CN113536725B - Pre-amplification parameter optimization method applied to ultra-wideband wavelength division multiplexing system - Google Patents
Pre-amplification parameter optimization method applied to ultra-wideband wavelength division multiplexing system Download PDFInfo
- Publication number
- CN113536725B CN113536725B CN202110701291.7A CN202110701291A CN113536725B CN 113536725 B CN113536725 B CN 113536725B CN 202110701291 A CN202110701291 A CN 202110701291A CN 113536725 B CN113536725 B CN 113536725B
- Authority
- CN
- China
- Prior art keywords
- vector
- loss function
- parameter
- amplification
- function value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003199 nucleic acid amplification method Methods 0.000 title claims abstract description 178
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000005457 optimization Methods 0.000 title abstract description 27
- 239000013598 vector Substances 0.000 claims abstract description 283
- 230000003321 amplification Effects 0.000 claims abstract description 177
- 230000003287 optical effect Effects 0.000 claims abstract description 165
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 39
- 238000002922 simulated annealing Methods 0.000 claims abstract description 37
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 36
- 230000006870 function Effects 0.000 claims description 96
- 238000012937 correction Methods 0.000 claims description 11
- 230000002269 spontaneous effect Effects 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000009825 accumulation Methods 0.000 claims description 2
- 238000004891 communication Methods 0.000 abstract description 19
- 230000005540 biological transmission Effects 0.000 abstract description 9
- 238000001228 spectrum Methods 0.000 abstract description 9
- 239000000835 fiber Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000009022 nonlinear effect Effects 0.000 description 7
- 238000004590 computer program Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/36—Circuit design at the analogue level
- G06F30/373—Design optimisation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/42—Modifications of amplifiers to extend the bandwidth
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/04—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
- H03F3/08—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optical Communication System (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明公开了一种应用于超宽带波分复用系统的预放大参数优化方法,所述方法包括:获取随机初始化后的光预放大参数向量,其中,所述光预放大参数向量用于表征超宽带波分复用系统中若干波段光放大器的增益斜率向量和增益偏置向量;根据所述光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到损失函数值;根据所述光预放大参数向量、所述损失函数值和模拟退火算法,确定优化后的光预放大参数向量。本发明通过上述方法来优化每个信道的预放大功率谱,使得传输时的整体带宽内的信道信噪比最大,进而得到最大的通信传输容量。
The invention discloses a pre-amplification parameter optimization method applied to an ultra-wideband wavelength division multiplexing system. The method includes: obtaining a randomly initialized optical pre-amplification parameter vector, wherein the optical pre-amplification parameter vector is used to represent The gain slope vector and gain offset vector of several band optical amplifiers in the ultra-wideband wavelength division multiplexing system; according to the optical pre-amplification parameter vector and the preset stimulated Raman scattering corrected Gaussian noise closed solution model, the loss function is obtained value; determine the optimized optical pre-amplification parameter vector according to the optical pre-amplification parameter vector, the loss function value and the simulated annealing algorithm. The present invention optimizes the pre-amplification power spectrum of each channel through the above method, so that the signal-to-noise ratio of the channel in the overall bandwidth during transmission is maximized, thereby obtaining the maximum communication transmission capacity.
Description
技术领域technical field
本发明涉及数字信号处理技术领域,尤其涉及的是一种应用于超宽带波分复用系统的预放大参数优化方法。The invention relates to the technical field of digital signal processing, in particular to a pre-amplification parameter optimization method applied to an ultra-wideband wavelength division multiplexing system.
背景技术Background technique
移动互联网的飞速发展不仅催生了第五代通信互联网,也使得各类移动通讯应用如春笋般在近五年的时间里出现。如4k视频流传输,超高清视频电话,云计算等等。作为通信网络的骨干网,光纤通信系统在通信容量的提升上面临着巨大的挑战与机遇。The rapid development of the mobile Internet not only gave birth to the fifth-generation communication Internet, but also made various mobile communication applications spring up like mushrooms in the past five years. Such as 4k video streaming, ultra-high-definition video telephony, cloud computing and so on. As the backbone network of the communication network, the optical fiber communication system is facing huge challenges and opportunities in the improvement of communication capacity.
但是随着通信带宽的拓宽,频谱也相应地被拓宽了,由于每个波段包含很多信道,多个波段导致信道数量非常庞大(几百个信道),不同波段的光功率被预放大后,光纤内总体的光功率会非常大,一般可达20几个dBm。如此大的光功率结合超宽的带宽,就会引起除了自相位调制、四波混频、交叉相位调制等非线性效应外的受激拉曼散射效应,并对低频信道产生增益,这些增益会产生非线性效应,从而导致更高的非线性噪声功率,使得信号的信噪比降低,从而使信道的通信容量极限下降。However, with the widening of the communication bandwidth, the spectrum is correspondingly broadened. Since each band contains many channels, multiple bands lead to a very large number of channels (hundreds of channels). After the optical power of different bands is pre-amplified, the optical fiber The overall optical power inside will be very large, generally up to more than 20 dBm. Such a large optical power combined with an ultra-wide bandwidth will cause stimulated Raman scattering effects in addition to nonlinear effects such as self-phase modulation, four-wave mixing, and cross-phase modulation, and generate gains for low-frequency channels. These gains will A nonlinear effect is generated, resulting in higher nonlinear noise power, which reduces the signal-to-noise ratio of the signal, thereby reducing the communication capacity limit of the channel.
因此,现有技术还有待改进和发展。Therefore, the prior art still needs to be improved and developed.
发明内容Contents of the invention
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种应用于超宽带波分复用系统的预放大参数优化方法,旨在解决现有技术中光信号在预防大后引起的自相位调制、四波混频、交叉相位调制等非线性效应外的受激拉曼散射效应,并对低频信道产生增益,这些增益会产生非线性效应,从而导致更高的非线性噪声功率,使得信号的信噪比降低,从而使信道的通信容量极限下降的问题。The technical problem to be solved by the present invention is to provide a pre-amplification parameter optimization method applied to an ultra-wideband wavelength division multiplexing system in view of the above-mentioned defects of the prior art, aiming at solving the problems caused by optical signals in the prior art after preventing large Stimulated Raman scattering effects in addition to nonlinear effects such as self-phase modulation, four-wave mixing, cross-phase modulation, etc., and generate gains for low-frequency channels, these gains will generate nonlinear effects, resulting in higher nonlinear noise power , so that the signal-to-noise ratio of the signal is reduced, thereby reducing the limit of the communication capacity of the channel.
本发明解决问题所采用的技术方案如下:The technical solution adopted by the present invention to solve the problem is as follows:
第一方面,本发明实施例提供一种应用于超宽带波分复用系统的预放大参数优化方法,其中,所述方法包括:In a first aspect, an embodiment of the present invention provides a pre-amplification parameter optimization method applied to an ultra-wideband wavelength division multiplexing system, wherein the method includes:
获取随机初始化后的光预放大参数向量,其中,所述光预放大参数向量用于表征超宽带波分复用系统中若干波段光放大器的增益斜率向量和增益偏置向量;Obtain the optical pre-amplification parameter vector after random initialization, wherein the optical pre-amplification parameter vector is used to characterize the gain slope vector and the gain bias vector of several band optical amplifiers in the ultra-wideband wavelength division multiplexing system;
根据所述光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到损失函数值;According to the light pre-amplification parameter vector and the preset stimulated Raman scattering corrected Gaussian noise closed solution model, the loss function value is obtained;
根据所述光预放大参数向量、所述损失函数值和模拟退火算法,确定优化后的光预放大参数向量。An optimized optical pre-amplification parameter vector is determined according to the optical pre-amplification parameter vector, the loss function value, and a simulated annealing algorithm.
在一种实现方式中,其中,所述获取随机初始化后的光预放大参数向量包括:In an implementation manner, wherein said obtaining the optical pre-amplification parameter vector after random initialization includes:
生成若干随机值;generate some random values;
将若干所述随机值组成向量作为光预放大参数向量。A vector composed of several random values is used as an optical pre-amplification parameter vector.
