon source are mixed at 0-40° C. for 0.1-2 hours, and a first drying and/or a first calcination is performed.
根据本发明,步骤(1)中的混合时间是指将第一浆料、第二浆料和硅源加料完成后得到浆料,对浆料进行混合的时间。According to the present invention, the mixing time in step (1) refers to the time for mixing the slurry obtained after the first slurry, the second slurry and the silicon source are added.
根据本发明,步骤(1)中,含锆化合物、碳源与第一溶剂用量的重量比可以在较大的范围内变化,例如可以为1:(0.01-0.20):(4-20),含锆化合物以氧化锆计;优选地,含锆化合物、碳源与第一溶剂用量的重量比为1:(0.05-0.2):(5-15)。According to the present invention, in step (1), the weight ratio of the zirconium-containing compound, the carbon source and the first solvent can vary within a large range, for example, it can be 1: (0.01-0.20): (4-20), where the zirconium-containing compound is calculated as zirconium oxide; preferably, the weight ratio of the zirconium-containing compound, the carbon source and the first solvent is 1: (0.05-0.2): (5-15).
根据本发明,含锆化合物可以选自四氯化锆、硫酸锆、硝酸锆、氧氯化锆、醋酸锆和异丙醇锆中的一种或几种。第一溶剂和第二溶剂可以各自独立地选自去离子水、乙醇和丙酮中的一种或几种,优选为去离子水。According to the present invention, the zirconium-containing compound can be selected from one or more of zirconium tetrachloride, zirconium sulfate, zirconium nitrate, zirconium oxychloride, zirconium acetate and zirconium isopropoxide. The first solvent and the second solvent can be independently selected from one or more of deionized water, ethanol and acetone, preferably deionized water.
根据本发明,碳源为天然高分子有机化合物和/或半合成高分子有机化合物,在一种具体实施方式中,碳源选自淀粉、木质素、粘胶纤维、甲基纤维素、羟丙基甲基纤维素、羟乙基纤维素和羧甲基纤维素中的一种或几种。本发明的发明人发现,碳源不仅有利于第一浆料中含锆物质的均匀分散,避免其聚集形成较大颗粒,而且经过第一焙烧后,由于自身的分解,会在所得复合物中形成良好的孔道结构。According to the present invention, the carbon source is a natural high molecular organic compound and/or a semi-synthetic high molecular organic compound. In a specific embodiment, the carbon source is selected from one or more of starch, lignin, viscose fiber, methyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose and carboxymethyl cellulose. The inventors of the present invention have found that the carbon source is not only conducive to the uniform dispersion of the zirconium-containing substance in the first slurry, avoiding its aggregation to form larger particles, but also after the first calcination, due to its own decomposition, a good pore structure will be formed in the resulting composite.
根据本发明,步骤(1)中,使含锆化合物、碳源与第一溶剂形成混合物,然后调节混合物的pH值为5-10,优选为5-8.5。对调节混合物pH值的方式不做具体限制,例如可以通过加入碱性溶液来调节第一浆料的pH值,碱性溶液可以为氨水、水玻璃水溶液、偏铝酸钠水溶液和氢氧化钠水溶液中的一种或几种,优选为氨水。碱性溶液的浓度可以在较大的范围内变化,在一种具体实施方式中,碱性溶液以OH-计的浓度可以为2-20重量%,优选为3-15重量%。在另一种具体实施方式中,碱性溶液为稀氨水,稀氨水以NH3计的浓度为2-20重量%,优选为3-15重量%。According to the present invention, in step (1), a zirconium-containing compound, a carbon source and a first solvent are formed into a mixture, and then the pH value of the mixture is adjusted to 5-10, preferably 5-8.5. There is no specific restriction on the way to adjust the pH value of the mixture. For example, the pH value of the first slurry can be adjusted by adding an alkaline solution, and the alkaline solution can be one or more of ammonia water, water glass aqueous solution, sodium metaaluminate aqueous solution and sodium hydroxide aqueous solution, preferably ammonia water. The concentration of the alkaline solution can vary over a large range. In one embodiment, the concentration of the alkaline solution in terms of OH- can be 2-20% by weight, preferably 3-15% by weight. In another embodiment, the alkaline solution is dilute ammonia water, and the concentration of the dilute ammonia water in terms of NH3 is 2-20% by weight, preferably 3-15% by weight.
在一种具体实施方式中,步骤(1)中,在调节完混合物的pH值后,在15-30℃下搅拌混合物0.5-2小时,得到第一浆料。In a specific embodiment, in step (1), after adjusting the pH value of the mixture, the mixture is stirred at 15-30° C. for 0.5-2 hours to obtain a first slurry.
根据本发明,步骤(2)中,酸溶液浓度可以在较大的范围内变化。例如可以为2-45重量%,优选为5-15重量%;铝源和酸溶液用量的重量比也可以在较大的范围内变化,例如可以为1:(0.01-0.3),优选为1:(0.05-0.25),更优选为1:(0.06-0.25),进一步优选为1:(0.1-0.2),铝源以氧化铝计。在一种具体实施方式中,酸溶液优选为盐酸,铝源和酸溶液用量的重量比优选为1:(0.05-0.25),更优选为1:(0.06-0.25),进一步优选为1:(0.1-0.2),铝源以氧化铝计,酸溶液用量以36重量%的盐酸计。According to the present invention, in step (2), the concentration of the acid solution can vary in a wide range. For example, it can be 2-45% by weight, preferably 5-15% by weight; the weight ratio of the aluminum source and the acid solution can also vary in a wide range, for example, it can be 1: (0.01-0.3), preferably 1: (0.05-0.25), more preferably 1: (0.06-0.25), and further preferably 1: (0.1-0.2), the aluminum source is calculated as aluminum oxide. In a specific embodiment, the acid solution is preferably hydrochloric acid, the weight ratio of the aluminum source and the acid solution is preferably 1: (0.05-0.25), more preferably 1: (0.06-0.25), and further preferably 1: (0.1-0.2), the aluminum source is calculated as aluminum oxide, and the acid solution is calculated as 36% by weight of hydrochloric acid.
在一种具体实施方式中,使铝源和酸溶液形成混合物,然后于15-60℃下搅拌0.5-4小时,得到第二浆料,第二料浆的固含量优选为15~45重量%。In a specific embodiment, the aluminum source and the acid solution are mixed and then stirred at 15-60° C. for 0.5-4 hours to obtain a second slurry. The solid content of the second slurry is preferably 15-45% by weight.
在一种具体实施方式中,酸溶液可以选自盐酸溶液、硫酸溶液、硝酸溶液、磷酸溶液、甲酸溶液、乙酸溶液、草酸溶液和柠檬酸溶液中的一种或几种,优选为盐酸溶液和/或硝酸溶液。In a specific embodiment, the acid solution can be selected from one or more of hydrochloric acid solution, sulfuric acid solution, nitric acid solution, phosphoric acid solution, formic acid solution, acetic acid solution, oxalic acid solution and citric acid solution, preferably hydrochloric acid solution and/or nitric acid solution.
根据本发明,步骤(3)可以包括:将第一浆料和第二浆料在15-40℃下搅拌混合0.1-1小时,优选在15-30℃下搅拌混合10-30分钟,在得到的混合物中加入硅源,于15-40℃下继续搅拌混合物10-60分钟,优选在15-30℃下搅拌混合10-30分钟。硅源为本领域的技术人员所熟知的,可以为有机硅源和/或无机硅源,优选为硅溶胶、硅胶和水玻璃中的一种或几种,更优选为硅溶胶。According to the present invention, step (3) may include: stirring and mixing the first slurry and the second slurry at 15-40° C. for 0.1-1 hour, preferably at 15-30° C. for 10-30 minutes, adding a silicon source to the obtained mixture, and continuing to stir the mixture at 15-40° C. for 10-60 minutes, preferably at 15-30° C. for 10-30 minutes. The silicon source is well known to those skilled in the art, and may be an organic silicon source and/or an inorganic silicon source, preferably one or more of silica sol, silica gel and water glass, and more preferably silica sol.
根据本发明,第一干燥的温度可以为80-200℃,优选地,温度为80-120℃,对第一干燥的时间可以在较大的范围内变化对此不做具体限定;第一焙烧的温度可以为350-700℃,时间可以为0.5-5小时,温度为350-600℃,时间为1.0-3.0小时。According to the present invention, the temperature of the first drying can be 80-200°C, preferably, the temperature is 80-120°C, and the time of the first drying can vary within a large range without specific limitation; the temperature of the first roasting can be 350-700°C, the time can be 0.5-5 hours, the temperature is 350-600°C, and the time is 1.0-3.0 hours.
上述干燥和焙烧为本领域的技术人员所熟知的,例如可以在恒温干燥箱中进行干燥,在马弗炉、管式炉中进行焙烧。The above-mentioned drying and calcining are well known to those skilled in the art. For example, the drying can be carried out in a constant temperature drying oven, and the calcining can be carried out in a muffle furnace or a tubular furnace.
本发明第四方面提供一种制备本发明第二方面提供的催化裂化催化剂的方法,该方法包括:将Y型沸石、β沸石、ZSM-5沸石、硅铝锆复合氧化物、粘土、粘结剂和第三溶剂混合,将得到的第三浆料进行造粒,并进行第二干燥和/或第二焙烧;硅铝锆复合氧化物为本发明第一方面提供的硅铝锆复合氧化物。The fourth aspect of the present invention provides a method for preparing the catalytic cracking catalyst provided by the second aspect of the present invention, the method comprising: mixing Y-type zeolite, β zeolite, ZSM-5 zeolite, silica-aluminum-zirconium composite oxide, clay, a binder and a third solvent, granulating the obtained third slurry, and performing a second drying and/or a second calcination; the silica-aluminum-zirconium composite oxide is the silica-aluminum-zirconium composite oxide provided by the first aspect of the present invention.
根据本发明,粘土可以选自高岭土、累托土、硅藻土、蒙脱土、膨润土和海泡石中的一种或几种;粘结剂可以选自铝溶胶、硅溶胶、硅铝复合溶胶、磷酸铝溶胶和酸化拟薄水铝石中的一种或几种;第三溶剂可以为水,例如选自去离子水和/或脱阳离子水。According to the present invention, the clay can be selected from one or more of kaolin, rectorite, diatomaceous earth, montmorillonite, bentonite and sepiolite; the binder can be selected from one or more of aluminum sol, silica sol, silica-aluminum composite sol, aluminum phosphate sol and acidified pseudo-boehmite; the third solvent can be water, for example, selected from deionized water and/or decationized water.
一种优选的具体实施方式,将第三溶剂、粘土、硅铝锆复合氧化物和粘结剂混合打浆,将得到的浆料与Y型沸石、β沸石和ZSM-5沸石混合搅拌,经过喷雾造粒、焙烧,任选地洗涤和干燥,得到本发明的催化裂化催化剂。优选地,在打浆时加入酸,或者,在打浆后加入酸,调节浆料的pH值为1-5,优选为2-4,并于30-90℃老化0.5-5小时。酸可以为溶于水的无机酸或者有机酸,优选为盐酸、硝酸和磷酸中的一种或几种。其中,喷雾干燥的方法和条件为本领域的技术人员所熟知的,在此不再赘述。A preferred specific embodiment is to mix and slurry the third solvent, clay, silicon-aluminum-zirconium composite oxide and a binder, mix and stir the obtained slurry with Y-type zeolite, β-zeolite and ZSM-5 zeolite, spray granulate, roast, and optionally wash and dry to obtain the catalytic cracking catalyst of the present invention. Preferably, an acid is added during slurrying, or an acid is added after slurrying to adjust the pH value of the slurry to 1-5, preferably 2-4, and age at 30-90°C for 0.5-5 hours. The acid can be a water-soluble inorganic acid or organic acid, preferably one or more of hydrochloric acid, nitric acid and phosphoric acid. Among them, the method and conditions of spray drying are well known to those skilled in the art and will not be repeated here.
根据本发明第三浆料固含量可以为15-60重量%,优选为15-50重量%,硅铝锆复合氧化物以氧化硅、氧化锆和氧化铝的总和计。According to the present invention, the solid content of the third slurry may be 15-60% by weight, preferably 15-50% by weight, and the silicon-aluminum-zirconium composite oxide is calculated as the sum of silicon oxide, zirconium oxide and aluminum oxide.
根据本发明,第二干燥的温度为80-200℃,优选地,温度为80-120℃,第二干燥的时间可以根据实际需要进行选择,对此不做具体限制;第二焙烧的温度为350-800℃,时间为0.5-6小时,优选地,温度为400-650℃,时间为1-4小时,可以在任意气氛中进行焙烧,例如空气。According to the present invention, the temperature of the second drying is 80-200°C, preferably, the temperature is 80-120°C, and the time of the second drying can be selected according to actual needs, without specific restrictions; the temperature of the second calcination is 350-800°C, and the time is 0.5-6 hours, preferably, the temperature is 400-650°C, and the time is 1-4 hours, and the calcination can be carried out in any atmosphere, such as air.
本发明第五方面提供本发明第一方面提供的硅铝锆复合氧化物或本发明第二方面提供的催化裂化催化剂在重质油催化裂化中的应用。The fifth aspect of the present invention provides use of the silicon-aluminum-zirconium composite oxide provided by the first aspect of the present invention or the catalytic cracking catalyst provided by the second aspect of the present invention in catalytic cracking of heavy oil.
下面通过实施例来进一步说明本发明,但是本发明并不因此而受到任何限制。The present invention is further described below by way of examples, but the present invention is not limited thereto.
制备催化剂中所用原料说明如下:高岭土由苏州高岭土公司生产,固含量为76重量%;铝溶胶中的氧化铝含量为21.5重量%;硅溶胶中的氧化硅含量为25重量%;拟薄水铝石由山东铝厂生产,固含量为62.0重量%;盐酸由北京化工厂生产,规格为分析纯,质量浓度36%;所用的超稳Y沸石USY的固含量94.7%,晶胞常数为以重量百分比含量计,Na2O含量为1.3%;稀土超稳Y沸石REUSY的固含量84.8%,晶胞常数为以重量百分比含量计,Na2O含量为1.6%,RE2O3含量为12.0%;氢型β沸石的固含量75%,SiO2/Al2O3=25,Na2O含量为0.15%。磷改性β沸石的固含量82.5%,SiO2/Al2O3=25,Na2O含量为0.15%,P2O5含量为7.0%。HZSM-5沸石,SiO2/Al2O3=40~50,Na2O含量3.5%,固含量75重量%。磷改性ZSM-5沸石,SiO2/Al2O3=40~50,Na2O含量0.12%,P2O5含量为2.1%,固含量83重量%。The raw materials used in the preparation of the catalyst are as follows: kaolin produced by Suzhou Kaolin Company, with a solid content of 76% by weight; the aluminum oxide content in the aluminum sol is 21.5% by weight; the silicon oxide content in the silica sol is 25% by weight; pseudo-boehmite is produced by Shandong Aluminum Plant, with a solid content of 62.0% by weight; hydrochloric acid is produced by Beijing Chemical Plant, with a specification of analytical grade and a mass concentration of 36%; the ultra-stable Y zeolite USY used has a solid content of 94.7% and a unit cell constant of In terms of weight percentage, the Na 2 O content is 1.3%; the solid content of the rare earth ultrastable Y zeolite REUSY is 84.8%, and the unit cell constant is In terms of weight percentage, the Na 2 O content is 1.6%, and the RE 2 O 3 content is 12.0%; the solid content of hydrogen beta zeolite is 75%, SiO 2 /Al 2 O 3 = 25, and the Na 2 O content is 0.15%. The solid content of phosphorus-modified beta zeolite is 82.5%, SiO 2 /Al 2 O 3 = 25, the Na 2 O content is 0.15%, and the P 2 O 5 content is 7.0%. HZSM-5 zeolite, SiO 2 /Al 2 O 3 = 40-50, the Na 2 O content is 3.5%, and the solid content is 75% by weight. Phosphorus-modified ZSM-5 zeolite, SiO 2 /Al 2 O 3 = 40-50, the Na 2 O content is 0.12%, the P 2 O 5 content is 2.1%, and the solid content is 83% by weight.
上述Y型沸石、β沸石、ZSM-5沸石均由中国石化催化剂有限公司生产,其余试剂由国药集团化学试剂有限公司生产,规格均为分析纯。The above-mentioned Y-type zeolite, β-zeolite and ZSM-5 zeolite are all produced by Sinopec Catalyst Co., Ltd., and the remaining reagents are produced by Sinopharm Chemical Reagent Co., Ltd., and the specifications are all analytically pure.
微反活性指数:采用RIPP92-90的标准方法(见《石油化工分析方法》(RIPP试验方法)杨翠定等编,科学出版社,1990年出版)评价样品的轻油微反活性,催化剂装量为5.0g,反应温度460℃,原料油为馏程235-337℃直馏轻柴油,产物组成由气相色谱分析,根据产物组成计算出轻油微反活性。Micro-reaction activity index: The standard method of RIPP92-90 (see "Petrochemical Analysis Method" (RIPP Test Method) edited by Yang Cuiding et al., Science Press, published in 1990) was used to evaluate the light oil micro-reaction activity of the sample. The catalyst loading was 5.0 g, the reaction temperature was 460°C, the feed oil was straight-run light diesel with a distillation range of 235-337°C, and the product composition was analyzed by gas chromatography. The light oil micro-reaction activity was calculated based on the product composition.
孔体积:采用氮气吸附-脱附法根据ASTM D4365进行测试,计算样品的比表面积和孔体积。Pore volume: The nitrogen adsorption-desorption method was used to test according to ASTM D4365 to calculate the specific surface area and pore volume of the sample.
催化剂组成分析:采用X射线荧光光谱(XRF)法,催化剂组成分析结果见表2-4。Catalyst composition analysis: The X-ray fluorescence spectroscopy (XRF) method was used, and the results of catalyst composition analysis are shown in Table 2-4.
实施例1-8为制备硅铝锆复合氧化物的实施例,对比例1-4为制备对比的硅铝锆复合氧化物的对比例:Examples 1-8 are examples of preparing silicon-aluminum-zirconium composite oxides, and Comparative Examples 1-4 are comparative examples of preparing comparative silicon-aluminum-zirconium composite oxides:
实施例1Example 1
(1)取915g氧氯化锆(ZrOCl2·8H2O)和17.5g羟丙基甲基纤维素,用1400g去离子水打浆后,用稀氨水调节混合物的pH值为7.0,15℃下搅拌3.0小时,得到第一浆料;其中,稀氨水以NH3计的浓度为12重量%;氧氯化锆、羟丙基甲基纤维素和去离子水用量的重量比为1:0.05:4;(1) 915 g of zirconium oxychloride (ZrOCl 2 ·8H 2 O) and 17.5 g of hydroxypropyl methylcellulose were slurried with 1400 g of deionized water, the pH value of the mixture was adjusted to 7.0 with dilute ammonia water, and stirred at 15° C. for 3.0 hours to obtain a first slurry; wherein the concentration of the dilute ammonia water in terms of NH 3 was 12% by weight; and the weight ratio of the zirconium oxychloride, hydroxypropyl methylcellulose and deionized water was 1:0.05:4;
(2)将806g拟薄水铝石、3144g去离子水和50g盐酸(浓度36重量%的盐酸)搅拌下混合,将得到的混合物于50℃搅拌1小时,得到第二浆料;(2) 806 g of pseudo-boehmite, 3144 g of deionized water and 50 g of hydrochloric acid (hydrochloric acid with a concentration of 36 wt %) were mixed under stirring, and the obtained mixture was stirred at 50° C. for 1 hour to obtain a second slurry;
(3)将第一浆料和第二浆料于15℃混合,然后于15℃搅拌20分钟,然后加入600g硅溶胶,继续15℃搅拌20分钟,过滤得到固体,将固体于120℃下干燥4小时后,于550℃焙烧2小时,得到硅铝锆复合氧化物SAZ-1,其中氧化铝为50%,氧化锆为35%,氧化硅为15%(重量含量,下同)。(3) The first slurry and the second slurry were mixed at 15°C, and then stirred at 15°C for 20 minutes. Then, 600 g of silica sol was added, and stirring was continued at 15°C for 20 minutes. The solid was filtered to obtain a solid. After the solid was dried at 120°C for 4 hours, it was calcined at 550°C for 2 hours to obtain a silicon-aluminum-zirconium composite oxide SAZ-1, in which aluminum oxide accounted for 50%, zirconium oxide accounted for 35%, and silicon oxide accounted for 15% (weight content, the same below).
实施例2Example 2
(1)取392g异丙醇锆和7.5g甲基纤维素,用600g去离子水打浆后,用氢氧化钠溶液调节混合物的pH值为5.5,40℃搅拌1.0小时,得到第一浆料;其中,氢氧化钠溶液OH-计的浓度为5重量%;异丙醇锆、甲基纤维素和去离子水用量的重量比为1:0.05:4;(1) 392 g of zirconium isopropoxide and 7.5 g of methyl cellulose were slurried with 600 g of deionized water, the pH value of the mixture was adjusted to 5.5 with sodium hydroxide solution, and stirred at 40° C. for 1.0 hour to obtain a first slurry; wherein the concentration of the sodium hydroxide solution in terms of OH- is 5% by weight; and the weight ratio of the zirconium isopropoxide, methyl cellulose and deionized water is 1:0.05:4;
(2)将1161g拟薄水铝石、4269g去离子水和108g盐酸(浓度36重量%的盐酸)搅拌下混合,将得到的混合物于17℃搅拌4小时,得到第二浆料;(2) 1161 g of pseudo-boehmite, 4269 g of deionized water and 108 g of hydrochloric acid (hydrochloric acid with a concentration of 36 wt %) were mixed under stirring, and the obtained mixture was stirred at 17° C. for 4 hours to obtain a second slurry;
(3)将第一浆料和第二浆料于40℃混合,然后于40℃搅拌15分钟,然后加入520g水玻璃,继续于40℃搅拌25分钟,过滤得到固体,将固体于120℃下干燥4小时后,于550℃焙烧2小时,得到硅铝锆复合氧化物SAZ-2,其中为氧化铝为72%,氧化锆为15%,氧化硅为13%。(3) The first slurry and the second slurry were mixed at 40°C, and then stirred at 40°C for 15 minutes. Then, 520 g of water glass was added, and the stirring was continued at 40°C for 25 minutes. The solid was filtered to obtain a solid. After the solid was dried at 120°C for 4 hours, it was calcined at 550°C for 2 hours to obtain a silicon-aluminum-zirconium composite oxide SAZ-2, in which aluminum oxide accounted for 72%, zirconium oxide accounted for 15%, and silicon oxide accounted for 13%.
实施例3Example 3
(1)取523g硝酸锆和30g木质素,用1114g去离子水打浆后,用稀氨水调节混合物的pH值为8.0,25℃搅拌0.5小时,得到第一浆料;稀氨水以NH3计的浓度为5重量%,硝酸锆、木质素和去离子水用量的重量比为1:0.15:6;(1) 523 g of zirconium nitrate and 30 g of lignin were taken, and after pulping with 1114 g of deionized water, the pH value of the mixture was adjusted to 8.0 with dilute ammonia water, and stirred at 25° C. for 0.5 hour to obtain a first slurry; the concentration of the dilute ammonia water in terms of NH 3 was 5% by weight, and the weight ratio of the zirconium nitrate, lignin and deionized water was 1:0.15:6;
(2)将1129g拟薄水铝石、4331g去离子水和140g盐酸(浓度36重量%的盐酸)搅拌下混合,将得到的混合物于60℃搅拌0.5小时,得到第二浆料;(2) 1129 g of pseudo-boehmite, 4331 g of deionized water and 140 g of hydrochloric acid (hydrochloric acid with a concentration of 36 wt %) were mixed under stirring, and the obtained mixture was stirred at 60° C. for 0.5 hour to obtain a second slurry;
(3)将第二浆料冷却到25℃,加入到第一浆料中,于25℃下搅拌15分钟,然后加入400g硅溶胶,继续于25℃下搅拌30分钟,过滤得到固体,将固体于120℃下干燥4小时后,于550℃焙烧2小时,得到硅铝锆复合氧化物SAZ-3,其中氧化铝为70%,氧化锆为20%,氧化硅为10%。(3) The second slurry is cooled to 25°C, added to the first slurry, and stirred at 25°C for 15 minutes. Then, 400 g of silica sol is added, and stirring is continued at 25°C for 30 minutes. The solid is filtered to obtain a solid. The solid is dried at 120°C for 4 hours, and then calcined at 550°C for 2 hours to obtain a silicon-aluminum-zirconium composite oxide SAZ-3, in which aluminum oxide accounts for 70%, zirconium oxide accounts for 20%, and silicon oxide accounts for 10%.
实施例4Example 4
(1)取837g硝酸锆和32g粘胶纤维,用1130g去离子水打浆后,用稀氨水调节混合物的pH值为7.5,15℃下搅拌1.5小时,得到第一浆料;其中,稀氨水以NH3计的浓度为12重量%;硝酸锆、粘胶纤维和去离子水用量的重量比为1:0.1:4;(1) 837 g of zirconium nitrate and 32 g of viscose fiber were pulped with 1130 g of deionized water, the pH value of the mixture was adjusted to 7.5 with dilute ammonia water, and the mixture was stirred at 15° C. for 1.5 hours to obtain a first slurry; wherein the concentration of the dilute ammonia water in terms of NH 3 was 12% by weight; and the weight ratio of the zirconium nitrate, viscose fiber and deionized water was 1:0.1:4;
(2)将1016g拟薄水铝石、3792g去离子水和38g盐酸(浓度36重量%的盐酸)搅拌混合,将得到的混合物于60℃搅拌1.5小时,得到第二浆料;(2) 1016 g of pseudo-boehmite, 3792 g of deionized water and 38 g of hydrochloric acid (hydrochloric acid with a concentration of 36 wt %) were stirred and mixed, and the obtained mixture was stirred at 60° C. for 1.5 hours to obtain a second slurry;
(3)将第二浆料冷却到22℃,加入第一浆料中,于22℃下搅拌30分钟,然后加入320g硅溶胶,继续于22℃下搅拌30分钟,过滤得到固体,将其120℃下干燥4小时后,于550℃焙烧2小时,得到硅铝锆复合氧化物SAZ-4,其中氧化铝为63%,氧化锆为32%,氧化硅为5%。(3) The second slurry was cooled to 22°C, added to the first slurry, and stirred at 22°C for 30 minutes. Then, 320 g of silica sol was added, and stirring was continued at 22°C for 30 minutes. The solid was filtered to obtain a solid. After drying at 120°C for 4 hours, it was calcined at 550°C for 2 hours to obtain a silicon-aluminum-zirconium composite oxide SAZ-4, in which aluminum oxide accounted for 63%, zirconium oxide accounted for 32%, and silicon oxide accounted for 5%.
实施例5Example 5
(1)取1308g氧氯化锆(ZrOCl2·8H2O)和100g木质素,用2400g去离子水打浆后,用稀氨水调节混合物的pH值为9.0,15℃下搅拌2.0小时,得到第一浆料;其中,稀氨水NH3计的浓度为12重量%;氧氯化锆、木质素和去离子水用量的重量比为1:0.2:5;(1) 1308 g of zirconium oxychloride (ZrOCl 2 ·8H 2 O) and 100 g of lignin were slurried with 2400 g of deionized water, the pH value of the mixture was adjusted to 9.0 with dilute ammonia water, and stirred at 15° C. for 2.0 hours to obtain a first slurry; wherein the concentration of the dilute ammonia water NH 3 was 12% by weight; and the weight ratio of the zirconium oxychloride, lignin and deionized water was 1:0.2:5;
(2)将484g拟薄水铝石、1880g去离子水和36g盐酸(浓度为36重量%的盐酸)搅拌混合;将得到的混合物于室温(25℃)搅拌1小时,得到第二浆料;(2) 484 g of pseudo-boehmite, 1880 g of deionized water and 36 g of hydrochloric acid (hydrochloric acid with a concentration of 36 wt %) were stirred and mixed; the obtained mixture was stirred at room temperature (25° C.) for 1 hour to obtain a second slurry;
(3)将第一浆料和第二浆料于15℃下混合,然后于15℃下搅拌20分钟,然后加入800g硅溶胶,继续于15℃下搅拌40分钟,过滤得到固体,将其120℃下干燥4小时后,于550℃焙烧2小时,得到硅铝锆复合氧化物SAZ-4,其中氧化铝为30%,氧化锆为51%,氧化硅为19%。(3) The first slurry and the second slurry were mixed at 15°C, and then stirred at 15°C for 20 minutes. Then, 800 g of silica sol was added, and the mixture was stirred at 15°C for 40 minutes. The solid was filtered to obtain a solid. After drying at 120°C for 4 hours, the solid was calcined at 550°C for 2 hours to obtain a silicon-aluminum-zirconium composite oxide SAZ-4, in which aluminum oxide accounted for 30%, zirconium oxide accounted for 51%, and silicon oxide accounted for 19%.
实施例6Example 6
采用与实施例1相同的方法制备硅铝锆复合氧化物SAZ-6,不同之处仅在于,步骤(1)中,取915g氧氯化锆(ZrOCl2·8H2O)和2.4g羟丙基甲基纤维素,用1400g去离子水打浆后,用稀氨水调节混合物的pH值为9.5,室温(15℃)搅拌3.0小时,得到第一浆料。其中,稀氨水以NH3计的浓度为12重量%;氧氯化锆、羟丙基甲基纤维素和去离子水用量的重量比为1:0.008:4。Silicon-aluminum-zirconium composite oxide SAZ-6 was prepared by the same method as in Example 1, except that in step (1), 915 g of zirconium oxychloride (ZrOCl 2 ·8H 2 O) and 2.4 g of hydroxypropyl methylcellulose were slurried with 1400 g of deionized water, the pH value of the mixture was adjusted to 9.5 with dilute ammonia water, and stirred at room temperature (15°C) for 3.0 hours to obtain a first slurry. The concentration of the dilute ammonia water in terms of NH 3 was 12% by weight; the weight ratio of zirconium oxychloride, hydroxypropyl methylcellulose and deionized water was 1:0.008:4.
制备得到的硅铝锆复合氧化物中氧化铝为54%,氧化锆为30%,氧化硅为16%。The prepared silicon-aluminum-zirconium composite oxide contains 54% aluminum oxide, 30% zirconium oxide and 16% silicon oxide.
实施例7Example 7
采用与实施例1相同的方法制备硅铝锆复合氧化物SAZ-7,不同之处仅在于,步骤(2)中,将806g拟薄水铝石、3144g去离子水和10g盐酸(浓度36重量%的盐酸)搅拌混合;将得到的混合物于50℃搅拌1小时,得到第二浆料。Silicon-aluminum-zirconium composite oxide SAZ-7 was prepared by the same method as in Example 1, except that in step (2), 806 g of pseudo-boehmite, 3144 g of deionized water and 10 g of hydrochloric acid (36 wt % hydrochloric acid concentration) were stirred and mixed; the obtained mixture was stirred at 50° C. for 1 hour to obtain a second slurry.
制备得到的硅铝锆复合氧化物中氧化铝为48%,氧化锆为37%,氧化硅为15%。The prepared silicon-aluminum-zirconium composite oxide contains 48% aluminum oxide, 37% zirconium oxide and 15% silicon oxide.
实施例8Example 8
采用与实施例1相同的方法制备硅铝锆复合氧化物SAZ-8,不同之处仅在于,步骤(3)中,将第一浆料、第二浆料混合和1000g硅溶胶于15℃下搅拌20分钟。制备得到的硅铝锆复合氧化物中氧化铝为46%,氧化锆为34%,氧化硅为20%。The silicon-aluminum-zirconium composite oxide SAZ-8 was prepared in the same manner as in Example 1, except that in step (3), the first slurry and the second slurry were mixed with 1000 g of silica sol and stirred at 15° C. for 20 minutes. The prepared silicon-aluminum-zirconium composite oxide contained 46% aluminum oxide, 34% zirconium oxide, and 20% silicon oxide.
对比例1Comparative Example 1
将270mL 2mol/L硝酸铝、3000mL 0.05mol/L硝酸锆及35mL硅胶(含SiO225%)混合,混合表面活性剂1(聚丙三醇200:聚丙三醇2000:聚丙三醇600=1:0.8:1(重量比)),加入氨水与混合表面活性剂1′(混合表面活性剂1与聚乙烯醇50000=30:1(重量比))混合物,其中氨水:混合表面活性剂1′=20:1(重量比);调节pH值为7.5,在80℃下反应并在40℃老化1.5小时,抽滤,用去离子水洗涤3次,在120℃干燥3小时,加入助挤剂挤条后,在600℃焙烧3小时,得复合氧化物载体SAZ-D1。SAZ-D1复合氧化物载体中氧化铝为50%,氧化锆为35%,氧化硅为15%。270mL 2mol/L aluminum nitrate, 3000mL 0.05mol/L zirconium nitrate and 35mL silica gel (containing 25 % SiO2) were mixed, mixed surfactant 1 (polyglycerol 200: polyglycerol 2000: polyglycerol 600 = 1:0.8:1 (weight ratio)), ammonia water and mixed surfactant 1' (mixed surfactant 1 and polyvinyl alcohol 50000 = 30:1 (weight ratio)) were added, wherein ammonia water: mixed surfactant 1' = 20:1 (weight ratio); pH value was adjusted to 7.5, reacted at 80℃ and aged at 40℃ for 1.5 hours, filtered, washed with deionized water 3 times, dried at 120℃ for 3 hours, extruded after adding extrusion aid, and calcined at 600℃ for 3 hours to obtain composite oxide carrier SAZ-D1. The SAZ-D1 composite oxide carrier contains 50% aluminum oxide, 35% zirconium oxide and 15% silicon oxide.
对比例2Comparative Example 2
在容器内加入1L去离子水,升温至62℃,同时加入1.5L含Al2O3为3g/100mL的氯化铝溶液和含NH3为5g/100mL的氨水溶液,控制PH值为7.0,加料时间为80min。停止加料后,体系在上述温度和PH值条件下老化60min,加入SiO2含量为10%的偏硅酸钠溶液300mL,继续老化10min,然后加入ZrO2含量为8%的氧氯化锆溶液175mL,10min加完,控制物料pH值为6.5,继续老化60min,然后洗涤4次,至Cl/Al2O3<0.5%为止。将滤饼在100℃干燥15h后,将其粉碎至颗粒度小于180目的占95%以上,得到干胶粉SAZ-D2。干胶粉中氧化铝为50%,氧化锆为35%,氧化硅为15%。Add 1L of deionized water to the container, heat it to 62°C, add 1.5L of aluminum chloride solution containing 3g/100mL of Al2O3 and 5g/100mL of ammonia solution containing NH3 , control the pH value to 7.0, and add the material for 80min. After stopping the feeding, age the system at the above temperature and pH conditions for 60min, add 300mL of sodium metasilicate solution with a SiO2 content of 10%, continue aging for 10min, then add 175mL of zirconium oxychloride solution with a ZrO2 content of 8%, add it in 10min, control the pH value of the material to 6.5, continue aging for 60min, and then wash it 4 times until Cl/ Al2O3 <0.5%. After drying the filter cake at 100°C for 15h, crush it to a particle size of less than 180 mesh, accounting for more than 95%, to obtain dry rubber powder SAZ-D2. The dry rubber powder contains 50% aluminum oxide, 35% zirconium oxide and 15% silicon oxide.
对比例3Comparative Example 3
将270mL 2mol/L硝酸铝与35mL硅胶(含SiO2 25wt%)混合,加入氨水,调节pH值为8.5,在60℃下反应即得溶胶A。将3000mL 0.05mol/L硝酸锆溶液与理论络合量的酒石酸铵混合即得络合物溶液B。溶胶A与络合物溶液B两者混合,并强力搅拌,常温下加入30wt%的双氧水,使Zr4 +:H2O2=1:3(摩尔比),反应3小时后升温至60℃老化1小时,抽滤,用去离子水洗涤3次,在120℃干燥3小时粉碎得到复合氧化物干胶。该复合氧化物干胶经600℃焙烧3小时后得复合氧化物SAZ-D3。SAZ-D3复合氧化物中氧化铝为50%,氧化锆为35%,氧化硅为15%。270mL 2mol/L aluminum nitrate was mixed with 35mL silica gel (containing 25wt% SiO 2 ), ammonia water was added, pH value was adjusted to 8.5, and the reaction was carried out at 60°C to obtain sol A. 3000mL 0.05mol/L zirconium nitrate solution was mixed with theoretical complexing amount of ammonium tartrate to obtain complex solution B. Sol A and complex solution B were mixed and stirred vigorously, 30wt% hydrogen peroxide was added at room temperature to make Zr 4 + :H 2 O 2 =1:3 (molar ratio), after reacting for 3 hours, the temperature was raised to 60°C and aged for 1 hour, filtered, washed with deionized water 3 times, dried at 120°C for 3 hours and crushed to obtain composite oxide dry gel. The composite oxide dry gel was calcined at 600°C for 3 hours to obtain composite oxide SAZ-D3. In SAZ-D3 composite oxide, aluminum oxide is 50%, zirconium oxide is 35%, and silicon oxide is 15%.
对比例4Comparative Example 4
采用与实施例1相同的方法制备硅铝锆复合氧化物SAZ-D4,不同之处仅在于,步骤(1)中不加入碳源。硅铝锆复合氧化物氧化铝为50%,氧化锆为35%,氧化硅为15%。The silicon-aluminum-zirconium composite oxide SAZ-D4 was prepared by the same method as in Example 1, except that no carbon source was added in step (1). The silicon-aluminum-zirconium composite oxide contained 50% aluminum oxide, 35% zirconium oxide and 15% silicon oxide.
对比例5Comparative Example 5
采用与实施例1相同的方法制备硅铝锆复合氧化物SAZ-D5,不同之处仅在于,步骤(1)中不加入碳源,加入17.5g络合剂酒石酸盐。硅铝锆复合氧化物氧化铝为50%,氧化锆为35%,氧化硅为15%。The silicon-aluminum-zirconium composite oxide SAZ-D5 was prepared by the same method as in Example 1, except that no carbon source was added in step (1), and 17.5 g of tartrate, a complexing agent, was added. The silicon-aluminum-zirconium composite oxide contained 50% aluminum oxide, 35% zirconium oxide, and 15% silicon oxide.
实施例9-22为含有的本发明的硅铝锆复合氧化物的催化裂化催化剂的实施例,对比例6-10和12-13为含有对比的硅铝锆复合氧化物的催化裂化催化剂的对比例:Examples 9-22 are examples of catalytic cracking catalysts containing the silicon-aluminum-zirconium composite oxide of the present invention, and comparative examples 6-10 and 12-13 are comparative examples of catalytic cracking catalysts containing comparative silicon-aluminum-zirconium composite oxides:
实施例9-16Examples 9-16
将289g高岭土与1580g脱阳离子水加入到打浆罐中打浆60分钟,然后加入200g硅铝锆复合氧化物SAZ-1~SAZ-8,搅拌60分钟;再加入271g的REUSY沸石、133g的氢型β沸石和67g磷改性ZSM-5沸石与530g去离子水打浆形成的浆液,搅拌30分钟后加入930g铝溶胶,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到本发明提供的裂化催化剂C1~C8。289g of kaolin and 1580g of deionized water are added to a slurrying tank and slurried for 60 minutes, and then 200g of silicon-aluminum-zirconium composite oxides SAZ-1 to SAZ-8 are added and stirred for 60 minutes; then 271g of REUSY zeolite, 133g of hydrogen-type β zeolite and 67g of phosphorus-modified ZSM-5 zeolite are added and slurried with 530g of deionized water to form a slurry, and after stirring for 30 minutes, 930g of aluminum sol is added, and the mixture is homogenously dispersed (stirred) for 30 minutes. Then, the obtained slurry is spray-dried and formed, and calcined at 500°C for 2 hours to obtain the cracking catalysts C1 to C8 provided by the present invention.
实施例17Embodiment 17
将447g高岭土与1980g脱阳离子水加入到打浆罐中打浆60分钟,然后加入200g硅铝锆复合氧化物SAZ-5,搅拌30分钟;再加入105g的USY沸石、236g的REUSY、67g Hβ沸石和40g HZSM-5沸石与551g去离子水打浆形成的浆液,搅拌30分钟后加入372g铝溶胶,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到本发明的裂化催化剂C9。447 g of kaolin and 1980 g of deionized water are added to a slurrying tank and slurried for 60 minutes. Then, 200 g of silicon-aluminum-zirconium composite oxide SAZ-5 is added and stirred for 30 minutes. Then, 105 g of USY zeolite, 236 g of REUSY, 67 g of Hβ zeolite and 40 g of HZSM-5 zeolite are added and slurried with 551 g of deionized water to form a slurry. After stirring for 30 minutes, 372 g of aluminum sol is added and homogenized (stirred) for 30 minutes. Then, the obtained slurry is spray-dried and formed, and calcined at 500°C for 2 hours to obtain the cracking catalyst C9 of the present invention.
实施例18Embodiment 18
将371g高岭土与1996g脱阳离子水加入到打浆罐中打浆60分钟,然后加入250g硅铝锆复合氧化物SAZ-5,搅拌30分钟;再加入271g的REUSY、133g Hβ沸石和67g HZSM-5沸石与528g去离子水打浆形成的浆液,搅拌30分钟后加入372g铝溶胶,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到本发明的裂化催化剂C10。371g of kaolin and 1996g of deionized water are added to a slurrying tank and slurried for 60 minutes. Then, 250g of silicon-aluminum-zirconium composite oxide SAZ-5 is added and stirred for 30 minutes. Then, 271g of REUSY, 133g of Hβ zeolite and 67g of HZSM-5 zeolite are added and slurried with 528g of deionized water to form a slurry. After stirring for 30 minutes, 372g of aluminum sol is added and homogenized (stirred) for 30 minutes. Then, the obtained slurry is spray-dried and formed, and calcined at 500°C for 2 hours to obtain the cracking catalyst C10 of the present invention.
实施例19Embodiment 19
将300g硅铝锆复合氧化物SAZ-5、289g高岭土和1945g脱阳离子水加入到打浆罐中打浆60分钟,然后加入64g的USY沸石、177g的REUSY、133g Hβ沸石和93g P-ZSM-5沸石与533g去离子水打浆形成的浆液,搅拌30分钟后加入465g铝溶胶,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到本发明提供的裂化催化剂C11。300 g of silicon-aluminum-zirconium composite oxide SAZ-5, 289 g of kaolin and 1945 g of deionized water are added to a slurrying tank and slurried for 60 minutes. Then, 64 g of USY zeolite, 177 g of REUSY, 133 g of Hβ zeolite and 93 g of P-ZSM-5 zeolite are added and slurried with 533 g of deionized water to form a slurry. After stirring for 30 minutes, 465 g of aluminum sol is added and homogenized (stirred) for 30 minutes. Then, the obtained slurry is spray-dried and formed, and calcined at 500°C for 2 hours to obtain the cracking catalyst C11 provided by the present invention.
实施例20Embodiment 20
将526g高岭土与1856g脱阳离子水加入到打浆罐中打浆60分钟,然后加入100g硅铝锆复合氧化物SAZ-5,搅拌30分钟;再加入53g的USY沸石、177g的REUSY、181g磷改性β沸石和70g P-ZSM-5沸石与591g去离子水打浆形成的浆液,搅拌30分钟后加入465g铝溶胶,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到本发明提供的裂化催化剂C12。526g of kaolin and 1856g of deionized water are added to a slurrying tank and slurried for 60 minutes, and then 100g of silicon-aluminum-zirconium composite oxide SAZ-5 is added and stirred for 30 minutes; then 53g of USY zeolite, 177g of REUSY, 181g of phosphorus-modified β zeolite and 70g of P-ZSM-5 zeolite are added and slurried with 591g of deionized water to form a slurry, and after stirring for 30 minutes, 465g of aluminum sol is added, and the mixture is homogenously dispersed (stirred) for 30 minutes. Then, the obtained slurry is spray-dried and formed, and calcined at 500°C for 2 hours to obtain the cracking catalyst C12 provided by the present invention.
实施例21Embodiment 21
将350g硅铝锆复合氧化物SAZ-5、197g高岭土和1935g脱阳离子水加入到打浆罐中打浆30分钟,然后加入212g的REUSY、242g磷改性β沸石和26g P-Fe-ZSM-5沸石与578g去离子水打浆形成的浆液,搅拌30分钟后加入465g铝溶胶,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到本发明提供的裂化催化剂C13。350g of silicon-aluminum-zirconium composite oxide SAZ-5, 197g of kaolin and 1935g of deionized water are added to a slurrying tank and slurried for 30 minutes. Then, 212g of REUSY, 242g of phosphorus-modified β zeolite and 26g of P-Fe-ZSM-5 zeolite are added and slurried with 578g of deionized water to form a slurry. After stirring for 30 minutes, 465g of aluminum sol is added and homogenously dispersed (stirred) for 30 minutes. Then, the obtained slurry is spray-dried and formed, and calcined at 500°C for 2 hours to obtain the cracking catalyst C13 provided by the present invention.
实施例22Example 22
将250g高岭土与466g脱阳离子水加入到打浆罐中打浆60分钟,然后加入30g硅铝锆复合氧化物SAZ-5,搅拌30分钟;再加入316g的USY沸石、177g的REUSY、27g的Hβ沸石和13g的HZSM-5沸石与466g的去离子水打浆形成的浆液,搅拌30分钟后加入1395g铝溶胶,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到本发明的裂化催化剂C14。250g of kaolin and 466g of deionized water are added to a slurrying tank and slurried for 60 minutes. Then, 30g of silicon-aluminum-zirconium composite oxide SAZ-5 is added and stirred for 30 minutes. Then, 316g of USY zeolite, 177g of REUSY, 27g of Hβ zeolite and 13g of HZSM-5 zeolite are added and slurried with 466g of deionized water to form a slurry. After stirring for 30 minutes, 1395g of aluminum sol is added and homogenized (stirred) for 30 minutes. Then, the obtained slurry is spray-dried and formed, and calcined at 500°C for 2 hours to obtain the cracking catalyst C14 of the present invention.
对比例6-10Comparative Examples 6-10
采用与实施例9相同的方法制备催化裂化催化剂DC1~DC5,不同之处仅在于,对比例6-10的制备过程中使用的硅铝锆复合氧化物分别为对比例1-5中制备的硅铝锆复合氧化物SAZ-D1~SAZ-D5。Catalytic cracking catalysts DC1 to DC5 were prepared in the same manner as in Example 9, except that the silicon-aluminum-zirconium composite oxides used in the preparation of Comparative Examples 6 to 10 were the silicon-aluminum-zirconium composite oxides SAZ-D1 to SAZ-D5 prepared in Comparative Examples 1 to 5, respectively.
对比例11Comparative Example 11
本对比例制备不含硅铝锆复合氧化物的催化裂化催化剂。This comparative example prepares a catalytic cracking catalyst that does not contain silicon-aluminum-zirconium composite oxide.
按照实施例9的方法,将289g高岭土与1583g脱阳离子水加入到打浆罐中打浆60分钟,再加入271g的REUSY沸石、133g的氢型β沸石和67g磷改性ZSM-5沸石与530g去离子水打浆形成的浆液,搅拌30分钟后加入930g铝溶胶,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到对比催化剂DC6。According to the method of Example 9, 289g of kaolin and 1583g of deionized water were added to a slurrying tank and slurried for 60 minutes, and then 271g of REUSY zeolite, 133g of hydrogen-type β zeolite and 67g of phosphorus-modified ZSM-5 zeolite were added with 530g of deionized water to form a slurry. After stirring for 30 minutes, 930g of aluminum sol was added and homogenously dispersed (stirred) for 30 minutes. Then, the obtained slurry was spray-dried and formed, and calcined at 500°C for 2 hours to obtain a comparative catalyst DC6.
对比例12Comparative Example 12
本对比例制备不含β沸石的催化裂化催化剂。This comparative example prepares a catalytic cracking catalyst that does not contain beta zeolite.
按照实施例19的方法制备催化剂,将300g硅铝锆复合氧化物SAZ-5和289g高岭土与1945g脱氧离子水加入到打浆罐中打浆30分钟,加入169g的USY沸石、177g的REUSY和70gP-ZSM-5沸石与584g去离子水打浆形成的浆液,搅拌30分钟后加入465g铝溶胶,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到对比催化裂化催化剂DC7。The catalyst was prepared according to the method of Example 19. 300 g of silicon-aluminum-zirconium composite oxide SAZ-5, 289 g of kaolin and 1945 g of deionized water were added to a slurrying tank and slurried for 30 minutes. 169 g of USY zeolite, 177 g of REUSY and 70 g of P-ZSM-5 zeolite were added and slurried with 584 g of deionized water. After stirring for 30 minutes, 465 g of aluminum sol was added and homogenized (stirred) for 30 minutes. The obtained slurry was then spray-dried and formed, and calcined at 500°C for 2 hours to obtain a comparative catalytic cracking catalyst DC7.
对比例13Comparative Example 13
本对比例制备不含ZSM-5沸石的催化裂化催化剂。This comparative example prepares a catalytic cracking catalyst that does not contain ZSM-5 zeolite.
按照实施例19的方法制备催化剂,将300g硅铝锆复合氧化物SAZ-5和289g高岭土、1945g脱氧离子水加入到打浆罐中打浆30分钟,加入137g的USY沸石、177g的REUSY和133g的Hβ沸石与556g去离子水打浆形成的浆液,搅拌30分钟后加入465g铝溶胶,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到对比催化裂化催化剂DC8。A catalyst was prepared according to the method of Example 19. 300 g of silicon-aluminum-zirconium composite oxide SAZ-5, 289 g of kaolin and 1945 g of deionized water were added to a slurrying tank and slurried for 30 minutes. 137 g of USY zeolite, 177 g of REUSY and 133 g of Hβ zeolite were added and slurried with 556 g of deionized water to form a slurry. After stirring for 30 minutes, 465 g of aluminum sol was added and homogenized (stirred) for 30 minutes. The obtained slurry was then spray-dried and formed, and calcined at 500°C for 2 hours to obtain a comparative catalytic cracking catalyst DC8.
对比例14Comparative Example 14
本对比例制备不含硅铝锆复合氧化物的催化裂化催化剂。This comparative example prepares a catalytic cracking catalyst that does not contain silicon-aluminum-zirconium composite oxide.
按照实施例19的方法制备催化剂,将2500g的酸化拟薄水铝石和289g的高岭土加入到打浆罐中打浆30分钟,加入64g的USY沸石、177g的REUSY、133g Hβ沸石和93g的P-ZSM-5沸石与533g的去离子水打浆形成的浆液,搅拌30分钟后加入465g的铝溶胶,均质分散(搅拌)30分钟,然后将得到的浆液喷雾干燥成型,于500℃焙烧2小时,得到对比催化裂化催化剂DC9。A catalyst was prepared according to the method of Example 19. 2500 g of acidified pseudo-boehmite and 289 g of kaolin were added to a slurrying tank and slurried for 30 minutes. 64 g of USY zeolite, 177 g of REUSY, 133 g of Hβ zeolite and 93 g of P-ZSM-5 zeolite were added and slurried with 533 g of deionized water to form a slurry. After stirring for 30 minutes, 465 g of aluminum sol was added and homogenously dispersed (stirred) for 30 minutes. The obtained slurry was then spray-dried and formed, and calcined at 500°C for 2 hours to obtain a comparative catalytic cracking catalyst DC9.
催化裂化催化剂评价Catalytic Cracking Catalyst Evaluation
(1)将催化裂化催化剂C1~C8和DC1~DC6预先在固定床老化装置上进行800℃、100%水蒸汽老化12小时,然后在小型固定流化床装置上进行评价,反应原料油性质见表8,反应温度500℃,剂油重量比为5.92,反应时间为75s。(1) Catalytic cracking catalysts C1-C8 and DC1-DC6 were pre-aged in a fixed bed aging device at 800°C and 100% steam for 12 hours and then evaluated in a small fixed fluidized bed device. The properties of the reaction feed oil are shown in Table 8. The reaction temperature was 500°C, the catalyst-oil weight ratio was 5.92, and the reaction time was 75 seconds.
其中,转化率=汽油收率+液化气收率+干气产率+焦炭产率;Among them, conversion rate = gasoline yield + liquefied gas yield + dry gas yield + coke yield;
重油选择性=重油产率/转化率;Heavy oil selectivity = heavy oil yield/conversion rate;
碳四烯烃浓度=碳四烯烃收率/液化气收率;C4 olefin concentration = C4 olefin yield / liquefied gas yield;
碳四烯烃选择性=碳四烯烃收率/碳四馏分收率,评价结果见表5和表7。C4 olefin selectivity = C4 olefin yield / C4 fraction yield. The evaluation results are shown in Table 5 and Table 7.
(2)将催化剂C9-C14和DC7-DC9分别依次浸渍于环烷酸镍(1000ppm)、环烷酸钒(1000ppm)和环烷酸钙(1000ppm)的煤油溶液中,使得催化剂C9-C14上的镍、钒和钙均达到1000ppm,浸渍后的样品在800℃,100%水蒸汽老化4小时,然后分别在ACE(固定流化床)装置上评价,原料油为武汉混合原料油(性质见表9),反应温度500℃,剂油重量比为8,评价结果见表6和表7。(2) Catalysts C9-C14 and DC7-DC9 were immersed in kerosene solutions of nickel cyclopentaneate (1000ppm), vanadium cyclopentaneate (1000ppm) and calcium cyclopentaneate (1000ppm) respectively, so that the nickel, vanadium and calcium on catalysts C9-C14 all reached 1000ppm. The impregnated samples were aged at 800°C and 100% steam for 4 hours and then evaluated on an ACE (fixed fluidized bed) device. The feedstock oil was Wuhan mixed feedstock oil (properties are shown in Table 9), the reaction temperature was 500°C, and the catalyst-oil weight ratio was 8. The evaluation results are shown in Tables 6 and 7.
表1硅铝锆复合氧化物的性质Table 1 Properties of silicon-aluminum-zirconium composite oxides
表1结果表明,与对比例1-4相比,采用本发明制备的硅铝锆复合氧化物均具有较高的微反活性指数。The results in Table 1 show that compared with Comparative Examples 1-4, the silicon-aluminum-zirconium composite oxides prepared by the present invention all have higher micro-reaction activity indexes.
表2催化裂化催化剂组成Table 2 Catalytic cracking catalyst composition
表3催化裂化催化剂组成Table 3 Catalytic cracking catalyst composition
表4催化裂化催化剂组成Table 4 Catalytic cracking catalyst composition
表5评价结果Table 5 Evaluation results
表5和表7结果表明,与对比例6-11制备的催化剂DC1-DC6相比,将本发明实施例9-16制备的催化剂C1-C8用于催化裂化过程,碳四烯烃收率提高,液化气中碳四烯烃浓度提高,碳四烯烃选择性增加。本发明的硅铝锆复合氧化物具有优异的重油裂化能力,有利于提供更多的增产碳四烯烃前身物,对增产碳四烯烃有利。The results in Table 5 and Table 7 show that, compared with the catalysts DC1-DC6 prepared in Comparative Examples 6-11, the catalysts C1-C8 prepared in Examples 9-16 of the present invention are used in the catalytic cracking process, the C4 olefin yield is improved, the C4 olefin concentration in the liquefied gas is improved, and the C4 olefin selectivity is increased. The silicon-aluminum-zirconium composite oxide of the present invention has excellent heavy oil cracking ability, is conducive to providing more C4 olefin precursors for increasing production, and is beneficial to increasing production of C4 olefins.
表6评价结果Table 6 Evaluation results
表6和表7结果表明,与对比例14相比,本发明提供的裂化催化剂C9-C14具有良好的抗重金属污染性能和较高的碳四烯烃浓度和碳四烯烃选择性;与对比例13相比,本发明提供的裂化催化剂具有相当的液化气和汽油总收率,但是液化气中碳四烯烃浓度以及碳四烯烃选择性均显著提高;与对比例12相比,本发明提供的裂化催化剂具有较高的液化气和汽油总收率,较高的碳四烯烃选择性。The results in Tables 6 and 7 show that, compared with Comparative Example 14, the cracking catalyst C9-C14 provided by the present invention has good resistance to heavy metal pollution and higher C4 olefin concentration and C4 olefin selectivity; compared with Comparative Example 13, the cracking catalyst provided by the present invention has a comparable total yield of liquefied gas and gasoline, but the C4 olefin concentration in the liquefied gas and the C4 olefin selectivity are significantly improved; compared with Comparative Example 12, the cracking catalyst provided by the present invention has a higher total yield of liquefied gas and gasoline, and a higher C4 olefin selectivity.
表7评价结果Table 7 Evaluation results
表8Table 8
表9Table 9
综上,本发明提供的裂化催化剂不仅具有优异重油裂化能力和抗重金属污染能力,还具有优异的碳四烯烃选择性和收率。In summary, the cracking catalyst provided by the present invention not only has excellent heavy oil cracking ability and heavy metal pollution resistance, but also has excellent C4 olefin selectivity and yield.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。The preferred embodiments of the present invention are described in detail above. However, the present invention is not limited to the specific details in the above embodiments. Within the technical concept of the present invention, a variety of simple modifications can be made to the technical solution of the present invention, and these simple modifications all belong to the protection scope of the present invention.
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。It should also be noted that the various specific technical features described in the above specific embodiments can be combined in any suitable manner without contradiction. In order to avoid unnecessary repetition, the present invention will not further describe various possible combinations.
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。In addition, various embodiments of the present invention may be arbitrarily combined, and as long as they do not violate the concept of the present invention, they should also be regarded as the contents disclosed by the present invention.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010366147.8A CN113578299B (en) | 2020-04-30 | 2020-04-30 | A silicon-aluminum-zirconium composite oxide, catalytic cracking catalyst and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010366147.8A CN113578299B (en) | 2020-04-30 | 2020-04-30 | A silicon-aluminum-zirconium composite oxide, catalytic cracking catalyst and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113578299A CN113578299A (en) | 2021-11-02 |
CN113578299B true CN113578299B (en) | 2023-11-10 |
Family
ID=78237464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010366147.8A Active CN113578299B (en) | 2020-04-30 | 2020-04-30 | A silicon-aluminum-zirconium composite oxide, catalytic cracking catalyst and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113578299B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116764670A (en) * | 2022-03-08 | 2023-09-19 | 中国石油化工股份有限公司 | Y-type molecular sieve catalytic material for improving gasoline yield and selectivity and preparation method thereof |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4568655A (en) * | 1984-10-29 | 1986-02-04 | Mobil Oil Corporation | Catalyst composition comprising Zeolite Beta |
AU2001284234A1 (en) * | 2000-09-05 | 2002-06-13 | Arakis Ltd. | The treatment of inflammatory disorders |
CN101747134A (en) * | 2008-11-28 | 2010-06-23 | 中国石油化工股份有限公司 | A kind of method of producing low-carbon alkene by catalytically cracking biomass |
CN101829592A (en) * | 2009-03-10 | 2010-09-15 | 中国石油天然气股份有限公司 | Preparation method of high-solid content fluid catalytic cracking catalyst |
CN102049281A (en) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | Super deep hydrodesulfurization catalyst and preparation method thereof |
CN103285914A (en) * | 2013-06-21 | 2013-09-11 | 中国海洋石油总公司 | Preparation method for hydrogenation pretreatment catalyst containing silicon aluminum-phosphorus aluminum composite molecule sieve |
CN105517708A (en) * | 2013-07-04 | 2016-04-20 | 道达尔研究技术弗吕公司 | Catalyst compositions comprising small size molecular sieves crystals deposited on a porous material |
CN105582973A (en) * | 2014-10-29 | 2016-05-18 | 中国石油化工股份有限公司 | Heavy oil cracking catalyst and preparation method thereof |
CN106140289A (en) * | 2015-04-16 | 2016-11-23 | 中国石油化工股份有限公司 | A kind of Cracking catalyst containing modified beta zeolite |
CN109304223A (en) * | 2017-07-28 | 2019-02-05 | 中国石油天然气股份有限公司 | Low-coking type catalytic cracking catalyst and preparation method thereof |
CN110876926A (en) * | 2018-09-05 | 2020-03-13 | 中国石油化工股份有限公司 | Zirconium-aluminum composite sol, preparation method and application thereof, and preparation method of catalytic cracking catalyst |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0021776D0 (en) * | 2000-09-05 | 2000-10-18 | Arakis Ltd | The treatment of inflammatory disorders |
-
2020
- 2020-04-30 CN CN202010366147.8A patent/CN113578299B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4568655A (en) * | 1984-10-29 | 1986-02-04 | Mobil Oil Corporation | Catalyst composition comprising Zeolite Beta |
AU2001284234A1 (en) * | 2000-09-05 | 2002-06-13 | Arakis Ltd. | The treatment of inflammatory disorders |
CN101747134A (en) * | 2008-11-28 | 2010-06-23 | 中国石油化工股份有限公司 | A kind of method of producing low-carbon alkene by catalytically cracking biomass |
CN101829592A (en) * | 2009-03-10 | 2010-09-15 | 中国石油天然气股份有限公司 | Preparation method of high-solid content fluid catalytic cracking catalyst |
CN102049281A (en) * | 2009-10-27 | 2011-05-11 | 中国石油化工股份有限公司 | Super deep hydrodesulfurization catalyst and preparation method thereof |
CN103285914A (en) * | 2013-06-21 | 2013-09-11 | 中国海洋石油总公司 | Preparation method for hydrogenation pretreatment catalyst containing silicon aluminum-phosphorus aluminum composite molecule sieve |
CN105517708A (en) * | 2013-07-04 | 2016-04-20 | 道达尔研究技术弗吕公司 | Catalyst compositions comprising small size molecular sieves crystals deposited on a porous material |
CN105582973A (en) * | 2014-10-29 | 2016-05-18 | 中国石油化工股份有限公司 | Heavy oil cracking catalyst and preparation method thereof |
CN106140289A (en) * | 2015-04-16 | 2016-11-23 | 中国石油化工股份有限公司 | A kind of Cracking catalyst containing modified beta zeolite |
CN109304223A (en) * | 2017-07-28 | 2019-02-05 | 中国石油天然气股份有限公司 | Low-coking type catalytic cracking catalyst and preparation method thereof |
CN110876926A (en) * | 2018-09-05 | 2020-03-13 | 中国石油化工股份有限公司 | Zirconium-aluminum composite sol, preparation method and application thereof, and preparation method of catalytic cracking catalyst |
Also Published As
Publication number | Publication date |
---|---|
CN113578299A (en) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100497531C (en) | Cracking catalyst | |
US6677263B2 (en) | Catalytic promoters for the catalytic cracking of hydrocarbons and the preparation thereof | |
JP2017507772A (en) | FCC catalyst composition containing boron oxide | |
US6605207B2 (en) | Bayerite alumina clad zeolite and cracking catalysts containing same | |
CN101549302B (en) | Faujasite/Al2O3 composite material and preparation method thereof | |
CN103657712B (en) | A kind of catalytic cracking catalyst and preparation method thereof | |
CN109746039B (en) | Hierarchical pore silicon-aluminum catalytic material and preparation method and application thereof | |
JP2017506270A (en) | Boron oxide in FCC method | |
CN103657702B (en) | Catalytic cracking catalyst and preparation method thereof | |
CN113578299B (en) | A silicon-aluminum-zirconium composite oxide, catalytic cracking catalyst and preparation method and application thereof | |
CN109675616A (en) | A kind of catalytic converting catalyst of fecund butylene and the catalysis conversion method of preparation method and voluminous butylene | |
CN100509161C (en) | Petroleum hydrocabon cracking catalyst and production thereof | |
CN113578375B (en) | Modified ZSM-5 zeolite, catalytic cracking catalyst, and preparation method and application thereof | |
US12194445B2 (en) | Modified β zeolite, catalytic cracking catalyst and their preparation method and application | |
CN116265106B (en) | Preparation method of catalytic cracking catalyst for high yield of low carbon olefin | |
SG192577A1 (en) | Hydrocracking catalysts containing stabilized aggregates of small crystallites of zeolite y and associated hydrocarbon conversion processes | |
CN110833851A (en) | Catalytic cracking catalyst, preparation method and application thereof | |
WO2021254410A1 (en) | Catalytic cracking promoter, preparation method therefor, and application thereof | |
CN111822033A (en) | Catalytic cracking catalyst for hydrocarbon oil rich in naphthenic ring, its preparation method and application method | |
CN115055203B (en) | Heavy oil catalytic cracking catalyst | |
CN115920950B (en) | A method for preparing a catalytic cracking catalyst with low coke production and high BTX production | |
CN116328819B (en) | Preparation method of low-coke catalytic cracking catalyst | |
CN115703069B (en) | Phosphorus-containing catalytic cracking catalyst and preparation method thereof | |
CN110833854A (en) | Catalytic cracking catalyst and its preparation method and application | |
CN114453009B (en) | Catalytic cracking additive for increasing concentration of butene in liquefied gas and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |