CN113556699A - Sample set construction, indoor positioning model construction, indoor positioning method and device - Google Patents
Sample set construction, indoor positioning model construction, indoor positioning method and device Download PDFInfo
- Publication number
- CN113556699A CN113556699A CN202010332627.2A CN202010332627A CN113556699A CN 113556699 A CN113556699 A CN 113556699A CN 202010332627 A CN202010332627 A CN 202010332627A CN 113556699 A CN113556699 A CN 113556699A
- Authority
- CN
- China
- Prior art keywords
- signal
- sample set
- indoor positioning
- known reference
- sample data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/33—Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/318—Received signal strength
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Quality & Reliability (AREA)
- Electromagnetism (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明公开了一种样本集构建、室内定位模型构建、室内定位方法和装置,涉及计算机技术领域。该方法的一具体实施方式包括:获取已知参考点的多个信号强度;根据多个信号强度,确定高概率发生区间;从多个信号强度中,选取属于高概率发生区间的信号强度;利用属于高概率发生区间的信号强度,为已知参考点生成对应的样本数据;利用多个已知参考点对应的样本数据,构建样本集。该实施方式能够有效地去除样本集中的脏数据。
The invention discloses a method and device for sample set construction, indoor positioning model construction, and indoor positioning, and relates to the technical field of computers. A specific implementation of the method includes: acquiring multiple signal strengths of known reference points; determining a high probability occurrence interval according to the multiple signal strengths; selecting the signal strength belonging to the high probability occurrence interval from the multiple signal strengths; using For the signal strength belonging to the high probability occurrence interval, corresponding sample data is generated for the known reference points; the sample set is constructed by using the sample data corresponding to multiple known reference points. This embodiment can effectively remove dirty data in the sample set.
Description
技术领域technical field
本发明涉及计算机技术领域,尤其涉及一种样本集构建方法、室内定位模型构建方法、室内定位方法和装置。The invention relates to the field of computer technology, in particular to a method for constructing a sample set, a method for constructing an indoor positioning model, and an indoor positioning method and device.
背景技术Background technique
目前,一般基于样本集中的样本数据,采用机器学习方法构建出室内定位模型,并依据该构建出的室内定位模型,进行室内定位。如,依据构建出的室内定位模型,对室内运行的机器人进行定位或者规划行驶路线等。At present, an indoor positioning model is generally constructed by using a machine learning method based on the sample data in the sample set, and indoor positioning is performed according to the constructed indoor positioning model. For example, according to the constructed indoor positioning model, the robot running indoors is positioned or the driving route is planned.
在实现本发明过程中,发明人发现现有技术中至少存在如下问题:In the process of realizing the present invention, the inventor found that there are at least the following problems in the prior art:
由于室内环境复杂度越来越大,样本集中脏数据的量越来越大,如何有效地去除样本集中的脏数据是需要解决的问题。Due to the increasing complexity of the indoor environment and the increasing amount of dirty data in the sample set, how to effectively remove the dirty data in the sample set is a problem that needs to be solved.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明实施例提供一种样本集构建、室内定位模型构建、室内定位方法和装置,能够有效地去除样本集中的脏数据。In view of this, embodiments of the present invention provide a method and apparatus for sample set construction, indoor positioning model construction, and indoor positioning, which can effectively remove dirty data in the sample set.
为实现上述目的,根据本发明实施例的一个方面,提供了一种样本集构建方法,包括:To achieve the above object, according to an aspect of the embodiments of the present invention, a method for constructing a sample set is provided, including:
获取已知参考点的多个信号强度;Obtain multiple signal strengths of known reference points;
根据所述多个信号强度,确定高概率发生区间;determining a high probability occurrence interval according to the multiple signal strengths;
从所述多个信号强度中,选取属于所述高概率发生区间的信号强度;From the plurality of signal strengths, select a signal strength belonging to the high probability occurrence interval;
利用属于所述高概率发生区间的信号强度,为所述已知参考点生成对应的样本数据;Generate corresponding sample data for the known reference point by using the signal strength belonging to the high probability occurrence interval;
利用多个所述已知参考点对应的样本数据,构建样本集。Using a plurality of sample data corresponding to the known reference points, a sample set is constructed.
优选地,Preferably,
当所述多个信号强度来源于至少两个信号源,且每一个所述信号源对应多个信号强度时,When the multiple signal strengths originate from at least two signal sources, and each of the signal sources corresponds to multiple signal strengths,
针对每一个所述信号源对应的多个信号强度,执行确定高概率发生区间的步骤。For a plurality of signal strengths corresponding to each of the signal sources, the step of determining a high probability occurrence interval is performed.
优选地,为所述已知参考点生成对应的样本数据,包括:Preferably, generating corresponding sample data for the known reference point includes:
针对来源于同一信号源且的属于所述高概率发生区间的多个信号强度,执行:计算所述多个信号强度的平均值,将所述平均值作为所述已知参考点对应的样本数据;For a plurality of signal intensities originating from the same signal source and belonging to the high probability occurrence interval, execute: calculate the average value of the plurality of signal intensities, and use the average value as the sample data corresponding to the known reference point ;
或者,or,
针对属于所述高概率发生区间的信号强度,执行:计算每两个所述信号源之间的信号强度差,将所述信号强度差作为所述已知参考点的样本数据。For the signal strength belonging to the high probability occurrence interval, perform: calculating the signal strength difference between every two of the signal sources, and using the signal strength difference as the sample data of the known reference point.
优选地,所述样本集构建方法,进一步包括:Preferably, the sample set construction method further includes:
从多个所述已知参考点中,为未知参考点选定满足预设间距阈值的多个目标已知参考点;From a plurality of the known reference points, select a plurality of target known reference points that satisfy a preset distance threshold for the unknown reference point;
为每一个所述目标已知参考点分配对应的权重;assigning a corresponding weight to each of the target known reference points;
利用所述权重以及所述目标已知参考点对应的样本数据,为所述未知参考点计算对应的样本数据;Using the weight and the sample data corresponding to the known reference point of the target, calculate the corresponding sample data for the unknown reference point;
将所述未知参考点对应的样本数据添加到所述样本集中。The sample data corresponding to the unknown reference point is added to the sample set.
第二方面,本发明实施例提供一种室内定位模型构建方法,包括:In a second aspect, an embodiment of the present invention provides a method for constructing an indoor positioning model, including:
获取样本集,其中,所述样本集由多个样本数据构建,所述样本数据由属于高概率发生区间的信号强度生成;obtaining a sample set, wherein the sample set is constructed from a plurality of sample data, and the sample data is generated from the signal strength belonging to the high probability occurrence interval;
利用所述样本集,迭代训练支持向量机,构建出室内定位模型。Using the sample set, a support vector machine is iteratively trained to construct an indoor positioning model.
优选地,所述室内定位模型构建方法,Preferably, the indoor positioning model construction method,
进一步包括:为支持向量机中的参数设置有对应的第一取值范围;It further includes: setting a corresponding first value range for the parameters in the support vector machine;
在所述第一取值范围内,随机为支持向量机分配初始参数;Within the first value range, randomly assign initial parameters to the support vector machine;
基于所述初始参数,执行所述迭代训练支持向量机的步骤。Based on the initial parameters, the step of iteratively training the support vector machine is performed.
优选地,所述室内定位模型构建方法,Preferably, the indoor positioning model construction method,
进一步包括:为支持向量机的参数设置有迭代步长;It further includes: setting an iterative step size for the parameters of the support vector machine;
所述迭代训练支持向量机的步骤包括:The step of iteratively training the support vector machine includes:
从第二次迭代开始,将每一次迭代作为当前迭代,执行:Starting with the second iteration, using each iteration as the current iteration, execute:
确定所述当前迭代对应的上一迭代对应的参数;determining the parameter corresponding to the previous iteration corresponding to the current iteration;
为所述上一迭代对应的参数增加或减少所述迭代步长,作为所述当前迭代的参数;Increase or decrease the iteration step size for the parameter corresponding to the previous iteration, as the parameter of the current iteration;
基于所述当前迭代的参数,训练所述支持向量机;training the support vector machine based on the parameters of the current iteration;
当训练的结果满足预设的第一终止条件时,则终止迭代。When the training result satisfies the preset first termination condition, the iteration is terminated.
优选地,所述室内定位模型构建方法,Preferably, the indoor positioning model construction method,
进一步包括:为支持向量机中的参数设置有对应的第二取值范围;It further includes: setting a corresponding second value range for the parameter in the support vector machine;
在所述第二取值范围内初始化烟花种群;Initialize the firework population within the second value range;
所述迭代训练支持向量机的步骤包括:The step of iteratively training the support vector machine includes:
针对每一次迭代,执行:For each iteration, execute:
确定烟花种群,确定所述烟花种群中的烟花的爆炸火花和变异火花;determining a firework population, and determining the explosion sparks and variant sparks of the fireworks in the firework population;
计算所述爆炸火花和所述变异火花的适应度;calculating the fitness of the explosion spark and the mutated spark;
判断当前迭代的结果是否满足第二终止条件,Determine whether the result of the current iteration satisfies the second termination condition,
如果是,则将适应度最小的爆炸火花或适应度最小的变异火花作为训练结果,并结束当前流程;If yes, take the explosion spark with the least fitness or the mutation spark with the least fitness as the training result, and end the current process;
否则,从所述爆炸火花和所述变异火花中,选取出多个目标火花组成烟花种群,其中,所述目标火花作为所述烟花种群中的烟花。Otherwise, from the explosion sparks and the variation sparks, multiple target sparks are selected to form a firework population, wherein the target sparks are used as fireworks in the firework population.
第三方面,本发明实施例提供一种基于上述任一方法构建出的室内定位模型实现的室内定位方法,包括:In a third aspect, an embodiment of the present invention provides an indoor positioning method implemented based on an indoor positioning model constructed by any of the above methods, including:
获取待定位点的信号指纹信息;Obtain the signal fingerprint information of the to-be-located point;
将所述信号指纹信息输入所述室内定位模型,获得所述待定位点的位置信息。The signal fingerprint information is input into the indoor positioning model to obtain the position information of the to-be-located point.
优选地,所述获取待定位点的信号指纹信息,包括:Preferably, the acquiring the signal fingerprint information of the point to be located includes:
将采集到的待定位点的信号强度作为所述信号指纹信息;The collected signal strength of the to-be-located point is used as the signal fingerprint information;
或者,or,
针对采集到的至少两个信号源在待定位点的信号强度,计算每两个所述信号源对应的信号强度差,将所述信号强度差作为所述信号指纹信息。For the collected signal strengths of at least two signal sources at the to-be-located point, calculate the signal strength difference corresponding to each of the two signal sources, and use the signal strength difference as the signal fingerprint information.
第四方面,本发明实施例提供一种样本集构建装置,包括:In a fourth aspect, an embodiment of the present invention provides an apparatus for constructing a sample set, including:
信号获取单元,用于获取已知参考点的多个信号强度;a signal acquisition unit for acquiring multiple signal strengths of known reference points;
信号处理单元,用于根据所述信号获取单元获取到的多个信号强度,确定高概率发生区间;从所述多个信号强度中,选取出属于所述高概率发生区间的信号强度;a signal processing unit, configured to determine a high probability occurrence interval according to a plurality of signal strengths obtained by the signal acquisition unit; and select a signal strength belonging to the high probability occurrence interval from the plurality of signal strengths;
样本集构建单元,用于利用所述信号处理单元选出的属于所述高概率发生区间的信号强度,为所述已知参考点生成对应的样本数据;利用多个所述已知参考点对应的样本数据,构建样本集。a sample set construction unit, configured to generate corresponding sample data for the known reference points by using the signal strengths selected by the signal processing unit and belonging to the high probability occurrence interval; using a plurality of the known reference points corresponding to sample data to construct a sample set.
优选地,Preferably,
所述信号处理单元,用于当所述多个信号强度来源于至少两个信号源,且每一个所述信号源对应多个信号强度时,针对每一个所述信号源对应的多个信号强度,执行根据所述多个信号强度,确定高概率发生区间的步骤。The signal processing unit is configured to, when the multiple signal strengths originate from at least two signal sources, and each of the signal sources corresponds to multiple signal strengths, for each of the signal sources corresponding to multiple signal strengths , and perform the step of determining a high probability occurrence interval according to the multiple signal strengths.
优选地,Preferably,
所述信号处理单元,进一步用于从多个所述已知参考点中,为未知参考点选定满足预设间距阈值的多个目标已知参考点;为每一个所述目标已知参考点分配对应的权重;The signal processing unit is further configured to select a plurality of target known reference points that satisfy a preset distance threshold for the unknown reference point from a plurality of the known reference points; for each of the target known reference points assign corresponding weights;
所述样本集构建单元,进一步用于利用所述权重以及所述目标已知参考点对应的样本数据,为所述未知参考点计算对应的样本数据;将所述未知参考点对应的样本数据添加到所述样本集中。The sample set construction unit is further configured to use the weight and the sample data corresponding to the target known reference point to calculate the corresponding sample data for the unknown reference point; add the sample data corresponding to the unknown reference point into the sample set.
第五方面,本发明实施例提供一种室内定位模型构建装置,包括:In a fifth aspect, an embodiment of the present invention provides an apparatus for constructing an indoor positioning model, including:
样本集获取单元,用于获取样本集,其中,所述样本集由多个样本数据构建,所述样本数据由属于高概率发生区间的信号强度生成;a sample set obtaining unit, configured to obtain a sample set, wherein the sample set is constructed from a plurality of sample data, and the sample data is generated from the signal intensity belonging to the high probability occurrence interval;
模型构建单元,用于利用所述样本集获取单元获取到的所述样本集,迭代训练支持向量机,构建出室内定位模型。The model building unit is configured to use the sample set obtained by the sample set obtaining unit to iteratively train a support vector machine to construct an indoor positioning model.
第六方面,本发明实施例提供一种室内定位装置,包括:In a sixth aspect, an embodiment of the present invention provides an indoor positioning device, including:
信息获取单元,用于获取待定位点的信号指纹信息;an information acquisition unit, used for acquiring the signal fingerprint information of the to-be-located point;
位置确定单元,用于将所述信息获取单元获取到的信号指纹信息输入所述室内定位模型,获得所述待定位点的位置信息。A position determination unit, configured to input the signal fingerprint information acquired by the information acquisition unit into the indoor positioning model to obtain the position information of the to-be-located point.
上述发明中的一个实施例具有如下优点或有益效果:对于获取到的数据如信号强度来说,大部分为正常数据,而且正常数据分布一般比较集中,一般情况下,能够限定出正常数据所在的范围或区间,而小部分的异常数据即脏数据,则往往在正常数据所在的范围或区间之外,基于此,本发明实施例提供的方案根据多个信号强度,确定高概率发生区间;利用属于高概率发生区间的信号强度,为已知参考点生成对应的样本数据;利用多个已知参考点对应的样本数据,构建样本集,采用高概率发生区间实现了去除脏数据,即构建样本集的样本数据由去除脏数据后的数据得到,能够有效地去除样本集中的脏数据。An embodiment of the above invention has the following advantages or beneficial effects: for the acquired data, such as signal strength, most of them are normal data, and the distribution of normal data is generally concentrated. range or interval, and a small part of abnormal data, that is, dirty data, is often outside the range or interval where normal data is located. Based on this, the solution provided by the embodiment of the present invention determines a high probability occurrence interval according to multiple signal strengths; using The signal strength belonging to the high probability occurrence interval generates corresponding sample data for the known reference points; the sample data corresponding to multiple known reference points is used to construct a sample set, and the high probability occurrence interval is used to realize the removal of dirty data, that is, the construction of the sample The sample data of the set is obtained from the data after removing the dirty data, which can effectively remove the dirty data in the sample set.
上述的非惯用的可选方式所具有的进一步效果将在下文中结合具体实施方式加以说明。Further effects of the above non-conventional alternatives will be described below in conjunction with specific embodiments.
附图说明Description of drawings
附图用于更好地理解本发明,不构成对本发明的不当限定。其中:The accompanying drawings are used for better understanding of the present invention and do not constitute an improper limitation of the present invention. in:
图1是根据本发明实施例的一种应用场景的示意图;1 is a schematic diagram of an application scenario according to an embodiment of the present invention;
图2是根据本发明实施例的样本集构建方法的主要流程的示意图;FIG. 2 is a schematic diagram of a main flow of a method for constructing a sample set according to an embodiment of the present invention;
图3是根据本发明另一实施例的样本集构建方法的主要流程的示意图;3 is a schematic diagram of a main flow of a method for constructing a sample set according to another embodiment of the present invention;
图4是根据本发明实施例的样本数据采集场地的示意图;4 is a schematic diagram of a sample data collection site according to an embodiment of the present invention;
图5是根据本发明实施例的室内定位模型构建方法的主要流程的示意图;5 is a schematic diagram of a main process of an indoor positioning model construction method according to an embodiment of the present invention;
图6是根据本发明实施例的迭代训练支持向量机的主要流程的示意图;6 is a schematic diagram of a main process of iteratively training a support vector machine according to an embodiment of the present invention;
图7是根据本发明另一实施例的迭代训练支持向量机的主要流程的示意图;7 is a schematic diagram of a main process of iteratively training a support vector machine according to another embodiment of the present invention;
图8是根据本发明实施例的室内定位方法的主要流程的示意图;8 is a schematic diagram of a main flow of an indoor positioning method according to an embodiment of the present invention;
图9是根据本发明实施例的样本集构建装置的主要单元的示意图;9 is a schematic diagram of main units of a sample set construction apparatus according to an embodiment of the present invention;
图10是根据本发明实施例的室内定位模型构建装置的主要单元的示意图;10 is a schematic diagram of the main units of an indoor positioning model building apparatus according to an embodiment of the present invention;
图11是根据本发明实施例的室内定位装置的主要单元的示意图;11 is a schematic diagram of the main unit of an indoor positioning device according to an embodiment of the present invention;
图12是本发明实施例可以应用于其中的示例性系统架构图;FIG. 12 is an exemplary system architecture diagram to which an embodiment of the present invention may be applied;
图13是适于用来实现本发明实施例的终端设备或服务器的计算机系统的结构示意图。FIG. 13 is a schematic structural diagram of a computer system suitable for implementing a terminal device or a server according to an embodiment of the present invention.
具体实施方式Detailed ways
以下结合附图对本发明的示范性实施例做出说明,其中包括本发明实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本发明的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。Exemplary embodiments of the present invention are described below with reference to the accompanying drawings, which include various details of the embodiments of the present invention to facilitate understanding and should be considered as exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the invention. Also, descriptions of well-known functions and constructions are omitted from the following description for clarity and conciseness.
本发明实施例提供的方案的一种应用场景可如图1所示。在图1中,由于在不同位置能够接收信号发生设备如无线路由器、通信塔等产生的信号强度有所差异,因此,可基于该信号强度,构建信号强度与位置关系的模型。那么,在获取到一个未知位置的信号强度之后,即可定位出该未知位置。通过信号采集设备如手机、电脑、平板等,在已知参考点采集信号发生设备(图1示出的AP1、AP2、…、APn)发出的信号强度,将已知参考点的位置信息和采集到的信号强度可存储到对应的数据库中。该位置信息与采集到的信号强度的存储可以如下表1所示。An application scenario of the solution provided by the embodiment of the present invention may be shown in FIG. 1 . In Fig. 1, since the signal strengths generated by signal generating devices such as wireless routers and communication towers that can receive signals at different locations are different, a model of the relationship between signal strength and location can be constructed based on the signal strengths. Then, after acquiring the signal strength of an unknown location, the unknown location can be located. Through signal acquisition equipment such as mobile phones, computers, tablets, etc., the signal strengths sent by the signal generating equipment (AP1, AP2, . The obtained signal strength can be stored in the corresponding database. The storage of the location information and the collected signal strength may be as shown in Table 1 below.
表1Table 1
其中,Ij表征第j个已知参考点;RSSIjab表征在第j个已知参考点第a次采集到的信号发生源b的信号强度;j的取值为不小于1的正整数;a的取值为不小于1的正整数;b的取值范围为AP1、AP2、...、APn;(xj,yj)表征第j个已知参考点所对应的位置信息(位置坐标)。Among them, I j represents the jth known reference point; RSSI jab represents the signal strength of the signal source b collected at the jth known reference point a for the ath time; the value of j is a positive integer not less than 1; The value of a is a positive integer not less than 1; the value range of b is AP1, AP2, ..., APn; (x j , y j ) represents the position information (position information) corresponding to the jth known reference point coordinate).
其中,已知参考点的位置坐标是基于同一坐标系确定出的,比如,该坐标系为在室内任意构建出的坐标系。The position coordinates of the known reference points are determined based on the same coordinate system, for example, the coordinate system is a coordinate system arbitrarily constructed indoors.
基于采集到的上述已知参考点的信号强度,构建出样本集,并基于样本集,训练数据模型。可基于训练后的数据模型,根据未知点的信号强度得到该未知点的位置。其应用于室内位置确定、管理以及路径规划,比如,确定室内扫地机器人、送餐机器人、仓库搬运设备等在室内的位置、为室内扫地机器人、送餐机器人、仓库搬运设备等规划行驶路径等。Based on the collected signal strengths of the known reference points, a sample set is constructed, and a data model is trained based on the sample set. The position of the unknown point can be obtained according to the signal strength of the unknown point based on the trained data model. It is used in indoor location determination, management and path planning, for example, determining the indoor location of indoor sweeping robots, food delivery robots, warehouse handling equipment, etc., and planning driving paths for indoor cleaning robots, food delivery robots, warehouse handling equipment, etc.
已知参考点是指位置信息已经被确定,且对应的信号强度也已被采集到。A known reference point means that the location information has been determined and the corresponding signal strength has been collected.
相应地,未知参考点是指位置信息已经被确定,但是对应的信号强度未被采集。Correspondingly, the unknown reference point means that the location information has been determined, but the corresponding signal strength has not been collected.
其中,位置信息可以为坐标位置,对于分布区域比较小或者分布在室内的已知参考点和/或未知参考点来说,该坐标位置可以为预先构建出的坐标系(比如用户根据建筑结构特点构建出的坐标系等)中的坐标位置;对于分布区域比较大的已知参考点和/或未知参考点来说,该坐标位置还可以为经、纬度。Wherein, the location information may be a coordinate position, and for a known reference point and/or an unknown reference point with a relatively small distribution area or distributed indoors, the coordinate position may be a pre-built coordinate system (for example, a user based on the characteristics of the building structure) The coordinate position in the constructed coordinate system, etc.); for a known reference point and/or an unknown reference point with a relatively large distribution area, the coordinate position may also be longitude and latitude.
图2是根据本发明实施例的样本集构建方法。如图1所示,该样本集构建方法可包括如下步骤:FIG. 2 is a method for constructing a sample set according to an embodiment of the present invention. As shown in Figure 1, the sample set construction method may include the following steps:
201:获取已知参考点的多个信号强度;201: Acquire multiple signal strengths of known reference points;
202:根据多个信号强度,确定高概率发生区间;202: Determine a high probability occurrence interval according to multiple signal strengths;
203:从多个信号强度中,选取出属于高概率发生区间的信号强度;203: Select a signal strength belonging to a high probability occurrence interval from a plurality of signal strengths;
204:利用属于高概率发生区间的信号强度,为已知参考点生成对应的样本数据;204: Generate corresponding sample data for the known reference point by using the signal strength belonging to the high probability occurrence interval;
205:利用多个已知参考点对应的样本数据,构建样本集。205: Construct a sample set by using sample data corresponding to a plurality of known reference points.
对于获取到的数据如信号强度来说,大部分为正常数据,而且正常数据分布一般比较集中,一般情况下,能够限定出正常数据所在的范围或区间,而小部分的异常数据即脏数据,则往往在正常数据所在的范围或区间之外,基于此,本发明实施例提供的方案根据多个信号强度,确定高概率发生区间;利用属于高概率发生区间的信号强度,为已知参考点生成对应的样本数据;利用多个已知参考点对应的样本数据,构建样本集,采用高概率发生区间实现了去除脏数据,即构建样本集的样本数据是由去除脏数据后的数据得到的,能够有效地去除样本集中的脏数据。For the acquired data such as signal strength, most of them are normal data, and the distribution of normal data is generally concentrated. In general, the range or interval where normal data is located can be defined, while a small part of abnormal data is dirty data. It is often outside the range or interval where the normal data is located. Based on this, the solution provided by the embodiment of the present invention determines the high probability occurrence interval according to multiple signal strengths; uses the signal strength belonging to the high probability occurrence interval as the known reference point. Generate corresponding sample data; use the sample data corresponding to multiple known reference points to construct a sample set, and use a high probability occurrence interval to remove dirty data, that is, the sample data for constructing a sample set is obtained from the data after removing the dirty data , which can effectively remove the dirty data in the sample set.
其中,步骤201的具体实施方式可包括:接收信号采集设备在已知参考点采集到的信号强度。该信号采集设备在已知参考点采集信号强度,比如,对于wifi信号来说,通过笔记本电脑上安装WiFi信号采集软件WiFiScan进行采集,实现上述步骤201。The specific implementation of
其中,步骤202的具体实施方式可包括:确定高概率发生区间为下述计算公式(1)得到的区间范围。The specific implementation of
计算公式(1)Calculation formula (1)
其中,nj表征第j个已知参考点对应的信号强度个数;RSSIji表征第j个已知参考点对应的第i个信号强度;j和i均为不小于1的正整数。Among them, n j represents the number of signal strengths corresponding to the jth known reference point; RSSI ji represents the ith signal strength corresponding to the jth known reference point; j and i are both positive integers not less than 1.
相应地,在多个信号强度中,大于等于Correspondingly, among multiple signal strengths, greater than or equal to
且小于等于 and less than or equal to
的信号强度,即为属于高概率发生区间的信号强度。 The signal strength of , that is, the signal strength belonging to the high probability occurrence interval.
在本发明一个实施例中,当多个信号强度来源于至少两个信号源,且每一个信号源对应多个信号强度时,针对每一个信号源对应的多个信号强度,执行根据多个信号强度,确定高概率发生区间的步骤。In an embodiment of the present invention, when multiple signal strengths originate from at least two signal sources, and each signal source corresponds to multiple signal strengths, for the multiple signal strengths corresponding to each signal source, the Intensity, steps to determine the high probability interval.
比如,在已知参考点A获取到的信号强度来源于信号源AP1、AP2以及AP3。其中,For example, the signal strength obtained at the known reference point A comes from the signal sources AP1, AP2 and AP3. in,
信号源AP1对应的信号强度为RSSI1、RSSI2、RSSI3、…、RSSIN;相应地,后续选取属于高概率发生区间的信号强度,生成样本数据则具体为:通过RSSI1、RSSI2、RSSI3、…、RSSIN确定信号源AP1的高概率发生区间,并从RSSI1、RSSI2、RSSI3、…、RSSIN中选取属于信号源AP1的高概率发生区间的信号强度,从而为已知参考点A生成该信号源AP1对应的样本数据; The signal strengths corresponding to the signal source AP1 are RSSI 1 , RSSI 2 , RSSI 3 , . RSSI 3 , ..., RSSI N determine the high probability occurrence interval of the signal source AP1, and select the signal strength belonging to the high probability occurrence interval of the signal source AP1 from RSSI 1 , RSSI 2 , RSSI 3 , ..., RSSI N , so as to be the signal strength of the signal source AP1 Knowing that the reference point A generates the sample data corresponding to the signal source AP1;
信号源AP2对应的信号强度为RSSIN+1、RSSIN+2、RSSIN+3、…、RSSI2N;后续选取属于高概率发生区间的信号强度,生成样本数据则具体为:通过RSSIN+1、RSSIN+2、RSSIN+3、…、RSSI2N确定信号源AP2的高概率发生区间,并从RSSIN+1、RSSIN+2、RSSIN+3、…、RSSI2N中选取属于信号源AP2的高概率发生区间的信号强度,从而为已知参考点A生成该信号源AP2对应的样本数据;The signal strengths corresponding to the signal source AP2 are RSSI N +1 , RSSI N+2 , RSSI N +3 , . 1. RSSI N+2 , RSSI N+3 ,..., RSSI 2N determine the high probability occurrence interval of the signal source AP2, and select from RSSI N+1 , RSSI N+2 , RSSI N+3 ,..., RSSI 2N belonging to The signal strength of the high probability occurrence interval of the signal source AP2, so as to generate the sample data corresponding to the signal source AP2 for the known reference point A;
信号源AP3对应的信号强度为:The signal strength corresponding to the signal source AP3 is:
RSSI2N+1、RSSI2N+2、RSSI2N+3、…、RSSI3N;则通过RSSI 2N+1 , RSSI 2N+2 , RSSI 2N+3 , …, RSSI 3N ; then pass
RSSI2N+1、RSSI2N+2、RSSI2N+3、…、RSSI3N确定信号源AP3的高概率发生区间,并从RSSI2N+1、RSSI2N+2、RSSI2N+3、…、RSSI3N中选取属于信号源AP3的高概率发生区间的信号强度,从而为已知参考点A生成该信号源AP3对应的样本数据。RSSI 2N+1 , RSSI 2N+2 , RSSI 2N+3 , …, RSSI 3N determine the high probability occurrence interval of the signal source AP3, and from RSSI 2N+1 , RSSI 2N+2 , RSSI 2N+3 , … Select the signal strength belonging to the high probability occurrence interval of the signal source AP3, so as to generate the sample data corresponding to the signal source AP3 for the known reference point A.
通过上述实施例,实现了按照已知参考点和信号源统计信号强度,避免了由于不同信号源到已知参考点的距离差异以及不同信号源产生的信号强度差异而导致的误差。Through the above embodiment, the signal strength is calculated according to the known reference point and the signal source, and the error caused by the difference in the distance from different signal sources to the known reference point and the difference in signal strength generated by different signal sources is avoided.
在本发明一个实施例中,上述步骤204生成样本数据的具体实现方式可以有两种。In an embodiment of the present invention, there may be two specific implementation manners for generating the sample data in the foregoing
第一种样本数据的具体实现方式:The specific implementation of the first sample data:
针对来源于同一信号源且属于高概率发生区间的多个信号强度,执行:计算多个信号强度的平均值,将平均值作为已知参考点对应的样本数据。For a plurality of signal intensities originating from the same signal source and belonging to a high probability occurrence interval, execute: calculate the average value of the plurality of signal intensities, and use the average value as the sample data corresponding to the known reference point.
其中,可采用下述计算公式(2),计算多个信号强度的平均值;Wherein, the following calculation formula (2) can be used to calculate the average value of multiple signal strengths;
计算公式(2):Calculation formula (2):
其中,表征信号源APn所对应的平均值;mAPn表征源于信号源APn且属于高概率发生区间的信号强度的个数;RSSItAPn表征来源于信号源APn且属于高概率发生区间的第t个信号强度,t为不大于m的正整数,m为不小于2的正整数。in, Represents the average value corresponding to the signal source APn; m APn represents the number of signal strengths originating from the signal source APn and belonging to the high probability occurrence interval; RSSI tAPn represents the t-th signal originating from the signal source APn and belonging to the high probability occurrence interval Intensity, t is a positive integer not greater than m, and m is a positive integer not less than 2.
第二种样本数据的具体实现方式:The specific implementation of the second sample data:
针对属于高概率发生区间的信号强度,执行:计算每两个信号源之间的信号强度差,将信号强度差作为已知参考点的样本数据。For the signal strength belonging to the high probability occurrence interval, execute: calculate the signal strength difference between every two signal sources, and use the signal strength difference as the sample data of the known reference point.
其中,计算每两个信号源之间的信号强度差可采用下述计算公式(3)计算得到:Among them, the signal strength difference between each two signal sources can be calculated by using the following calculation formula (3):
计算公式(3):Calculation formula (3):
其中,RSSUAPi-APj表征信号源APi与信号源APj之间的信号强度差;表征由源于信号源APi且属于高概率发生区间的多个信号强度计算得到的平均值;表征由源于信号源APj且属于高概率发生区间的多个信号强度计算得到的平均值。Among them, RSSU APi -APj represents the signal strength difference between the signal source APi and the signal source APj; Characterize the average value calculated from multiple signal strengths originating from the signal source APi and belonging to the high probability occurrence interval; Characterizes the mean value calculated from multiple signal strengths originating from the signal source APj and belonging to the high probability occurrence interval.
在本发明一个实施例中,如图3所示,上述样本集构建方法可进一步包括如下步骤:In an embodiment of the present invention, as shown in FIG. 3 , the above-mentioned method for constructing a sample set may further include the following steps:
301:从多个已知参考点中,为未知参考点选定满足预设间距阈值的多个目标已知参考点;301: From a plurality of known reference points, select a plurality of target known reference points that satisfy a preset distance threshold for the unknown reference point;
302:为每一个目标已知参考点分配对应的权重;302: Assign a corresponding weight to each target known reference point;
303:利用权重以及目标已知参考点对应的样本数据,为未知参考点计算对应的样本数据;303: Calculate the corresponding sample data for the unknown reference point by using the weight and the sample data corresponding to the target known reference point;
304:将未知参考点对应的样本数据添加到样本集中。304: Add sample data corresponding to the unknown reference point to the sample set.
通过上述过程实现了为样本集增加样本数据,使样本集更加丰富性。由于未知参考点的样本数据是由已知参考点的样本数据得到的,避免了获取未知参考点的多个信号强度以及确定高概率发生区间的步骤,其中,获取已知参考点的多个信号强度的过程一般需要花费比较长的时间,而基于已知参考点的样本数据,能够有效的缩短得到未知参考点的样本数据所需时间,因此,本实施例提供的方案能够有效地提高构建样本集的效率。Through the above process, the sample data is added to the sample set to make the sample set more abundant. Since the sample data of the unknown reference point is obtained from the sample data of the known reference point, the steps of acquiring multiple signal strengths of the unknown reference point and determining the high probability occurrence interval are avoided. The intensity process generally takes a long time, and the sample data based on the known reference point can effectively shorten the time required to obtain the sample data of the unknown reference point. Therefore, the solution provided in this embodiment can effectively improve the construction of the sample data. set efficiency.
一般已知参考点与未知参考点相间存在。如图4给出的样本数据采集场地,包括4间房间和走廊部分的矩形区域。为该矩形区域划分出1米×1米的网格,每一个网格中的点(如网格的中心点或非中心点)即为已知参考点或未知参考点,其中,图4示出的C1、C2、C3、C4、C5、C6、C7、C8、C9、C10为部分已知参考点,相对应的c1、c2、c3、c4、c5、c6、c7、c8、c9、c10、c11为部分未知参考点。其中,图4给出的部分已知参考点和部分未知参考点的分布仅是一个示例,还可以有其他分布方式(只需要保证以未知参考点为中心设定阈值为半径的范围内存在已知参考点即可)。Generally, known reference points and unknown reference points exist alternately. The sample data collection site is given in Figure 4, including a rectangular area of 4 rooms and a corridor part. A grid of 1 m × 1 m is divided for the rectangular area, and the points in each grid (such as the center point or non-center point of the grid) are known reference points or unknown reference points, among which, Figure 4 shows The output C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 are some known reference points, the corresponding c1, c2, c3, c4, c5, c6, c7, c8, c9, c10 , c11 is a partial unknown reference point. Among them, the distribution of some known reference points and some unknown reference points given in Figure 4 is only an example, and other distribution methods are also possible (it only needs to ensure that there is a known know the reference point).
满足预设间距阈值一般是指与未知参考点间距不大于2倍的网格边长的已知参考点(比如网格边长为1米,则满足预设间距阈值为与未知参考点间距不大于2米的已知参考点),以保证选出的目标已知参考点基本与未知参考点相邻。Meeting the preset distance threshold generally refers to a known reference point whose distance from the unknown reference point is not more than 2 times the grid side length (for example, if the grid side length is 1 meter, then satisfying the preset distance threshold is the distance between the unknown reference point and the unknown reference point). Known reference point greater than 2 meters) to ensure that the selected target known reference point is basically adjacent to the unknown reference point.
其中,步骤302和步骤303可采用克里金插值法计算得到。克里金插值法是通过参考已知点的特征进而对未知点进行最优无偏估计,首先构建与定位区域内参考点信息相对应的变差函数模型,然后在此结构分析的基础之上求解克里金方程确定,得出未知估计点的坐标位置,并通过交叉验证得到待估计点的特征属性值。Wherein,
其中,为每一个目标已知参考点分配对应的权重具体可由下述计算公式组计算得到:Among them, the corresponding weight assigned to each target known reference point can be calculated by the following calculation formula group:
计算公式组:Calculation formula group:
其中,λi表征步骤301中选定的第i个目标已知参数点所对应的权重;h表征步骤301中选定的目标已知参数点总个数;Cov(xi,xj)表征选定的第i个目标已知参数点对应的信号强度与选定的第j个目标已知参数点对应的信号强度之间的协方差(第j个目标已知参数点指示为除第i个目标已知参数点之外的随机选出的任意一个目标已知参数据点);Cov(x0,xi)表征未知参考点对应的信号强度与第i个目标已知参数点对应的信号强度之间的协方差;μ表征拉格朗日系数。Among them, λ i represents the weight corresponding to the i-th target known parameter point selected in
上述计算公式组获得的具体过程:The specific process obtained by the above calculation formula group:
假设区域化变量Z(x)(信号强度在区域的变量)在整个研究区域内满足二阶平稳,Assuming that the regionalized variable Z(x) (the variable whose signal strength is in the region) satisfies the second-order stationary in the entire study area,
即,假设Z(x)的数学期望存在且等于常数:E[Z(x)]=m(常数),Z(x)的协方差Cov(xi,xj)存在且只与两点之间的相对位置有关。That is, assuming that the mathematical expectation of Z(x) exists and is equal to a constant: E[Z(x)]=m(constant), the covariance Cov(x i , x j ) of Z(x) exists and is only related to the difference between the two points relative position between them.
或假设区域化变量Z(x)满足本征假设:E[Z(xi)-Z(xj)]=0,增量的方差存在且平稳:Var[Z(xi)-Z(xj)]=E[Z(xi)-Z(xj)]2。Or assume that the regionalized variable Z(x) satisfies the eigen hypothesis: E[Z(x i )-Z(x j )]=0, the variance of the increments exists and is stationary: Var[Z(x i )-Z(x j )]=E[Z(x i )-Z(x j )] 2 .
依据无偏性要求:E[Z*(x0)]=E[Z(x0)],经上所述可推导出:According to the requirement of unbiasedness: E[Z * (x 0 )]=E[Z(x 0 )], it can be deduced from the above:
在无偏条件下使估计方差达到最小,即:The estimated variance is minimized under unbiased conditions, namely:
其中μ为拉格朗日系数,于是可得出上述计算公式组,从而求得各个目标已知参考点的权重λi(i=1,2,...,h)°where μ is the Lagrangian coefficient, so the above calculation formula group can be obtained, so as to obtain the weight λ i (i=1, 2,..., h )° of the known reference points of each target
基于上述计算出的权重,采用下述计算公式(4),计算未知参考点对应的样本数据。Based on the weights calculated above, the following calculation formula (4) is used to calculate the sample data corresponding to the unknown reference points.
计算公式(4):Calculation formula (4):
其中,Z*(x0)表征未知参考点x0的信号强度;Z(xi)表征第i个目标已知参数点的信号强度;λi表征步骤S301中选定的第i个目标已知参数点所对应的权重;h表征步骤S301中选定的目标已知参数点总个数。Among them, Z * (x 0 ) represents the signal strength of the unknown reference point x 0 ; Z(x i ) represents the signal strength of the i-th target known parameter point; λ i represents the i-th target selected in step S301 has been weights corresponding to known parameter points; h represents the total number of target known parameter points selected in step S301.
即求出诸权重λi(i=1,2,...,h)后,就可求出未知参考点x0的信号强度Z*(x0)。That is, after obtaining the weights λ i (i=1, 2, . . . , h) , the signal strength Z * (x 0 ) of the unknown reference point x 0 can be obtained.
另外,在上述样本集构建过程中,可选用两种型号的采集设备在已知参考点采集多次信号强度,这样可将一种型号的采集设备采集到的多次信号强度作为训练样本集,将另一种型号的采集设备采集到的多次信号强度作为测试样本集。其中每一种型号的采集设备在每一个已知参考点采集信号强度的次数一般不小于12次。In addition, in the above-mentioned sample set construction process, two types of acquisition devices can be selected to collect multiple signal intensities at known reference points, so that the multiple signal intensities collected by one type of acquisition device can be used as the training sample set. The multiple signal strengths collected by another type of collection device are used as the test sample set. Each type of acquisition device collects signal strength at each known reference point for no less than 12 times.
比如,针对图4给出的样本数据采集场地,使用一种型号的PC端的WiFi信号采集软件WiFiScan对每个已知参考点采集12次数据,每秒采集一次,最后得出训练样本集。测试定位精度的样本集(应用于模型测试阶段的样本集)则采用另一种型号的笔记本的WiFi信号采集软件随机在图4中的各个区域(房间1、房间2、房间3、房间4及走廊)各采集多条信号强度,以构建出测试样本集。For example, for the sample data collection site shown in Figure 4, a type of PC-side WiFi signal collection software WiFiScan is used to collect data for each known reference point 12 times, once per second, and finally a training sample set is obtained. The sample set for testing the positioning accuracy (the sample set used in the model testing phase) uses the WiFi signal acquisition software of another model of notebook randomly in each area in Figure 4 (room 1, room 2, room 3, room 4 and Corridor) to collect multiple signal strengths to construct a test sample set.
如图5所示,本发明实施例提供一种室内定位模型构建方法,该室内定位模型构建方法可包括如下步骤:As shown in FIG. 5 , an embodiment of the present invention provides a method for constructing an indoor positioning model, and the method for constructing an indoor positioning model may include the following steps:
501:获取样本集,其中,样本集由多个样本数据构建,样本数据由属于高概率发生区间的信号强度生成;501: Obtain a sample set, where the sample set is constructed from multiple sample data, and the sample data is generated from signal strengths belonging to a high probability occurrence interval;
502:利用样本集,迭代训练支持向量机,构建出室内定位模型。502: Use the sample set to iteratively train the support vector machine to construct an indoor positioning model.
由于样本集中的样本数据由属于高概率发生区间的信号强度生成,其使整个样本集中的样本数据的有效性和准确度大大提高,在样本集中的样本数据的有效性和准确度大大提高的前提下,基于该样本集构建出的室内定位模型的准确性也得到了有效地提高。Since the sample data in the sample set is generated by the signal intensity belonging to the high probability occurrence interval, the validity and accuracy of the sample data in the entire sample set are greatly improved, and the premise that the validity and accuracy of the sample data in the sample set are greatly improved The accuracy of the indoor positioning model constructed based on this sample set has also been effectively improved.
在本发明一个实施例中,上述室内定位模型构建方法可进一步包括:为支持向量机中的参数设置对应的第一取值范围;在第一取值范围内,随机为支持向量机分配初始参数;基于初始参数,执行迭代训练支持向量机的步骤。其中,第一取值范围为0.1~10。In an embodiment of the present invention, the above-mentioned method for constructing an indoor positioning model may further include: setting a corresponding first value range for the parameters in the support vector machine; within the first value range, randomly assigning initial parameters to the support vector machine ; Based on the initial parameters, perform the steps of iteratively training the support vector machine. The first value ranges from 0.1 to 10.
通过上述为支持向量机中的参数设置对应的第一取值范围;在第一取值范围内,随机为支持向量机分配初始参数,有效地缩小了参数范围,在保证训练结果的准确性的同时,能够有效地减少迭代次数。By setting the corresponding first value range for the parameters in the support vector machine above; within the first value range, randomly assigning initial parameters to the support vector machine, effectively reducing the parameter range, and ensuring the accuracy of the training results. At the same time, the number of iterations can be effectively reduced.
在本发明一个实施例中,上述室内定位模型构建方法可进一步包括:为支持向量机的参数设置迭代步长;相应地,如图6所示,从第二次迭代开始,将每一次迭代作为当前迭代,可执行步骤601至步骤604:In an embodiment of the present invention, the above-mentioned method for constructing an indoor positioning model may further include: setting an iterative step size for the parameters of the support vector machine; correspondingly, as shown in FIG. 6 , starting from the second iteration, each iteration is taken as For the current iteration,
601:确定当前迭代对应的上一迭代对应的参数;601: Determine the parameters corresponding to the previous iteration corresponding to the current iteration;
602:为上一迭代对应的参数增加或减少迭代步长,作为当前迭代的参数;602: Increase or decrease the iteration step size for the parameter corresponding to the previous iteration, as the parameter of the current iteration;
603:基于当前迭代的参数,训练支持向量机;603: Train the support vector machine based on the parameters of the current iteration;
604:当训练的结果满足预设的第一终止条件时,则终止迭代。604: Terminate the iteration when the training result satisfies the preset first termination condition.
上述为支持向量机的参数设置迭代步长的具体实施方式为,每次迭代的上一迭代参数乘以0.1或者10作为一个步长,从而得到当前迭代参数。比如,上一迭代的一个参数为0.1,当前迭代的一个步长为0.1×0.1=0.01,该参数为0.1+0.01=0.11;又比如,上一迭代的一个参数为10,当前迭代的一个步长为10×0.1=1,该参数为10-1=9。The specific implementation manner of setting the iteration step size for the parameters of the support vector machine above is as follows: the previous iteration parameter of each iteration is multiplied by 0.1 or 10 as a step size, so as to obtain the current iteration parameter. For example, a parameter of the previous iteration is 0.1, a step size of the current iteration is 0.1×0.1=0.01, and the parameter is 0.1+0.01=0.11; for another example, a parameter of the previous iteration is 10, a step of the current iteration The length is 10×0.1=1, and the parameter is 10-1=9.
上述第一终止条件可以为:迭代次数达到预设的第一迭代次数阈值;或者,上述第一终止条件可以为:当前迭代的结果与上一迭代的结果之间的差值不大于预设的差值阈值;或者,上述第一终止条件可以为:当前迭代产生的模型进行室内定位产生的定位结果与实际位置之间的差异不大于预设的差异阈值。The first termination condition may be: the number of iterations reaches a preset threshold of the first iteration number; or, the first termination condition may be: the difference between the result of the current iteration and the result of the previous iteration is not greater than the preset threshold Alternatively, the above-mentioned first termination condition may be: the difference between the positioning result generated by indoor positioning of the model generated by the current iteration and the actual position is not greater than a preset difference threshold.
值得说明的是,当图6给出的实施例中确定出参数值后,可对该参数值再细化搜索更准确的值。该对参数值再细化搜索更准确的值可以有两种具体实施方式,方式一:缩小步长取值,进一步为该确定出的参数值确定一个区间,在该区间内采用缩小后的步长进一步执行上述图6示出的迭代过程。方式二为:采用图7示出的迭代过程实现。It is worth noting that, after the parameter value is determined in the embodiment shown in FIG. 6 , the parameter value can be refined and searched for a more accurate value. There are two specific implementations for the refinement of the parameter value to search for a more accurate value. The first method is to reduce the step size to take the value, further determine an interval for the determined parameter value, and use the reduced step in the interval. The iterative process shown in FIG. 6 above is further performed. The second way is: using the iterative process shown in FIG. 7 to implement.
值得说明的是,下述图7给出的具体过程可作为图6示出的实施例的并列实施例,也可作为图6示出的实施例的进一步限定。It should be noted that the specific process given in FIG. 7 below can be used as a parallel embodiment of the embodiment shown in FIG. 6 , and can also be used as a further limitation of the embodiment shown in FIG. 6 .
在本发明一个实施例中,针对迭代训练支持向量机,如图7所示,上述室内定位模型构建方法可包括:In an embodiment of the present invention, for iterative training of a support vector machine, as shown in FIG. 7 , the above-mentioned method for constructing an indoor positioning model may include:
701:为支持向量机中的参数设置对应的第二取值范围;701: Set a corresponding second value range for a parameter in the support vector machine;
当图7给出的具体过程作为图6示出的实施例的并列实施例时,该第二取值范围可以与第一取值范围一致,也可与第一取值范围不同,该第二取值范围可为人为设定的。当图7给出的具体过程作为图6示出的实施例的进一步限定,该第二取值范围是基于图6示出的实施例得到的最后一次迭代产生的参数,确定出的一个取值区间。When the specific process shown in FIG. 7 is a parallel embodiment of the embodiment shown in FIG. 6 , the second value range may be consistent with the first value range, or may be different from the first value range. The value range can be set manually. When the specific process shown in FIG. 7 is further defined as the embodiment shown in FIG. 6 , the second value range is a value determined based on the parameters generated by the last iteration obtained in the embodiment shown in FIG. 6 . interval.
702:在第二取值范围内初始化烟花种群;702: Initialize the firework population within the second value range;
针对每一次迭代,执行步骤703至步骤707:For each iteration, step 703 to step 707 are performed:
703:确定烟花种群,确定烟花种群中的烟花的爆炸火花和变异火花;703: Determine the firework population, and determine the explosion sparks and variation sparks of the fireworks in the firework population;
704:计算爆炸火花和变异火花的适应度;704: Calculate the fitness of explosion sparks and mutant sparks;
705:判断当前迭代的结果是否满足第二终止条件,如果是,则执行步骤706;否则,执行步骤707;705: Determine whether the result of the current iteration satisfies the second termination condition, if yes, execute
706:将适应度最小的爆炸火花或适应度最小的变异火花作为训练结果,并结束当前流程;706: Use the explosion spark with the least fitness or the mutation spark with the minimum fitness as the training result, and end the current process;
707:从爆炸火花和变异火花中,选取出多个目标火花组成烟花种群,其中,目标火花作为烟花种群中的烟花。707: From the explosion sparks and the variation sparks, select multiple target sparks to form a firework population, wherein the target sparks are used as fireworks in the firework population.
其中,在上述步骤702中,可通过计算爆炸算子计算烟花种群中的烟花gi每一次爆炸产生的火花个数Si和爆炸幅度半径Ai;Wherein, in the
其中,火花个数Si可通过下述的计算公式(5)计算得到,爆炸幅度半径Ai可通过下述计算公式(6)计算得到。Among them, the number of sparks Si can be calculated by the following calculation formula (5) , and the explosion range radius A i can be calculated by the following calculation formula (6).
计算公式(5):Calculation formula (5):
计算公式(6):Calculation formula (6):
其中w表征常数,用以控制火花总数,Ymax=max(f(gi))表征当前烟花种群中适应度最大值,Ymin=min(f(gi))表征当前种群中适应度最小值,表征最大的爆炸幅度,ε表征一极小常数以免出现除零操作;gi表征当前烟花种群中第i个爆炸烟花;p表征当前烟花种群中包括的爆炸烟花总数。where w represents a constant to control the total number of sparks, Y max =max(f( gi )) represents the maximum fitness in the current firework population, Y min =min(f( gi )) represents the minimum fitness in the current population value, Represents the maximum explosion amplitude, ε represents a minimal constant to avoid division by zero; g i represents the ith exploding firework in the current firework population; p represents the total number of exploding fireworks included in the current firework population.
另外,f(gi)=1-D(gi),其中,f(gi)表征当前种群中烟花gi对应的适应度;D(gi)表征当前种群中烟花gi对应的定位精度的准确率。In addition, f( gi )=1-D( gi ), where f( gi ) represents the fitness corresponding to the fireworks gi in the current population; D( gi ) represents the location corresponding to the fireworks gi in the current population Precision accuracy.
另外,确定变异火花,可通过变异算子计算得出高斯变异火花。具体:随机选取一个火花gi u并且对其在第u维上进行高斯变异操作,其中v是服从v~N(1,1)的高斯分布随机值。In addition, to determine the mutation spark, the Gaussian mutation spark can be calculated by the mutation operator. Specifically: randomly select a spark g i u and perform a Gaussian mutation operation on the u-th dimension, where v is a Gaussian random value obeying v~N(1, 1).
变异算子:Mutation operator:
gi u=gi u×vg i u = g i u ×v
采用模运算映射规则将越界的火花映射到可行域内。The out-of-bound sparks are mapped into the feasible region using the modulo operation mapping rule.
模型运算映射规则:Model operation mapping rules:
Gi u=gmin u+|Gi u|%(gmax u-gmin u)G i u =g min u +|G i u |%(g max u -g min u )
其中,Gi u表征越界的第i个火花在第u维上的位置;gmax u和gmin u分别表示第u维上的上下边界。Among them, G i u represents the position of the out-of-bounds i-th spark on the u-th dimension; g max u and g min u represent the upper and lower boundaries on the u-th dimension, respectively.
上述步骤704的具体实施方式为,通过1减爆炸烟花或变异火花的对应的定位精度的准确率,即可得到爆炸火花或变异火花的适应度。The specific implementation of the above-mentioned
第二终止条件可以为迭代次数达到预设的第二迭代次数阈值。The second termination condition may be that the number of iterations reaches a preset second threshold of the number of iterations.
上述步骤707的具体实施方式可为:The specific implementation manner of the
采用精英策略选取本次迭代过程中适应度函数值最小的火花(即最优火花)作为下一次迭代的爆炸烟花,下一次迭代的其余N个烟花则采用轮盘赌博的方式进行选取。火花Gi被选取的概率公式p(Gi)如下所示。The elite strategy is used to select the spark with the smallest fitness function value in this iteration (ie the optimal spark) as the explosion fireworks of the next iteration, and the remaining N fireworks of the next iteration are selected by roulette gambling. The probability formula p(G i ) for the spark G i to be selected is as follows.
其中,R(Gi)为两个个体之间的欧式距离。where R(G i ) is the Euclidean distance between two individuals.
R(Gi)=∑j∈K||Gi-Gj||R(G i )=∑ j∈K ||G i -G j ||
其中,Gi表征当前迭代产生的爆炸火花和变异火花中第i个火花;Gj表征当前迭代产生的爆炸火花和变异火花中的任意一个火花;K表征Gi和Gj所属于的爆炸烟花所产生的火花集合;Among them, G i represents the ith spark among the explosion sparks and mutation sparks generated by the current iteration; G j represents any one of the explosion sparks and mutation sparks generated by the current iteration; K represents the explosion fireworks to which G i and G j belong The resulting collection of sparks;
根据概率从大到小的顺序,选取N个火花组成下一迭代的烟花种群。According to the order of probability from large to small, N sparks are selected to form the firework population of the next iteration.
如图8所示,本发明实施例提供一种基于上述实施例构建出的室内定位模型实现的室内定位方法,该室内定位方法可包括如下步骤:As shown in FIG. 8 , an embodiment of the present invention provides an indoor positioning method implemented based on the indoor positioning model constructed in the foregoing embodiment. The indoor positioning method may include the following steps:
801:获取待定位点的信号指纹信息;801: Obtain the signal fingerprint information of the point to be located;
802:将信号指纹信息输入室内定位模型,获得待定位点的位置信息。802: Input the signal fingerprint information into the indoor positioning model to obtain the position information of the point to be positioned.
上述步骤801可以为:采集待定位点的信号强度,将采集到的信号强度作为信号指纹信息;The
上述步骤801还可以为:采集至少两个信号源在待定位点的信号强度,计算每两个信号源对应的信号强度差,将信号强度差作为信号指纹信息。The
利用信号强度差作为信号指纹信息能够去除采集信号强度的设备的硬件带来的误差,从而有效地提高定位准确性。Using the signal strength difference as the signal fingerprint information can remove the error caused by the hardware of the device that collects the signal strength, thereby effectively improving the positioning accuracy.
如图9所示,本发明实施例提供一种样本集构建装置900,该样本集构建装置900可包括:As shown in FIG. 9 , an embodiment of the present invention provides an
信号获取单元901,用于获取已知参考点的多个信号强度;a
信号处理单元902,用于根据信号获取单元901获取到的多个信号强度,确定高概率发生区间;从多个信号强度中,选取出属于高概率发生区间的信号强度;The
样本集构建单元903,用于利用信号处理单元902选出的属于高概率发生区间的信号强度,为已知参考点生成对应的样本数据;利用多个已知参考点对应的样本数据,构建样本集。The sample set
在本发明一个实施例中,信号处理单元902,用于当多个信号强度来源于至少两个信号源,且每一个信号源对应多个信号强度时,针对每一个信号源对应的多个信号强度,执行确定高概率发生区间的步骤。In an embodiment of the present invention, the
在本发明一个实施例中,样本集构建单元903,用于针对来源于同一信号源且的属于高概率发生区间的多个信号强度,执行:计算多个信号强度的平均值,将平均值作为已知参考点对应的样本数据。In an embodiment of the present invention, the sample set
在本发明一个实施例中,样本集构建单元903,用于针对属于高概率发生区间的信号强度,执行:计算每两个信号源之间的信号强度差,将信号强度差作为已知参考点的样本数据。In an embodiment of the present invention, the sample set
在本发明一个实施例中,信号处理单元902,进一步用于从多个已知参考点中,为未知参考点选定满足预设间距阈值的多个目标已知参考点;为每一个目标已知参考点分配对应的权重;In an embodiment of the present invention, the
样本集构建单元903,进一步用于利用信号处理单元902分配的权重以及目标已知参考点对应的样本数据,为未知参考点计算对应的样本数据;将未知参考点对应的样本数据添加到样本集中。The sample set
如图10所示,本发明实施例提供一种室内定位模型构建装置1000,该室内定位模型构建装置1000可包括:As shown in FIG. 10 , an embodiment of the present invention provides an
样本集获取单元1001,用于获取样本集,其中,样本集由多个样本数据构建,样本数据由属于高概率发生区间的信号强度生成;A sample set obtaining
模型构建单元1002,用于利用样本集获取单元获取到的样本集,迭代训练支持向量机,构建出室内定位模型。The
其中,样本集获取单元1001可以为获取上述图9所示的实施例的样本集构建装置900构建出的样本集。Wherein, the sample set obtaining
在本发明一个实施例中,模型构建单元1002,进一步用于为支持向量机中的参数设置有对应的第一取值范围;在第一取值范围内,随机为支持向量机分配初始参数;基于初始参数,执行迭代训练支持向量机的步骤。In an embodiment of the present invention, the
在本发明一个实施例中,模型构建单元1002,进一步用于为支持向量机的参数设置有迭代步长;从第二次迭代开始,将每一次迭代作为当前迭代,执行:确定当前迭代对应的上一迭代对应的参数;为上一迭代对应的参数增加或减少迭代步长,作为当前迭代的参数;基于当前迭代的参数,训练支持向量机;当训练的结果满足预设的第一终止条件时,则终止迭代。In an embodiment of the present invention, the
在本发明一个实施例中,模型构建单元1002,进一步用于为支持向量机中的参数设置有对应的第二取值范围;在所述第二取值范围内初始化烟花种群;针对每一次迭代,执行:确定烟花种群,确定烟花种群中的烟花的爆炸火花和变异火花;计算爆炸火花和变异火花的适应度;判断当前迭代的结果是否满足第二终止条件,如果是,则将适应度最小的爆炸火花或适应度最小的变异火花作为训练结果,并结束当前流程;否则,从爆炸火花和变异火花中,选取出多个目标火花组成烟花种群,其中,目标火花作为烟花种群中的烟花。In an embodiment of the present invention, the
如图11所示,本发明实施例提供一种室内定位装置1100,该室内定位装置1100可包括:As shown in FIG. 11 , an embodiment of the present invention provides an
信息获取单元1101,用于获取待定位点的信号指纹信息;An
位置确定单元1102,用于将信息获取单元获取到的信号指纹信息输入室内定位模型,获得待定位点的位置信息。The
在本发明一个实施例中,信息获取单元1101,用于将采集到的待定位点的信号强度作为所述信号指纹信息。In an embodiment of the present invention, the
在本发明一个实施例中,信息获取单元1101,进一步用于针对采集到的至少两个信号源在待定位点的信号强度,计算每两个信号源对应的信号强度差,将信号强度差作为信号指纹信息。In an embodiment of the present invention, the
值得说明的是,位置确定单元1102所采用的室内定位模型可来源于上述实施例提供的室内定位模型构建装置1000构建出的室内定位模型。It should be noted that the indoor positioning model used by the
另外,上述样本集构建装置900、室内定位模型构建装置1000以及室内定位装置1100可以插件的形式集成到同一设备或系统中。In addition, the above-mentioned sample set
另外,上述样本集构建装置900、室内定位模型构建装置1000以及室内定位装置1100可集成一个集样本构建、室内定位模型构建以及室内定位为一体的装置或设备。In addition, the above-mentioned sample set
另外,上述样本集构建装置900和室内定位模型构建装置1000可集成到同一设备,室内定位装置1100在另一设备;样本集构建装置900单独在一个设备,室内定位模型构建装置1000和室内定位装置1100可集成到同一设备。In addition, the above-mentioned sample set
图12示出了可以应用本发明实施例的样本集构建方法或样本集构建装置或室内定位模型构建方法或室内定位模型构建装置或室内定位方法或室内定位装置的示例性系统架构1200。12 shows an
如图12所示,系统架构1200可以包括终端设备1201、1202、1203,网络1204、服务器1205、数据库1206和自动移动设备1207。网络1204用以在终端设备1201、1202、1203和服务器1205之间、终端设备1201、1202、1203和数据库1206之间、服务器1205和数据库1206之间、数据库1206和自动移动设备1207之间、服务器1205和自动移动设备1207提供通信链路的介质。网络1204可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。As shown in FIG. 12 , the
用户可以使用终端设备1201、1202、1203通过网络1204与服务器1205交互,以发送或接收信息等。终端设备1201、1202、1203通过网络1204与数据库1206交互,以发送或接收信号强度相关的信息等。数据库1206与服务器1205交互,以发送样本集或接收构建出得室内定位模型等。自动移动设备1207与服务器1205交互,以发送信号指纹信息或者接收定位结果。终端设备1201、1202、1203以及自动移动设备1207上可以安装有各种通讯客户端应用,例如购物类应用、网页浏览器应用、搜索类应用、即时通信工具、邮箱客户端、社交平台软件等(仅为示例)。The user can use the
终端设备1201、1202、1203可以是具有显示屏并且支持网页浏览的各种电子设备,包括但不限于智能手机、平板电脑、膝上型便携计算机和台式计算机等等。The
自动移动设备1207可以是仓库自动搬运设备、搬运机器人、送餐机器人、扫地机器人等。The automatic
服务器1205可以是提供各种服务的服务器,例如对用户利用终端设备1201、1202、1203所采集到的信号强度提供支持的后台管理服务器(仅为示例)。后台管理服务器可以对接收到的信号强度等数据进行分析等处理,并将处理结果(例如样本集、训练出的定位模型、定位结果--仅为示例)反馈给数据库、自动移动设备等。The
需要说明的是,本发明实施例所提供的样本集构建方法、室内定位模型构建方法以及室内定位方法一般由服务器1205执行,相应地,样本集构建装置、室内定位模型构建装置以及室内定位装置一般设置于服务器1205中。It should be noted that the sample set construction method, the indoor positioning model construction method, and the indoor positioning method provided by the embodiments of the present invention are generally executed by the
应该理解,图12中的终端设备、网络、服务器、数据库和自动移动设备的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络、服务器、数据库和自动移动设备。It should be understood that the numbers of terminal devices, networks, servers, databases, and automated mobile devices in FIG. 12 are merely illustrative. There can be any number of terminal devices, networks, servers, databases, and automated mobile devices according to implementation needs.
下面参考图13,其示出了适于用来实现本发明实施例的终端设备或服务器的计算机系统1300的结构示意图。图13示出的终端设备仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。Referring next to FIG. 13 , it shows a schematic structural diagram of a
如图13所示,计算机系统1300包括中央处理单元(CPU)1301,其可以根据存储在只读存储器(ROM)1302中的程序或者从存储部分1308加载到随机访问存储器(RAM)1303中的程序而执行各种适当的动作和处理。在RAM 1303中,还存储有系统1300操作所需的各种程序和数据。CPU 1301、ROM 1302以及RAM 1303通过总线1304彼此相连。输入/输出(I/O)接口1305也连接至总线1304。As shown in FIG. 13, a
以下部件连接至I/O接口1305:包括键盘、鼠标等的输入部分1306;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分1307;包括硬盘等的存储部分1308;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分1309。通信部分1309经由诸如因特网的网络执行通信处理。驱动器1310也根据需要连接至I/O接口1305。可拆卸介质1311,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器1310上,以便于从其上读出的计算机程序根据需要被安装入存储部分1308。The following components are connected to the I/O interface 1305: an
特别地,根据本发明公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本发明公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分1309从网络上被下载和安装,和/或从可拆卸介质1311被安装。在该计算机程序被中央处理单元(CPU)1301执行时,执行本发明的系统中限定的上述功能。In particular, the processes described above with reference to the flowcharts may be implemented as computer software programs in accordance with the disclosed embodiments of the present invention. For example, embodiments disclosed herein include a computer program product comprising a computer program carried on a computer-readable medium, the computer program containing program code for performing the method illustrated in the flowchart. In such an embodiment, the computer program may be downloaded and installed from the network via the
需要说明的是,本发明所示的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本发明中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本发明中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。It should be noted that the computer-readable medium shown in the present invention may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two. The computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples of computer readable storage media may include, but are not limited to, electrical connections having one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the above. In the present invention, a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device. In the present invention, however, a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device . Program code embodied on a computer readable medium may be transmitted using any suitable medium including, but not limited to, wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more logical functions for implementing the specified functions executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams or flowchart illustrations, and combinations of blocks in the block diagrams or flowchart illustrations, can be implemented in special purpose hardware-based systems that perform the specified functions or operations, or can be implemented using A combination of dedicated hardware and computer instructions is implemented.
描述于本发明实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种处理器包括信号获取单元、信号处理单元和样本集构建单元。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定,例如,信号获取单元还可以被描述为“获取已知参考点的多个信号强度的单元”。The units involved in the embodiments of the present invention may be implemented in a software manner, and may also be implemented in a hardware manner. The described unit may also be provided in the processor, for example, it may be described as: a processor includes a signal acquisition unit, a signal processing unit and a sample set construction unit. Wherein, the names of these units in some cases do not constitute a limitation of the unit itself, for example, the signal acquisition unit may also be described as "a unit for acquiring multiple signal strengths of known reference points".
作为另一方面,本发明还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的设备中所包含的;也可以是单独存在,而未装配入该设备中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该设备执行时,使得该设备包括:获取已知参考点的多个信号强度;根据多个信号强度,确定高概率发生区间;从多个信号强度中,选取属于高概率发生区间的信号强度;利用属于高概率发生区间的信号强度,为已知参考点生成对应的样本数据;利用多个已知参考点对应的样本数据,构建样本集。As another aspect, the present invention also provides a computer-readable medium, which may be included in the device described in the above embodiments; or may exist alone without being assembled into the device. The above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by a device, the device includes: acquiring multiple signal strengths of known reference points; determining according to the multiple signal strengths High probability occurrence interval; select the signal strength belonging to the high probability occurrence interval from multiple signal intensities; use the signal strength belonging to the high probability occurrence interval to generate corresponding sample data for known reference points; use multiple known reference points Corresponding sample data, construct a sample set.
作为另一方面,本发明还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的设备中所包含的;也可以是单独存在,而未装配入该设备中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该设备执行时,使得该设备包括:获取样本集,其中,样本集由多个样本数据构建,样本数据由属于高概率发生区间的信号强度生成;利用样本集,迭代训练支持向量机,构建出室内定位模型。As another aspect, the present invention also provides a computer-readable medium, which may be included in the device described in the above embodiments; or may exist alone without being assembled into the device. The above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by a device, the device includes: acquiring a sample set, wherein the sample set is constructed from a plurality of sample data, and the sample data is composed of The signal strength belonging to the high probability occurrence interval is generated; using the sample set, iteratively trains the support vector machine to construct an indoor positioning model.
作为另一方面,本发明还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的设备中所包含的;也可以是单独存在,而未装配入该设备中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该设备执行时,使得该设备包括:获取待定位点的信号指纹信息;将信号指纹信息输入室内定位模型,获得待定位点的位置信息。As another aspect, the present invention also provides a computer-readable medium, which may be included in the device described in the above embodiments; or may exist alone without being assembled into the device. The above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by a device, the device includes: acquiring the signal fingerprint information of the point to be located; inputting the signal fingerprint information into the indoor positioning model, Obtain the location information of the to-be-located point.
根据本发明实施例的技术方案,对于获取到的数据如信号强度来说,大部分为正常数据,而且正常数据分布一般比较集中,一般情况下,能够限定出正常数据所在的范围或区间,而小部分的异常数据即脏数据,则往往在正常数据所在的范围或区间之外,基于此,本发明实施例提供的方案根据多个信号强度,确定高概率发生区间;利用属于高概率发生区间的信号强度,为已知参考点生成对应的样本数据;利用多个已知参考点对应的样本数据,构建样本集,采用高概率发生区间实现了去除脏数据,即构建样本集的样本数据由去除脏数据后的数据得到,能够有效地去除样本集中的脏数据。According to the technical solutions of the embodiments of the present invention, most of the acquired data, such as signal strength, are normal data, and the distribution of normal data is generally concentrated. A small part of abnormal data, that is, dirty data, is often outside the range or interval where normal data is located. Based on this, the solution provided by the embodiment of the present invention determines a high-probability occurrence interval according to multiple signal strengths; uses a high-probability occurrence interval The signal strength of the signal intensity is generated, and the corresponding sample data is generated for the known reference points; the sample data corresponding to multiple known reference points is used to construct the sample set, and the high probability occurrence interval is used to realize the removal of dirty data, that is, the sample data for constructing the sample set is composed of The data obtained after removing the dirty data can effectively remove the dirty data in the sample set.
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,取决于设计要求和其他因素,可以发生各种各样的修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。The above-mentioned specific embodiments do not constitute a limitation on the protection scope of the present invention. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions may occur depending on design requirements and other factors. Any modifications, equivalent replacements and improvements made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010332627.2A CN113556699A (en) | 2020-04-24 | 2020-04-24 | Sample set construction, indoor positioning model construction, indoor positioning method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010332627.2A CN113556699A (en) | 2020-04-24 | 2020-04-24 | Sample set construction, indoor positioning model construction, indoor positioning method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113556699A true CN113556699A (en) | 2021-10-26 |
Family
ID=78101428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010332627.2A Pending CN113556699A (en) | 2020-04-24 | 2020-04-24 | Sample set construction, indoor positioning model construction, indoor positioning method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113556699A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103605711A (en) * | 2013-11-12 | 2014-02-26 | 中国石油大学(北京) | Construction method and device, classification method and device of support vector machine |
CN105898866A (en) * | 2016-06-16 | 2016-08-24 | 合肥工业大学 | Establishing method of fingerprint library when WiFi indoor positioning is carried out |
CN106028290A (en) * | 2016-05-06 | 2016-10-12 | 浙江工业大学 | Kriging-based multi-dimensional vector fingerprint location method for WSN |
CN107967461A (en) * | 2017-12-08 | 2018-04-27 | 深圳云天励飞技术有限公司 | The training of SVM difference models and face verification method, apparatus, terminal and storage medium |
CN108256029A (en) * | 2018-01-11 | 2018-07-06 | 北京神州泰岳软件股份有限公司 | Statistical classification model training apparatus and training method |
CN109511095A (en) * | 2018-11-30 | 2019-03-22 | 长江大学 | A kind of visible light localization method and system based on Support vector regression |
CN110557716A (en) * | 2019-09-03 | 2019-12-10 | 华南师范大学 | Indoor positioning method based on lognormal model |
-
2020
- 2020-04-24 CN CN202010332627.2A patent/CN113556699A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103605711A (en) * | 2013-11-12 | 2014-02-26 | 中国石油大学(北京) | Construction method and device, classification method and device of support vector machine |
CN106028290A (en) * | 2016-05-06 | 2016-10-12 | 浙江工业大学 | Kriging-based multi-dimensional vector fingerprint location method for WSN |
CN105898866A (en) * | 2016-06-16 | 2016-08-24 | 合肥工业大学 | Establishing method of fingerprint library when WiFi indoor positioning is carried out |
CN107967461A (en) * | 2017-12-08 | 2018-04-27 | 深圳云天励飞技术有限公司 | The training of SVM difference models and face verification method, apparatus, terminal and storage medium |
CN108256029A (en) * | 2018-01-11 | 2018-07-06 | 北京神州泰岳软件股份有限公司 | Statistical classification model training apparatus and training method |
CN109511095A (en) * | 2018-11-30 | 2019-03-22 | 长江大学 | A kind of visible light localization method and system based on Support vector regression |
CN110557716A (en) * | 2019-09-03 | 2019-12-10 | 华南师范大学 | Indoor positioning method based on lognormal model |
Non-Patent Citations (3)
Title |
---|
赵燕: "基于FWA-SVM的室内无线定位方法研究", CNKI-硕士论文, pages 30 * |
陈刚、张笑等编: "《数字地形建模与地学分析》", 31 January 2019, 东南大学出版社, pages: 105 - 106 * |
顾军华;赵燕;董瑶;董永峰;史进;: "基于FWA-SVM的室内无线定位研究", 河北工业大学学报, no. 06 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109743741B (en) | Wireless router deployment method and device, storage medium and electronic equipment | |
CN109995884B (en) | Method and apparatus for determining precise geographic location | |
CN110719568B (en) | Indoor positioning method, device, medium and equipment | |
CN105608179B (en) | The method and apparatus for determining the relevance of user identifier | |
US20150271280A1 (en) | Multi-objective server placement determination | |
US20140226503A1 (en) | Systems and Methods for Room-Level Location Using WiFi | |
US20140031062A1 (en) | Wireless client position estimating system and method | |
JP2015518143A (en) | Mobile device positioning | |
US20230145408A1 (en) | Method of processing feature information, electronic device, and storage medium | |
CN107222410B (en) | Method, device, terminal and computer readable storage medium for link prediction | |
CN110348896B (en) | Method for dividing geographic grid, method and device for determining business district | |
CN115225543A (en) | Flow prediction method and device, electronic equipment and storage medium | |
CN108680897A (en) | An indoor positioning method, device, electronic equipment and storage medium | |
CN102411577A (en) | Method and equipment for analyzing promotion keywords based on benchmarks | |
CN113556699A (en) | Sample set construction, indoor positioning model construction, indoor positioning method and device | |
CN114646313A (en) | User track positioning method, electronic equipment and computer storage medium | |
Konstantinidis et al. | A multi-objective indoor localization service for smartphones | |
CN113590721B (en) | Block chain address classification method and device | |
Rafique et al. | Optimization technique for indoor localization: A multi-objective approach to sampling time and error rate trade-off | |
WO2015154641A1 (en) | Prediction method and prediction system for service concurrency | |
CN115238825A (en) | Model training method, device, equipment and medium based on federal learning | |
CN115499876A (en) | Computing unloading strategy based on DQN algorithm under MSDE scene | |
CN112749822B (en) | Method and device for generating route | |
CN108495262B (en) | Sparse representation and matching positioning method for indoor space ubiquitous positioning signal fingerprint database | |
Shen et al. | Data-driven reliable facility location design |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20211026 |