在一种实现方式中,其中,所述根据所述光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到损失函数值包括:In an implementation manner, wherein the loss function value obtained according to the light pre-amplification parameter vector and the preset stimulated Raman scattering corrected Gaussian noise closed solution model includes:
获取信道带宽、信道功率向量和放大自发辐射噪声功率;Obtain channel bandwidth, channel power vector and amplified spontaneous emission noise power;
根据所述光预放大参数向量,得到信道入纤功率向量;According to the optical pre-amplification parameter vector, the channel input fiber power vector is obtained;
基于所述受激拉曼散射修正后高斯噪声闭合解模型,对所述信道功率向量进行功率计算,得到非线性噪声功率向量;Based on the Gaussian noise closed solution model after the correction of the stimulated Raman scattering, perform power calculation on the channel power vector to obtain a nonlinear noise power vector;
将所述非线性噪声功率向量和所述放大自发辐射噪声功率进行求和,得到噪声总功率向量;summing the nonlinear noise power vector and the amplified spontaneous emission noise power to obtain a total noise power vector;
将所述信道入纤功率向量除以噪声总功率向量,得到功率商值向量;Dividing the channel input power vector by the total noise power vector to obtain a power quotient vector;
对所述功率商值向量进行对数运算,得到信噪比向量;performing a logarithmic operation on the power quotient vector to obtain a signal-to-noise ratio vector;
根据所述信噪比向量,得到损失函数值。According to the signal-to-noise ratio vector, a loss function value is obtained.
在一种实现方式中,其中,所述根据所述光预放大参数向量,得到信道入纤功率向量包括:In an implementation manner, wherein, according to the optical pre-amplification parameter vector, obtaining the channel fiber-in power vector includes:
获取各波段光信号的中心频率和各信道的中心频率向量;Obtain the center frequency of the optical signal of each band and the center frequency vector of each channel;
将所述中心频率向量减去每个波段光信号的中心频率,得到频率差值向量;subtracting the center frequency of each band optical signal from the center frequency vector to obtain a frequency difference vector;
将所述光预放大参数向量中的增益斜率向量乘以所述频率差值向量,得到积向量;multiplying the gain slope vector in the optical pre-amplification parameter vector by the frequency difference vector to obtain a product vector;
将所述积向量加上所述光预放大参数向量中的增益偏置向量,得到信道入纤功率向量。The product vector is added to the gain offset vector in the optical pre-amplification parameter vector to obtain a channel fiber input power vector.
在一种实现方式中,其中,所述根据所述信噪比向量,得到损失函数值包括:In an implementation manner, wherein the obtaining the loss function value according to the signal-to-noise ratio vector includes:
对所述信噪比向量进行对数运算,得到容量向量;Performing a logarithmic operation on the SNR vector to obtain a capacity vector;
获取所述容量向量的容量均值、容量最大值和容量最小值;Acquiring the mean value of the capacity, the maximum value of the capacity and the minimum value of the capacity of the capacity vector;
计算所述容量均值的倒数,得到容量均值倒数值;calculating the reciprocal of the mean value of capacity to obtain the reciprocal value of the mean value of capacity;
将所述容量均值倒数值加上所述容量最大值后减去容量最小值,得到损失函数值。The loss function value is obtained by adding the reciprocal value of the mean value of the capacity to the maximum value of the capacity and subtracting the minimum value of the capacity.
在一种实现方式中,其中,所述根据所述光预放大参数向量、所述损失函数值和模拟退火算法,确定优化后的光预放大参数向量包括:In an implementation manner, wherein, according to the optical pre-amplification parameter vector, the loss function value and the simulated annealing algorithm, determining the optimized optical pre-amplification parameter vector includes:
获取随机概率值;Get random probability value;
获取初始温度参数和初始迭代参数,其中,所述初始温度参数用于表征所述模拟退火算法的变量参数;Obtain an initial temperature parameter and an initial iteration parameter, wherein the initial temperature parameter is used to characterize the variable parameters of the simulated annealing algorithm;
根据所述模拟退火算法和所述初始迭代参数,对所述初始温度参数进行更新,得到更新后的温度参数;updating the initial temperature parameter according to the simulated annealing algorithm and the initial iteration parameter to obtain an updated temperature parameter;
对所述光预放大参数向量和更新后的温度参数进行迭代运算,得到更新后的光预放大参数向量;Iteratively calculating the optical pre-amplification parameter vector and the updated temperature parameter to obtain an updated optical pre-amplification parameter vector;
根据更新后的光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到更新后的损失函数值;According to the updated optical pre-amplification parameter vector and the preset stimulated Raman scattering corrected Gaussian noise closed solution model, the updated loss function value is obtained;
根据所述损失函数值和更新后的损失函数值,得到优化后的光预放大参数向量。According to the loss function value and the updated loss function value, an optimized optical pre-amplification parameter vector is obtained.
在一种实现方式中,其中,所述根据所述模拟退火算法和所述初始迭代参数,对所述初始温度参数进行更新,得到更新后的温度参数包括:In an implementation manner, wherein the updating of the initial temperature parameter according to the simulated annealing algorithm and the initial iteration parameter, and obtaining the updated temperature parameter includes:
当对所述光预放大参数向量和更新后的温度参数进行迭代运算的次数达到预设的迭代次数阈值时,对所述初始迭代参数进行自累加操作,得到迭代参数;When the number of iterative operations performed on the optical pre-amplification parameter vector and the updated temperature parameter reaches a preset threshold number of iterations, performing a self-accumulation operation on the initial iterative parameters to obtain an iterative parameter;
将所述初始温度参数除以所述迭代参数,得到更新后的温度参数。Divide the initial temperature parameter by the iteration parameter to obtain an updated temperature parameter.
在一种实现方式中,其中,所述根据所述损失函数值和更新后的损失函数值,得到优化后的光预放大参数向量包括:In an implementation manner, wherein the obtaining the optimized optical pre-amplification parameter vector according to the loss function value and the updated loss function value includes:
当更新后的损失函数值小于或等于所述损失函数值,继续执行根据更新后的光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到更新后的损失函数值的步骤;When the updated loss function value is less than or equal to the loss function value, continue to execute the Gaussian noise closed solution model corrected according to the updated optical pre-amplification parameter vector and the preset stimulated Raman scattering to obtain the updated loss function value step;
当更新后的损失函数值大于所述损失函数值,对更新后的损失函数值、所述损失函数值和所述温度参数进行指数运算,得到所述光预放大参数向量的概率值;当所述光预放大参数向量的概率值大于或等于所述随机概率值时,继续执行根据更新后的光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到更新后的损失函数值的步骤;When the updated loss function value is greater than the loss function value, an exponential operation is performed on the updated loss function value, the loss function value and the temperature parameter to obtain the probability value of the optical pre-amplification parameter vector; when the When the probability value of the optical pre-amplification parameter vector is greater than or equal to the random probability value, continue to execute the Gaussian noise closed solution model corrected according to the updated optical pre-amplification parameter vector and the preset stimulated Raman scattering, and the updated The step of the loss function value of ;
当更新后的温度参数达到预设的温度参数阈值,或者当根据所述模拟退火算法和所述初始迭代参数,对所述初始温度参数进行更新的次数达到预设的更新次数阈值且所述更新后的光预放大参数向量不变时,停止所述模拟退火算法,得到优化后的损失函数值;When the updated temperature parameter reaches a preset temperature parameter threshold, or when the number of updates to the initial temperature parameter according to the simulated annealing algorithm and the initial iteration parameter reaches a preset update times threshold and the update When the final optical pre-amplification parameter vector is constant, the simulated annealing algorithm is stopped to obtain the optimized loss function value;
将所述优化后的损失函数值对应的更新后的光预放大参数向量作为优化后的光预放大参数向量。The updated optical pre-amplification parameter vector corresponding to the optimized loss function value is used as the optimized optical pre-amplification parameter vector.
第二方面,本发明实施例还提供一种应用于超宽带波分复用系统的预放大参数优化装置,其中,所述装置包括:In the second aspect, the embodiment of the present invention also provides a pre-amplification parameter optimization device applied to an ultra-wideband wavelength division multiplexing system, wherein the device includes:
光预放大参数向量模块,用于获取随机初始化后的光预放大参数向量,其中,所述光预放大参数向量用于表征超宽带波分复用系统中若干波段光放大器的增益斜率向量和增益偏置向量;The optical pre-amplification parameter vector module is used to obtain the optical pre-amplification parameter vector after random initialization, wherein the optical pre-amplification parameter vector is used to characterize the gain slope vector and gain of several band optical amplifiers in the ultra-wideband wavelength division multiplexing system bias vector;
损失函数值获取模块,用于根据所述光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到损失函数值;The loss function value acquisition module is used to obtain the loss function value according to the optical pre-amplification parameter vector and the preset stimulated Raman scattering corrected Gaussian noise closed solution model;
优化后的光预放大参数向量确定模块,用于根据所述光预放大参数向量、所述损失函数值和模拟退火算法,确定优化后的光预放大参数向量。The optimized optical pre-amplification parameter vector determination module is used to determine the optimized optical pre-amplification parameter vector according to the optical pre-amplification parameter vector, the loss function value and the simulated annealing algorithm.
第三方面,本发明实施例还提供一种智能终端,包括有存储器,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器中,且经配置以由一个或者一个以上处理器执行所述一个或者一个以上程序包含用于执行如上述任意一项所述的应用于超宽带波分复用系统的预放大参数优化方法。In the third aspect, the embodiment of the present invention also provides an intelligent terminal, including a memory, and one or more programs, wherein one or more programs are stored in the memory, and configured to be executed by one or more processors The one or more programs are used to execute the pre-amplification parameter optimization method applied to the ultra-wideband wavelength division multiplexing system as described in any one of the above.
第四方面,本发明实施例还提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由电子设备的处理器执行时,使得电子设备能够执行如上述中任意一项所述的应用于超宽带波分复用系统的预放大参数优化方法。In the fourth aspect, the embodiment of the present invention also provides a non-transitory computer-readable storage medium, when the instructions in the storage medium are executed by the processor of the electronic device, the electronic device can execute the The optimization method of pre-amplification parameters applied to ultra-wideband wavelength division multiplexing system described above.
本发明的有益效果:本发明实施例首先获取随机初始化后的光预放大参数向量,其中,所述光预放大参数向量用于表征超宽带波分复用系统中若干波段光放大器的增益斜率向量和增益偏置向量;为后续进行优化做准备,然后根据所述光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到损失函数值,为后续进一步优化做准备;最后根据所述光预放大参数向量、所述损失函数值和模拟退火算法,确定优化后的光预放大参数向量,优化后的光预放大参数向量可以用来优化的每个信道的预放大功率谱,使得传输时的整体带宽内的信道信噪比最大进而得到最大的通信传输容量。相较于传统的功率控制调优算法,该程式无需暴力扫描,时间复杂度低,且受激拉曼散射修正后高斯噪声闭合解模型考虑了超宽带引起的受激拉曼散射,结果更精确,可提升极限通信容量更大。Beneficial effects of the present invention: the embodiment of the present invention first obtains the optical pre-amplification parameter vector after random initialization, wherein the optical pre-amplification parameter vector is used to represent the gain slope vector of several band optical amplifiers in the ultra-wideband wavelength division multiplexing system and gain offset vector; to prepare for subsequent optimization, and then correct the Gaussian noise closed solution model according to the optical pre-amplification parameter vector and the preset stimulated Raman scattering, and obtain the loss function value to prepare for subsequent further optimization ; Finally, according to the optical pre-amplification parameter vector, the loss function value and the simulated annealing algorithm, the optimized optical pre-amplification parameter vector is determined, and the optimized optical pre-amplification parameter vector can be used for the pre-amplification of each channel optimized The power spectrum maximizes the channel signal-to-noise ratio within the overall bandwidth during transmission, thereby obtaining the maximum communication transmission capacity. Compared with the traditional power control optimization algorithm, this program does not require violent scanning, and the time complexity is low, and the closed solution model of Gaussian noise after the correction of stimulated Raman scattering takes into account the stimulated Raman scattering caused by ultra-broadband, and the result is more accurate , which can increase the limit communication capacity to a greater extent.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments described in the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明实施例提供的应用于超宽带波分复用系统的预放大参数优化方法流程示意图。Fig. 1 is a schematic flowchart of a pre-amplification parameter optimization method applied to an ultra-wideband wavelength division multiplexing system provided by an embodiment of the present invention.
图2为本发明实施例提供的三个波段放大器放大后的功率谱斜率和中心偏振示意图。Fig. 2 is a schematic diagram of power spectrum slope and central polarization after amplification by three band amplifiers provided by an embodiment of the present invention.
图3为本发明实施例提供的退火算法流程图。FIG. 3 is a flowchart of an annealing algorithm provided by an embodiment of the present invention.
图4为本发明实施例提供的基于模拟退火算法的功率控制参数寻优流程框图。FIG. 4 is a block diagram of a power control parameter optimization process based on a simulated annealing algorithm provided by an embodiment of the present invention.
图5为本发明实施例提供的所有信道的极限容量谱图。Fig. 5 is a limit capacity spectrum diagram of all channels provided by the embodiment of the present invention.
图6为本发明实施例提供的应用于超宽带波分复用系统的预放大参数优化装置的原理框图。FIG. 6 is a functional block diagram of a pre-amplification parameter optimization device applied to an ultra-wideband wavelength division multiplexing system provided by an embodiment of the present invention.
图7为本发明实施例提供的智能终端的内部结构原理框图。FIG. 7 is a functional block diagram of an internal structure of a smart terminal provided by an embodiment of the present invention.
具体实施方式Detailed ways
本发明公开了一种应用于超宽带波分复用系统的预放大参数优化方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。The present invention discloses a pre-amplification parameter optimization method applied to an ultra-wideband wavelength division multiplexing system. In order to make the purpose, technical solution and effect of the present invention clearer and clearer, the present invention will be further described in detail below with reference to the accompanying drawings and examples . It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。Those skilled in the art will understand that unless otherwise stated, the singular forms "a", "an", "said" and "the" used herein may also include plural forms. It should be further understood that the word "comprising" used in the description of the present invention refers to the presence of said features, integers, steps, operations, elements and/or components, but does not exclude the presence or addition of one or more other features, Integers, steps, operations, elements, components, and/or groups thereof. It will be understood that when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may also be present. Additionally, "connected" or "coupled" as used herein may include wireless connection or wireless coupling. The expression "and/or" used herein includes all or any elements and all combinations of one or more associated listed items.
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。Those skilled in the art can understand that, unless otherwise defined, all terms (including technical terms and scientific terms) used herein have the same meaning as commonly understood by those of ordinary skill in the art to which this invention belongs. It should also be understood that terms, such as those defined in commonly used dictionaries, should be understood to have meanings consistent with their meaning in the context of the prior art, and unless specifically defined as herein, are not intended to be idealized or overly Formal meaning to explain.
由于现有技术中,提升光通信容量可以从利用光的维度入手,这些维度有:偏振,时间,波长,模式。其中波长作为光的一个物理特性,由于其宽广的范围,十分适合被用于光的复用。目前,超宽带波分复用因其超高带宽带来的容量增加受到广泛的关注。In the existing technology, the improvement of optical communication capacity can start with the use of light dimensions, which include: polarization, time, wavelength, and mode. The wavelength, as a physical property of light, is very suitable for multiplexing light due to its wide range. At present, ultra-wideband wavelength division multiplexing has attracted extensive attention because of the capacity increase brought by ultra-high bandwidth.
超高带宽波分复用系统的波长范围由C波段,L波段和S波段组成。目前正在商用的是C波段,L波段有望在相应波段的放大器成熟后被应用,而目前S波段因其相应放大器还未商用并没有加入波分复用的波段。但是S波段的范围几乎是C波段的两倍,因此在未来仪器发展成熟后势必会引入波分复用系统组成超高带宽的波分复用相干通信系统,来大幅度提高通信容量。The wavelength range of the ultra-high bandwidth WDM system consists of C-band, L-band and S-band. The C-band is currently in commercial use, and the L-band is expected to be applied after the amplifiers of the corresponding band are mature. Currently, the S-band has not yet been added to the wavelength division multiplexing band because the corresponding amplifier has not yet been commercialized. However, the range of the S-band is almost twice that of the C-band. Therefore, after the development of the instrument in the future, it is bound to introduce a wavelength division multiplexing system to form an ultra-high bandwidth wavelength division multiplexing coherent communication system to greatly increase the communication capacity.
但是随着通信带宽的拓宽,频谱也相应地被拓宽了。因此当信道数量非常庞大时(几百个信道),光纤内总体的光功率会非常大,一般可达20几个dBm。如此大的光功率结合超宽的带宽,就会引起除了自相位调制、四波混频、交叉相位调制等非线性效应外的受激拉曼散射效应,并对低频信道产生增益。增益的频移大概在13THz左右。这就导致了高频信号功率下降,低频信号功率进一步升高,从而在低频区域产生更高的非线性效应。这些非线性效应则会导致更高的非线性噪声功率,降低信号的信噪比,从而使信道的通信容量极限下降。But with the widening of the communication bandwidth, the frequency spectrum is widened accordingly. Therefore, when the number of channels is very large (hundreds of channels), the overall optical power in the optical fiber will be very large, generally up to more than 20 dBm. Such a large optical power combined with an ultra-wide bandwidth will cause stimulated Raman scattering effects in addition to nonlinear effects such as self-phase modulation, four-wave mixing, and cross-phase modulation, and generate gains for low-frequency channels. The frequency shift of the gain is about 13THz. This leads to a decrease in the power of the high-frequency signal and a further increase in the power of the low-frequency signal, resulting in a higher nonlinear effect in the low-frequency region. These nonlinear effects will lead to higher nonlinear noise power and reduce the signal-to-noise ratio of the signal, thereby reducing the communication capacity limit of the channel.
为了应对引入更多波段带来的通信容量极限下降的问题,我们提出了一种基于受激拉曼散射修正后高斯噪声模型的闭合解和模拟退火算法的程式,用来优化的每个信道的预放大功率谱,使得传输时的整体带宽内的信道信噪比最大进而得到最大的通信传输容量。In order to deal with the problem that the limit of communication capacity will drop due to the introduction of more bands, we propose a closed solution and simulated annealing algorithm based on the Gaussian noise model modified by stimulated Raman scattering, which is used to optimize the Pre-amplify the power spectrum to maximize the channel signal-to-noise ratio within the overall bandwidth during transmission, thereby obtaining the maximum communication transmission capacity.
为了解决现有技术的问题,本实施例提供了一种应用于超宽带波分复用系统的预放大参数优化方法,通过上述方法来优化每个信道的预放大功率谱,使得传输时的整体带宽内的信道信噪比最大,进而得到最大的通信传输容量。具体实施时,获取随机初始化后的光预放大参数向量,其中,所述光预放大参数向量用于表征超宽带波分复用系统中若干波段光放大器的增益斜率向量和增益偏置向量;然后根据所述光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到损失函数值;最后根据所述光预放大参数向量、所述损失函数值和模拟退火算法,确定优化后的光预放大参数向量。In order to solve the problems of the prior art, this embodiment provides a pre-amplification parameter optimization method applied to ultra-wideband wavelength division multiplexing systems. The above method is used to optimize the pre-amplification power spectrum of each channel, so that the overall The signal-to-noise ratio of the channel within the bandwidth is the largest, thereby obtaining the largest communication transmission capacity. During specific implementation, obtain the optical pre-amplification parameter vector after random initialization, wherein, the optical pre-amplification parameter vector is used to characterize the gain slope vector and the gain bias vector of several band optical amplifiers in the ultra-wideband wavelength division multiplexing system; then According to the optical pre-amplification parameter vector and the preset stimulated Raman scattering corrected Gaussian noise closed solution model, the loss function value is obtained; finally, according to the optical pre-amplification parameter vector, the loss function value and the simulated annealing algorithm, Determine the optimized optical pre-amplification parameter vector.
示例性方法exemplary method
本实施例提供一种应用于超宽带波分复用系统的预放大参数优化方法,该方法可以应用于数字信号处理的智能终端。具体如图1所示,所述方法包括:This embodiment provides a pre-amplification parameter optimization method applied to an ultra-wideband wavelength division multiplexing system, and the method can be applied to an intelligent terminal for digital signal processing. Specifically as shown in Figure 1, the method includes:
步骤S100、获取随机初始化后的光预放大参数向量,其中,所述光预放大参数向量用于表征超宽带波分复用系统中若干波段光放大器的增益斜率向量和增益偏置向量;Step S100, obtaining a randomly initialized optical pre-amplification parameter vector, wherein the optical pre-amplification parameter vector is used to characterize the gain slope vector and gain offset vector of several band optical amplifiers in an ultra-wideband wavelength division multiplexing system;
具体地,随机初始化后的光预放大参数向量可以在服务器产生,然后获取服务器上的随机初始化后的光预放大参数向量,也可以直接在终端设备上产生,具体不做限制。其中,所述光预放大参数向量用于表征超宽带波分复用系统中若干波段光放大器的增益斜率向量和增益偏置向量,如图2所示。Specifically, the randomly initialized optical pre-amplification parameter vector may be generated on the server, and then the randomly initialized optical pre-amplification parameter vector on the server may be obtained, or may be directly generated on the terminal device, without limitation. Wherein, the optical pre-amplification parameter vector is used to characterize the gain slope vector and gain offset vector of several band optical amplifiers in the ultra-wideband wavelength division multiplexing system, as shown in FIG. 2 .
为了得到光预放大参数向量,所述获取随机初始化后的光预放大参数向量包括如下步骤:In order to obtain the optical pre-amplification parameter vector, the optical pre-amplification parameter vector after the random initialization includes the following steps:
S101、生成若干随机值;S101. Generate several random values;
S102、将若干所述随机值组成向量作为光预放大参数向量。S102. Make a vector composed of several random values as an optical pre-amplification parameter vector.
在本实施例中,光预放大参数向量包括三个波段(L波段,C波段和S波段)的放大器,每个波段的放大器包括两个参数:增益斜率向量slope和增益偏置向量offset,这样,一共有六个参数。先随机生成6个数,将这6个数组成向量,并将该向量作为光预放大参数向量。In the present embodiment, the optical pre-amplification parameter vector includes amplifiers of three bands (L band, C band and S band), and the amplifier of each band includes two parameters: gain slope vector slope and gain offset vector offset, like this , a total of six parameters. First, 6 numbers are randomly generated, and these 6 numbers are formed into a vector, and the vector is used as a light pre-amplification parameter vector.
得到光预放大参数向量后,就可以执行如图1所示的如下步骤:S200、根据所述光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到损失函数值;After the optical pre-amplification parameter vector is obtained, the following steps as shown in Figure 1 can be performed: S200, according to the optical pre-amplification parameter vector and the preset stimulated Raman scattering corrected Gaussian noise closed solution model, to obtain the loss function value;
具体地,可以将所述光预放大参数向量输入到预设的受激拉曼散射修正后高斯噪声闭合解模型,也可以将所述光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型进行混合运算,得到损失函数值,具体不做限制。Specifically, the light pre-amplification parameter vector can be input into the preset Gaussian noise closed solution model after Stimulated Raman Scattering correction, or the light pre-amplification parameter vector and the preset Stimulated Raman Scattering correction The post-Gaussian noise closed solution model performs mixed operations to obtain the loss function value, which is not specifically limited.
为了得到损失函数值,所述根据所述光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到损失函数值包括如下步骤:In order to obtain the loss function value, the Gaussian noise closed solution model modified according to the optical pre-amplification parameter vector and the preset stimulated Raman scattering, and obtaining the loss function value includes the following steps:
S201、获取信道带宽、信道功率向量和放大自发辐射噪声功率;S201. Obtain channel bandwidth, channel power vector and amplified spontaneous emission noise power;
S202、根据所述光预放大参数向量,得到信道入纤功率向量;S202. Obtain a channel input fiber power vector according to the optical pre-amplification parameter vector;
S203、基于所述受激拉曼散射修正后高斯噪声闭合解模型,对所述信道功率向量进行功率计算,得到非线性噪声功率向量;S203. Based on the Gaussian noise closed solution model after the Stimulated Raman scattering correction, perform power calculation on the channel power vector to obtain a nonlinear noise power vector;
S204、将所述非线性噪声功率向量和所述放大自发辐射噪声功率进行求和,得到噪声总功率向量;S204. Summing the nonlinear noise power vector and the amplified spontaneous emission noise power to obtain a total noise power vector;
S205、将所述信道入纤功率向量除以噪声总功率向量,得到功率商值向量;S205. Divide the channel input power vector by the total noise power vector to obtain a power quotient vector;
S206、对所述功率商值向量进行对数运算,得到信噪比向量;S206. Perform a logarithmic operation on the power quotient vector to obtain a signal-to-noise ratio vector;
S207、根据所述信噪比向量,得到损失函数值。S207. Obtain a loss function value according to the signal-to-noise ratio vector.
具体地,先获取信道带宽B(可以设置为28GHz)、信道功率向量Pi、Pi,j和放大自发辐射噪声功率PASE;在本实施例中,放大自发辐射噪声功率PASE通过如下公式得到:Specifically, first obtain the channel bandwidth B (can be set to 28 GHz), channel power vectors Pi, P i,j and the amplified spontaneous emission noise power P ASE ; in this embodiment, the amplified spontaneous emission noise power P ASE is obtained by the following formula :
PASE=B*hv*Nf*(G-1)P ASE =B*hv*Nf*(G-1)
其中,B代表信道宽度,h是普朗克常数(6.62607004×10-34m2 kg/s),v代表该信道光频率,NF代表光放大器的噪声系数,G则是放大器于该信道的增益系数。再根据所述光预放大参数向量x,得到信道入纤功率向量Pch;相应的,所述根据所述光预放大参数向量,得到信道入纤功率向量包括如下步骤:获取各波段光信号的中心频率和各信道的中心频率向量;将所述中心频率向量减去每个波段光信号的中心频率,得到频率差值向量;将所述光预放大参数向量中的增益斜率向量乘以所述频率差值向量,得到积向量;将所述积向量加上所述光预放大参数向量中的增益偏置向量,得到信道入纤功率向量。例如:x是一个向量,其中有六个元素x1-x6,x1代表L波段的增益斜率,x2代表L波段的增益偏置,x3代表C波段的增益斜率,x4代表C波段的增益偏置,x5代表S波段的增益斜率,x6代表S波段的增益偏置。将x输入高斯噪声模型中时,实际上是将x的6个元素分别输入给三个波段的放大器,使三个波段放大后的信道功率(即各个信道的入纤光功率分布),按照如下式子分布:Among them, B represents the channel width, h is Planck's constant (6.62607004×10-34m2 kg/s), v represents the optical frequency of the channel, NF represents the noise figure of the optical amplifier, and G is the gain coefficient of the amplifier in the channel. According to the optical pre-amplification parameter vector x, the channel input fiber power vector P ch is obtained; correspondingly, the channel input fiber power vector is obtained according to the optical pre-amplification parameter vector. center frequency and the center frequency vector of each channel; the center frequency of each band optical signal is subtracted from the center frequency vector to obtain a frequency difference vector; the gain slope vector in the optical pre-amplification parameter vector is multiplied by the The frequency difference vector is used to obtain a product vector; the product vector is added to the gain offset vector in the optical pre-amplification parameter vector to obtain a channel input fiber power vector. For example: x is a vector with six elements x1-x6, x1 represents the gain slope of the L-band, x2 represents the gain bias of the L-band, x3 represents the gain slope of the C-band, x4 represents the gain bias of the C-band, x5 represents the gain slope of the S-band, and x6 represents the gain bias of the S-band. When x is input into the Gaussian noise model, the six elements of x are actually input to the amplifiers of the three bands respectively, so that the channel power after the amplification of the three bands (that is, the optical power distribution of each channel into the fiber) is as follows Formula distribution:
powerL=x1(f-fL)+x2power L =x1(ff L )+x2
powerC=x3(f-fC)+x4power C =x3(ff C )+x4
powerS=x5(f-fS)+x6power S =x5(ff S )+x6
其中f代表各个信道的中心频率(是一个向量),fL,fC,和fS分别代表L波段,C波段和S波段的整体中心频率。在得到整体带宽的入纤光功率分布后,可以进一步计算各信道的非线性功率。信道入纤功率向量Pch由powerL、powerC和powerS组成。得到信道入纤功率向量后,基于所述受激拉曼散射修正后高斯噪声闭合解模型,对所述信道功率向量Pi、Pi,j进行功率计算,得到非线性噪声功率向量PNLI;例如,非线性噪声功率向量PNLI通过如下公式得到:Where f represents the center frequency of each channel (it is a vector), f L , f C , and f S represent the overall center frequencies of the L-band, C-band and S-band respectively. After obtaining the optical power distribution of the entire bandwidth into the fiber, the nonlinear power of each channel can be further calculated. The channel input power vector P ch is composed of power L , power C and power S. After obtaining the channel fiber-in power vector, based on the Gaussian noise closed solution model after the correction of the stimulated Raman scattering, perform power calculation on the channel power vector Pi, Pi ,j to obtain the nonlinear noise power vector P NLI ; for example , the nonlinear noise power vector P NLI is obtained by the following formula:
其中,Pi代表第i个信道的功率,Pi,j代表第j个信道的功率,ηSPM,j(fi)和ηXPM,j(fi)分别代表修正后的自相位调制非线性系数和交叉相位调制非线性系数,n∈代表非线性噪声。然后将所述非线性噪声功率向量PNLI和所述放大自发辐射噪声功率PASE进行求和,得到噪声总功率向量;将所述信道入纤功率向量Pch除以噪声总功率向量,得到功率商值向量;对所述功率商值向量进行对数运算,得到信噪比向量SNR;例如,信噪比向量 最后根据所述信噪比向量,得到损失函数值。相应的,所述根据所述信噪比向量,得到损失函数值包括如下步骤:对所述信噪比向量进行对数运算,得到容量向量;获取所述容量向量的容量均值、容量最大值和容量最小值;计算所述容量均值的倒数,得到容量均值倒数值;将所述容量均值倒数值加上所述容量最大值后减去容量最小值,得到损失函数值。例如,通过如下公式得到容量向量capacity:Among them, Pi represents the power of the i-th channel, P i,j represents the power of the j-th channel, η SPM,j (fi) and η XPM,j (fi) represent the modified self-phase modulation nonlinear coefficient and Cross-phase modulation nonlinear coefficient, n ∈ represents nonlinear noise. Then the nonlinear noise power vector P NLI and the amplified spontaneous emission noise power PASE are summed to obtain the total noise power vector; the channel input fiber power vector P ch is divided by the total noise power vector to obtain the power Quotient value vector; Logarithmic operation is carried out to described power quotient value vector, obtains signal-to-noise ratio vector SNR; For example, signal-to-noise ratio vector Finally, a loss function value is obtained according to the SNR vector. Correspondingly, the obtaining the loss function value according to the SNR vector includes the following steps: performing a logarithmic operation on the SNR vector to obtain a capacity vector; obtaining the capacity mean value, capacity maximum value and The minimum value of capacity; calculating the reciprocal of the mean value of capacity to obtain the reciprocal value of the mean value of capacity; adding the reciprocal value of the mean value of capacity to the maximum value of capacity and subtracting the minimum value of capacity to obtain a loss function value. For example, the capacity vector capacity is obtained by the following formula:
capacity=B×log2(1+SNR)capacity=B×log2(1+SNR)
其中,B为信道带宽,SNR为信噪比向量,代表每个信道的信噪比。Among them, B is the channel bandwidth, and SNR is the signal-to-noise ratio vector, which represents the signal-to-noise ratio of each channel.
损失函数值Loss通过如下公式得到:The loss function value Loss is obtained by the following formula:
其中,capacity是一个向量,代表所有信道的容量。Among them, capacity is a vector representing the capacity of all channels.
得到损失函数值后,就可以执行如图1所示的如下步骤:S300、根据所述光预放大参数向量、所述损失函数值和模拟退火算法,确定优化后的光预放大参数向量。After the loss function value is obtained, the following steps as shown in FIG. 1 can be performed: S300, determine the optimized optical pre-amplification parameter vector according to the optical pre-amplification parameter vector, the loss function value and the simulated annealing algorithm.
具体地,如图2-3所示,根据模拟退火算法,通过对光预放大参数向量和所述损失函数值的更新和迭代,得到最小的损失函数值。相应的,所述根据所述光预放大参数向量、所述损失函数值和模拟退火算法,确定优化后的光预放大参数向量包括:Specifically, as shown in FIGS. 2-3 , according to the simulated annealing algorithm, the minimum loss function value is obtained by updating and iterating the light pre-amplification parameter vector and the loss function value. Correspondingly, the determining the optimized optical pre-amplification parameter vector according to the optical pre-amplification parameter vector, the loss function value and the simulated annealing algorithm includes:
S301、获取随机概率值;S301. Obtain a random probability value;
S302、获取初始温度参数和初始迭代参数,其中,所述初始温度参数用于表征所述模拟退火算法的变量参数;S302. Obtain an initial temperature parameter and an initial iteration parameter, wherein the initial temperature parameter is used to represent a variable parameter of the simulated annealing algorithm;
S303、根据所述模拟退火算法和所述初始迭代参数,对所述初始温度参数进行更新,得到更新后的温度参数;S303. According to the simulated annealing algorithm and the initial iteration parameters, update the initial temperature parameters to obtain updated temperature parameters;
S304、对所述光预放大参数向量和更新后的温度参数进行迭代运算,得到更新后的光预放大参数向量;S304. Perform an iterative operation on the optical pre-amplification parameter vector and the updated temperature parameter to obtain an updated optical pre-amplification parameter vector;
S305、根据更新后的光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到更新后的损失函数值;S305. Obtain an updated loss function value according to the updated optical pre-amplification parameter vector and the preset Stimulated Raman scattering corrected Gaussian noise closed solution model;
S306、根据所述损失函数值和更新后的损失函数值,得到优化后的光预放大参数向量。S306. Obtain an optimized optical pre-amplification parameter vector according to the loss function value and the updated loss function value.
具体地,先获取随机概率值p0,p0是0到1之间按照均匀分布随机产生的一个随机概率值,获取初始温度参数Tmax和初始迭代参数iter_num,其中,所述初始温度参数用于表征所述模拟退火算法的变量参数;根据所述模拟退火算法和所述初始迭代参数,对所述初始温度参数进行更新,得到更新后的温度参数;相应的,所述根据所述模拟退火算法和所述初始迭代参数,对所述初始温度参数进行更新,得到更新后的温度参数包括如下步骤:当对所述光预放大参数向量和更新后的温度参数进行迭代运算的次数达到预设的迭代次数阈值且时,对所述初始迭代参数进行自累加操作,得到迭代参数;将所述初始温度参数除以所述迭代参数,得到更新后的温度参数。例如,温度参数会随着上述迭代过程的增加而降低,例如每运行100轮降低一次温度,降温公式如下式:Specifically, first obtain the random probability value p0, p0 is a random probability value randomly generated between 0 and 1 according to the uniform distribution, and obtain the initial temperature parameter Tmax and the initial iteration parameter iter_num, wherein the initial temperature parameter is used to characterize the The variable parameters of the simulated annealing algorithm; according to the simulated annealing algorithm and the initial iteration parameters, update the initial temperature parameters to obtain updated temperature parameters; correspondingly, according to the simulated annealing algorithm and the The initial iterative parameter, the initial temperature parameter is updated, and the temperature parameter obtained after the update includes the following steps: when the number of iterative operations performed on the optical pre-amplification parameter vector and the updated temperature parameter reaches the preset number of iterations When the threshold is equal, the initial iteration parameter is self-accumulated to obtain an iteration parameter; the initial temperature parameter is divided by the iteration parameter to obtain an updated temperature parameter. For example, the temperature parameter will decrease with the increase of the above iterative process. For example, the temperature will be reduced every 100 rounds of operation. The cooling formula is as follows:
T=Tmax/iter_numT=Tmax/iter_num
T更新后的温度参数,为Tmax代表初始温度参数,值为300,iter_num代表迭代百轮数(初始值为1),每迭代100轮iter_num值便加1,该模拟退火算法停止的条件为两个,一个是温度参数降低到初始设定的最小温度参数(如100)时,停止寻优,第二个是loss降温20次,更新后的光预放大参数向量xnew依旧没有降低时,停止寻优。接着对所述光预放大参数向量和更新后的温度参数进行迭代运算,得到更新后的光预放大参数向量;例如,在获取了当前的光预放大参数向量x的损失值loss后,模拟退火算法会在该光预放大参数向量x的基础上更新生成一个更新后的光预放大参数向量x_new,生成方法如下公式所示:The temperature parameter after T is updated, Tmax represents the initial temperature parameter, the value is 300, iter_num represents the number of iterations (initial value is 1), and the iter_num value is increased by 1 every 100 iterations. The condition for the simulated annealing algorithm to stop is two One, when the temperature parameter is reduced to the initial minimum temperature parameter (such as 100), stop the optimization, and the second is to reduce the temperature of the loss 20 times, and stop when the updated optical pre-amplification parameter vector x new still does not decrease search for excellence. Then iteratively calculate the optical pre-amplification parameter vector and the updated temperature parameter to obtain the updated optical pre-amplification parameter vector; for example, after obtaining the loss value loss of the current optical pre-amplification parameter vector x, simulated annealing The algorithm will update and generate an updated optical pre-amplification parameter vector x_new on the basis of the optical pre-amplification parameter vector x. The generation method is shown in the following formula:
其中,upper代表光预放大参数向量x取值的最大值,lower代表光预放大参数向量x取值的最小值,r是一个[-1,1]的随机数,T代表温度参数。根据更新后的光预放大参数向量xnew和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到更新后的损失函数值lossnew;具体过程为将更新后的光预放大参数向量xnew当做先前的光预放大参数向量,继续执行步骤S200的步骤,得到更新后的损失函数值lossnew。接着根据所述损失函数值和更新后的损失函数值,得到优化后的光预放大参数向量,相应的,所述根据所述损失函数值和更新后的损失函数值,得到优化后的光预放大参数向量包括如下步骤:当更新后的损失函数值小于或等于所述损失函数值,继续执行根据更新后的光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到更新后的损失函数值的步骤;当更新后的损失函数值大于所述损失函数值,对更新后的损失函数值、所述损失函数值和所述温度参数进行指数运算,得到所述光预放大参数向量的概率值;当所述光预放大参数向量的概率值大于或等于所述随机概率值时,继续执行根据更新后的光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到更新后的损失函数值的步骤;当更新后的温度参数达到预设的温度参数阈值,或者当根据所述模拟退火算法和所述初始迭代参数,对所述初始温度参数进行更新的次数达到预设的更新次数阈值且所述更新后的光预放大参数向量不变时,停止所述模拟退火算法,得到优化后的损失函数值;将所述优化后的损失函数值对应的更新后的光预放大参数向量作为优化后的光预放大参数向量。例如,若loss_new<=loss,则把x_new当成新的x,继续使用上面的更新公式迭代寻找loss_new更低的x_new;若loss_new>loss,则以一定的概率接受该x_new,该光预放大参数向量的概率值如下公式生成:Among them, upper represents the maximum value of the optical pre-amplification parameter vector x, lower represents the minimum value of the optical pre-amplification parameter vector x, r is a random number in [-1,1], and T represents the temperature parameter. According to the updated optical pre-amplification parameter vector x new and the preset stimulated Raman scattering corrected Gaussian noise closed solution model, the updated loss function value loss new is obtained; the specific process is to update the optical pre-amplification parameter vector x new is used as the previous optical pre-amplification parameter vector, and the step S200 is continued to obtain the updated loss function value loss new . Then according to the loss function value and the updated loss function value, the optimized optical pre-amplification parameter vector is obtained, and correspondingly, the optimized optical pre-amplification parameter vector is obtained according to the loss function value and the updated loss function value. Amplifying the parameter vector includes the following steps: when the updated loss function value is less than or equal to the loss function value, continue to execute the Gaussian noise closed solution model based on the updated optical pre-amplification parameter vector and the preset stimulated Raman scattering correction , the step of obtaining the updated loss function value; when the updated loss function value is greater than the said loss function value, perform an exponential operation on the updated loss function value, said loss function value and said temperature parameter to obtain said The probability value of the optical pre-amplification parameter vector; when the probability value of the optical pre-amplification parameter vector is greater than or equal to the random probability value, continue to perform the Stimulated Raman scattering according to the updated optical pre-amplification parameter vector and preset Stimulated Raman scattering The step of obtaining the updated loss function value after the Gaussian noise closed solution model is corrected; when the updated temperature parameter reaches the preset temperature parameter threshold, or when according to the simulated annealing algorithm and the initial iteration parameter, the When the number of times the initial temperature parameter is updated reaches the preset update times threshold and the updated light pre-amplification parameter vector remains unchanged, the simulated annealing algorithm is stopped to obtain an optimized loss function value; the optimized The updated optical pre-amplification parameter vector corresponding to the loss function value is used as the optimized optical pre-amplification parameter vector. For example, if loss_new<=loss, then treat x_new as a new x, continue to use the above update formula to iteratively find x_new with lower loss_new; if loss_new>loss, then accept the x_new with a certain probability, the light pre-amplification parameter vector The probability value of is generated by the following formula:
上式中,光预放大参数向量的概率值p的分布范围为(0,1),若温度参数T越小,则p越接近于0,随机概率值p0是0到1之间按照均匀分布随机产生的一个随机概率,若p>=p0,则接受该更新后的光预放大参数向量x_new为新的光预放大参数向量x进入下一步迭代。反之则不接受。因此,温度参数越高时,接受相对质量低的更新后的光预放大参数向量x_new的概率越大,故通过模拟退火算法将温度降低,以更高的概率得到优质的更新后的光预放大参数向量。通过上述模拟退火算法的迭代运算,当迭代结束,最终会得到优化后的损失函数值,此时的优化后的损失函数值是最小的,那么所述优化后的损失函数值对应的更新后的光预放大参数向量是最优的,可以作为优化后的光预放大参数向量,进而使得整体信道的极限容量最大,且保持信道间的容量均衡。In the above formula, the distribution range of the probability value p of the light pre-amplification parameter vector is (0, 1). If the temperature parameter T is smaller, then p is closer to 0, and the random probability value p0 is between 0 and 1 according to the uniform distribution A random probability generated randomly, if p>=p0, accept the updated optical pre-amplification parameter vector x_new as the new optical pre-amplification parameter vector x and enter the next iteration. Otherwise it is not accepted. Therefore, when the temperature parameter is higher, the probability of accepting the updated optical pre-amplification parameter vector x_new with relatively low quality is greater, so the temperature is lowered through the simulated annealing algorithm, and high-quality updated optical pre-amplification is obtained with a higher probability parameter vector. Through the iterative operation of the above-mentioned simulated annealing algorithm, when the iteration ends, the optimized loss function value will finally be obtained. At this time, the optimized loss function value is the smallest, then the optimized loss function value corresponds to the updated The optical pre-amplification parameter vector is optimal, and can be used as the optimized optical pre-amplification parameter vector, thereby maximizing the limit capacity of the overall channel and maintaining capacity balance between channels.
如图4所示,展示的是本发明应用于超宽带波分复用系统的预放大参数优化方法的一个实施例,如图5所示,展现的是初步仿真的结果,横坐标代表超宽带信道,纵坐标代表该信道的容量。这里我们选择了三种不同的优化策略,圆圈代表追求整体容量最大化的优化结果,可以看出选择这种优化策略有一个缺点,就是会导致信道间容量不均衡。星号代表追求波段内信道间容量最均衡,但是可以看出总体的容量不高。加号则兼备前两种策略的优势,既有相当高的总体容量,又具备相对平稳的容量分布。As shown in Figure 4, it shows an embodiment of the pre-amplification parameter optimization method applied to the ultra-wideband wavelength division multiplexing system of the present invention, as shown in Figure 5, it shows the results of the preliminary simulation, and the abscissa represents the ultra-wideband Channel, the vertical axis represents the capacity of the channel. Here we have chosen three different optimization strategies. The circles represent the optimization results for maximizing the overall capacity. It can be seen that choosing this optimization strategy has a disadvantage, that is, it will lead to unbalanced capacity among channels. The asterisk represents the pursuit of the most balanced capacity between channels within the band, but it can be seen that the overall capacity is not high. The plus sign combines the advantages of the first two strategies, not only has a relatively high overall capacity, but also has a relatively stable capacity distribution.
示例性设备exemplary device
如图6中所示,本发明实施例提供一种应用于超宽带波分复用系统的预放大参数优化装置,该装置包括:光预放大参数向量模块401,损失函数值获取模块402和优化后的光预放大参数向量确定模块403,其中:As shown in Figure 6, an embodiment of the present invention provides a pre-amplification parameter optimization device applied to an ultra-wideband wavelength division multiplexing system, the device includes: an optical pre-amplification parameter vector module 401, a loss function value acquisition module 402 and an optimization After optical pre-amplification parameter vector determination module 403, wherein:
光预放大参数向量模块401,用于获取随机初始化后的光预放大参数向量,其中,所述光预放大参数向量用于表征超宽带波分复用系统中若干波段光放大器的增益斜率向量和增益偏置向量;The optical pre-amplification parameter vector module 401 is used to obtain the optical pre-amplification parameter vector after random initialization, wherein the optical pre-amplification parameter vector is used to characterize the gain slope vector and the gain bias vector;
损失函数值获取模块402,用于根据所述光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到损失函数值;The loss function value acquisition module 402 is used to obtain the loss function value according to the light pre-amplification parameter vector and the preset Gaussian noise closed solution model after Stimulated Raman scattering correction;
优化后的光预放大参数向量确定模块403,用于根据所述光预放大参数向量、所述损失函数值和模拟退火算法,确定优化后的光预放大参数向量。The optimized optical pre-amplification parameter vector determination module 403 is configured to determine the optimized optical pre-amplification parameter vector according to the optical pre-amplification parameter vector, the loss function value and the simulated annealing algorithm.
基于上述实施例,本发明还提供了一种智能终端,其原理框图可以如图7所示。该智能终端包括通过系统总线连接的处理器、存储器、网络接口、显示屏、温度传感器。其中,该智能终端的处理器用于提供计算和控制能力。该智能终端的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该智能终端的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种应用于超宽带波分复用系统的预放大参数优化方法。该智能终端的显示屏可以是液晶显示屏或者电子墨水显示屏,该智能终端的温度传感器是预先在智能终端内部设置,用于检测内部设备的运行温度。Based on the above embodiments, the present invention also provides an intelligent terminal, the functional block diagram of which may be shown in FIG. 7 . The intelligent terminal includes a processor, a memory, a network interface, a display screen and a temperature sensor connected through a system bus. Wherein, the processor of the smart terminal is used to provide calculation and control capabilities. The memory of the smart terminal includes a non-volatile storage medium and an internal memory. The non-volatile storage medium stores an operating system and computer programs. The internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium. The network interface of the smart terminal is used to communicate with external terminals through a network connection. When the computer program is executed by a processor, a pre-amplification parameter optimization method applied to an ultra-wideband wavelength division multiplexing system is realized. The display screen of the smart terminal may be a liquid crystal display screen or an electronic ink display screen, and the temperature sensor of the smart terminal is pre-set inside the smart terminal for detecting the operating temperature of the internal equipment.
本领域技术人员可以理解,图7中的原理图,仅仅是与本发明方案相关的部分结构的框图,并不构成对本发明方案所应用于其上的智能终端的限定,具体的智能终端可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art can understand that the schematic diagram in Figure 7 is only a block diagram of a part of the structure related to the solution of the present invention, and does not constitute a limitation on the intelligent terminal to which the solution of the present invention is applied. The specific intelligent terminal may include There may be more or fewer components than shown in the figures, or certain components may be combined, or have different component arrangements.
在一个实施例中,提供了一种智能终端,包括有存储器,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器中,且经配置以由一个或者一个以上处理器执行所述一个或者一个以上程序包含用于进行以下操作的指令:获取随机初始化后的光预放大参数向量,其中,所述光预放大参数向量用于表征超宽带波分复用系统中若干波段光放大器的增益斜率向量和增益偏置向量;In one embodiment, an intelligent terminal is provided, including a memory, and one or more programs, wherein one or more programs are stored in the memory, and are configured to be executed by one or more processors. One or more programs include instructions for performing the following operations: obtain a randomly initialized optical pre-amplification parameter vector, wherein the optical pre-amplification parameter vector is used to characterize the performance of several band optical amplifiers in an ultra-wideband wavelength division multiplexing system Gain slope vector and gain bias vector;
根据所述光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到损失函数值;According to the light pre-amplification parameter vector and the preset stimulated Raman scattering corrected Gaussian noise closed solution model, the loss function value is obtained;
根据所述光预放大参数向量、所述损失函数值和模拟退火算法,确定优化后的光预放大参数向量。An optimized optical pre-amplification parameter vector is determined according to the optical pre-amplification parameter vector, the loss function value, and a simulated annealing algorithm.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本发明所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above-mentioned embodiments can be completed by instructing related hardware through computer programs, and the computer programs can be stored in a non-volatile computer-readable memory In the medium, when the computer program is executed, it may include the processes of the embodiments of the above-mentioned methods. Wherein, any reference to memory, storage, database or other media used in the various embodiments provided by the present invention may include non-volatile and/or volatile memory. Nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory. Volatile memory can include random access memory (RAM) or external cache memory. By way of illustration and not limitation, RAM is available in many forms such as Static RAM (SRAM), Dynamic RAM (DRAM), Synchronous DRAM (SDRAM), Double Data Rate SDRAM (DDRSDRAM), Enhanced SDRAM (ESDRAM), Synchronous Chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
综上所述,本发明公开了应用于超宽带波分复用系统的预放大参数优化方法、智能终端、存储介质,所述方法包括:获取随机初始化后的光预放大参数向量,其中,所述光预放大参数向量用于表征超宽带波分复用系统中若干波段光放大器的增益斜率向量和增益偏置向量;根据所述光预放大参数向量和预设的受激拉曼散射修正后高斯噪声闭合解模型,得到损失函数值;根据所述光预放大参数向量、所述损失函数值和模拟退火算法,确定优化后的光预放大参数向量。本发明通过上述方法来优化每个信道的预放大功率谱,使得传输时的整体带宽内的信道信噪比最大,进而得到最大的通信传输容量。In summary, the present invention discloses a pre-amplification parameter optimization method, an intelligent terminal, and a storage medium applied to an ultra-wideband wavelength division multiplexing system. The method includes: obtaining a randomly initialized optical pre-amplification parameter vector, wherein the The optical pre-amplification parameter vector is used to characterize the gain slope vector and the gain offset vector of several band optical amplifiers in the ultra-wideband wavelength division multiplexing system; according to the optical pre-amplification parameter vector and preset stimulated Raman scattering correction Gaussian noise closed solution model to obtain the loss function value; according to the optical pre-amplification parameter vector, the loss function value and simulated annealing algorithm, determine the optimized optical pre-amplification parameter vector. The present invention optimizes the pre-amplification power spectrum of each channel through the above method, so that the signal-to-noise ratio of the channel in the overall bandwidth during transmission is maximized, thereby obtaining the maximum communication transmission capacity.
基于上述实施例,本发明公开了一种应用于超宽带波分复用系统的预放大参数优化方法,应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。Based on the above-mentioned embodiments, the present invention discloses a pre-amplification parameter optimization method applied to an ultra-wideband wavelength division multiplexing system. It should be understood that the application of the present invention is not limited to the above-mentioned examples. For those of ordinary skill in the art, Improvements or changes can be made according to the above description, and all these improvements and changes should belong to the protection scope of the appended claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110701291.7A CN113536725B (en) | 2021-06-23 | 2021-06-23 | Pre-amplification parameter optimization method applied to ultra-wideband wavelength division multiplexing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110701291.7A CN113536725B (en) | 2021-06-23 | 2021-06-23 | Pre-amplification parameter optimization method applied to ultra-wideband wavelength division multiplexing system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113536725A CN113536725A (en) | 2021-10-22 |
CN113536725B true CN113536725B (en) | 2023-09-05 |
Family
ID=78125723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110701291.7A Active CN113536725B (en) | 2021-06-23 | 2021-06-23 | Pre-amplification parameter optimization method applied to ultra-wideband wavelength division multiplexing system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113536725B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114221700B (en) * | 2021-12-22 | 2023-06-13 | 阿里巴巴(中国)有限公司 | Method and device for calculating configuration of optical transmission network and optical transmission network system |
CN115208462B (en) * | 2022-07-14 | 2024-06-25 | 上海交通大学 | Optical communication system optical module control parameter optimization method and system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1456932A (en) * | 2003-06-04 | 2003-11-19 | 清华大学 | Dynamic feedback regulating and controlling method for power and gain chart of optical fibre Raman amplifier |
CN101051167A (en) * | 2005-10-11 | 2007-10-10 | 天津大学 | High efficiency simulating method for wide band optical fiber Raman amplifier |
CN106712918A (en) * | 2015-11-17 | 2017-05-24 | 中国移动通信集团终端有限公司 | Wireless communication resource allocation method and apparatus |
CN107252302A (en) * | 2012-07-27 | 2017-10-17 | 统雷有限公司 | Quick imaging system |
CN110505643A (en) * | 2019-09-23 | 2019-11-26 | 杭州电子科技大学 | Uplink energy efficiency optimization method for massive MIMO system based on simulated annealing algorithm |
CN110515255A (en) * | 2019-08-26 | 2019-11-29 | 西南交通大学 | Single-pump fiber parametric amplifier and method for optimizing its gain |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10120276B4 (en) * | 2001-04-25 | 2004-01-29 | Siemens Ag | Method and transmission system for optimizing the transmission properties of an optical wavelength division multiplex system |
US20030151799A1 (en) * | 2001-10-11 | 2003-08-14 | Innovance, Inc. | Gain control in wavelength switched optical networks |
US8095008B2 (en) * | 2007-04-25 | 2012-01-10 | Ciena Corporation | Systems and methods for a multiple-input, multiple-output controller in a reconfigurable optical network |
BR112017000048B1 (en) * | 2014-07-04 | 2023-03-14 | Ses S.A | METHOD FOR COMPENSATING AT LEAST PARTIALLY FOR THE NONLINEARITIES OF A COMMUNICATION CHANNEL, TRANSMITTER, SYSTEM, AND COMPUTER READABLE STORAGE MEDIA |
-
2021
- 2021-06-23 CN CN202110701291.7A patent/CN113536725B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1456932A (en) * | 2003-06-04 | 2003-11-19 | 清华大学 | Dynamic feedback regulating and controlling method for power and gain chart of optical fibre Raman amplifier |
CN101051167A (en) * | 2005-10-11 | 2007-10-10 | 天津大学 | High efficiency simulating method for wide band optical fiber Raman amplifier |
CN107252302A (en) * | 2012-07-27 | 2017-10-17 | 统雷有限公司 | Quick imaging system |
CN106712918A (en) * | 2015-11-17 | 2017-05-24 | 中国移动通信集团终端有限公司 | Wireless communication resource allocation method and apparatus |
CN110515255A (en) * | 2019-08-26 | 2019-11-29 | 西南交通大学 | Single-pump fiber parametric amplifier and method for optimizing its gain |
CN110505643A (en) * | 2019-09-23 | 2019-11-26 | 杭州电子科技大学 | Uplink energy efficiency optimization method for massive MIMO system based on simulated annealing algorithm |
Also Published As
Publication number | Publication date |
---|---|
CN113536725A (en) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113536725B (en) | Pre-amplification parameter optimization method applied to ultra-wideband wavelength division multiplexing system | |
Buglia et al. | A closed-form expression for the Gaussian noise model in the presence of Raman amplification | |
CN112367284B (en) | Probability distribution identification method, device, equipment and medium under probability shaping constellation | |
CN114499679A (en) | Multi-band Raman amplifier design method and system | |
CN117768278B (en) | Modulation identification method based on hybrid complex neural network | |
US12113572B2 (en) | Method and apparatus for calculating configuration of optical transmission network, and optical transmission network system | |
Liu et al. | SMOF: simultaneous modeling and optimization framework for Raman amplifiers in C+ L-band optical networks | |
CN117117614A (en) | Laser power amplifier, construction method and device thereof | |
Wu et al. | Research on the compensation scheme for spectral power tilt from stimulated Raman scattering in multi-band transmission system | |
Singh et al. | Optimizing the net gain of a Raman-EDFA hybrid optical amplifier using a genetic algorithm | |
CN111125897B (en) | Fast calculation method for noise power ratio NPR of traveling wave tube | |
Della Lucia et al. | Natural computing algorithms for optimization of high-order distributed Raman amplifiers | |
CN116054953A (en) | Model training method, device, signal transmission system, equipment and storage medium | |
CN108988935B (en) | Satellite-ground coordinated signal transmission method and device under nonlinear power amplifier constraints | |
CN115208462B (en) | Optical communication system optical module control parameter optimization method and system | |
CN110707519B (en) | A high-power ultra-wideband wavelength scanning fiber laser system and tuning method | |
Kim et al. | Efficient Numerical Solver for Estimating Power Profiles in UWB Transmission Considering Signal and Pump Depletion | |
CN114204992B (en) | Hybrid amplification method and system in ultra-long-distance unrepeatered optical fiber transmission system | |
CN115314110B (en) | Method and device for compensating power inclination based on partition particle swarm optimization algorithm | |
US20250119337A1 (en) | Wireless communication device for correcting nonlinearity of transmitter and operating method thereof | |
Zhao et al. | Online Learning Raman Scattering Coefficient for S+ C+ L Band Transmission with Raman Amplification Based on WaOA | |
CN115361066A (en) | Gain equalization method and system for S-band signals | |
Liu et al. | GSNR-aware Transmission Optimization in Dynamic Programmable Raman Amplifier-enabled Multi-band Optical Systems | |
CN111294122B (en) | Method and device for determining input power of power amplifier, storage medium and terminal | |
CN113923766B (en) | Power control method, device and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |