CN113534666A - Trajectory tracking control method for single-joint robotic arm system under multi-objective constraints - Google Patents
Trajectory tracking control method for single-joint robotic arm system under multi-objective constraints Download PDFInfo
- Publication number
- CN113534666A CN113534666A CN202110866514.5A CN202110866514A CN113534666A CN 113534666 A CN113534666 A CN 113534666A CN 202110866514 A CN202110866514 A CN 202110866514A CN 113534666 A CN113534666 A CN 113534666A
- Authority
- CN
- China
- Prior art keywords
- mechanical arm
- joint mechanical
- arm system
- law
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000001960 triggered effect Effects 0.000 claims abstract description 15
- 238000004891 communication Methods 0.000 claims abstract description 12
- 230000004888 barrier function Effects 0.000 claims abstract description 6
- 230000006978 adaptation Effects 0.000 claims description 19
- 238000001914 filtration Methods 0.000 claims description 14
- 230000003044 adaptive effect Effects 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 9
- 238000013461 design Methods 0.000 claims description 8
- 238000013178 mathematical model Methods 0.000 claims description 7
- 238000011217 control strategy Methods 0.000 claims description 6
- 238000010586 diagram Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000009795 derivation Methods 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- PHTXVQQRWJXYPP-UHFFFAOYSA-N ethyltrifluoromethylaminoindane Chemical compound C1=C(C(F)(F)F)C=C2CC(NCC)CC2=C1 PHTXVQQRWJXYPP-UHFFFAOYSA-N 0.000 claims 1
- 238000012886 linear function Methods 0.000 claims 1
- 230000009897 systematic effect Effects 0.000 claims 1
- 238000011160 research Methods 0.000 abstract description 8
- 238000004422 calculation algorithm Methods 0.000 abstract description 5
- 238000004364 calculation method Methods 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000007123 defense Effects 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及单关节机械臂系统的控制方法,具体涉及多目标约束下单关节机械臂系统的轨迹跟踪控制方法。The invention relates to a control method of a single-joint mechanical arm system, in particular to a trajectory tracking control method of a single-joint mechanical arm system under multi-target constraints.
背景技术Background technique
机械臂不仅是关节机器人的重要组成部分,在工业中、制造业及国防军事等领域都发挥了重要作用,可在各种替代人力成本大及危险、复杂环境中进行生产作业,经过多年的研究与发展,已经在各个领域逐步走向了实用化,例如:(1)在民用领域,如礼仪机器人对公众提供迎宾服务,导航信息服务,才艺表演等;(2)在工业领域,如汽车生产线上焊接及加固螺丝的机械臂,工地上快速搬砖砌筑机器人、仓库里搬运打包的搬运,装配机器人等;(3)特种领域,如为国防军事、武警部队等提供排爆、危险性工作等;(4)航天航空领域,如在外太空工作站替代人类从事物件夹取、安装物体等。随着多关节机械臂在机器人上的广泛应用,为实现多关节机械臂(被控系统)性能指标实现综合最优,多关节机械臂最优控制方法逐渐成为关节机器人设计的重点。The robotic arm is not only an important part of the articulated robot, but also plays an important role in the fields of industry, manufacturing, national defense and military. It can perform production operations in various alternative labor costs and dangerous and complex environments. After years of research It has gradually become practical in various fields, such as: (1) in the civil field, such as etiquette robots providing welcome services to the public, navigation information services, talent shows, etc.; (2) in the industrial field, such as automobile production lines Robotic arms for welding and reinforcing screws, fast brick-and-masonry robots on construction sites, handling and packaging robots in warehouses, assembly robots, etc.; (3) Special fields, such as providing explosive and dangerous work for national defense, military, armed police forces, etc. and so on; (4) aerospace field, such as replacing human beings to pick up and install objects in outer space workstations. With the wide application of multi-joint manipulators in robots, in order to achieve comprehensive optimization of the performance indicators of multi-joint manipulators (controlled systems), the optimal control method of multi-joint manipulators has gradually become the focus of articulated robot design.
自适应反步控制方法是一种能够处理非线性系统控制问题的有效算法,主要应用在系统的跟踪控制问题。反步法实际上是一种由前往后递推的设计方法,其中引进的虚拟控制本质上是一种静态补偿思想,前面子系统必须通过后面子系统的虚拟控制才能达到镇定的目的。在实际系统中,大多会有未知函数的存在,可以利用模糊逻辑系统或神经网络来逼近未知项。同时,在反步框架下,由于对虚拟控制信号的重复求导产生计算量“复杂性爆炸”的问题,通过引入动态面控制技术完美解决了这个问题,G.Sun等人把自适应模糊技术与DSC相结合,消除系统中不确定非线性的影响,然而,该方法没有考虑一阶滤波误差的影响;J.A.Farrell等人进一步提出了一种命令滤波技术,通过构建误差补偿机制来减少滤波误差的影响,但是以上基于命令滤波反步控制器只能实现渐近稳定。Adaptive backstepping control method is an effective algorithm that can deal with nonlinear system control problems, and is mainly used in system tracking control problems. Backstepping is actually a recursive design method from front to back. The virtual control introduced in it is essentially a static compensation idea. The front subsystem must pass the virtual control of the latter subsystem to achieve the purpose of stabilization. In practical systems, there are mostly unknown functions, which can be approximated by fuzzy logic systems or neural networks. At the same time, under the backstepping framework, due to the repeated derivation of the virtual control signal, the problem of "complexity explosion" is generated. This problem is perfectly solved by introducing the dynamic surface control technology. G. Sun et al. Combined with DSC, the influence of uncertain nonlinearity in the system is eliminated. However, this method does not consider the influence of the first-order filtering error; J.A. Farrell et al. further proposed a command filtering technique to reduce the filtering error by constructing an error compensation mechanism However, the above backstepping controller based on command filtering can only achieve asymptotic stability.
与渐近控制方法不同,有限时间控制方法可以保证跟踪误差较快的收敛到平衡点,最近,Y.-X.Li等人研究了不确定非线性系统的有限时间命令滤波反步情况,在以上问题中,整定收敛时间与初始状态密切相关,但是一旦初始状态远离平衡点,收敛时间可能无效。目前,M.Chen等人首次研究了严格反馈非线性系统的自适应实际固定时间跟踪算法,其预测的收敛时间与初始值无关,随之而来的一个自然问题是:如何扩展这些传统的非线性控制来考虑通信负担的情况。通过引入事件触发控制策略可以有效的缓解通讯负担,减少不必要通讯资源的浪费,W.Yang等人进一步解决了基于事件触发的固定时间控制问题,但是,依然不能忽略约束条件在实际系统中的影响。Different from the asymptotic control method, the finite-time control method can ensure that the tracking error converges to the equilibrium point quickly. Recently, Y.-X.Li et al. studied the finite-time command filter backstepping for uncertain nonlinear systems. In the above problem, the tuning convergence time is closely related to the initial state, but once the initial state is far from the equilibrium point, the convergence time may be invalid. At present, M. Chen et al. have studied for the first time an adaptive real-time fixed-time tracking algorithm for strictly feedback nonlinear systems. The predicted convergence time is independent of the initial value. A natural question that follows is: how to extend these traditional non-linear systems. Linear control to account for the case of communication load. By introducing an event-triggered control strategy, the communication burden can be effectively alleviated and the waste of unnecessary communication resources can be reduced. W. Yang et al. further solved the fixed-time control problem based on event-triggered control. However, the constraints on the actual system cannot be ignored. influences.
相关约束性问题通常会出现在诸如起重机、关节机械臂等工程实例中。如果这些约束问题没有得到适当的解决,它可能会降低系统的性能。但是,有关多目标约束问题还没有引起过多的研究。例如:在材料运送过程中,J.Liu等人提出的最短的距离和最低的运输成本就属于多目标约束,这可以使基本的控制方法变得更加有趣且具有挑战性,L.Liu等人进一步提出了一种具有多目标约束的非线性系统的自适应有限时间控制,最后利用Lyapunov稳定性理论保证系统的稳定性,从而实现单关节机械臂的轨迹跟踪控制。Relevant constraint problems usually arise in engineering examples such as cranes, articulated manipulators, etc. If these constraints are not properly addressed, it may degrade the performance of the system. However, there has not been much research on multi-objective constraint problems. For example: in the material transportation process, the shortest distance and the lowest transportation cost proposed by J.Liu et al. belong to the multi-objective constraints, which can make the basic control method more interesting and challenging, L. Liu et al. Furthermore, an adaptive finite-time control of nonlinear systems with multi-objective constraints is proposed. Finally, the Lyapunov stability theory is used to ensure the stability of the system, so as to realize the trajectory tracking control of a single-joint manipulator.
综上,目前较少有研究是基于模糊状态观测器,并将自适应事件触发的固定时间命令滤波器与障碍李雅普诺夫函数方法相结合应用到单关节机械臂非线性系统。To sum up, few researches are based on fuzzy state observer, and the combination of adaptive event-triggered fixed-time command filter and obstacle Lyapunov function method is applied to the nonlinear system of single-joint manipulator.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的是针对一类具有多目标约束和不可测量状态的非严格反馈非线性系统,提出一种结合状态观测器和障碍李雅普诺夫函数的自适应固定时间命令滤波跟踪控制策略,并具体提供一种多目标约束下单关节机械臂系统的轨迹跟踪控制方法。In view of this, the purpose of the present invention is to propose an adaptive fixed-time command filter tracking control combining state observer and obstacle Lyapunov function for a class of non-strict feedback nonlinear systems with multi-objective constraints and unmeasurable states. strategy, and specifically provides a trajectory tracking control method for a single-joint robotic arm system under multi-objective constraints.
为了达到上述目的,本发明所采用的技术方案是:多目标约束下单关节机械臂系统的轨迹跟踪控制方法,包括以下步骤:In order to achieve the above purpose, the technical solution adopted in the present invention is: a trajectory tracking control method of a single-joint robotic arm system under multi-objective constraints, comprising the following steps:
步骤1、根据单关节机械臂系统数学模型,建立单关节机械臂的状态空间模型,并构造相应的状态观测器来估计不可测的状态,最后参照观测误差系统进行李雅普诺夫稳定性分析;
步骤2、根据步骤1建立的单关节机械臂系统的状态空间模型,引入障碍函数来解决多目标约束问题,并构造第一个李雅普诺夫函数,并设置相应的虚拟控制律和参数自适应律;
步骤3、根据步骤1建立的单关节机械臂系统的状态空间模型,构造第二个李雅普诺夫函数,并设置相应的虚拟控制律和参数自适应律;
步骤4、根据步骤1建立的单关节机械臂系统的状态空间模型,构造第三个李雅普诺夫函数,并设置相应的虚拟控制律和参数自适应律;
步骤5、在上述步骤的基础上,引入事件触发策略减轻通讯负担,使得单关节机械臂系统满足实际固定时间稳定条件,即完成单关节机械臂系统的轨迹跟踪控制。
进一步的,步骤1具体包括:Further,
步骤1.1,首先根据单关节机械臂系统结构图,建立单关节机械臂非线性数学模型为:Step 1.1, first, according to the system structure diagram of the single-joint manipulator, the nonlinear mathematical model of the single-joint manipulator is established as:
其中q分别表示杆的加速度、速度和位置,ν表示电力子系统引起的转矩,u代表着控制输入,D=1.5kg m2表示机械惯性,B=1Nms/rad表示在衔接处的粘性摩擦系数,H=1Ω表示电枢电阻,M=H表示电枢电感,L=0.2Nm/A表示反电动势系数;in q represents the acceleration, velocity and position of the rod respectively, ν represents the torque caused by the power subsystem, u represents the control input, D=1.5kg m2 represents the mechanical inertia, B=1Nms/rad represents the viscous friction coefficient at the joint , H=1Ω means armature resistance, M=H means armature inductance, L=0.2Nm/A means back electromotive force coefficient;
步骤1.2,定义系统状态变量x1=q,系统状态x3=ν,令单关节机械臂控制系统的输出信号y=q,则单关节机械臂系统非线性模型可表示为如下形式:Step 1.2, define the system state variable x 1 =q, the system state x 3 =ν, let the output signal of the single-joint manipulator control system y=q, the nonlinear model of the single-joint manipulator system can be expressed as the following form:
其中f1(x)=0,g1(x1)=1,f2(x)=-10sin(x1)-x2,g2(x2)=1,f3(x)=-0.2x2-x3,g3(x3)=1;f1(x),f2(x),f3(x),g1(x1),g2(x2)和g3(x3)都是在定义域内充分光滑的非线性函数,并满足g1(x1)≠0,g2(x2)≠0和g3(x3)≠0;where f 1 (x)=0, g 1 (x 1 )=1, f 2 (x)=-10sin(x 1 )-x 2 , g 2 (x 2 )=1, f 3 (x)=- 0.2x 2 -x 3 , g 3 (x 3 )=1; f 1 (x), f 2 (x), f 3 (x), g 1 (x 1 ), g 2 (x 2 ) and g 3 (x 3 ) are in the domain of definition A sufficiently smooth nonlinear function, and satisfy g 1 (x 1 )≠0, g 2 (x 2 )≠0 and g 3 (x 3 )≠0;
步骤1.3,将单关节机械臂系统非线性模型表示为如下状态空间模型:Step 1.3, express the nonlinear model of the single-joint manipulator system as the following state space model:
式中,K=(k1,k2,k3)T,Bi=(0,1,0)T,B=(0,0,1)T,C=(1,0,0);A是一个严格的Hurwitz矩阵,通过选择合适的K,存在正定矩阵Q=QT>0,P=PT>0,且满足ATP+PA=-Q;In the formula, K=(k 1 , k 2 , k 3 ) T , B i =(0,1,0) T , B=(0,0,1) T , C=(1,0,0); A is a Strict Hurwitz matrix, by choosing appropriate K, there is a positive definite matrix Q=Q T > 0, P=P T > 0, and satisfies A T P+PA=-Q;
步骤1.4,设置相应的状态观测器如下:Step 1.4, set the corresponding state observer as follows:
式中 分别代表着x=(x1,x2,x3)T,fi(x)的估计值;in the formula respectively represent the estimated values of x=(x 1 , x 2 , x 3 ) T , f i (x);
基于模糊逻辑规则可得:Based on fuzzy logic rules, we can get:
式中δi代表最小逼近误差,代表最优权值向量,如果存在满足 where δ i represents the minimum approximation error, represents the optimal weight vector, if there is one Satisfy
因此观测误差可表示为式中δ=(δ1,δ2,δ3)T, Therefore, the observation error can be expressed as where δ=(δ 1 ,δ 2 ,δ 3 ) T ,
步骤1.5,构造相应的李雅普诺夫函数为:Step 1.5, construct the corresponding Lyapunov function as:
对其求导可得:Derive it to get:
鉴于杨氏不等式及模糊基函数可得:In view of Young's inequality and fuzzy basis function Available:
其中 in
将上式不等式带入可得:Put the above inequality into Available:
式中, In the formula,
进一步的,步骤2具体包括:Further,
步骤2.1,障碍函数设计如下:Step 2.1, the obstacle function is designed as follows:
其中,mi(i=1,...,n)表示加权系数;in, m i (i=1,...,n) represents the weighting coefficient;
步骤2.2,定义如下坐标变换:Step 2.2, define the following coordinate transformation:
z1(t)=ξ-yd,z 1 (t)=ξ-y d ,
其中ξ为障碍函数,zi为系统状态误差,yd为参考信号,为补偿误差信号,ηi为误差补偿信号;where ξ is the barrier function, zi is the system state error, y d is the reference signal, is the compensation error signal, η i is the error compensation signal;
步骤2.3,引入如下误差补偿机制解决滤波误差的影响:Step 2.3, introduce the following error compensation mechanism to solve the filtering error Impact:
其中为一阶滤波器输出信号,αi代表一阶滤波器的输入信号,βi>0是一个时间常数;ηi(0)=0,χj,1=1(j=2,...,n),ki1>0,ki2>0是设计参数;in is the output signal of the first-order filter, α i represents the input signal of the first-order filter, β i >0 is a time constant; η i (0)=0, χ j,1 =1(j=2,... , n), k i1 > 0, k i2 > 0 are design parameters;
引入上式的误差补偿信号可得:Introduce the error compensation signal of the above formula Available:
构造李雅普诺夫函数其中为参数估计误差,同时对V1求导可得:Construct Lyapunov function in is the parameter estimation error, At the same time, taking the derivative of V1, we get:
利用模糊基函数并通过杨氏不等式处理可得:Using fuzzy basis functions And through Young's inequality processing, we can get:
其中τ>0,将上式代替可得:Where τ>0, the above formula can be replaced by:
虚拟控制律和参数自适应律和其中k11,k12,τ,σ1,c1,r1,均为正常数;virtual control law and parameter adaptation law and where k 11 ,k 12 ,τ,σ 1 ,c 1 ,r 1 , are normal numbers;
将虚拟控制律和参数自适应律带入可得:Bringing in the virtual control law and the parameter adaptation law, we get:
其中 in
进一步的,步骤3具体包括:Further,
结合步骤2中的单关节机械臂系统的状态空间模型与坐标变换,可得:Combining the state space model and coordinate transformation of the single-joint robotic arm system in
其中 in
引入误差补偿信号解决滤波误差的影响:The error compensation signal is introduced to solve the influence of filtering error:
构造第二个保证单关节机械臂系统稳定性的李雅普诺夫函数:Construct the second Lyapunov function that guarantees the stability of the single-joint robotic arm system:
对其求导得:Derive it to get:
使用模糊基函数及杨氏不等式处理可得:Use fuzzy basis functions and Young's inequality can be obtained:
将相应公式替换可得:Substitute the corresponding formula to get:
虚拟控制律和参数自适应律和其中k21,k22,τ,σ2,c2,r2,均为正常数;virtual control law and parameter adaptation law and where k 21 ,k 22 ,τ,σ 2 ,c 2 ,r 2 , are normal numbers;
将虚拟控制律和参数自适应律带入可得:Bringing in the virtual control law and the parameter adaptation law, we get:
其中 in
进一步的,步骤4具体包括:Further,
结合以上步骤的单关节机械臂系统的状态空间模型与坐标变换可得:The state space model and coordinate transformation of the single-joint manipulator system combined with the above steps can be obtained:
引入误差补偿信号解决滤波误差的影响:The error compensation signal is introduced to solve the influence of filtering error:
构造第三个保证单关节机械臂系统稳定性的李雅普诺夫函数:对其求导得:Construct a third Lyapunov function that guarantees the stability of the single-joint robotic arm system: Derive it to get:
同以上步骤使用模糊基函数及杨氏不等式可得:Use the same fuzzy basis functions as above And Young's inequality can be obtained:
在设置实际事件触发控制器u之前,设置如下的虚拟控制律α4和参数自适应律 Before setting the actual event-triggered controller u, set the following virtual control law α4 and parameter adaptation law
进一步的,步骤5具体包括:Further,
定义事件触发误差为P(t)=v(t)-u(t)Define the event trigger error as P(t)=v(t)-u(t)
其中,ρ,μ1,μ2均为正常数,并且满足tk,k∈z+代表输入更新时间;in, ρ, μ 1 , μ 2 are all positive numbers and satisfy t k , k∈z + represents the input update time;
在间隔时间[tk,tk+1中,基于事件触发控制策略可得|v(t)-u(t)|<τ|u(t)|+μ2,控制器u设置为其中可得:In the interval time [t k , t k+1 , based on the event-triggered control strategy, we can obtain |v(t)-u(t)|<τ|u(t)|+μ 2 , and the controller u is set as in Available:
由于0<1+l1(t)τ<1+τ和可得带入可得:Since 0<1+l 1 (t)τ<1+τ and Available Bring in to get:
与现有技术相比,本发明的有益效果是:本发明以单关节机械臂此类典型重复运动的非线性系统为对象进行轨迹跟踪控制的研究,与有限时间算法相比,具有更快的收敛速度;与一般的自适应反步控制相比,能够减轻通讯负担,减小计算量,因此对单关节机械臂的研究具有较高的工程实用价值。Compared with the prior art, the beneficial effects of the present invention are: the present invention takes a typical repetitive motion nonlinear system such as a single-joint manipulator as the object to carry out the research on trajectory tracking control, and compared with the finite-time algorithm, it has a faster speed. Convergence speed; compared with the general adaptive backstepping control, it can reduce the communication burden and reduce the amount of calculation, so the research on single-joint manipulators has high engineering practical value.
附图说明Description of drawings
图1是单关节机械臂系统的结构及其受力分析图;Figure 1 is the structure and force analysis diagram of the single-joint robotic arm system;
图2是本发明多目标约束下单关节机械臂系统的轨迹跟踪控制方法的流程示意图;2 is a schematic flowchart of the trajectory tracking control method of the single-joint robotic arm system under the multi-target constraint of the present invention;
图3是单关节机械臂输出信号、观测信号及参考信号的跟踪轨迹;Fig. 3 is the tracking trajectory of the output signal, observation signal and reference signal of the single-joint manipulator;
图4是单关节机械臂的跟踪误差示意图。Figure 4 is a schematic diagram of the tracking error of a single-joint robotic arm.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are the present invention. Part of the embodiments of the invention, but not all of the embodiments, based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
一种多目标约束下单关节机械臂系统的轨迹跟踪控制方法,如图2所示,包括以下步骤:A trajectory tracking control method for a single-joint robotic arm system under multi-target constraints, as shown in Figure 2, includes the following steps:
步骤1、根据单关节机械臂系统数学模型,建立单关节机械臂的状态空间模型,并构造了相应的状态观测器来估计不可测的状态,最后参照观测误差系统进行李雅普诺夫稳定性分析;
步骤2、根据步骤1建立的单关节机械臂系统的状态空间模型,引入障碍函数来解决多目标约束问题,并构造第一个李雅普诺夫函数,并设置相应的虚拟控制律和参数自适应律;
步骤3、根据步骤1建立的单关节机械臂系统的状态空间模型,构造第二个李雅普诺夫函数,并设置相应的虚拟控制律和参数自适应律;
步骤4、根据步骤1建立的单关节机械臂系统的状态空间模型,构造第三个李雅普诺夫函数,并设置相应的虚拟控制律和参数自适应律;
步骤5、在上述步骤的基础上,引入事件触发策略减轻通讯负担,使得系统满足实际固定时间稳定条件,即完成单关节机械臂系统的轨迹跟踪控制。
以下分别对各个步骤的技术方案详细进行说明:The technical solutions of each step are described in detail as follows:
步骤1、根据单关节机械臂系统数学模型,建立单关节机械臂的状态空间模型,并构造了相应的状态观测器来估计不可测的状态,最后参照观测误差系统进行李雅普诺夫稳定性分析,具体为:
步骤1.1,首先根据单关节机械臂系统结构图,如图1所示,建立单关节机械臂非线性数学模型为:Step 1.1, first, according to the system structure diagram of the single-joint manipulator, as shown in Figure 1, the nonlinear mathematical model of the single-joint manipulator is established as:
其中q分别表示杆的加速度,速度和位置,ν表示电力子系统引起的转矩,u代表着控制输入,D=1.5kg m2表示机械惯性,B=1Nms/rad表示在衔接处的粘性摩擦系数,H=1Ω表示电枢电阻,M=H表示电枢电感,L=0.2Nm/A表示反电动势系数;in q represents the acceleration, velocity and position of the rod respectively, ν represents the torque caused by the power subsystem, u represents the control input, D=1.5kg m2 represents the mechanical inertia, B=1Nms/rad represents the viscous friction coefficient at the joint , H=1Ω means armature resistance, M=H means armature inductance, L=0.2Nm/A means back electromotive force coefficient;
步骤1.2,定义系统状态变量x1=q,系统状态x3=ν令单关节机械臂控制系统的输出信号y=q,则单关节机械臂系统非线性模型可表示为如下形式Step 1.2, define the system state variable x 1 =q, the system state x 3 =ν Let the output signal of the single-joint manipulator control system y=q, the nonlinear model of the single-joint manipulator system can be expressed as the following form
其中f1(x)=0,g1(x1)=1,f2(x)=-10sin(x1)-x2,g2(x2)=1,f3(x)=-0.2x2-x3,g3(x3)=1;f1(x),f2(x),f3(x),g1(x1),g2(x2)和g3(x3)都是在定义域内充分光滑的非线性函数,并满足g1(x1)≠0,g2(x2)≠0和g3(x3)≠0;where f 1 (x)=0, g 1 (x 1 )=1, f 2 (x)=-10sin(x 1 )-x 2 , g 2 (x 2 )=1, f 3 (x)=- 0.2x 2 -x 3 , g 3 (x 3 )=1; f 1 (x), f 2 (x), f 3 (x), g 1 (x 1 ), g 2 (x 2 ) and g 3 (x 3 ) are in the domain of definition A sufficiently smooth nonlinear function, and satisfy g 1 (x 1 )≠0, g 2 (x 2 )≠0 and g 3 (x 3 )≠0;
步骤1.3,考虑系统中的部分状态变量可能是不可观测的,需要设计一个模糊状态观测器来估计这些不可观测的状态。因此,上式系统可以表示为如下状态空间方程:Step 1.3, consider that some state variables in the system may be unobservable, and a fuzzy state observer needs to be designed to estimate these unobservable states. Therefore, the above system can be expressed as the following state space equation:
式中 in the formula
K=(k1,k2,k3)T,Bi=(0,1,0)T,B=(0,0,1)T,C=(1,0,0)。A是一个严格的Hurwitz矩阵,通过选择合适的K,存在正定矩阵Q=QT>0,P=PT>0满足ATP+PA=-QK=(k 1 , k 2 , k 3 ) T , B i =(0,1,0) T , B=(0,0,1) T , C=(1,0,0). A is a strict Hurwitz matrix. By choosing a suitable K, there is a positive definite matrix Q=Q T > 0, P=P T > 0 satisfies A T P+PA=-Q
步骤1.4,设置相应的状态观测器如下:Step 1.4, set the corresponding state observer as follows:
式中分别代表着x=(x1,x2,x3)T,fi(x)的估计值。in the formula represent the estimated values of x=(x 1 , x 2 , x 3 ) T and f i (x), respectively.
基于模糊逻辑规则可得:Based on fuzzy logic rules, we can get:
式中δi代表最小逼近误差,代表最优权值向量,如果存在满足 where δ i represents the minimum approximation error, represents the optimal weight vector, if there is one Satisfy
因此观测误差可表示为 Therefore, the observation error can be expressed as
式中δ=(δ1,δ2,δ3)T, where δ=(δ 1 ,δ 2 ,δ 3 ) T ,
步骤1.5,构造相应的李雅普诺夫函数为:Step 1.5, construct the corresponding Lyapunov function as:
对其求导可得:Derive it to get:
鉴于杨氏不等式及模糊基函数可得:In view of Young's inequality and fuzzy basis function Available:
其中 in
将上式不等式带入可得:Put the above inequality into Available:
式中 in the formula
步骤2、根据步骤1建立的单关节机械臂系统的状态空间模型,引入障碍函数来解决多目标约束问题,并构造第一个李雅普诺夫函数,并设置相应的虚拟控制律和参数自适应律,具体包括:
步骤2.1,障碍函数设计如下:Step 2.1, the obstacle function is designed as follows:
其中,mi(i=1,...,n)表示加权系数;选择适当的加权系数是为了确保整体目标函数被约束在指定的范围内。由于I是x1的一个函数,在开放集Ω中,初始值为I(0)是在域中。如果或则ξ→∞。简而言之,只要保证ξ是有界的,I也遵循约束条件。in, m i (i=1, . . . , n) represent weighting coefficients; appropriate weighting coefficients are selected to ensure that the overall objective function is constrained within the specified range. Since I is a function of x 1 , in the open set Ω, the initial value of I(0) is in the domain. if or Then ξ→∞. In short, I also obeys constraints as long as ξ is guaranteed to be bounded.
因此,满足目标函数的约束问题可以转化为保证ξ的有界性。Therefore, the problem of satisfying the constraints of the objective function can be transformed into guaranteeing the boundedness of ξ.
对I求导可得:Differentiating I can get:
其中 in
随后,可以重写为:Subsequently, Can be rewritten as:
其中和同时可以推论出χ1,0≠0。如果χ1,1≠0,那么χ1,1=χ1,0sign(χ1,0)。in and At the same time, it can be deduced that χ 1,0 ≠0. If χ 1,1 ≠0, then χ 1,1 =χ 1,0 sign(χ 1,0 ).
只要I=x1,那么多目标约束问题会被转换为输出约束,这是普遍存在于工程中所研究的约束内容。As long as I=x 1 , the multi-objective constraint problem will be transformed into an output constraint, which is a constraint content commonly studied in engineering.
步骤2.2,定义如下坐标变换:Step 2.2, define the following coordinate transformation:
z1(t)=ξ-yd,z 1 (t)=ξ-y d ,
其中ξ为障碍函数,zi为系统状态误差,yd为参考信号,为补偿误差信号,ηi为误差补偿信号。where ξ is the barrier function, zi is the system state error, y d is the reference signal, is the compensation error signal, η i is the error compensation signal.
步骤2.3,本申请需要引入一阶命令滤波器来克服现有基于自适应反步法框架中对虚拟控制信号αi的重复微分问题来减少相应的计算负担。但是已有结果大都忽略了一阶命令滤波器带来的滤波误差的影响,此时我们引入了如下的误差补偿机制解决滤波误差的影响,其中为一阶滤波器输出信号,αi代表一阶滤波器的输入信号,βi>0是一个时间常数。Step 2.3, this application needs to introduce a first-order command filter To overcome the problem of repeated differentiation of the virtual control signal α i in the existing framework based on the adaptive backstepping method to reduce the corresponding computational burden. However, most of the existing results ignore the filtering error caused by the first-order command filter. At this time, we introduce the following error compensation mechanism to solve the filtering error the impact of which is the output signal of the first-order filter, α i represents the input signal of the first-order filter, and β i > 0 is a time constant.
其中ηi(0)=0,χj,1=1(j=2,...,n),ki1>0,ki2>0是设计参数。where η i (0)=0, χ j,1 =1 (j=2,...,n), k i1 >0, k i2 >0 are design parameters.
引入上式的误差补偿信号可得:Introduce the error compensation signal of the above formula Available:
构造李雅普诺夫函数其中为参数估计误差,同时对V1求导可得:Construct Lyapunov function in is the parameter estimation error, At the same time, taking the derivative of V1, we get:
李雅普诺夫函数的选取根据同类参考文献选取的李雅普诺夫函数:The selection of the Lyapunov function is based on the Lyapunov function selected from similar references:
利用模糊基函数并通过杨氏不等式处理可得:Using fuzzy basis functions And through Young's inequality processing, we can get:
其中τ>0,将上式代替可得:Where τ>0, the above formula can be replaced by:
虚拟控制律和参数自适应律和其中k11,k12,τ,σ1,c1,r1,均为正常数;virtual control law and parameter adaptation law and where k 11 ,k 12 ,τ,σ 1 ,c 1 ,r 1 , are normal numbers;
将虚拟控制律和参数自适应律带入可得:Bringing in the virtual control law and the parameter adaptation law, we get:
其中 in
步骤3、根据步骤1建立的单关节机械臂系统的状态空间模型,构造第二个李雅普诺夫函数,并设置相应的虚拟控制律和参数自适应律,具体包括:
结合步骤2中的单关节机械臂系统的状态空间模型与坐标变换:Combine the state space model and coordinate transformation of the single-joint robotic arm system in step 2:
其中 in
引入误差补偿信号解决滤波误差的影响:The error compensation signal is introduced to solve the influence of filtering error:
构造第二个保证单关节机械臂系统稳定性的李雅普诺夫函数:Construct the second Lyapunov function that guarantees the stability of the single-joint robotic arm system:
对其求导得:Derive it to get:
同步骤2使用模糊基函数及杨氏不等式处理可得:Use the fuzzy basis function as in
将将相应公式替换可得:Substitute the corresponding formula to get:
虚拟控制律和参数自适应律和其中k21,k22,τ,σ2,c2,r2,均为正常数;virtual control law and parameter adaptation law and where k 21 , k 22 , τ, σ 2 , c 2 , r 2 , are normal numbers;
将虚拟控制律和参数自适应律带入可得:Bringing in the virtual control law and the parameter adaptation law, we get:
其中 in
步骤4、根据步骤1建立的单关节机械臂系统的状态空间模型,构造第三个李雅普诺夫函数,并设置相应的虚拟控制律和参数自适应律,具体包括:
结合以上步骤的单关节机械臂系统的状态空间模型与坐标变换可得:The state space model and coordinate transformation of the single-joint manipulator system combined with the above steps can be obtained:
引入误差补偿信号解决滤波误差的影响:The error compensation signal is introduced to solve the influence of filtering error:
构造第三个保证单关节机械臂系统稳定性的李雅普诺夫函数: Construct a third Lyapunov function that guarantees the stability of the single-joint robotic arm system:
对其求导得:Derive it to get:
同以上步骤使用模糊基函数及杨氏不等式可得:Use the same fuzzy basis functions as above And Young's inequality can be obtained:
在设置实际事件触发控制器u前,本申请设置了如下的虚拟控制律α4和参数自适应律 Before setting the actual event-triggered controller u, the present application sets the following virtual control law α4 and parameter adaptive law
步骤5、在上述步骤的基础上,引入事件触发策略减轻通讯负担,使得单关节机械臂系统满足实际固定时间稳定条件,即完成单关节机械臂系统的轨迹跟踪控制,具体包括:
通过引入基于相对阈值的事件触发控制策略,来减少相应的通信负担及通讯资源的浪费。By introducing an event-triggered control strategy based on relative thresholds, the corresponding communication burden and waste of communication resources are reduced.
下面详细介绍基于相对阈值的事件触发控制策略:The following describes the event-triggered control strategy based on relative thresholds in detail:
tk+1=inf{t∈R||P(t)|≥τ|u(t)|+μ2}t k+1 =inf{t∈R||P(t)|≥τ|u(t)|+μ 2 }
定义事件触发误差P(t)=v(t)-u(t),0<τ<1,ρ,μ1,μ2均为正常数,并且满足tk,k∈z+代表输入更新时间。需要注意的是,在时间t∈[tk,tk+1),u可以视作v(tk),Define the event trigger error P(t)=v(t)-u(t), 0<τ<1, ρ, μ 1 , μ 2 are all positive numbers, and satisfy t k , k∈z + represents the input update time. It should be noted that at time t∈[t k ,t k+1 ), u can be regarded as v(t k ),
每当tk+1=inf{t∈R||P(t)|≥τ|u(t)|+μ2}被触发时,时刻将被标记为tk+1,实际控制输入u(tk+1)将被应用到系统中。因此,我们可以求出满足下列方程的参数l1(t),l2(t):Whenever t k+1 =inf{t∈R||P(t)|≥τ|u(t)|+μ 2 } is triggered, the moment will be marked as t k+1 , the actual control input u( t k+1 ) will be applied to the system. Therefore, we can find the parameters l 1 (t),l 2 (t) that satisfy the following equations:
v(t)=(1+l1(t)τ)u+l2(t)μ2 v(t)=(1+l 1 (t)τ)u+l 2 (t)μ 2
其中|l1(t)|≤1,|l2(t)|≤1,因此可得控制器:Where |l 1 (t)|≤1, |l 2 (t)|≤1, so the controller can be obtained:
在间隔时间[tk,tk+1中,基于事件触发控制策略可得|v(t)-u(t)|<τ|u(t)|+μ2,控制器u设置为其中可得:In the interval time [t k , t k+1 , based on the event-triggered control strategy, we can obtain |v(t)-u(t)|<τ|u(t)|+μ 2 , and the controller u is set as in Available:
由于0<1+l1(t)τ<1+τ和可得带入可得:Since 0<1+l 1 (t)τ<1+τ and Available Bring in to get:
基于引理1:可得:Based on Lemma 1: Available:
其中M3=M2+0.557ρ;where M 3 =M 2 +0.557ρ;
定义 definition
基于引理2: Based on Lemma 2:
基于引理3:Hn∈R,i=1,...,n,κ∈[0,1]Based on Lemma 3: H n ∈ R,i=1,...,n,κ∈[0,1]
(|H1|+…+|Hn|)κ≤|H1|κ+…+|Hn|κ (|H 1 |+…+|H n |) κ ≤|H 1 | κ +…+|H n | κ
鉴于 in view of
将以上两个不等式带入可得:Put the above two inequalities into Available:
其中 in
定义 definition
引理4:x1,y2代表着任意变量,k1,k2,B表示任意常数,Lemma 4: x 1 , y 2 represent arbitrary variables, k 1 , k 2 , B represent arbitrary constants,
此处τ1=0.11;where τ 1 =0.11;
将上式带入可得Bring the above formula into Available
其中 in
基于和通过以下杨氏不等式相消处理:based on and are processed by the following Young's inequality cancellation:
李雅普诺夫微分函数可表示为:Lyapunov differential function can be expressed as:
式中 in the formula
定义根据并同上应用引理2和3,上式可转换为:definition according to And applying
此时,假设存在未知常数满足分析以下两种情况:At this point, it is assumed that there is an unknown constant Satisfy Analyze the following two situations:
情况1:如果 Case 1: If
因此可得Therefore it is possible to
情况2:如果 Case 2: If
设置 set up
总结以上两种情况可得:Summarizing the above two situations can be obtained:
其中 in
根据引理5:假如V(x)是一个正定函数,同时具有如下形式According to Lemma 5: If V(x) is a positive definite function, it also has the following form
式中φ1,φ2,α,β,γ均代表正常数,同时满足αγ∈(0,1),βγ∈(1,∞),ρ>0。In the formula, φ 1 , φ 2 , α, β, γ all represent normal numbers, and αγ∈(0,1), βγ∈(1, ∞), ρ>0 are satisfied at the same time.
则可证明系统的原点达到了实际固定时间稳定(对比渐近稳定或有限时间稳定,本文选择的实际固定时间稳定的优点具有不考虑初始条件的情况下,可以正常预测到收敛时间)。Then it can be proved that the origin of the system reaches the actual fixed time stability (compared with asymptotic stability or finite time stability, the advantage of the actual fixed time stability selected in this paper is that the convergence time can be predicted normally without considering the initial conditions).
查阅现有文献,参数选择如下β=2,γ=1更便于实际设计。Consult the existing literature, the parameters are selected as follows β=2, γ=1 is more convenient for practical design.
因此可得单关节机械臂系统满足实际固定时间稳定条件。Therefore, the single-joint manipulator system can satisfy the actual fixed time stability condition.
本申请的设计目标是设计控制器u,使得输出信号y可以约束在受限范围(kc1,kc2)内同时跟踪参考信号yd,并且保证了跟踪误差z1在固定时间间隔内收敛到零的小的邻域范围内,有效减小了计算量,加快了收敛速度;单关节机械臂输出信号、观测信号及参考信号的跟踪轨迹如图3所示。单关节机械臂的跟踪误差示意图如图4所示。The design goal of this application is to design the controller u so that the output signal y can be constrained to track the reference signal y d within a limited range (k c1 , k c2 ) while ensuring that the tracking error z 1 converges to within a fixed time interval In the small neighborhood range of zero, the calculation amount is effectively reduced and the convergence speed is accelerated; the tracking trajectory of the output signal, observation signal and reference signal of the single-joint manipulator is shown in Figure 3. The schematic diagram of the tracking error of the single-joint manipulator is shown in Figure 4.
本申请以单关节机械臂此类典型重复运动的非线性系统为对象进行轨迹跟踪控制的研究,与有限时间算法相比,具有更快的收敛速度;与一般的自适应反步控制相比,能够减轻通讯负担,减小计算量,因此对单关节机械臂的研究具有较高的工程实用价值。This application studies the trajectory tracking control of a typical repetitive motion nonlinear system such as a single-joint robotic arm. Compared with the finite-time algorithm, it has a faster convergence speed; It can reduce the communication burden and reduce the amount of calculation, so the research on the single-joint manipulator has high engineering practical value.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments enables any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110866514.5A CN113534666B (en) | 2021-07-29 | 2021-07-29 | Trajectory tracking control method of single-joint mechanical arm system under multi-target constraint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110866514.5A CN113534666B (en) | 2021-07-29 | 2021-07-29 | Trajectory tracking control method of single-joint mechanical arm system under multi-target constraint |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113534666A true CN113534666A (en) | 2021-10-22 |
CN113534666B CN113534666B (en) | 2023-03-03 |
Family
ID=78089743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110866514.5A Active CN113534666B (en) | 2021-07-29 | 2021-07-29 | Trajectory tracking control method of single-joint mechanical arm system under multi-target constraint |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113534666B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114003002A (en) * | 2021-11-01 | 2022-02-01 | 南京师范大学 | Limited time tracking control method for six-degree-of-freedom hydraulic manipulator |
CN114114928A (en) * | 2021-12-01 | 2022-03-01 | 吉林大学 | A fixed-time adaptive event-triggered control method for a piezoelectric micropositioning platform |
CN114310894A (en) * | 2021-12-31 | 2022-04-12 | 杭州电子科技大学 | Measurement Output Feedback Control Method for Fourth-Order Uncertain Nonlinear Manipulator System |
CN114488791A (en) * | 2021-12-15 | 2022-05-13 | 西北工业大学 | Teleoperation event trigger fixed time control method based on operator intention understanding |
CN114578689A (en) * | 2022-01-25 | 2022-06-03 | 河南科技大学 | CSTR system fixed time fault-tolerant control method based on composite observer |
CN114740736A (en) * | 2022-05-17 | 2022-07-12 | 广州大学 | Mechanical arm trigger type fault-tolerant fixed time stability control method with output constraint |
CN114851198A (en) * | 2022-05-17 | 2022-08-05 | 广州大学 | Consistent tracking fixed time stability control method for multi-single-link mechanical arm |
CN114859708A (en) * | 2022-03-21 | 2022-08-05 | 沈阳化工大学 | Tracking control method for single-connecting-rod flexible mechanical arm |
CN114932561A (en) * | 2022-07-26 | 2022-08-23 | 珞石(北京)科技有限公司 | Robot single joint position control method |
CN115179274A (en) * | 2022-03-28 | 2022-10-14 | 西安邮电大学 | Motion control method for single-link mechanical arm |
CN115284284A (en) * | 2022-07-28 | 2022-11-04 | 青岛大学 | Singular perturbation control method for flexible manipulators based on state constraints |
CN115556089A (en) * | 2022-09-01 | 2023-01-03 | 广州大学 | Single-connecting-rod mechanical arm control method with state constraint and actuator fault |
CN116000919A (en) * | 2022-12-08 | 2023-04-25 | 广州大学 | A full-state constrained control method for a single-link manipulator system with a dead zone |
CN116141339A (en) * | 2023-04-19 | 2023-05-23 | 珞石(北京)科技有限公司 | Seven-degree-of-freedom mechanical arm preset time track tracking control method |
CN116880165A (en) * | 2023-05-30 | 2023-10-13 | 济宁医学院 | Model reference self-adaptive finite time control method of non-contact suspension grabbing system |
CN118244762A (en) * | 2024-03-21 | 2024-06-25 | 淮阴工学院 | An output feedback control method for disturbance-resistant mobile robot |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108519740A (en) * | 2018-05-05 | 2018-09-11 | 曲阜师范大学 | A Cooperative Control Method for Manipulator Trajectory Tracking with Full State Constraints |
CN108845493A (en) * | 2018-08-21 | 2018-11-20 | 曲阜师范大学 | The set time tracking and controlling method of mechanical arm system with output constraint |
CN110262255A (en) * | 2019-07-16 | 2019-09-20 | 东南大学 | A kind of mechanical arm Trajectory Tracking Control method based on adaptive terminal sliding mode controller |
CN110275435A (en) * | 2019-05-24 | 2019-09-24 | 广东工业大学 | Observer-based output consistent adaptive command filtering control method for multi-arm manipulators |
US20190321972A1 (en) * | 2018-04-19 | 2019-10-24 | Korea Institute Of Science And Technology | Computed-torque based controller, parameter determination method thereof and performance analysis method thereof |
CN110687787A (en) * | 2019-10-11 | 2020-01-14 | 浙江工业大学 | Mechanical arm system self-adaptive control method based on time-varying asymmetric obstacle Lyapunov function |
CN112276954A (en) * | 2020-10-29 | 2021-01-29 | 青岛大学 | Multi-joint mechanical arm impedance control method based on limited time output state limitation |
CN112817231A (en) * | 2020-12-31 | 2021-05-18 | 南京工大数控科技有限公司 | High-precision tracking control method for mechanical arm with high robustness |
CN113110059A (en) * | 2021-04-26 | 2021-07-13 | 杭州电子科技大学 | Control method for actual tracking of single-link mechanical arm system based on event triggering |
-
2021
- 2021-07-29 CN CN202110866514.5A patent/CN113534666B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190321972A1 (en) * | 2018-04-19 | 2019-10-24 | Korea Institute Of Science And Technology | Computed-torque based controller, parameter determination method thereof and performance analysis method thereof |
CN108519740A (en) * | 2018-05-05 | 2018-09-11 | 曲阜师范大学 | A Cooperative Control Method for Manipulator Trajectory Tracking with Full State Constraints |
CN108845493A (en) * | 2018-08-21 | 2018-11-20 | 曲阜师范大学 | The set time tracking and controlling method of mechanical arm system with output constraint |
CN110275435A (en) * | 2019-05-24 | 2019-09-24 | 广东工业大学 | Observer-based output consistent adaptive command filtering control method for multi-arm manipulators |
CN110262255A (en) * | 2019-07-16 | 2019-09-20 | 东南大学 | A kind of mechanical arm Trajectory Tracking Control method based on adaptive terminal sliding mode controller |
CN110687787A (en) * | 2019-10-11 | 2020-01-14 | 浙江工业大学 | Mechanical arm system self-adaptive control method based on time-varying asymmetric obstacle Lyapunov function |
CN112276954A (en) * | 2020-10-29 | 2021-01-29 | 青岛大学 | Multi-joint mechanical arm impedance control method based on limited time output state limitation |
CN112817231A (en) * | 2020-12-31 | 2021-05-18 | 南京工大数控科技有限公司 | High-precision tracking control method for mechanical arm with high robustness |
CN113110059A (en) * | 2021-04-26 | 2021-07-13 | 杭州电子科技大学 | Control method for actual tracking of single-link mechanical arm system based on event triggering |
Non-Patent Citations (1)
Title |
---|
石佳玉等: "关于机器人的机械臂对目标轨迹跟踪优化控制", 《计算机仿真》 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114003002A (en) * | 2021-11-01 | 2022-02-01 | 南京师范大学 | Limited time tracking control method for six-degree-of-freedom hydraulic manipulator |
CN114003002B (en) * | 2021-11-01 | 2024-02-20 | 南京师范大学 | Finite time tracking control method for six-degree-of-freedom hydraulic manipulator |
CN114114928A (en) * | 2021-12-01 | 2022-03-01 | 吉林大学 | A fixed-time adaptive event-triggered control method for a piezoelectric micropositioning platform |
CN114114928B (en) * | 2021-12-01 | 2024-05-07 | 吉林大学 | Fixed time self-adaptive event trigger control method for piezoelectric micro-positioning platform |
CN114488791A (en) * | 2021-12-15 | 2022-05-13 | 西北工业大学 | Teleoperation event trigger fixed time control method based on operator intention understanding |
CN114310894A (en) * | 2021-12-31 | 2022-04-12 | 杭州电子科技大学 | Measurement Output Feedback Control Method for Fourth-Order Uncertain Nonlinear Manipulator System |
CN114310894B (en) * | 2021-12-31 | 2023-09-01 | 杭州电子科技大学 | Measurement output feedback control method of fourth-order uncertain nonlinear mechanical arm system |
CN114578689A (en) * | 2022-01-25 | 2022-06-03 | 河南科技大学 | CSTR system fixed time fault-tolerant control method based on composite observer |
CN114859708A (en) * | 2022-03-21 | 2022-08-05 | 沈阳化工大学 | Tracking control method for single-connecting-rod flexible mechanical arm |
CN114859708B (en) * | 2022-03-21 | 2024-12-10 | 沈阳化工大学 | A tracking control method for a single-link flexible robotic arm |
CN115179274A (en) * | 2022-03-28 | 2022-10-14 | 西安邮电大学 | Motion control method for single-link mechanical arm |
CN115179274B (en) * | 2022-03-28 | 2024-11-29 | 西安邮电大学 | Motion control method for single-link mechanical arm |
CN114851198B (en) * | 2022-05-17 | 2023-05-16 | 广州大学 | A consistent tracking fixed-time stable control method for multi-single-link manipulators |
CN114851198A (en) * | 2022-05-17 | 2022-08-05 | 广州大学 | Consistent tracking fixed time stability control method for multi-single-link mechanical arm |
CN114740736B (en) * | 2022-05-17 | 2024-10-29 | 广州大学 | Mechanical arm triggering fault-tolerant fixed time stable control method with output constraint |
CN114740736A (en) * | 2022-05-17 | 2022-07-12 | 广州大学 | Mechanical arm trigger type fault-tolerant fixed time stability control method with output constraint |
CN114932561A (en) * | 2022-07-26 | 2022-08-23 | 珞石(北京)科技有限公司 | Robot single joint position control method |
CN114932561B (en) * | 2022-07-26 | 2022-10-14 | 珞石(北京)科技有限公司 | Robot single joint position control method |
CN115284284A (en) * | 2022-07-28 | 2022-11-04 | 青岛大学 | Singular perturbation control method for flexible manipulators based on state constraints |
CN115556089A (en) * | 2022-09-01 | 2023-01-03 | 广州大学 | Single-connecting-rod mechanical arm control method with state constraint and actuator fault |
CN116000919B (en) * | 2022-12-08 | 2024-10-18 | 广州大学 | A full-state constraint control method for a single-link manipulator system with dead zone |
CN116000919A (en) * | 2022-12-08 | 2023-04-25 | 广州大学 | A full-state constrained control method for a single-link manipulator system with a dead zone |
CN116141339A (en) * | 2023-04-19 | 2023-05-23 | 珞石(北京)科技有限公司 | Seven-degree-of-freedom mechanical arm preset time track tracking control method |
CN116880165B (en) * | 2023-05-30 | 2024-01-30 | 济宁医学院 | Model reference self-adaptive finite time control method of non-contact suspension grabbing system |
CN116880165A (en) * | 2023-05-30 | 2023-10-13 | 济宁医学院 | Model reference self-adaptive finite time control method of non-contact suspension grabbing system |
CN118244762A (en) * | 2024-03-21 | 2024-06-25 | 淮阴工学院 | An output feedback control method for disturbance-resistant mobile robot |
CN118244762B (en) * | 2024-03-21 | 2024-09-24 | 淮阴工学院 | An output feedback control method for disturbance-resistant mobile robot |
Also Published As
Publication number | Publication date |
---|---|
CN113534666B (en) | 2023-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113534666B (en) | Trajectory tracking control method of single-joint mechanical arm system under multi-target constraint | |
CN111319036B (en) | Self-adaptive algorithm-based mobile mechanical arm position/force active disturbance rejection control method | |
Liu et al. | Decentralized robust fuzzy adaptive control of humanoid robot manipulation with unknown actuator backlash | |
Hu et al. | A reinforcement learning neural network for robotic manipulator control | |
CN111618858A (en) | Manipulator robust tracking control algorithm based on self-adaptive fuzzy sliding mode | |
CN109514564B (en) | Optimal control method for composite quadratic multi-joint mechanical arm | |
Chávez-Vázquez et al. | Trajectory tracking of Stanford robot manipulator by fractional-order sliding mode control | |
Ouyang et al. | Actor–critic learning based coordinated control for a dual-arm robot with prescribed performance and unknown backlash-like hysteresis | |
Jin et al. | Observer-based fixed-time tracking control for space robots in task space | |
CN108555914B (en) | A DNN neural network adaptive control method based on tendon-driven dexterous hand | |
CN114516047A (en) | Method and system for controlling track of mechanical arm based on radial basis function neural network terminal sliding mode | |
Aldana et al. | Bilateral teleoperation of cooperative manipulators | |
CN114815618A (en) | Adaptive neural network tracking control method based on dynamic gain | |
Wang et al. | Co-ordinated control of multiple robotic manipulators handling a common object—theory and experiments | |
CN111427264B (en) | A Neural Adaptive Fixed Time Control Method for Complex Telemanipulation Technology | |
Alavandar et al. | New hybrid adaptive neuro-fuzzy algorithms for manipulator control with uncertainties–Comparative study | |
Abdel-Salam et al. | Fuzzy logic controller design for PUMA 560 robot manipulator | |
Kharrat et al. | Neural networks-based adaptive command filter control for nonlinear systems with unknown backlash-like hysteresis and its application to single link robot manipulator | |
CN109176529B (en) | Self-adaptive fuzzy control method for coordinated movement of space robot | |
CN116000919B (en) | A full-state constraint control method for a single-link manipulator system with dead zone | |
Li et al. | Impedance control for human-robot interaction with an adaptive fuzzy approach | |
Lai et al. | Fixed-time adaptive fuzzy control with prescribed tracking performances for flexible-joint manipulators | |
CN113820955B (en) | Unknown random nonlinear system adaptive control method, controller, terminal, medium | |
Zhao et al. | Neuroadaptive Fixed-Time Synchronous Control With Composite Learning Policy for Robotic Multifingers | |
CN112947066B (en) | Manipulator improved finite time inversion control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |