CN113550752B - Automatic tunnel profiler and construction method based on galvanometer - Google Patents
Automatic tunnel profiler and construction method based on galvanometer Download PDFInfo
- Publication number
- CN113550752B CN113550752B CN202110898179.7A CN202110898179A CN113550752B CN 113550752 B CN113550752 B CN 113550752B CN 202110898179 A CN202110898179 A CN 202110898179A CN 113550752 B CN113550752 B CN 113550752B
- Authority
- CN
- China
- Prior art keywords
- light source
- tunnel
- signal processing
- assembly
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D9/00—Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
- E21D9/003—Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明提供一种基于振镜的自动隧道断面仪,隧道断面仪包括X/Y振镜组件、探测光源、显示光源、驱动电路、光探测及测距模块和信号处理及控制组件,探测光源和显示光源与信号处理及控制组件电连接;信号处理及控制组件与驱动电路电连接,驱动电路与X/Y振镜组件电连接,用于驱动X/Y振镜组件反射光源至预设位置;光探测及测距模块与信号处理及控制组件电连接,用于将接收的光源点云信息发送至信号处理及控制组件;还设有光合束器,探测光源指向光合束器的第一输入口,显示光源指向光合束器的第二输入口,光合束器的输出口指向X/Y振镜组件,以使探测光源和显示光源均从光合束器向X/Y振镜组件提供光源。本发明使隧道断面的轮廓信息与辅助标注图形统一。
The invention provides an automatic tunnel profiler based on vibrating mirrors. The tunnel profiler includes an X/Y vibrating mirror assembly, a detection light source, a display light source, a drive circuit, a light detection and ranging module, and a signal processing and control assembly. The detection light source and The display light source is electrically connected to the signal processing and control component; the signal processing and control component is electrically connected to the drive circuit, and the drive circuit is electrically connected to the X/Y vibrating mirror component for driving the X/Y vibrating mirror component to reflect the light source to a preset position; The light detection and ranging module is electrically connected with the signal processing and control component, and is used to send the received point cloud information of the light source to the signal processing and control component; there is also a light beam combiner, and the detection light source points to the first input port of the light beam combiner , the display light source points to the second input port of the optical beam combiner, and the output port of the optical beam combiner points to the X/Y galvanometer assembly, so that both the detection light source and the display light source provide light sources from the optical beam combiner to the X/Y galvanometer assembly. The invention unifies the contour information of the tunnel section and the auxiliary marked graphics.
Description
技术领域technical field
本发明涉及光源测量设备,特别是一种基于振镜的自动隧道断面仪及施工方法。The invention relates to light source measuring equipment, in particular to an automatic tunnel profiler based on vibrating mirrors and a construction method.
背景技术Background technique
在隧道施工过程中,按照设计图纸在掌子面上打炮孔和初期支护时格栅钢架的定位均采用人工操作。存在的问题是由于掌子面的轮廓和表面均不规整,人工操作精度不足。若定位不准确容易出现安全事故,且施工效率较低。中国专利文献CN105716576A记载了一种远程投射式光源断面仪及其方法,能够在扫描隧道断面的基础上,将设计数据叠加投影到隧道断面上,使施工人员能够准确打炮眼,准确安装格栅钢架。但是该方案中光源测距仪和振镜系统是两个设备,即采集隧道断面的发射中心点与投射图像的发射中心点之间具有一个间距,从而出现数据误差。通过X/Y扫描振镜与光源测距仪的匹配工作是确定扫描振镜发散角θ,不能在隧道中心线以外的位置安放设备,增加了实际使用限制,同时在该方案中默认隧道断面为理想平面,无表面凹凸情况,无法修正因断面不平整导致的误差。CN110455260 A记载了一种隧道断面轮廓确定方法、装置及电子设备,该方法和装置是通过光源图像定位仪确定中心点坐标后,再对当前隧道断面对应的轮廓图像数据进行变换处理,也存在相同的误差问题。在CN 108844522 A记载了一种基于三维光源扫描的盾构隧道断面中心提取方法,提出基于绝对坐标下直接截取断面、以及在绝对坐标系下对断面点云进行空间圆拟合的方法。该方法即是为了配合前述的技术方案,整体实施较为复杂,限制条件较大。In the process of tunnel construction, manual operations are used to drill holes on the tunnel surface according to the design drawings and to position the grid steel frame during the initial support. The existing problem is that due to the irregular contour and surface of the face, the precision of manual operation is insufficient. If the positioning is not accurate, it is easy to cause safety accidents, and the construction efficiency is low. Chinese patent document CN105716576A describes a remote projection light source profiler and its method, which can superimpose and project design data onto the tunnel section on the basis of scanning the tunnel section, so that construction personnel can accurately drill holes and install grid steel accurately shelf. However, in this scheme, the light source rangefinder and the galvanometer system are two devices, that is, there is a distance between the emission center point of the collected tunnel section and the emission center point of the projected image, resulting in data errors. The matching work between the X/Y scanning galvanometer and the light source rangefinder is to determine the divergence angle θ of the scanning galvanometer, and the device cannot be placed at a position other than the centerline of the tunnel, which increases the actual use limit. At the same time, the default tunnel section in this scheme is An ideal plane, without surface unevenness, cannot correct errors caused by uneven cross-sections. CN110455260 A describes a method, device and electronic equipment for determining the contour of a tunnel section. The method and device determine the coordinates of the center point through a light source image locator, and then transform and process the contour image data corresponding to the current tunnel section. error problem. CN 108844522 A describes a method for extracting the section center of a shield tunnel based on three-dimensional light source scanning, and proposes a method of directly intercepting the section based on absolute coordinates and performing space circle fitting on the section point cloud in the absolute coordinate system. This method is to cooperate with the above-mentioned technical solution, and the overall implementation is relatively complicated, and the restrictive conditions are relatively large.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种基于振镜的自动隧道断面仪,能够克服现有技术中采集设备与投影设备之间误差的问题,提高叠加投影精度,且使用限制小,无需确定隧道断面中心线。The technical problem to be solved by the present invention is to provide an automatic tunnel profiler based on a galvanometer, which can overcome the error problem between the acquisition equipment and the projection equipment in the prior art, improve the accuracy of superimposed projection, and has small use restrictions, and does not need to determine the tunnel Section centerline.
本发明所要解决的另一技术问题是提供一种基于振镜的自动隧道断面仪的施工方法,能够在确保施工精度的前提下,提高施工效率,且能够修正隧道断面凸凹不平表面所造成的误差。Another technical problem to be solved by the present invention is to provide a construction method of an automatic tunnel profiler based on a vibrating mirror, which can improve construction efficiency while ensuring construction accuracy, and can correct errors caused by uneven surfaces of tunnel sections .
为解决上述技术问题,本发明所采用的技术方案是:一种基于振镜的自动隧道断面仪,隧道断面仪包括X/Y振镜组件、探测光源、显示光源、驱动电路、光探测及测距模块和信号处理及控制组件,探测光源和显示光源与信号处理及控制组件电连接;In order to solve the above-mentioned technical problems, the technical solution adopted in the present invention is: an automatic tunnel profiler based on a vibrating mirror. Distance module and signal processing and control components, detection light source and display light source are electrically connected with signal processing and control components;
信号处理及控制组件与驱动电路电连接,驱动电路与X/Y振镜组件电连接,用于驱动X/Y振镜组件反射光源至预设位置;The signal processing and control component is electrically connected to the drive circuit, and the drive circuit is electrically connected to the X/Y vibrating mirror component for driving the X/Y vibrating mirror component to reflect the light source to a preset position;
光探测及测距模块与信号处理及控制组件电连接,用于将接收的光源点云信息发送至信号处理及控制组件;The light detection and ranging module is electrically connected to the signal processing and control component, and is used to send the received point cloud information of the light source to the signal processing and control component;
还设有光合束器,探测光源指向光合束器的第一输入口,显示光源指向光合束器的第二输入口,光合束器的输出口指向X/Y振镜组件,输出口输出的探测光源和显示光源的光线处于同轴位置,以使探测光源和显示光源均从光合束器向X/Y振镜组件提供光源。There is also an optical beam combiner, the detection light source points to the first input port of the optical beam combiner, the display light source points to the second input port of the optical beam combiner, the output port of the optical beam combiner points to the X/Y vibrating mirror assembly, and the detection output from the output port The light from the light source and the display light source are coaxial, so that both the detection light source and the display light source provide light from the light beam combiner to the X/Y galvanometer assembly.
优选的方案中,所述的光合束器的结构为,五菱晶体与三棱晶体连接,在五菱晶体与三棱晶体连接的面形成界面。In a preferred solution, the structure of the optical beam combiner is that the Wuling crystals are connected to the triangular crystals, and an interface is formed on the surface where the Wuling crystals and the triangular crystals are connected.
优选的方案中,在光探测及测距模块内不设探测光源。In a preferred solution, no detection light source is provided in the light detection and ranging module.
优选的方案中,所述的隧道断面仪位于对齐中点或偏离隧道中点的位置。In a preferred solution, the tunnel profiler is located at a position aligned with the midpoint or deviated from the tunnel midpoint.
一种采用上述的一种基于振镜的自动隧道断面仪的施工方法,包括以下步骤:A kind of construction method that adopts above-mentioned a kind of automatic tunnel section instrument based on galvanometer, comprises the following steps:
S1、选定隧道断面仪的工作位置,信号处理及控制组件控制探测光源依次经过光合束器和X/Y振镜组件向隧道断面投射,信号处理及控制组件控制驱动电路对X/Y振镜组件进行扫描动作,光探测及测距模块采集光源光点信号输送至信号处理及控制组件,获得隧道断面处的隧道轮廓信息;S1. Select the working position of the tunnel profiler, the signal processing and control component controls the detection light source to project to the tunnel section through the optical beam combiner and the X/Y vibrating mirror component in turn, and the signal processing and control component controls the drive circuit to control the X/Y vibrating mirror The component scans, and the light detection and ranging module collects the light point signal of the light source and sends it to the signal processing and control component to obtain the tunnel profile information at the tunnel section;
S2、信号处理及控制组件将隧道轮廓信息与辅助标注图形匹配,获得需要在隧道断面处投影的坐标信息;S2. The signal processing and control component matches the tunnel profile information with the auxiliary annotation graphics to obtain the coordinate information that needs to be projected on the tunnel section;
S3、信号处理及控制组件控制显示光源依次经过光合束器和X/Y振镜组件向隧道断面投射,信号处理及控制组件根据坐标信息,控制驱动电路对X/Y振镜组件进行进行投影;S3. The signal processing and control component controls the display light source to project to the tunnel section through the optical beam combiner and the X/Y vibrating mirror component in turn, and the signal processing and control component controls the drive circuit to project the X/Y vibrating mirror component according to the coordinate information;
通过以上步骤,在隧道断面精确投影所需标注信息。Through the above steps, the required labeling information can be accurately projected on the tunnel section.
优选的方案中,所述的隧道断面仪位于对齐中点或偏离隧道中点的位置。In a preferred solution, the tunnel profiler is located at a position aligned with the midpoint or deviated from the tunnel midpoint.
优选的方案中,步骤S1中,从隧道断面仪投射最佳显示区域,放置时以最佳显示区域完全覆盖待标注隧道断面;In a preferred solution, in step S1, the optimal display area is projected from the tunnel profiler, and the optimal display area completely covers the tunnel section to be marked when placed;
所述的最佳显示区域,是指能够修正畸变的区域。The optimal display area mentioned above refers to an area where distortion can be corrected.
优选的方案中,隧道断面仪布置在三脚架或运载工具上。In a preferred solution, the tunnel profiler is arranged on a tripod or a vehicle.
优选的方案中,步骤S2中,信号处理及控制组件将获得的光源光点信号转换成三维矩阵数据,对隧道断面凸凹不平的位置进行数据的数值计算,通过计算得到隧道断面的平面化数据,并将数据储存,将辅助标注图形的数据与平面化的隧道断面数据叠加得到待投影的坐标信息,对凹凸断面影响投影精度的投影点,取出修正数据对其投影的坐标信息进行修正运算,最后将修正后的三维矩阵数据,投影至隧道断面。In a preferred solution, in step S2, the signal processing and control component converts the obtained light source light point signal into three-dimensional matrix data, performs numerical calculation of the data on the uneven position of the tunnel section, and obtains the planarization data of the tunnel section through calculation, And store the data, superimpose the data of the auxiliary marked graphics and the planarized tunnel section data to obtain the coordinate information to be projected, and take out the correction data to correct the projected coordinate information for the projection points of the concave-convex section that affect the projection accuracy, and finally Project the corrected 3D matrix data to the tunnel section.
优选的方案中,信号处理及控制组件与输入装置连接,以对标注信息的局部位置进行人工微调、校正或确认。In a preferred solution, the signal processing and control component is connected to the input device to manually fine-tune, correct or confirm the local position of the marked information.
本发明提供了一种基于振镜的自动隧道断面仪及施工方法,与现有技术相比,具有以下的有益效果:The invention provides a vibrating mirror-based automatic tunnel profiler and construction method, compared with the prior art, it has the following beneficial effects:
1、本发明的隧道断面仪以同一个X/Y振镜组件完成数据采集和图形投影的操作,使隧道断面的轮廓信息与辅助标注图形信息进行了统一,即发射中心点与投射图像的发射中心点之间的误差消除,提高了标注精度。1. The tunnel profiler of the present invention uses the same X/Y vibrating mirror assembly to complete data collection and graphic projection operations, so that the contour information of the tunnel section and the auxiliary label graphic information are unified, that is, the emission center point and the emission of the projected image The error between the center points is eliminated, and the labeling accuracy is improved.
2、本发明的隧道断面仪以节省了一个X/Y振镜组件,降低了系统成本。2. The tunnel profiler of the present invention saves one X/Y vibrating mirror assembly, reducing system cost.
3、本发明的方法以通过采用以最佳显示区域全覆盖隧道断面后,自动对隧道断面处的轮廓进行扫描,并将辅助标注图形的标注信息与隧道断面处的轮廓信息进行融合后,自动显示在断面上,整个过程系统自动进行,无需再次确定隧道中点所在的隧道中线,提高施工效率。3. The method of the present invention automatically scans the outline of the tunnel section after fully covering the tunnel section with the best display area, and after merging the labeling information of the auxiliary label graphics with the outline information of the tunnel section, automatically Displayed on the cross-section, the entire process is automatically carried out by the system, and there is no need to determine the center line of the tunnel where the center point of the tunnel is located again, which improves construction efficiency.
4、本发明的方法能够降低隧道断面因施工导致的凸凹规则平面进行修正投影坐标,进一步提高施工精度。4. The method of the present invention can reduce the convex-concave regular plane caused by the construction of the tunnel section to correct the projection coordinates, and further improve the construction accuracy.
附图说明Description of drawings
下面结合附图和实施例对本发明作进一步说明:Below in conjunction with accompanying drawing and embodiment the present invention will be further described:
图1为本发明的布置示意图。Fig. 1 is a schematic layout diagram of the present invention.
图2为本发明的结构示意图。Fig. 2 is a structural schematic diagram of the present invention.
图3为本发明的光合束器的结构示意图。Fig. 3 is a schematic structural view of the optical beam combiner of the present invention.
图中:隧道断面仪1,隧道断面2,隧道中点3,隧道轮廓4,X/Y振镜组件5,光合束器6,五菱晶体61,三棱晶体62,界面63,第一输入口64,第二输入口65,输出口66,光探测及测距模块7,驱动电路8,探测光源9,显示光源10,信号处理及控制组件11,辅助标注图形12。In the figure:
具体实施方式Detailed ways
实施例1:Example 1:
如图1~2中,一种基于振镜的自动隧道断面仪,隧道断面仪1包括X/Y振镜组件5、探测光源9、显示光源10、驱动电路8、光探测及测距模块7和信号处理及控制组件11,探测光源9和显示光源10与信号处理及控制组件11电连接;As shown in Figures 1 and 2, an automatic tunnel profiler based on a galvanometer, the
信号处理及控制组件11与驱动电路8电连接,驱动电路8与X/Y振镜组件5电连接,用于驱动X/Y振镜组件5反射光源至预设位置;优选的方案中,所述的X/Y振镜组件(5)上设有多个可变倾角的反射镜,以将光源反射至预设位置。优选的,光源采用激光光源。The signal processing and control assembly 11 is electrically connected to the drive circuit 8, and the drive circuit 8 is electrically connected to the X/Y oscillating mirror assembly 5 for driving the X/Y oscillating mirror assembly 5 to reflect the light source to a preset position; in a preferred solution, the The aforementioned X/Y vibrating mirror assembly (5) is provided with a plurality of reflectors with variable inclination angles to reflect the light source to a preset position. Preferably, the light source is a laser light source.
光探测及测距模块7与信号处理及控制组件11电连接,用于将接收的光源点云信息发送至信号处理及控制组件11;The light detection and ranging module 7 is electrically connected to the signal processing and control component 11, and is used to send the received point cloud information of the light source to the signal processing and control component 11;
还设有光合束器6,探测光源9指向光合束器6的第一输入口64,显示光源10指向光合束器6的第二输入口,光合束器6的输出口66指向X/Y振镜组件5,输出口66输出的探测光源9和显示光源10的光线处于同轴位置,以使探测光源9和显示光源10均从光合束器6向X/Y振镜组件5提供光源。由此结构,以一个X/Y振镜组件5同时实现光源光点数据的发射和图形投影,使采集的隧道轮廓4信息与图形投影信息之间的坐标位置误差消除,大幅提高了投影精度,从而能够无需设置在隧道中点3的位置,也便于隧道断面仪1的布设,并且能够避免投影光源被操作人员遮挡。本发明的方案,还能够节省一套X/Y振镜组件5、驱动电路8和控制组件,降低了设备的使用成本。An
优选的方案如图3中,所述的光合束器6的结构为,五菱晶体61与三棱晶体62连接,在五菱晶体61与三棱晶体62连接的面形成界面63。由此结构,能够实现不同光源的合束。A preferred solution is shown in FIG. 3 . The structure of the
优选的方案如图2中,光探测及测距模块7与其他功能组件集成组装成一个设备系统,在光探测及测距模块7内不设有探测光源9。由此结构,简化了系统的整体结构,同时提高了探测坐标与投影坐标的重合度。As shown in Figure 2, the preferred solution is that the light detection and distance measurement module 7 is integrated with other functional components to form a device system, and no
优选的方案中,所述的隧道断面仪1位于对齐中点3或偏离隧道中点3的位置。优选的,隧道断面仪1位于偏离隧道中点3的位置,进一步提高布设的便利性。而且在掌子面施工的人员不易遮挡投影光线。In a preferred solution, the
实施例2:Example 2:
一种采用上述的一种基于振镜的自动隧道断面仪的施工方法,包括以下步骤:A kind of construction method that adopts above-mentioned a kind of automatic tunnel section instrument based on galvanometer, comprises the following steps:
S1、选定隧道断面仪1的工作位置,信号处理及控制组件11控制探测光源9依次经过光合束器6和X/Y振镜组件5向隧道断面2投射,信号处理及控制组件11控制驱动电路8对X/Y振镜组件5进行扫描动作,光探测及测距模块7采集光源光点信号输送至信号处理及控制组件11,获得隧道断面2处的隧道轮廓4信息;S1. Select the working position of the
S2、信号处理及控制组件11将隧道轮廓信息与辅助标注图形12匹配,获得需要在隧道断面2处投影的坐标信息;S2. The signal processing and control component 11 matches the tunnel profile information with the auxiliary labeling graphics 12 to obtain the coordinate information that needs to be projected at the tunnel section 2;
S3、信号处理及控制组件11控制显示光源10依次经过光合束器6和X/Y振镜组件5向隧道断面2投射,信号处理及控制组件11根据坐标信息,控制驱动电路8对X/Y振镜组件5进行进行投影;S3. The signal processing and control component 11 controls the
通过以上步骤,在隧道断面2精确投影所需标注信息。Through the above steps, the required labeling information is accurately projected on the tunnel section 2.
优选的方案中,所述的隧道断面仪1位于对齐中点3或偏离隧道中点3的位置。In a preferred solution, the
优选的方案中,步骤S1中,从隧道断面仪1投射最佳显示区域,放置时以最佳显示区域完全覆盖待标注隧道断面2;In a preferred solution, in step S1, the optimal display area is projected from the
所述的最佳显示区域,是指能够修正畸变的区域。The optimal display area mentioned above refers to an area where distortion can be corrected.
优选的方案中,隧道断面仪1布置在三脚架或运载工具上。In a preferred solution, the
优选的方案中,步骤S2中,信号处理及控制组件11将获得的光源光点信号转换成三维矩阵数据,对隧道断面2凸凹不平的位置进行数据的数值计算,通过计算得到隧道断面2的平面化数据,并将数据储存,将辅助标注图形12的数据与平面化的隧道断面数据叠加得到待投影的坐标信息,对凹凸断面影响投影精度的投影点,取出修正数据对其投影的坐标信息进行修正运算,最后将修正后的三维矩阵数据,投影至隧道断面2。优选的方案中,信号处理及控制组件(11)将获得的光源光点信号转换成三维矩阵数据,对隧道断面(2)凸凹不平的位置进行数据整平,即使隧道断面(2)位于同一平面上,得到整平后的隧道断面数据,将整平过程中的修正数据储存,此处的修正数据是指隧道断面(2)整平后的坐标与凸凹不平位置坐标的矢量差值,将辅助标注图形(12)的数据与整平后的隧道断面数据叠加得到待投影的坐标信息,再取出修正数据对待投影的坐标信息进行运算,即将隧道断面(2)整平后的坐标与凸凹不平位置坐标的矢量差值与待投影的坐标信息进行矢量求和运算,以还原至原始凸凹不平的三维矩阵数据,然后再投影至隧道断面(2)。In a preferred solution, in step S2, the signal processing and control component 11 converts the obtained light source light point signal into three-dimensional matrix data, performs numerical calculation on the uneven position of the tunnel section 2, and obtains the plane of the tunnel section 2 through the calculation Convert the data and store the data, superimpose the data of the auxiliary marked figure 12 and the planarized tunnel section data to obtain the coordinate information to be projected, and take out the correction data for the projected coordinate information of the projection points that affect the projection accuracy of the concave-convex section Correction operation, and finally project the corrected three-dimensional matrix data to the tunnel section 2. In the preferred solution, the signal processing and control component (11) converts the obtained light source light point signal into three-dimensional matrix data, and performs data leveling on the uneven position of the tunnel section (2), even if the tunnel section (2) is located on the same plane The data of the tunnel section after leveling is obtained, and the correction data during the leveling process is stored. The correction data here refers to the vector difference between the coordinates of the tunnel section (2) after leveling and the coordinates of the uneven position. The data of the marked figure (12) and the leveled tunnel section data are superimposed to obtain the coordinate information to be projected, and then the corrected data is taken out to calculate the coordinate information to be projected, that is, the coordinates of the tunnel section (2) after leveling and the uneven position The vector difference value of the coordinates and the coordinate information to be projected are subjected to a vector summation operation to restore the original uneven three-dimensional matrix data, and then projected to the tunnel section (2).
优选的方案中,信号处理及控制组件11与输入装置连接,以对标注信息的局部位置进行人工微调、校正或确认。In a preferred solution, the signal processing and control component 11 is connected to the input device to manually fine-tune, correct or confirm the local position of the marked information.
上述的实施例仅为本发明的优选技术方案,而不应视为对于本发明的限制,本申请中的实施例及实施例中的特征在不冲突的情况下,可以相互任意组合。本发明的保护范围应以权利要求记载的技术方案,包括权利要求记载的技术方案中技术特征的等同替换方案为保护范围。即在此范围内的等同替换改进,也在本发明的保护范围之内。The above-mentioned embodiments are only preferred technical solutions of the present invention, and should not be regarded as limitations on the present invention. The embodiments in the present application and the features in the embodiments can be combined arbitrarily with each other if there is no conflict. The scope of protection of the present invention shall be the technical solution described in the claims, including equivalent replacements for the technical features in the technical solution described in the claims. That is, equivalent replacement and improvement within this range are also within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110898179.7A CN113550752B (en) | 2021-08-05 | 2021-08-05 | Automatic tunnel profiler and construction method based on galvanometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110898179.7A CN113550752B (en) | 2021-08-05 | 2021-08-05 | Automatic tunnel profiler and construction method based on galvanometer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113550752A CN113550752A (en) | 2021-10-26 |
CN113550752B true CN113550752B (en) | 2023-05-19 |
Family
ID=78105347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110898179.7A Active CN113550752B (en) | 2021-08-05 | 2021-08-05 | Automatic tunnel profiler and construction method based on galvanometer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113550752B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115289981A (en) * | 2022-08-30 | 2022-11-04 | 武汉新朗光电科技有限公司 | Multipoint laser displacement monitoring device, system and method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH068733B2 (en) * | 1990-07-05 | 1994-02-02 | 佐藤工業株式会社 | Laser positioner and fixed point marking method using the same |
EP0952427B1 (en) * | 1998-04-24 | 2004-03-03 | Inco Limited | Automated guided apparatus |
CN103148812B (en) * | 2013-02-06 | 2016-03-02 | 中联重科股份有限公司 | Tunnel contour scanning device and method and engineering machinery comprising tunnel contour scanning device |
JP2015175629A (en) * | 2014-03-13 | 2015-10-05 | 株式会社日立ハイテクノロジーズ | Distance measuring device and distance measuring system |
CN105716576B (en) * | 2016-03-29 | 2019-03-05 | 北京派特森科技股份有限公司 | A kind of long-range projection-type laser cross section instrument and its method |
CN109782252B (en) * | 2017-11-14 | 2024-07-09 | 武汉万集光电技术有限公司 | MEMS vibrating mirror synchronization device and method based on laser radar and laser radar |
CN108387221A (en) * | 2018-01-17 | 2018-08-10 | 西安理工大学 | A kind of tunnel excavation speedy lofting device and setting out method |
CN108646259B (en) * | 2018-05-14 | 2021-05-07 | 南京数联空间测绘科技有限公司 | Three-dimensional laser scanner station setting and orienting device and method |
CN110455260B (en) * | 2019-08-09 | 2021-08-31 | 苏州北璇履方工程科技有限公司 | Tunnel section contour determining method and device and electronic equipment |
CN111457962B (en) * | 2020-05-09 | 2021-09-21 | 同济大学 | Rapid detection method for tunnel internal diseases |
CN112666703B (en) * | 2021-03-18 | 2021-06-04 | 光量信息科技(宁波)有限公司 | Space curve joint positioning projection system and method based on multiple laser galvanometers |
-
2021
- 2021-08-05 CN CN202110898179.7A patent/CN113550752B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113550752A (en) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7300948B2 (en) | Survey data processing device, survey data processing method, program for survey data processing | |
US9189858B2 (en) | Determining coordinates of a target in relation to a survey instrument having at least two cameras | |
US11460561B2 (en) | Surveying device, and calibration method and calibration program for surveying device | |
CN106441108B (en) | Visual displacement measurement system and measurement method thereof | |
US8300886B2 (en) | Method and device for determining a calibrating parameter of a stereo camera | |
US9031314B2 (en) | Establishing coordinate systems for measurement | |
US8180101B2 (en) | Calibration method for structure parameters of structured-light vision sensor | |
US8717432B2 (en) | Geographical data collecting device | |
US10812694B2 (en) | Real-time inspection guidance of triangulation scanner | |
CN100565107C (en) | geographic data collection device | |
KR101538763B1 (en) | Apparatus and Method for Inspecting Crack in Tunnel | |
CN104439698A (en) | Calibration method and device used for laser processing system | |
JP5365645B2 (en) | Substrate inspection apparatus, substrate inspection system, and method of displaying screen for confirming substrate inspection result | |
US9921062B2 (en) | Surveying instrument | |
US20030090483A1 (en) | Simulation apparatus for working machine | |
CN104913737A (en) | Component quality checking device based on line laser three-dimensional measurement and detection method of device | |
CN113884021B (en) | Scanning system, calibration device and calibration method of scanning system | |
JP2001285681A (en) | Calibration system, target device, and calibration method | |
CN113550752B (en) | Automatic tunnel profiler and construction method based on galvanometer | |
JP2018173388A (en) | Position measuring device and position measurement method | |
JPH09304055A (en) | Apparatus for measuring distance | |
US12175557B2 (en) | Correcting position of a mobile device using a mobile reference | |
CN216012208U (en) | Automatic tunnel section instrument | |
JP7245040B2 (en) | Survey data processing device, survey data processing method, program for survey data processing | |
TW469392B (en) | Computer-aided synchronous measuring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |