CN113549235B - A kind of preparation method of low dielectric constant polyimide film - Google Patents
A kind of preparation method of low dielectric constant polyimide film Download PDFInfo
- Publication number
- CN113549235B CN113549235B CN202110903514.8A CN202110903514A CN113549235B CN 113549235 B CN113549235 B CN 113549235B CN 202110903514 A CN202110903514 A CN 202110903514A CN 113549235 B CN113549235 B CN 113549235B
- Authority
- CN
- China
- Prior art keywords
- dielectric constant
- low dielectric
- polyimide film
- film
- polyimide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920001721 polyimide Polymers 0.000 title claims abstract description 45
- 238000002360 preparation method Methods 0.000 title claims abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 74
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000002131 composite material Substances 0.000 claims abstract description 10
- 238000004377 microelectronic Methods 0.000 claims abstract description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 26
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 21
- 239000012286 potassium permanganate Substances 0.000 claims description 20
- 235000012239 silicon dioxide Nutrition 0.000 claims description 14
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 10
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 9
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 4
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 claims description 3
- 150000004985 diamines Chemical class 0.000 claims description 3
- 230000007062 hydrolysis Effects 0.000 claims description 3
- 238000006460 hydrolysis reaction Methods 0.000 claims description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims 1
- 230000000640 hydroxylating effect Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 claims 1
- 239000004642 Polyimide Substances 0.000 abstract description 21
- 239000011159 matrix material Substances 0.000 abstract description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052731 fluorine Inorganic materials 0.000 abstract description 3
- 239000011737 fluorine Substances 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract 1
- 239000000945 filler Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 239000010408 film Substances 0.000 description 16
- 239000008367 deionised water Substances 0.000 description 12
- 229910021641 deionized water Inorganic materials 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- ZHDTXTDHBRADLM-UHFFFAOYSA-N hydron;2,3,4,5-tetrahydropyridin-6-amine;chloride Chemical compound Cl.NC1=NCCCC1 ZHDTXTDHBRADLM-UHFFFAOYSA-N 0.000 description 10
- 239000002245 particle Substances 0.000 description 8
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZXVOCOLRQJZVBW-UHFFFAOYSA-N azane;ethanol Chemical compound N.CCO ZXVOCOLRQJZVBW-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
- C08K7/26—Silicon- containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Formation Of Insulating Films (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
技术领域technical field
本发明属于聚酰亚胺薄膜领域,具体的是涉及到低介电常数聚酰亚胺材料制备方法。The invention belongs to the field of polyimide films, and in particular relates to a preparation method of a low dielectric constant polyimide material.
背景技术Background technique
聚酰亚胺具有介电常数低、加工性能好、机械性能高、热稳定性好等突出特点,在电子微电子工业中被广泛应用于封装材料和介电层。在电子封装中,低介质材料可以最大限度地减少串扰和器件中信号传播速度。因此,具有较低介电常数的聚酰亚胺在近年来得到了发展。在降低聚酰亚胺介电常数的策略中,潜在的方法包括:(1)采用极化率最小的二胺和二酐单体;(2)构建具有高自由体积度的聚酰亚胺;(3)将氟加入聚合物链;(4)在聚酰亚胺基体中引入气孔制备泡沫。由于聚酰亚胺单体的固有特性,策略(1)和策略(2)的方法不能有效地进一步降低聚酰亚胺的介电常数。虽然含氟聚酰亚胺可以得到介电常数在2.4-2.8范围内的聚酰亚胺,但该方法的局限性在于合成困难,耐溶剂性能等方面的原因。对于空气是介电常数最低为1.0的物质这一事实,将聚酰亚胺制成泡沫是一种具有吸引力和合理的实现低介电常数材料的方法。Polyimide has outstanding characteristics such as low dielectric constant, good processability, high mechanical properties, and good thermal stability. It is widely used in packaging materials and dielectric layers in the electronic and microelectronics industries. In electronic packaging, low-dielectric materials minimize crosstalk and the speed of signal propagation in the device. Therefore, polyimides with lower dielectric constants have been developed in recent years. Among the strategies to reduce the dielectric constant of polyimides, potential methods include: (1) adopting diamine and dianhydride monomers with the smallest polarizability; (2) constructing polyimides with high free volume; (3) adding fluorine to polymer chains; (4) introducing pores into the polyimide matrix to prepare foams. Due to the inherent characteristics of polyimide monomers, the methods of strategy (1) and strategy (2) cannot effectively further reduce the dielectric constant of polyimide. Although fluorine-containing polyimide can obtain polyimide with a dielectric constant in the range of 2.4-2.8, the limitations of this method lie in the difficulty of synthesis, solvent resistance and other reasons. Given the fact that air has the lowest dielectric constant of 1.0, foaming polyimide is an attractive and reasonable way to achieve low-k materials.
发明内容Contents of the invention
本发明是提供一种低介电常数薄膜的制备方法,所得的聚酰亚胺薄膜不仅具有良好的介电性能,而且热性能和机械性能也能得到很好的保存。The invention provides a method for preparing a low dielectric constant film. The obtained polyimide film not only has good dielectric properties, but also can well preserve thermal properties and mechanical properties.
本发明制备的低介电常数聚酰亚胺薄膜通过以下方法制备:The low dielectric constant polyimide film prepared by the present invention is prepared by the following method:
⑴首先用正硅酸四乙酯水解制备二氧化硅。(1) Firstly, silica is prepared by hydrolyzing tetraethyl orthosilicate.
⑵用高锰酸钾刻蚀二氧化硅,使得二氧化硅形成含有介孔的中空结构。(2) Etch silicon dioxide with potassium permanganate, so that silicon dioxide forms a hollow structure containing mesopores.
⑶在介孔二氧化硅的表面羟基化,然后在羟基化的二氧化硅表面接全(十七)氟癸基三乙氧基硅烷。(3) Hydroxylation on the surface of mesoporous silica, and then connect all (17) fluorodecyltriethoxysilane on the surface of hydroxylated silica.
⑷把表面氟化的介孔二氧化硅粒子通过超声分散在N,N-二甲基甲酰胺中,然后依次加入等摩尔量的二胺和二酐单体,充分反应4~6小时。(4) Disperse the surface fluorinated mesoporous silica particles in N,N-dimethylformamide by ultrasonic waves, then add equimolar amounts of diamine and dianhydride monomers in sequence, and fully react for 4 to 6 hours.
⑸倒出反应好的复合浆料,静置除去浆料中的气泡,在干净的基材上涂覆成薄膜。(5) Pour out the reacted composite slurry, let it stand to remove the air bubbles in the slurry, and coat it into a film on a clean substrate.
⑹把涂覆好的薄膜放在真空烘箱中程序升温除去薄膜中的溶剂并对其进行热亚胺化。⑹Put the coated film in a vacuum oven to program the temperature to remove the solvent in the film and perform thermal imidization on it.
本发明中,所述的正硅酸四乙酯水解的时间为6~10小时。In the present invention, the hydrolysis time of the tetraethyl orthosilicate is 6-10 hours.
本发明中,所述的高锰酸钾刻蚀二氧化硅的时间为12小时。In the present invention, the time for the potassium permanganate to etch silicon dioxide is 12 hours.
本发明中,所述的二氧化硅表面用乙醇的氨水溶液在50℃的条件下进行羟基化或者用0.3mol/L的氢氧化钠溶液进行羟基化。In the present invention, the surface of the silicon dioxide is hydroxylated with ethanol ammonia solution at 50° C. or with 0.3 mol/L sodium hydroxide solution.
本发明中,所述二氧化硅的添加量为单体总质量的3%。In the present invention, the added amount of the silicon dioxide is 3% of the total mass of the monomers.
本发明中,所述的程序升温为150℃、250℃和330℃分别保温1小时。In the present invention, the temperature programming is 150° C., 250° C. and 330° C. for 1 hour respectively.
本发明中所制备出的低介电常数聚酰亚胺薄膜在航天航空、电子和微电子的用途。The low dielectric constant polyimide film prepared in the invention is used in aerospace, electronics and microelectronics.
附图说明Description of drawings
图1高锰酸钾刻蚀二氧化硅前后N2吸脱附曲线Figure 1 N2 adsorption and desorption curves before and after potassium permanganate etching of silicon dioxide
图2高锰酸钾刻蚀二氧化硅前后孔径分布Figure 2 Pore size distribution before and after etching silicon dioxide with potassium permanganate
图3聚酰亚胺薄膜介电常数Figure 3 Dielectric constant of polyimide film
图4聚酰亚胺薄膜介电损耗Figure 4 Dielectric loss of polyimide film
图5聚酰亚胺薄膜热失重图Figure 5 thermal weight loss diagram of polyimide film
图6聚酰亚胺薄膜热失重局部放大图Fig.6 Partial enlarged view of thermal weight loss of polyimide film
图7聚酰亚胺薄膜力学拉伸图Fig. 7 Mechanical tensile diagram of polyimide film
具体实施方式Detailed ways
下面对本发明的技术方案做进一步的详细说明,但本发明保护的范围不限制于实施例所表示的范围,制备方法中的温度时间等工艺条件的选择可因地制宜而对结果并无实质性影响。The technical scheme of the present invention is described in further detail below, but the scope of protection of the present invention is not limited to the scope shown in the examples, and the selection of processing conditions such as temperature and time in the preparation method can be adjusted to local conditions and have no substantial impact on the results.
实施例1Example 1
⑴将1.2g的十六烷基三甲基溴化铵溶于40mL乙醇和30mL去离子水中,然后加入0.8mL的氨水,上述溶液混合均匀后,缓慢滴加1.6mL的正硅酸四乙酯,然后在室温下匀速搅拌十小时后离心、洗涤、烘干。记为HMS-1(1) Dissolve 1.2g of cetyltrimethylammonium bromide in 40mL of ethanol and 30mL of deionized water, then add 0.8mL of ammonia water, after the above solution is mixed evenly, slowly add 1.6mL of tetraethyl orthosilicate dropwise, then stir at a constant speed for ten hours at room temperature, then centrifuge, wash and dry. denoted as HMS-1
⑵取1g上述烘干的二氧化硅颗粒超声分散在150mL的去离子水中,然后取0.5g的高锰酸钾溶于50mL去离子水中,把高锰酸钾的水溶液加入二氧化硅分散液中,在常温在反应12小时,最后在酸性条件下用过氧化氢溶液还原二氧化硅颗粒中的高锰酸钾,离心、洗涤、烘干。记为HMS-2(2) Ultrasonically disperse 1g of the above-mentioned dried silica particles in 150mL of deionized water, then dissolve 0.5g of potassium permanganate in 50mL of deionized water, add the aqueous solution of potassium permanganate into the silica dispersion, and react at room temperature for 12 hours, and finally reduce the potassium permanganate in the silica particles with hydrogen peroxide solution under acidic conditions, centrifuge, wash, and dry. Denoted as HMS-2
⑶取上述0.5g刻蚀的二氧化硅颗粒于50mL乙醇和10mL氨水中,在50℃下反应2小时后,抽滤洗涤,然后把洗涤好的颗粒在分散于50mL的乙醇和5mL水中,在80℃下冷凝回流中加入0.1g的全(十七)氟癸基三乙氧基硅烷,反应3小时,抽滤、洗涤、干燥。(3) Take the above 0.5g of etched silicon dioxide particles in 50mL of ethanol and 10mL of ammonia water, react at 50°C for 2 hours, filter and wash, then disperse the washed particles in 50mL of ethanol and 5mL of water, add 0.1g of per(17)fluorodecyltriethoxysilane to the reflux at 80°C, react for 3 hours, filter with suction, wash, and dry.
⑷取0.075g步骤⑶的二氧化硅颗粒超声分散于100mLN,N-二甲基甲酰胺中,然后在氮气和冷水浴的条件下加入5.7488g4,4-二氨基二苯醚,等到4,4-二氨基二苯醚完全溶解后分三次加入9.2512g3,3’,4,4’-二苯甲酮四羧基二酐,充分反应4~6小时后,倒出静置除去气泡后,在干净的玻璃板上涂覆成薄膜,最后在真空烘箱150℃、250℃和330℃分别保温1小时,冷却至室温即可得到低介电常数的聚酰亚胺薄膜。(4) Ultrasonically disperse 0.075g of the silica particles in step (3) in 100mL of N,N-dimethylformamide, then add 5.7488g of 4,4-diaminodiphenyl ether under nitrogen and a cold water bath, wait until the 4,4-diaminodiphenyl ether is completely dissolved, add 9.2512g of 3,3’,4,4’-benzophenone tetracarboxylic dianhydride in three times, fully react for 4 to 6 hours, pour it out and let it stand to remove air bubbles, Coating a film on a clean glass plate, and finally keeping it in a vacuum oven at 150°C, 250°C and 330°C for 1 hour respectively, and cooling to room temperature to obtain a polyimide film with low dielectric constant.
实施例2Example 2
⑴将1.2g的十六烷基三甲基溴化铵溶于40mL乙醇和30mL去离子水中,然后加入0.8mL的氨水,上述溶液混合均匀后,缓慢滴加1.6mL的正硅酸四乙酯,然后在室温下匀速搅拌十小时后离心、洗涤、烘干。记为HMS-1(1) Dissolve 1.2g of cetyltrimethylammonium bromide in 40mL of ethanol and 30mL of deionized water, then add 0.8mL of ammonia water, after the above solution is mixed evenly, slowly add 1.6mL of tetraethyl orthosilicate dropwise, then stir at a constant speed for ten hours at room temperature, then centrifuge, wash and dry. denoted as HMS-1
⑵取1g上述烘干的二氧化硅颗粒超声分散在150mL的去离子水中,然后取0.5g的高锰酸钾溶于50mL去离子水中,把高锰酸钾的水溶液加入二氧化硅分散液中,在常温在反应12小时,最后在酸性条件下用过氧化氢溶液还原二氧化硅颗粒中的高锰酸钾,离心、洗涤、烘干。记为HMS-2(2) Ultrasonically disperse 1g of the above-mentioned dried silica particles in 150mL of deionized water, then dissolve 0.5g of potassium permanganate in 50mL of deionized water, add the aqueous solution of potassium permanganate into the silica dispersion, and react at room temperature for 12 hours, and finally reduce the potassium permanganate in the silica particles with hydrogen peroxide solution under acidic conditions, centrifuge, wash, and dry. Denoted as HMS-2
⑶取上述0.5g刻蚀的二氧化硅颗粒于50mL乙醇和10mL氨水中,在50℃下反应2小时后,抽滤洗涤,然后把洗涤好的颗粒在分散于50mL的乙醇和5mL水中,在80℃下冷凝回流中加入0.1g的全(十七)氟癸基三乙氧基硅烷,反应3小时,抽滤、洗涤、干燥。(3) Take the above 0.5g of etched silicon dioxide particles in 50mL of ethanol and 10mL of ammonia water, react at 50°C for 2 hours, filter and wash, then disperse the washed particles in 50mL of ethanol and 5mL of water, add 0.1g of per(17)fluorodecyltriethoxysilane to the reflux at 80°C, react for 3 hours, filter with suction, wash, and dry.
⑷取0.15g步骤⑶的二氧化硅颗粒超声分散于100mLN,N-二甲基甲酰胺中,然后在氮气和冷水浴的条件下加入5.7488g4,4-二氨基二苯醚,等到4,4-二氨基二苯醚完全溶解后分三次加入9.2512g3,3’,4,4’-二苯甲酮四羧基二酐,充分反应4~6小时后,倒出静置除去气泡后,在干净的玻璃板上涂覆成薄膜,最后在真空烘箱150℃、250℃和330℃分别保温1小时,冷却至室温即可得到低介电常数的聚酰亚胺薄膜。(4) Take 0.15 g of the silica particles in step (3) and ultrasonically disperse them in 100 mL of N,N-dimethylformamide, then add 5.7488 g of 4,4-diaminodiphenyl ether under nitrogen and a cold water bath, wait until the 4,4-diaminodiphenyl ether is completely dissolved, add 9.2512 g of 3,3’,4,4’-benzophenone tetracarboxylic dianhydride in three times, fully react for 4 to 6 hours, pour it out and let it stand to remove air bubbles, A clean glass plate is coated into a film, and finally kept in a vacuum oven at 150°C, 250°C and 330°C for 1 hour respectively, and cooled to room temperature to obtain a polyimide film with a low dielectric constant.
实施例3Example 3
⑴将1.2g的十六烷基三甲基溴化铵溶于40mL乙醇和30mL去离子水中,然后加入0.8mL的氨水,上述溶液混合均匀后,缓慢滴加1.6mL的正硅酸四乙酯,然后在室温下匀速搅拌十小时后离心、洗涤、烘干。记为HMS-1(1) Dissolve 1.2g of cetyltrimethylammonium bromide in 40mL of ethanol and 30mL of deionized water, then add 0.8mL of ammonia water, after the above solution is mixed evenly, slowly add 1.6mL of tetraethyl orthosilicate dropwise, then stir at a constant speed for ten hours at room temperature, then centrifuge, wash and dry. denoted as HMS-1
⑵取1g上述烘干的二氧化硅颗粒超声分散在150mL的去离子水中,然后取0.5g的高锰酸钾溶于50mL去离子水中,把高锰酸钾的水溶液加入二氧化硅分散液中,在常温在反应12小时,最后在酸性条件下用过氧化氢溶液还原二氧化硅颗粒中的高锰酸钾,离心、洗涤、烘干。记为HMS-2(2) Ultrasonically disperse 1g of the above-mentioned dried silica particles in 150mL of deionized water, then dissolve 0.5g of potassium permanganate in 50mL of deionized water, add the aqueous solution of potassium permanganate into the silica dispersion, and react at room temperature for 12 hours, and finally reduce the potassium permanganate in the silica particles with hydrogen peroxide solution under acidic conditions, centrifuge, wash, and dry. Denoted as HMS-2
⑶取上述0.5g刻蚀的二氧化硅颗粒于50mL乙醇和10mL氨水中,在50℃下反应2小时后,抽滤洗涤,然后把洗涤好的颗粒在分散于50mL的乙醇和5mL水中,在80℃下冷凝回流中加入0.1g的全(十七)氟癸基三乙氧基硅烷,反应3小时,抽滤、洗涤、干燥。(3) Take the above 0.5g of etched silicon dioxide particles in 50mL of ethanol and 10mL of ammonia water, react at 50°C for 2 hours, filter and wash, then disperse the washed particles in 50mL of ethanol and 5mL of water, add 0.1g of per(17)fluorodecyltriethoxysilane to the reflux at 80°C, react for 3 hours, filter with suction, wash, and dry.
⑷取0.3g步骤⑶的二氧化硅颗粒超声分散于100mLN,N-二甲基甲酰胺中,然后在氮气和冷水浴的条件下加入5.7488g4,4-二氨基二苯醚,等到4,4-二氨基二苯醚完全溶解后分三次加入9.2512g3,3’,4,4’-二苯甲酮四羧基二酐,充分反应4~6小时后,倒出静置除去气泡后,在干净的玻璃板上涂覆成薄膜,最后在真空烘箱150℃、250℃和330℃分别保温1小时,冷却至室温即可得到低介电常数的聚酰亚胺薄膜。(4) Take 0.3g of the silica particles in step (3) and ultrasonically disperse them in 100mL of N,N-dimethylformamide, then add 5.7488g of 4,4-diaminodiphenyl ether under the conditions of nitrogen and cold water bath, wait until the 4,4-diaminodiphenyl ether is completely dissolved, add 9.2512g of 3,3’,4,4’-benzophenone tetracarboxylic dianhydride in three times, fully react for 4~6 hours, pour it out and let it stand to remove air bubbles, Coated a thin film on a glass plate, and finally kept it in a vacuum oven at 150°C, 250°C and 330°C for 1 hour respectively, and cooled to room temperature to obtain a polyimide film with low dielectric constant.
实施例4Example 4
⑴将1.2g的十六烷基三甲基溴化铵溶于40mL乙醇和30mL去离子水中,然后加入0.8mL的氨水,上述溶液混合均匀后,缓慢滴加1.6mL的正硅酸四乙酯,然后在室温下匀速搅拌十小时后离心、洗涤、烘干。记为HMS-1(1) Dissolve 1.2g of cetyltrimethylammonium bromide in 40mL of ethanol and 30mL of deionized water, then add 0.8mL of ammonia water, after the above solution is mixed evenly, slowly add 1.6mL of tetraethyl orthosilicate dropwise, then stir at a constant speed for ten hours at room temperature, then centrifuge, wash and dry. denoted as HMS-1
⑵取1g上述烘干的二氧化硅颗粒超声分散在150mL的去离子水中,然后取0.5g的高锰酸钾溶于50mL去离子水中,把高锰酸钾的水溶液加入二氧化硅分散液中,在常温在反应12小时,最后在酸性条件下用过氧化氢溶液还原二氧化硅颗粒中的高锰酸钾,离心、洗涤、烘干。记为HMS-2(2) Ultrasonically disperse 1g of the above-mentioned dried silica particles in 150mL of deionized water, then dissolve 0.5g of potassium permanganate in 50mL of deionized water, add the aqueous solution of potassium permanganate into the silica dispersion, and react at room temperature for 12 hours, and finally reduce the potassium permanganate in the silica particles with hydrogen peroxide solution under acidic conditions, centrifuge, wash, and dry. Denoted as HMS-2
⑶取上述0.5g刻蚀的二氧化硅颗粒于50mL乙醇和10mL氨水中,在50℃下反应2小时后,抽滤洗涤,然后把洗涤好的颗粒在分散于50mL的乙醇和5mL水中,在80℃下冷凝回流中加入0.1g的全(十七)氟癸基三乙氧基硅烷,反应3小时,抽滤、洗涤、干燥。(3) Take the above 0.5g of etched silicon dioxide particles in 50mL of ethanol and 10mL of ammonia water, react at 50°C for 2 hours, filter and wash, then disperse the washed particles in 50mL of ethanol and 5mL of water, add 0.1g of per(17)fluorodecyltriethoxysilane to the reflux at 80°C, react for 3 hours, filter with suction, wash, and dry.
⑷取0.45g步骤⑶的二氧化硅颗粒超声分散与100mLN,N-二甲基甲酰胺中,然后在氮气和冷水浴的条件下加入5.7488g4,4-二氨基二苯醚,等到4,4-二氨基二苯醚完全溶解后分三次加入9.2512g3,3’,4,4’-二苯甲酮四羧基二酐,充分反应4~6小时后,倒出静置除去气泡后,在干净的玻璃板上涂覆成薄膜,最后在真空烘箱150℃、250℃和330℃分别保温1小时,冷却至室温即可得到低介电常数的聚酰亚胺薄膜。(4) Ultrasonic dispersion of 0.45g of silica particles in step (3) into 100mL N,N-dimethylformamide, and then adding 5.7488g of 4,4-diaminodiphenyl ether under nitrogen and a cold water bath. After the 4,4-diaminodiphenyl ether is completely dissolved, add 9.2512g of 3,3’,4,4’-benzophenone tetracarboxylic dianhydride in three times. A clean glass plate is coated into a film, and finally kept in a vacuum oven at 150°C, 250°C and 330°C for 1 hour respectively, and cooled to room temperature to obtain a polyimide film with a low dielectric constant.
实施例5Example 5
在氮气和冷水浴的条件下往100mLN,N-二甲基甲酰胺中加入5.7488g4,4-二氨基二苯醚,等到4,4-二氨基二苯醚完全溶解后分三次加入9.2512g3,3’,4,4’-二苯甲酮四羧基二酐,充分反应4~6小时后,倒出静置除去气泡后,在干净的玻璃板上涂覆成薄膜,最后在真空烘箱150℃、250℃和330℃分别保温1小时,冷却至室温即可得到低介电常数的聚酰亚胺薄膜。Add 5.7488g 4,4-diaminodiphenyl ether to 100mL N,N-dimethylformamide under the condition of nitrogen and cold water bath. After the 4,4-diaminodiphenyl ether is completely dissolved, add 9.2512g 3,3’,4,4’-benzophenone tetracarboxylic dianhydride three times. After fully reacting for 4~6 hours, pour it out and let it stand to remove air bubbles. 250 DEG C and 330 DEG C respectively for 1 hour, cooled to room temperature to obtain a polyimide film with low dielectric constant.
将上述所得的实施例1~5进行介电性能、热性能和机械性能测试,结果如下表1所示:Embodiment 1~5 of above-mentioned gained is carried out dielectric property, thermal property and mechanical property test, and the result is as shown in table 1 below:
二氧化硅用高锰酸钾刻蚀前后的比表面积分别为880.9225 m²/g和1,489.6125 m²/g。孔的尺寸分别为1.6166 nm 和3.3491 nm,由此可以表明,高锰酸钾刻蚀形成了介孔结构的二氧化硅颗粒。由上表1所示,在聚酰亚胺中掺入少量的氟化介孔二氧化硅颗粒,可以显著的降低薄膜的介电常数,而且不影响薄膜的热性能。但是薄膜的拉升强度和断裂伸长率最高降低了57.59%和33.68%,可能由于二氧化硅颗粒在聚酰亚胺基体内出现了两相分离产生孔隙,除此之外,也有可能是二氧化硅在聚酰亚胺基体内团聚,从而降低了薄膜的力学性能。因为介孔二氧化硅颗粒加入聚酰亚胺基体中,会增加聚酰亚胺的自由体积分数。因此,在聚酰亚胺中引入氟化介孔二氧化硅降低了介电常数,此外,由于氟原子的强吸电子特性,氟化介孔二氧化硅可能降低复合薄膜的离散电子能级,这降低了复合薄膜的电子极化,并进一步降低了薄膜的介电常数。使得复合薄膜的介电常数最低可以降至2.61。此外,氟化介孔二氧化硅的电子极化程度降低,疏水性增强,不利于聚合物的吸湿,也降低了聚合物的吸水率。因此本发明所制备的聚酰亚胺复合薄膜可满足于集成电路、5G通讯天线材料和柔性覆铜板等领域对低介电材料的要求。The specific surface areas of silicon dioxide before and after etching with potassium permanganate were 880.9225 m²/g and 1,489.6125 m²/g, respectively. The sizes of the pores are 1.6166 nm and 3.3491 nm, respectively, which shows that the mesoporous silica particles are formed by potassium permanganate etching. As shown in Table 1 above, doping a small amount of fluorinated mesoporous silica particles into polyimide can significantly reduce the dielectric constant of the film without affecting the thermal properties of the film. However, the tensile strength and elongation at break of the film decreased by 57.59% and 33.68%, which may be due to the two-phase separation of silica particles in the polyimide matrix to generate pores. In addition, it is also possible that the silica is agglomerated in the polyimide matrix, thereby reducing the mechanical properties of the film. Because the addition of mesoporous silica particles into the polyimide matrix will increase the free volume fraction of polyimide. Therefore, the introduction of fluorinated mesoporous silica in polyimide lowered the dielectric constant. In addition, due to the strong electron-withdrawing properties of fluorine atoms, fluorinated mesoporous silica may reduce the discrete electronic energy levels of the composite film, which reduces the electronic polarization of the composite film and further reduces the dielectric constant of the film. The lowest dielectric constant of the composite film can be reduced to 2.61. In addition, the degree of electronic polarization of fluorinated mesoporous silica is reduced, and the hydrophobicity is enhanced, which is not conducive to the moisture absorption of the polymer, and also reduces the water absorption rate of the polymer. Therefore, the polyimide composite film prepared by the present invention can meet the requirements for low dielectric materials in the fields of integrated circuits, 5G communication antenna materials and flexible copper clad laminates.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110903514.8A CN113549235B (en) | 2021-08-06 | 2021-08-06 | A kind of preparation method of low dielectric constant polyimide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110903514.8A CN113549235B (en) | 2021-08-06 | 2021-08-06 | A kind of preparation method of low dielectric constant polyimide film |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113549235A CN113549235A (en) | 2021-10-26 |
CN113549235B true CN113549235B (en) | 2023-07-21 |
Family
ID=78134187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110903514.8A Active CN113549235B (en) | 2021-08-06 | 2021-08-06 | A kind of preparation method of low dielectric constant polyimide film |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113549235B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116769160A (en) * | 2022-07-28 | 2023-09-19 | 江西有泽新材料科技有限公司 | Nanocomposite for high-frequency high-speed flexible copper-clad plate and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6242339B1 (en) * | 1998-02-26 | 2001-06-05 | Matsushita Electric Industrial Co., Ltd. | Interconnect structure and method for forming the same |
CN1760241A (en) * | 2004-10-14 | 2006-04-19 | 北京化工大学 | Method for preparing Nano film of multiporous polyimide in low dielectric constant |
CN102863154A (en) * | 2012-10-18 | 2013-01-09 | 山东轻工业学院 | Method for preparing super-hydrophobicity surfaces |
JP2015199845A (en) * | 2014-04-09 | 2015-11-12 | ユニチカ株式会社 | Polyimide-silica composite porous body and method for producing the same |
CN109942851A (en) * | 2019-03-20 | 2019-06-28 | 浙江福斯特新材料研究院有限公司 | A kind of low dielectric coefficient polyimide hybrid film and application |
CN111040450A (en) * | 2019-12-31 | 2020-04-21 | 山东华夏神舟新材料有限公司 | Low-dielectric fluorine-containing polyimide composite film and preparation method thereof |
CN111748113A (en) * | 2020-07-03 | 2020-10-09 | 浙江中科玖源新材料有限公司 | Heat-resistant polyimide film with low dielectric constant and preparation method thereof |
-
2021
- 2021-08-06 CN CN202110903514.8A patent/CN113549235B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6242339B1 (en) * | 1998-02-26 | 2001-06-05 | Matsushita Electric Industrial Co., Ltd. | Interconnect structure and method for forming the same |
CN1760241A (en) * | 2004-10-14 | 2006-04-19 | 北京化工大学 | Method for preparing Nano film of multiporous polyimide in low dielectric constant |
CN102863154A (en) * | 2012-10-18 | 2013-01-09 | 山东轻工业学院 | Method for preparing super-hydrophobicity surfaces |
JP2015199845A (en) * | 2014-04-09 | 2015-11-12 | ユニチカ株式会社 | Polyimide-silica composite porous body and method for producing the same |
CN109942851A (en) * | 2019-03-20 | 2019-06-28 | 浙江福斯特新材料研究院有限公司 | A kind of low dielectric coefficient polyimide hybrid film and application |
CN111040450A (en) * | 2019-12-31 | 2020-04-21 | 山东华夏神舟新材料有限公司 | Low-dielectric fluorine-containing polyimide composite film and preparation method thereof |
CN111748113A (en) * | 2020-07-03 | 2020-10-09 | 浙江中科玖源新材料有限公司 | Heat-resistant polyimide film with low dielectric constant and preparation method thereof |
Non-Patent Citations (4)
Title |
---|
"Dielectric and Conduction Properties of Polyimide/Silica Nano-hybrid Films";Ming-Yan Zhang,et al.;《Polymer Composites》;第29卷(第6期);第617-622页 * |
"二氧化硅改性热固性聚酰亚胺介电性能研究";李芳亮,等;《绝缘材料》;第42卷(第5期);第41-44页 * |
"低介电常数聚酰亚胺/三乙酰丙酮铝复合薄膜的制备及其性能";操戈,等;《塑料工业》;第48卷(第12期);第22-25,164页 * |
"纳米二氧化硅致孔剂制备多孔聚酰亚胺微球的初步研究";吴恒明;《中国优秀硕士学位论文全文数据库 (工程科技Ⅰ辑)》(第8期);B016-125 * |
Also Published As
Publication number | Publication date |
---|---|
CN113549235A (en) | 2021-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108530673B (en) | Linear polyimide aerogel and preparation method thereof | |
CN111040450A (en) | Low-dielectric fluorine-containing polyimide composite film and preparation method thereof | |
CN103772981B (en) | Low dielectric constant polymer/fluorinated graphene composite and preparation method thereof | |
CN109942851B (en) | Low-dielectric-constant polyimide hybrid film and application | |
CN113549235B (en) | A kind of preparation method of low dielectric constant polyimide film | |
CN103937241A (en) | A preparation method of nano-SiO2 hollow sphere composite material based on polyimide matrix | |
CN105601964A (en) | Preparation method of polyimide film with ultralow dielectric constant and low dielectric loss | |
CN106750435A (en) | A kind of preparation method of the ordered porous Kapton of low-k | |
CN111253601A (en) | High-temperature heat-conducting polyimide film with stable size and preparation method thereof | |
CN114874621A (en) | Low-dielectric-conductivity thermal polyimide film and preparation method thereof | |
CN112646179B (en) | Low-dielectric polyimide film and preparation method thereof | |
CN111748113A (en) | Heat-resistant polyimide film with low dielectric constant and preparation method thereof | |
CN114349962A (en) | Low-dielectric-constant polyimide film and preparation method thereof | |
WO2022242547A1 (en) | Polyimide porous membrane and preparation method therefor | |
CN111925543A (en) | Low-humidity low-thermal expansion coefficient polyimide composite film material and preparation method thereof | |
CN1293129C (en) | Method for preparing Nano film of multiporous polyimide in low dielectric constant | |
CN108822544B (en) | Preparation method of polyimide/metal organic framework composite film | |
CN113667158A (en) | Low-dielectric polyimide-based composite film and preparation method and application thereof | |
CN108623811A (en) | One kind containing POSS structure ultralow dielectric poly aryl ether ketone polymers and preparation method thereof | |
CN115612097B (en) | A low dielectric and high strength nanocomposite material and preparation method | |
CN115044204B (en) | A kind of preparation method of low dielectric all-organic cross-linked polyimide film | |
JPH11217458A (en) | Porous film, its production and article | |
CN113527735B (en) | Low-dielectric polyimide film and preparation method thereof | |
CN110305332B (en) | Composite packaging material, preparation method thereof and composite film | |
JP4204578B2 (en) | Porous membranes, articles and composite materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |