CN113534152A - A signal processing method, device and computer-readable storage medium - Google Patents
A signal processing method, device and computer-readable storage medium Download PDFInfo
- Publication number
- CN113534152A CN113534152A CN202110729880.6A CN202110729880A CN113534152A CN 113534152 A CN113534152 A CN 113534152A CN 202110729880 A CN202110729880 A CN 202110729880A CN 113534152 A CN113534152 A CN 113534152A
- Authority
- CN
- China
- Prior art keywords
- function
- time
- target
- position parameter
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003672 processing method Methods 0.000 title claims abstract description 28
- 230000004044 response Effects 0.000 claims abstract description 102
- 238000012545 processing Methods 0.000 claims abstract description 66
- 238000000034 method Methods 0.000 claims abstract description 39
- 230000006870 function Effects 0.000 claims description 329
- 230000015654 memory Effects 0.000 claims description 34
- 238000012886 linear function Methods 0.000 claims description 32
- 230000008569 process Effects 0.000 claims description 17
- 238000005070 sampling Methods 0.000 claims description 17
- 238000004891 communication Methods 0.000 claims description 10
- 230000005526 G1 to G0 transition Effects 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 16
- 238000005311 autocorrelation function Methods 0.000 description 10
- 238000001228 spectrum Methods 0.000 description 10
- 238000004088 simulation Methods 0.000 description 8
- 238000004590 computer program Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本申请实施例公开了一种信号处理方法,该方法包括:生成第一切比雪夫窗函数,并确定第一切比雪夫窗函数的第一冲激响应宽度;确定权重参数,并基于权重参数对第一切比雪夫窗函数的边缘点进行修改,得到第二切比雪夫窗函数;基于第二切比雪夫窗函数,确定第一时频函数;基于第一时频函数和第一冲激响应宽度,确定目标信号。本申请实施例还公开了一种信号处理设备及计算机可读存储介质。
The embodiment of the present application discloses a signal processing method, the method includes: generating a first Chebyshev window function, and determining a first impulse response width of the first Chebyshev window function; determining a weight parameter, and based on the weight parameter Modify the edge points of the first Chebyshev window function to obtain the second Chebyshev window function; determine the first time-frequency function based on the second Chebyshev window function; determine the first time-frequency function based on the first time-frequency function and the first impulse The response width determines the target signal. The embodiments of the present application also disclose a signal processing device and a computer-readable storage medium.
Description
技术领域technical field
本申请涉及信号处理领域的信号处理技术,尤其涉及一种信号处理方法、设备及计算机可读存储介质。The present application relates to signal processing technologies in the field of signal processing, and in particular, to a signal processing method, device, and computer-readable storage medium.
背景技术Background technique
线性调频信号(Linear frequency modulation,LFM)信号以高分辨率、良好的多普勒容限且设计简单的优势而广泛应用于星载合成孔径雷达(Synthetic ApertureRadar,SAR)系统的测绘成像应用中,但是,LFM信号的自相关函数的峰值旁瓣比(Peaksidelobe ratio,PSLR)较高,会导致SAR图像的清晰度下降,近年来,非线性调频(Nonlinear frequency modulation,NLFM)信号以复杂多样,可自由调节自相关函数的旁瓣水平来降低PSLR逐渐受到合成孔径雷达领域的学者们的关注。Linear frequency modulation (LFM) signals are widely used in the mapping and imaging applications of spaceborne synthetic aperture radar (SAR) systems due to their high resolution, good Doppler tolerance and simple design. However, the peak sidelobe ratio (PSLR) of the autocorrelation function of the LFM signal is high, which will lead to a decrease in the clarity of the SAR image. In recent years, the nonlinear frequency modulation (NLFM) signal is complex and diverse. Freely adjusting the side lobe level of the autocorrelation function to reduce PSLR has gradually attracted the attention of scholars in the field of synthetic aperture radar.
相关技术中,在合成NLFM信号上主要基于POSP算法对已有的窗函数进行处理,得到具有窗函数冲激响应性质的NLFM信号。但是,相关技术中合成的NLFM信号的精度低,导致PSLR依然很高,进而使得SAR图像的清晰度低。In the related art, an existing window function is mainly processed based on the POSP algorithm in synthesizing an NLFM signal, and an NLFM signal with the impulse response property of the window function is obtained. However, the synthetic NLFM signal in the related art has low precision, resulting in a still high PSLR, which in turn makes the SAR image low in definition.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本申请实施例期望提供一种信号处理方法、设备及计算机可读存储介质,解决了合成的NLFM信号的精度低的问题。In order to solve the above technical problems, the embodiments of the present application expect to provide a signal processing method, device, and computer-readable storage medium, which solve the problem of low precision of synthesized NLFM signals.
本申请的技术方案是这样实现的:The technical solution of the present application is realized as follows:
一种信号处理方法,所述方法包括:A signal processing method, the method comprising:
生成第一切比雪夫窗函数,并确定所述第一切比雪夫窗函数的第一冲激响应宽度;generating a first Chebyshev window function, and determining a first impulse response width of the first Chebyshev window function;
确定权重参数,并基于所述权重参数对所述第一切比雪夫窗函数的边缘点进行修改,得到第二切比雪夫窗函数;determining a weight parameter, and modifying the edge point of the first Chebyshev window function based on the weight parameter to obtain a second Chebyshev window function;
基于所述第二切比雪夫窗函数,确定第一时频函数;determining a first time-frequency function based on the second Chebyshev window function;
基于所述第一时频函数和所述第一冲激响应宽度,确定目标信号。A target signal is determined based on the first time-frequency function and the first impulse response width.
上述方案中,所述生成第一切比雪夫窗函数,并确定所述第一切比雪夫窗函数的第一冲激响应宽度,包括:In the above solution, generating the first Chebyshev window function and determining the first impulse response width of the first Chebyshev window function, including:
获取目标脉宽、目标采样率和第一峰值旁瓣比;Obtain the target pulse width, the target sampling rate and the first peak-to-side lobe ratio;
基于所述目标脉宽、所述目标采样率和所述第一峰值旁瓣比,生成所述第一切比雪夫窗函数,并确定所述第一冲激响应宽度。Based on the target pulse width, the target sampling rate, and the first peak-to-sidelobe ratio, the first Chebyshev window function is generated, and the first impulse response width is determined.
上述方案中,所述确定权重参数,并基于所述权重参数对所述第一切比雪夫窗函数的边缘点进行修改,得到第二切比雪夫窗函数,包括:In the above solution, the weight parameter is determined, and the edge point of the first Chebyshev window function is modified based on the weight parameter to obtain a second Chebyshev window function, including:
对所述第一切比雪夫窗函数进行分析,得到第一目标点和第二目标点;其中,所述边缘点包括所述第一目标点和所述第二目标点;The first Chebyshev window function is analyzed to obtain a first target point and a second target point; wherein, the edge point includes the first target point and the second target point;
基于每一权重参数对所述第一目标点和所述第二目标点的位置参数进行加权处理,得到所述第一目标点的第一加权位置参数和所述第二目标点的第二加权位置参数;The position parameters of the first target point and the second target point are weighted based on each weight parameter to obtain a first weighted position parameter of the first target point and a second weighted value of the second target point. position parameter;
基于所述第一加权位置参数更新所述第一切比雪夫窗函数的所述第一目标点的位置参数,并基于所述第二加权位置参数更新所述第一切比雪夫窗函数的所述第二目标点的位置参数,得到所述第二切比雪夫窗函数。The position parameter of the first target point of the first Chebyshev window function is updated based on the first weighted position parameter, and all the position parameters of the first Chebyshev window function are updated based on the second weighted position parameter. The position parameter of the second target point is obtained to obtain the second Chebyshev window function.
上述方案中,所述基于所述第二切比雪夫窗函数,确定第一时频函数,包括:In the above solution, determining the first time-frequency function based on the second Chebyshev window function includes:
确定目标带宽;Determine the target bandwidth;
基于所述目标带宽,采用驻定相位原理算法对每一所述第二切比雪夫窗函数进行处理,得到多个所述第一时频函数。Based on the target bandwidth, a stationary phase principle algorithm is used to process each of the second Chebyshev window functions to obtain a plurality of the first time-frequency functions.
上述方案中,所述基于所述第一时频函数和所述第一冲激响应宽度,确定目标信号,包括:In the above solution, determining the target signal based on the first time-frequency function and the first impulse response width includes:
对每一所述第一时频函数进行处理,确定多个第一信号;processing each of the first time-frequency functions to determine a plurality of first signals;
确定每一所述第一信号的第二峰值旁瓣比和第二冲激响应宽度;determining a second peak-to-side lobe ratio and a second impulse response width for each of the first signals;
基于所述第一冲激响应宽度、所述第二峰值旁瓣比和所述第二冲激响应宽度,从多个所述第一信号中确定所述目标信号。The target signal is determined from a plurality of the first signals based on the first impulse response width, the second peak-to-side lobe ratio, and the second impulse response width.
上述方案中,所述对每一所述第一时频函数进行处理,确定多个第一信号,包括:In the above solution, each of the first time-frequency functions is processed to determine a plurality of first signals, including:
对所述每一第一时频函数进行积分,得到所述多个第一信号。Integrating each of the first time-frequency functions to obtain the plurality of first signals.
上述方案中,所述对每一所述第一时频函数进行处理,确定多个第一信号,包括:In the above solution, each of the first time-frequency functions is processed to determine a plurality of first signals, including:
对所述每一第一时频函数进行修改,得到多个第二时频函数;Modifying each of the first time-frequency functions to obtain a plurality of second time-frequency functions;
对每一第二时频函数进行积分,得到所述多个第一信号。The plurality of first signals are obtained by integrating each second time-frequency function.
上述方案中,所述对所述每一第一时频函数进行修改,得到多个所述第二时频函数,包括:In the above solution, each of the first time-frequency functions is modified to obtain a plurality of the second time-frequency functions, including:
对所述每一第一时频函数进行分析,确定连接点的位置参数;其中,所述连接点为所述第一时频函数中线性函数对应的直线和非线性函数对应的曲线之间的连接点;Each first time-frequency function is analyzed to determine the position parameter of the connection point; wherein, the connection point is between the straight line corresponding to the linear function and the curve corresponding to the nonlinear function in the first time-frequency function. Junction;
确定所述每一第一时频函数中所述线性函数的表达式;determining an expression for the linear function in each of the first time-frequency functions;
基于所述线性函数的表达式和所述连接点的位置参数,对所述每一第一时频函数的点的位置参数进行修改,得到多个第二时频函数。Based on the expression of the linear function and the position parameter of the connection point, the position parameter of each point of the first time-frequency function is modified to obtain a plurality of second time-frequency functions.
上述方案中,所述基于所述线性函数的表达式和所述连接点的位置参数,对所述每一第一时频函数的点的位置参数进行修改,得到多个第二时频函数,包括:In the above scheme, the position parameter of each point of the first time-frequency function is modified based on the expression of the linear function and the position parameter of the connection point to obtain a plurality of second time-frequency functions, include:
基于所述连接点的位置参数和所述表达式,确定第三目标点的位置参数;Determine the position parameter of the third target point based on the position parameter of the connection point and the expression;
基于所述连接点的第一位置参数和所述第三目标点的第一位置参数,从所述非线性函数的点中确定第四目标点的第一位置参数;其中,所述位置参数包括所述第一位置参数和第二位置参数;Based on the first position parameter of the connection point and the first position parameter of the third target point, the first position parameter of the fourth target point is determined from the points of the nonlinear function; wherein the position parameter includes the first position parameter and the second position parameter;
基于所述表达式和所述第四目标点的第一位置参数,确定所述第四目标点的更新第二位置参数,并采用所述更新位置参数替换所述第一时频函数中所述第四目标点的第二位置参数,得到所述多个第二时频函数。Based on the expression and the first position parameter of the fourth target point, an updated second position parameter of the fourth target point is determined, and the updated position parameter is used to replace the description in the first time-frequency function The second position parameter of the fourth target point is obtained to obtain the plurality of second time-frequency functions.
上述方案中,基于所述第一冲激响应宽度、所述第二峰值旁瓣比和所述第二冲激响应宽度,从多个所述第一信号中确定所述目标信号,包括:In the above solution, the target signal is determined from a plurality of the first signals based on the first impulse response width, the second peak-to-side lobe ratio, and the second impulse response width, including:
从多个第二冲激响应宽度中确定不大于所述第一冲激响应宽度的第三冲激响应宽度;determining a third impulse response width not greater than the first impulse response width from a plurality of second impulse response widths;
基于所述第三冲激响应宽度,从所述第一信号中确定第二信号;determining a second signal from the first signal based on the third impulse response width;
从所述第二信号中确定最小第二峰值旁瓣比的信号,得到所述目标信号。The target signal is obtained by determining the signal with the smallest second peak-to-side lobe ratio from the second signal.
一种信号处理设备,所述设备包括:处理器、存储器和通信总线;A signal processing device, the device comprising: a processor, a memory and a communication bus;
所述通信总线用于实现处理器和存储器之间的通信连接;The communication bus is used to realize the communication connection between the processor and the memory;
所述处理器用于执行存储器中的信号处理程序,以实现以下步骤:The processor is used to execute the signal processing program in the memory to realize the following steps:
生成第一切比雪夫窗函数,并确定所述第一切比雪夫窗函数的第一冲激响应宽度;generating a first Chebyshev window function, and determining a first impulse response width of the first Chebyshev window function;
确定权重参数,并基于所述权重参数对所述第一切比雪夫窗函数的边缘点进行修改,得到第二切比雪夫窗函数;determining a weight parameter, and modifying the edge point of the first Chebyshev window function based on the weight parameter to obtain a second Chebyshev window function;
基于所述第二切比雪夫窗函数,确定第一时频函数;determining a first time-frequency function based on the second Chebyshev window function;
基于所述第一时频函数和所述第一冲激响应宽度,确定目标信号。A target signal is determined based on the first time-frequency function and the first impulse response width.
一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现上述信号处理方法的步骤。A computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the steps of the above signal processing method.
本申请实施例所提供的信号处理方法、设备及计算机可读存储介质,生成第一切比雪夫窗函数,并确定第一切比雪夫窗函数的第一冲激响应宽度;确定权重参数,并基于权重参数对第一切比雪夫窗函数的边缘点进行修改,得到第二切比雪夫窗函数;基于第二切比雪夫窗函数,确定第一时频函数;基于第一时频函数和第一冲激响应宽度,确定目标信号;如此,可以对第一切比雪夫窗函数的边缘点进行修改,避免第一切比雪夫窗函数生成目标信号时在边缘点引起失真导致合成的目标信号的精度低,提高了合成目标信号的精度,进一步降低了合成的目标信号的峰值旁瓣比,提高了SAR图像的清晰度。The signal processing method, device, and computer-readable storage medium provided by the embodiments of the present application generate a first Chebyshev window function, and determine a first impulse response width of the first Chebyshev window function; determine a weight parameter, and Modify the edge points of the first Chebyshev window function based on the weight parameters to obtain the second Chebyshev window function; determine the first time-frequency function based on the second Chebyshev window function; determine the first time-frequency function based on the first time-frequency function and the Determine the target signal by the width of the impulse response; in this way, the edge point of the first Chebyshev window function can be modified to avoid distortion caused by the edge point when the first Chebyshev window function generates the target signal, resulting in the synthesis of the target signal. The accuracy is low, the accuracy of the synthesized target signal is improved, the peak-to-side lobe ratio of the synthesized target signal is further reduced, and the clarity of the SAR image is improved.
附图说明Description of drawings
图1为本申请实施例提供的一种信号处理方法的流程示意图;FIG. 1 is a schematic flowchart of a signal processing method provided by an embodiment of the present application;
图2为本申请另一实施例提供的一种信号处理方法的流程示意图;FIG. 2 is a schematic flowchart of a signal processing method provided by another embodiment of the present application;
图3为本申请实施例提供的第一切比雪夫窗的仿真结果示意图;3 is a schematic diagram of a simulation result of a first Chebyshev window provided in an embodiment of the present application;
图4为本申请实施例提供的一种信号处理方法的仿真结果示意图;4 is a schematic diagram of a simulation result of a signal processing method provided by an embodiment of the present application;
图5为本申请实施例提供的另一种信号处理方法的仿真结果示意图;5 is a schematic diagram of a simulation result of another signal processing method provided by an embodiment of the present application;
图6为本申请实施例提供的另一种信号处理方法的仿真结果示意图;6 is a schematic diagram of a simulation result of another signal processing method provided by an embodiment of the present application;
图7为本申请实施例提供的另一种信号处理方法的仿真结果示意图;FIG. 7 is a schematic diagram of a simulation result of another signal processing method provided by an embodiment of the present application;
图8为本申请实施例提供的另一种信号处理方法的仿真结果示意图;8 is a schematic diagram of a simulation result of another signal processing method provided by an embodiment of the present application;
图9为本申请又一实施例提供的一种信号处理方法的流程示意图;FIG. 9 is a schematic flowchart of a signal processing method provided by another embodiment of the present application;
图10为本申请又一实施例提供的一种信号处理方法的第一时频函数的仿真示意图;10 is a schematic diagram of a simulation of a first time-frequency function of a signal processing method according to another embodiment of the present application;
图11为本申请又一实施例提供的一种信号处理方法的流程示意图;11 is a schematic flowchart of a signal processing method provided by another embodiment of the present application;
图12为本申请又一实施例提供的一种信号处理方法的仿真结果对比图;12 is a comparison diagram of a simulation result of a signal processing method provided by another embodiment of the application;
图13为本申请又一实施例提供的一种信号处理设备的结构示意图。FIG. 13 is a schematic structural diagram of a signal processing device according to another embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。The technical solutions in the embodiments of the present application will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present application.
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
本申请实施例提供一种信号处理方法,该方法应用于信号处理设备,如图1所示,该方法包括以下步骤:An embodiment of the present application provides a signal processing method, which is applied to a signal processing device. As shown in FIG. 1 , the method includes the following steps:
步骤101、生成第一切比雪夫窗函数,并确定第一切比雪夫窗函数的第一冲激响应宽度。Step 101: Generate a first Chebyshev window function, and determine a first impulse response width of the first Chebyshev window function.
在本申请实施例中,信号处理设备上可以装载有矩形实验室软件(MatrixLaboratory,Matlab),Matlab用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理等。In this embodiment of the present application, the signal processing device may be loaded with Matrix Laboratory software (MatrixLaboratory, Matlab), where Matlab is used for data analysis, wireless communication, deep learning, image processing and computer vision, signal processing, and the like.
具体地,信号处理设备可以接收输入的生成指令,通过Matlab来生成第一切比雪夫窗函数,并计算第一切比雪夫窗函数的第一冲激响应宽度。其中,该生成指令用于指示信号处理设备生成第一切比雪夫窗函数,生成指令中还可以携带表征第一切比雪夫窗函数大小和第一切比雪夫窗函数的峰值旁瓣比的参数;生成指令可以是用户通过终端发送至信号处理设备的,还可以是信号处理设备检测用户的输入操作,根据用户的输入操作生成的。Specifically, the signal processing device may receive the input generation instruction, generate the first Chebyshev window function through Matlab, and calculate the first impulse response width of the first Chebyshev window function. The generating instruction is used to instruct the signal processing device to generate the first Chebyshev window function, and the generating instruction may also carry parameters representing the size of the first Chebyshev window function and the peak-to-side lobe ratio of the first Chebyshev window function The generation instruction may be sent by the user to the signal processing device through the terminal, or may be generated by the signal processing device by detecting the user's input operation and according to the user's input operation.
需要说明的是,由第一切比雪夫窗函数的性质可知,在冲激响应宽度(Impulseresponse width,IRW)固定的情况下,第一切比雪夫窗函数的PSLR最低,可以利用这一性质来生成目标信号,但是由于第一切比雪夫窗函数生成目标信号时,在目标信号的特定点上会出现失真,因此为了进一步提高生成目标信号的精度,在生成目标信号之前,可以对第一切比雪夫窗函数进行处理,以避免生成的目标信号的特定点出现失真现象。其中,特定点可以对应于第一切比雪夫窗函数的边缘点。It should be noted that, according to the properties of the first Chebyshev window function, when the impulse response width (IRW) is fixed, the PSLR of the first Chebyshev window function is the lowest. Generate the target signal, but since the first Chebyshev window function generates the target signal, distortion will appear at a specific point of the target signal, so in order to further improve the accuracy of generating the target signal, before generating the target signal, you can The Bishev window function is processed to avoid distortion at specific points of the generated target signal. Among them, the specific point may correspond to the edge point of the first Chebyshev window function.
步骤102、确定权重参数,并基于权重参数对第一切比雪夫窗函数的边缘点进行修改,得到第二切比雪夫窗函数。Step 102: Determine the weight parameter, and modify the edge point of the first Chebyshev window function based on the weight parameter to obtain the second Chebyshev window function.
其中,权重参数也可以称之为权重修改因子或加权系数;边缘点为第一切比雪夫函数的边缘的两个点;第一切比雪夫窗函数为离散函数。The weight parameter may also be called a weight modification factor or a weighting coefficient; the edge points are two points on the edge of the first Chebyshev function; the first Chebyshev window function is a discrete function.
在本申请实施例中,可以采用权重参数对第一切比雪夫窗函数的边缘点的位置参数进行修改,并基于修改后的边缘点的位置参数和第一切比雪夫窗函数生成第二切比雪夫窗函数。In this embodiment of the present application, the weight parameter may be used to modify the position parameter of the edge point of the first Chebyshev window function, and the second edge point may be generated based on the modified position parameter of the edge point and the first Chebyshev window function. Byshev window function.
在一种可行的实现方式中,若第一切比雪夫窗函数的大小为6,则第一切比雪夫数窗函数可以用公式(1)来表示:In a feasible implementation, if the size of the first Chebyshev window function is 6, the first Chebyshev number window function can be expressed by formula (1):
w1=(w[0],w[1],w[2],w[3],w[4],w[5]) 公式(1)w 1 =(w[0],w[1],w[2],w[3],w[4],w[5]) Formula (1)
其中,w1表示第一切比雪夫窗函数,w[0]和w[5]均为边缘点。Among them, w 1 represents the first Chebyshev window function, and w[0] and w[5] are edge points.
步骤103、基于第二切比雪夫窗函数,确定第一时频函数。Step 103: Determine a first time-frequency function based on the second Chebyshev window function.
在本申请实施例中,可以采用P0SP算法对第二切比雪夫窗函数进行处理,来得到第一时频函数。其中,第一时频函数用于表征时间和频率对应关系的函数。In this embodiment of the present application, the POSP algorithm may be used to process the second Chebyshev window function to obtain the first time-frequency function. Wherein, the first time-frequency function is used to represent the function of the corresponding relationship between time and frequency.
步骤104、基于第一时频函数和第一冲激响应宽度,确定目标信号。Step 104: Determine the target signal based on the first time-frequency function and the first impulse response width.
在本申请实施例中,可以对第一时频函数进行转换,得到备选信号,并通过第一冲激响应宽度对备选信号进行筛选,确定目标信号;其中,目标信号为非线性调频信号。In the embodiment of the present application, the first time-frequency function can be converted to obtain an alternative signal, and the alternative signal can be screened by the first impulse response width to determine the target signal; wherein, the target signal is a nonlinear frequency modulation signal .
需要说明的是,若备选信号的数量为一个,则可以将备选信号作为目标信号,若备选信号的数量为多个,则可以基于第一冲激响应宽度从备选信号中确定最优的信号,并将最优的信号作为目标信号。其中,在主瓣宽度相同的情况下,备选信号的PSLR是明显低于相关技术中得到的非线性调频信号的PSLR的,通过对备选信号进行筛选,可以进一步提高得到的目标信号的精度。It should be noted that, if the number of candidate signals is one, the candidate signal may be used as the target signal, and if the number of candidate signals is multiple, the most optimal signal may be determined from the candidate signals based on the first impulse response width. The optimal signal is used as the target signal. Among them, in the case of the same main lobe width, the PSLR of the candidate signal is significantly lower than the PSLR of the nonlinear FM signal obtained in the related art. By screening the candidate signal, the accuracy of the obtained target signal can be further improved. .
本申请实施例所提供的信号处理方法,可以对第一切比雪夫窗函数的边缘点进行修改,避免第一切比雪夫窗函数生成目标信号时在边缘点引起失真导致合成的目标信号的精度低,提高了合成目标信号的精度,进一步降低了合成的目标信号的峰值旁瓣比,提高了SAR图像的清晰度。The signal processing method provided by the embodiment of the present application can modify the edge point of the first Chebyshev window function, so as to avoid the accuracy of the synthesized target signal caused by distortion caused by the edge point when the first Chebyshev window function generates the target signal Low, which improves the precision of the synthesized target signal, further reduces the peak-to-side lobe ratio of the synthesized target signal, and improves the clarity of the SAR image.
基于前述实施例,本申请实施例提供了一种信号处理方法,如图2所示,该方法包括:Based on the foregoing embodiments, an embodiment of the present application provides a signal processing method, as shown in FIG. 2 , the method includes:
步骤201、信号处理设备获取目标脉宽、目标采样率和第一峰值旁瓣比。Step 201: The signal processing device acquires the target pulse width, the target sampling rate and the first peak-to-sidelobe ratio.
其中,目标脉宽、目标采样率和第一峰值旁瓣比均可以是生成指令中携带的参数;目标脉宽、目标采样率和第一峰值旁瓣比可以是用户基于SAR图像的清晰度来确定的。The target pulse width, the target sampling rate and the first peak-to-sidelobe ratio can all be parameters carried in the generation instruction; the target pulse width, the target sampling rate and the first peak-to-sidelobe ratio can be determined by the user based on the clarity of the SAR image. definite.
步骤202、信号处理设备基于目标脉宽、目标采样率和第一峰值旁瓣比,生成第一切比雪夫窗函数,并确定第一冲激响应宽度。Step 202: The signal processing device generates a first Chebyshev window function based on the target pulse width, the target sampling rate and the first peak-to-side lobe ratio, and determines the first impulse response width.
在本申请实施例中,信号处理设备基于目标脉宽、目标采样率和第一峰值旁瓣比,通过Matlab生成第一切比雪夫窗函数;其中,第一切比雪夫窗函数的峰值旁瓣比为第一峰值旁瓣比,第一切比雪夫窗函数的大小为目标脉宽和目标采样率之积。In the embodiment of the present application, the signal processing device generates the first Chebyshev window function through Matlab based on the target pulse width, the target sampling rate and the first peak side lobe ratio; wherein, the peak side lobe of the first Chebyshev window function The ratio is the first peak-to-side lobe ratio, and the size of the first Chebyshev window function is the product of the target pulse width and the target sampling rate.
其中,目标脉宽可以用T来表示,目标采样率可以用Fr来表示,第一峰值旁瓣比可以用R来表示;第一切比雪夫窗函数的长度(即大小)可以用公式(2)来表示:Among them, the target pulse width can be represented by T, the target sampling rate can be represented by Fr, the first peak sidelobe ratio can be represented by R; the length (ie size) of the first Chebyshev window function can be represented by formula (2 )To represent:
其中,N表示第一切比雪夫窗的长度,表示向下取整操作。where N is the length of the first Chebyshev window, Indicates a round-down operation.
根据切比雪夫窗函数的定义,大小为N,不失一般性,设N为偶数,设N=2M,M为正整数,峰值旁瓣比为R的第一切比雪夫窗函数用公式(3)和图3来表示;According to the definition of the Chebyshev window function, the size is N, without loss of generality, let N be an even number, let N=2M, M be a positive integer, and the first Chebyshev window function whose peak sidelobe ratio is R uses the formula ( 3) and Figure 3 to represent;
其中,wn表示第一切比雪夫窗函数;n和m为整数,θn=(2n+1)π/N,θm=2πm/N,T2M(x)为切比雪夫多项式,用公式(4)表示为:Wherein, w n represents the first Chebyshev window function; n and m are integers, θ n =(2n+1)π/N, θ m =2πm/N, T 2M (x) is the Chebyshev polynomial, which is expressed as:
其中,第一切比雪夫窗函数的第一冲激响应可以用公式(5)表示为:Among them, the first impulse response of the first Chebyshev window function can be expressed as:
s=FpW公式(5)s=F p W formula (5)
其中,s表示第一冲激响应;Fp为N×N的逆傅里叶变换矩阵;其中,N为第一切比雪夫窗函数的大小,W表示第一切比雪夫窗函数的转置。W和Fp分别可以用公式(6)和公式(7)来表示:Among them, s represents the first impulse response; F p is the inverse Fourier transform matrix of N×N; among them, N is the size of the first Chebyshev window function, and W represents the transpose of the first Chebyshev window function . W and F p can be expressed by formula (6) and formula (7), respectively:
W=[w-M,…,w0,…,wM-1]T 公式(6)W=[w -M ,...,w 0 ,...,w M-1 ] T formula (6)
在本申请实施例中,确定第一切比雪夫窗函数的第一冲激响应宽度时,首先需要对第一切比雪夫窗函数进行P倍升采样,得到P倍升采样后的第一切比雪夫窗函数(第一切比雪夫窗函数的长度变为PN,P表示倍数)用公式(8)表示为:In the embodiment of the present application, when determining the first impulse response width of the first Chebyshev window function, firstly, it is necessary to perform P times upsampling on the first Chebyshev window function, and obtain the first time after the P times upsampling. The Byshev window function (the length of the first Byshev window function becomes PN, and P represents a multiple) is expressed by formula (8) as:
W0=[0,0,…,0,w-M,…,w0,…,wM-1]T 公式(8)W 0 =[0,0,...,0,w -M ,...,w 0 ,...,w M-1 ] T formula (8)
其中,W0表示P倍升采样后的第一切比雪夫窗函数,对W0进行逆傅里叶变换,得到升采样后的冲激响应,如图4所示,在横坐标3和4之间的黑色部分为主瓣,对图4中的主瓣部分进行放大后,如图5所示,中间部分表示主瓣,第一冲激响应宽度为N0/P;其中,N0为中间的矩形部分表示横坐标采样点的数量。Among them, W 0 represents the first Chebyshev window function after upsampling by P times, and inverse Fourier transform is performed on W 0 to obtain the impulse response after upsampling, as shown in Figure 4, at the
步骤203、信号处理设备对第一切比雪夫窗函数进行分析,得到第一目标点和第二目标点。Step 203: The signal processing device analyzes the first Chebyshev window function to obtain the first target point and the second target point.
其中,边缘点包括第一目标点和第二目标点。The edge points include a first target point and a second target point.
在本申请实施例中,可以通过Maltab对第一切比雪夫窗函数中的多个点的位置参数进行分析,确定第一切比雪夫窗函数的边缘两个点,即第一目标点和第二目标点。In this embodiment of the present application, Maltab can be used to analyze the position parameters of multiple points in the first Chebyshev window function to determine two points on the edge of the first Chebyshev window function, that is, the first target point and the first Chebyshev window function. Two target points.
步骤204、信号处理设备基于每一权重参数对第一目标点和第二目标点的位置参数进行加权处理,得到第一目标点的第一加权位置参数和第二目标点的第二加权位置参数。Step 204: The signal processing device performs weighting processing on the position parameters of the first target point and the second target point based on each weight parameter to obtain the first weighted position parameter of the first target point and the second weighted position parameter of the second target point. .
其中,位置参数包括第一位置参数和第二位置参数。Wherein, the position parameter includes a first position parameter and a second position parameter.
在本申请实施例中,对于任一权重参数而言,可以将该权重参数与第一目标点的第二位置参数相乘得到第一值,并采用第一值替换第一目标点的第二位置参数,得到第一目标点的加权位置参数,其中,第一目标点的加权位置参数包括第一目标点的第一位置参数和第一值;并将该权重参数与第二目标点的第二位置参数相乘得到第二值,并采用第二值替换第二目标点的第二位置参数,得到第二目标点的加权位置参数,其中,第二目标点的加权位置参数包括第二目标点的第一位置参数和第二值。其中,第一位置参数可以表示第一切比雪夫窗函数中点的横坐标;第二位置参数可以表示第二切比雪夫函数中点的纵坐标。权重参数可以用α来表示,α的取值范围为[1.8,3]。In the embodiment of the present application, for any weight parameter, the weight parameter can be multiplied by the second position parameter of the first target point to obtain the first value, and the first value is used to replace the second position parameter of the first target point. The position parameter is to obtain the weighted position parameter of the first target point, wherein the weighted position parameter of the first target point includes the first position parameter and the first value of the first target point; The second value is obtained by multiplying the two position parameters, and the second value is used to replace the second position parameter of the second target point to obtain the weighted position parameter of the second target point, wherein the weighted position parameter of the second target point includes the second target point The first position parameter and second value of the point. The first position parameter may represent the abscissa of the midpoint of the first Chebyshev window function; the second position parameter may represent the ordinate of the midpoint of the second Chebyshev function. The weight parameter can be represented by α, and the value range of α is [1.8, 3].
需要说明的是,在[1.8,3]的取值范围之内,可以得到多个权重参数,对于每一个权重参数均需要对第一目标点和第二目标点进行加权处理,以便后续生成目标信号;其中,权重参数的数量和第二切比雪夫窗函数的数量相对应。It should be noted that within the value range of [1.8, 3], multiple weight parameters can be obtained. For each weight parameter, the first target point and the second target point need to be weighted, so that the target can be generated later. signal; where the number of weight parameters corresponds to the number of second Chebyshev window functions.
步骤205、信号处理设备基于第一加权位置参数更新第一切比雪夫窗函数的第一目标点的位置参数,并基于第二加权位置参数更新第一切比雪夫窗函数的第二目标点的位置参数,得到第二切比雪夫窗函数。Step 205: The signal processing device updates the position parameter of the first target point of the first Chebyshev window function based on the first weighted position parameter, and updates the position parameter of the second target point of the first Chebyshev window function based on the second weighted position parameter. positional parameters to obtain the second Chebyshev window function.
其中,每一加权参数可以对应一个第二切比雪夫窗函数。Wherein, each weighting parameter may correspond to a second Chebyshev window function.
在本申请实施例中,可以将第一加权位置参数替换第一切比雪夫函数中第一目标点的位置参数,并将第二加权位置参数替换第一切比雪夫函数中第二目标点的位置参数,得到第二切比雪夫窗函数。In this embodiment of the present application, the first weighted position parameter may be substituted for the position parameter of the first target point in the first Chebyshev function, and the second weighted position parameter may be substituted for the position parameter of the second target point in the first Chebyshev function. positional parameters to obtain the second Chebyshev window function.
在一种可行的实现方式中,若第一切比雪夫窗函数的大小为6,则第一切比雪夫窗函数可以用公式(1)来表示为:In a feasible implementation manner, if the size of the first Chebyshev window function is 6, the first Chebyshev window function can be expressed by formula (1) as:
w1=(w[0],w[1],w[2],w[3],w[4],w[5]) 公式(1)w 1 =(w[0],w[1],w[2],w[3],w[4],w[5]) Formula (1)
其中w1,表示第一切比雪夫窗函数,w[0]和w[5]为边缘点,w[0]的第一位置参数为“0”,w[0]的第二位置参数为w[0];w[5]的第一位置参数为“5”,w[5]的第二位置参数为w[5];则第二切比雪夫窗函数可以用公式(9)来表示:where w 1 represents the first Chebyshev window function, w[0] and w[5] are edge points, the first position parameter of w[0] is "0", and the second position parameter of w[0] is w[0]; the first position parameter of w[5] is "5", and the second position parameter of w[5] is w[5]; then the second Chebyshev window function can be represented by formula (9) :
w2=(αw[0],w[1],w[2],w[3],w[4],αw[5]) 公式(9)w 2 =(αw[0],w[1],w[2],w[3],w[4],αw[5]) Formula (9)
其中,w2表示第二切比雪夫窗函数,αw[0]表示边缘点“0”的第一加权位置参数中的第一值,αw[5]表示边缘点“5”的第二加权位置参数中的第二值;或,αw[5]表示边缘点“5”的第一加权位置参数中的第一值,αw[0]表示边缘点“0”的第二加权位置参数中的第二值。Wherein, w 2 represents the second Chebyshev window function, αw[0] represents the first value in the first weighted position parameter of the edge point "0", and αw[5] represents the second weighted position of the edge point "5" the second value in the parameter; or, αw[5] represents the first value in the first weighted position parameter of the edge point "5", and αw[0] represents the first value in the second weighted position parameter of the edge point "0" binary value.
步骤206、信号处理设备确定目标带宽。Step 206: The signal processing device determines the target bandwidth.
其中,目标带宽是基于带宽参数确定的,带宽参数为预设的需要生成的目标信号的带宽。The target bandwidth is determined based on a bandwidth parameter, and the bandwidth parameter is a preset bandwidth of the target signal to be generated.
其中,目标带宽为第二切比雪夫窗函数的目标函数区间。Wherein, the target bandwidth is the target function interval of the second Chebyshev window function.
在一种可行的实现方式中,若带宽参数用B来表示,则目标带宽可以为[-B/2,B/2]。In a feasible implementation manner, if the bandwidth parameter is represented by B, the target bandwidth may be [-B/2, B/2].
步骤207、信号处理设备基于目标带宽,采用驻定相位原理算法对每一第二切比雪夫窗函数进行处理,得到多个第一时频函数。Step 207: The signal processing device uses the stationary phase principle algorithm to process each second Chebyshev window function based on the target bandwidth to obtain a plurality of first time-frequency functions.
其中,驻定相位原理(Principle of stationary phase,POSP)算法的思想是对NLFM信号的功率谱密度(Power spectrum density,PSD)赋型窗函数形状,使得NLFM信号自相关函数拥有窗函数冲激响应的性质。Among them, the idea of the principle of stationary phase (POSP) algorithm is to shape the window function shape of the power spectral density (PSD) of the NLFM signal, so that the autocorrelation function of the NLFM signal has a window function impulse response nature.
在本申请实施例中,通过POSP算法对第二切比雪夫窗函数进行处理,得到脉宽为T带宽为B的NLFM信号的PSD可以用公式(10)来表示:In the embodiment of the present application, the second Chebyshev window function is processed by the POSP algorithm, and the obtained PSD of the NLFM signal with a pulse width of T and a bandwidth of B can be represented by formula (10):
其中,P(f)表示非线性调频信号的功率谱密度;θ″(t0)表示θ(t)在t=t0处的二阶导函数,θ(t)为连续相位函数;其中,t0由公式(11)决定。Among them, P(f) represents the power spectral density of the nonlinear FM signal; θ″(t 0 ) represents the second-order derivative function of θ(t) at t=t 0 , and θ(t) is a continuous phase function; where, t 0 is determined by formula (11).
θ′(t0)=2πf 公式(11)θ′(t 0 )=2πf Formula (11)
其中,f表示非线性调频信号的频率,θ′(t0)表示θ(t)在t=t0处的一阶导函数,G(f)为菲涅尔积分项,可以用公式(12)来表示:Among them, f represents the frequency of the nonlinear FM signal, θ′(t 0 ) represents the first-order derivative function of θ(t) at t=t 0 , and G(f) is the Fresnel integral term, which can be calculated by formula (12) )To represent:
其中,K(x)表示菲涅尔积分函数,通常G(f)可以粗略地近似为矩形函数,即可以用公式(13)表示为:in, K(x) represents the Fresnel integral function, and usually G(f) can be roughly approximated as a rectangular function, that is, it can be expressed by formula (13) as:
其中,B表示非线性调频信号的带宽。Among them, B represents the bandwidth of the nonlinear FM signal.
对NLFM信号的PSD赋形窗函数形状用公式(14)来表示:The shape of the PSD shaping window function of the NLFM signal is expressed by formula (14):
其中W(f)为第二切比雪夫窗函数,由公式(11)和公式(14)可以得到群时延函数,群时延函数可以用公式(15)来表示:where W(f) is the second Chebyshev window function, the group delay function can be obtained from formula (11) and formula (14), and the group delay function can be expressed by formula (15):
其中,C为常数,可以由公式(16)来表示:where C is a constant, which can be expressed by Equation (16):
对群时延函数(公式(15))进行转换,可以得到第一时频函数,其中,第一时频函数可以用公式(17)来表示:Converting the group delay function (formula (15)), the first time-frequency function can be obtained, where the first time-frequency function can be expressed by formula (17):
需要说明的是,非线性调频信号的自相关函数的理想性能为尽量窄的IRW,尽可能低的PSLR与快速下降的旁瓣波动包络,然而这三个理想性能是不能同时满足的。由切比雪夫窗函数的性质可知,在IRW固定的情况下,切比雪夫窗函数冲激响应的PSLR最低。因此根据POSP算法思想,如果选取切比雪夫窗函数来产生NLFM信号,那么在IRW(冲激响应宽度)固定的情况下,NLFM信号自相关函数的PSLR应该也是最低的。然而由于边缘失真效应,切比雪夫窗NLFM信号自相关函数不再满足切比雪夫窗冲激响应的性能,因此在通过POSP算法对第一切比雪夫窗函数进行处理之前,对切比雪夫窗函数进行修改是非常有必要的,可以避免出现目标信号出现边缘失真现象,进一步提高确定的目标信号的精度。It should be noted that the ideal performance of the autocorrelation function of the nonlinear FM signal is as narrow as possible IRW, as low as possible PSLR and rapidly decreasing sidelobe fluctuation envelope, but these three ideal performances cannot be satisfied simultaneously. According to the properties of the Chebyshev window function, when the IRW is fixed, the PSLR of the impulse response of the Chebyshev window function is the lowest. Therefore, according to the idea of the POSP algorithm, if the Chebyshev window function is selected to generate the NLFM signal, then the PSLR of the autocorrelation function of the NLFM signal should be the lowest when the IRW (impulse response width) is fixed. However, due to the edge distortion effect, the autocorrelation function of the Chebyshev window NLFM signal no longer meets the performance of the Chebyshev window impulse response. Therefore, before the first Chebyshev window function is processed by the POSP algorithm, the Chebyshev window It is very necessary to modify the function, which can avoid the edge distortion of the target signal and further improve the accuracy of the determined target signal.
步骤208、信号处理设备对每一第一时频函数进行处理,确定多个第一信号。Step 208: The signal processing device processes each first time-frequency function to determine a plurality of first signals.
在本申请实施例中,可以对每一第一时频函数进行处理进行分析,得到每一时频函数对应的第一信号。In this embodiment of the present application, each first time-frequency function may be processed and analyzed to obtain a first signal corresponding to each time-frequency function.
其中,多个第一信号可以作为备选信号,以便后续从备选信号中确定目标信号。Wherein, a plurality of first signals can be used as candidate signals, so that the target signal can be subsequently determined from the candidate signals.
需要说明的是,在本申请实施例中步骤208可以通过a或b1-b2来实现;It should be noted that, in this embodiment of the present application,
a1、信号处理设备对每一第一时频函数进行积分,得到多个第一信号。a1. The signal processing device integrates each first time-frequency function to obtain a plurality of first signals.
在本申请实施例中,对每一第一时频函数进行积分,得到多个第一信号,其中,第一信号为非线性调频信号。In the embodiment of the present application, each first time-frequency function is integrated to obtain a plurality of first signals, wherein the first signals are nonlinear frequency modulation signals.
其中,第一信号可以用公式(18)来表示:Among them, the first signal can be expressed by formula (18):
其中,T为信号的脉宽,t指的时间;rect(·)为矩形函数。Among them, T is the pulse width of the signal, and t refers to the time; rect(·) is a rectangular function.
b1、信号处理设备对每一第一时频函数进行修改,得到多个第二时频函数。b1. The signal processing device modifies each first time-frequency function to obtain a plurality of second time-frequency functions.
具体地,可以对第一时频函数中的线性函数部分和非线性函数部分进行修改,使得修改后得到的第二时频函数中的线性函数部分多于第一时频函数中的线性函数部分。Specifically, the linear function part and the nonlinear function part in the first time-frequency function can be modified, so that the linear function part in the second time-frequency function obtained after modification is more than the linear function part in the first time-frequency function .
需要说明的是,得到第一时频函数之前在第一切比雪夫窗函数的边缘点进行了加权处理,虽然一定程度上可以减弱采用POSP算法带来的边缘失真,但是最终得到的目标信号的功率谱并不完全等同于切比雪夫窗函数的功率谱,为了进一步提高得到的目标信号的精度,可以通过增加第一时频函数中的线性函数部分,减少第一时频函数中的非线性函数部分来实现。It should be noted that before the first time-frequency function is obtained, the edge points of the first Chebyshev window function are weighted. Although the edge distortion caused by the POSP algorithm can be reduced to a certain extent, the final target signal has The power spectrum is not completely equivalent to the power spectrum of the Chebyshev window function. In order to further improve the accuracy of the obtained target signal, the nonlinearity in the first time-frequency function can be reduced by increasing the linear function part of the first time-frequency function. function part to achieve.
b2、信号处理设备对每一第二时频函数进行积分,得到多个第一信号。b2. The signal processing device integrates each second time-frequency function to obtain a plurality of first signals.
其中,b2的实现过程与a1的实现过程相同,本申请实施例在此不再赘述。The implementation process of b2 is the same as the implementation process of a1, and details are not described herein again in this embodiment of the present application.
步骤209、信号处理设备确定每一备选信号的第二峰值旁瓣比和第二冲激响应宽度。Step 209: The signal processing device determines the second peak-to-sidelobe ratio and the second impulse response width of each candidate signal.
在本申请实施例中,可以对第一信号进行傅里叶变换,得到第一信号的频谱,之后通过第一信号的频谱来确定第一信号的功率谱,并对第一信号进行傅里叶逆变换,得到自相关函数的结果。In this embodiment of the present application, Fourier transform may be performed on the first signal to obtain a spectrum of the first signal, then the power spectrum of the first signal may be determined by using the spectrum of the first signal, and Fourier transform may be performed on the first signal Inverse transform to get the result of the autocorrelation function.
在一种可行的实现方式中,第一信号的频率为S(f),则第一信号的功率谱为P(f)=|S(f)|2,其中,P(f)表示第一信号的功率谱,之后对对P(f)进行逆傅里叶变换,得到自相关函数的结果y(t);其中,第一信号的功率谱可以用图6来表示,若功率谱离散形式为P=[P1,…,PN],长度为N,对功率谱补零进行Q倍升采样为Pu=[0,0,…,0,P1,…,PN],长度为QP,然后对Pu进行逆傅里叶变换,可以得到升采样后的自相关函数结果,其中,升采样后的自相关函数结果可以用图7来表示,其中,第二冲激响应宽度与获取第一冲激响应宽度的过程类似,本申请实施例对此不再赘述。图8为图7中间部分的放大示意图,第二峰值旁瓣比是指图8中旁瓣部分最高点的值与主瓣部分最高点的值之比。In a feasible implementation manner, the frequency of the first signal is S(f), then the power spectrum of the first signal is P(f)=|S(f)| 2 , where P(f) represents the first signal The power spectrum of the signal, and then perform the inverse Fourier transform on P(f) to obtain the result of the autocorrelation function y(t); among them, the power spectrum of the first signal can be represented by Figure 6, if the power spectrum is in discrete form is P=[P 1 ,...,P N ], the length is N, and the Q-fold upsampling is performed on the power spectrum with zero padding as P u =[0,0,...,0,P 1 ,...,P N ], the length is is QP, and then inverse Fourier transform is performed on P u , the autocorrelation function result after upsampling can be obtained, wherein the autocorrelation function result after upsampling can be represented by Figure 7, wherein the second impulse response width Similar to the process of acquiring the first impulse response width, this embodiment of the present application will not describe it again. FIG. 8 is an enlarged schematic diagram of the middle part of FIG. 7 , and the second peak-to-side lobe ratio refers to the ratio of the value of the highest point of the side lobe part to the value of the highest point of the main lobe part in FIG. 8 .
步骤210、信号处理设备基于第一冲激响应宽度、第二峰值旁瓣比和第二冲激响应宽度,从多个第一信号中确定目标信号。Step 210: The signal processing device determines a target signal from the plurality of first signals based on the first impulse response width, the second peak-to-side lobe ratio, and the second impulse response width.
在本申请实施例中,可以先基于第一冲激响应宽度和第二冲激响应宽度,从备选信号中确定第二信号,之后再基于每一待选信号的旁瓣比,从多个第二信号中确定目标信号。In this embodiment of the present application, the second signal may be determined from the candidate signals based on the first impulse response width and the second impulse response width, and then based on the side lobe ratio of each candidate signal, the second signal may be determined from multiple candidate signals. The target signal is determined in the second signal.
其中,步骤210可以通过步骤a2-a4来实现;Wherein, step 210 can be realized by steps a2-a4;
a2、信号处理设备从多个第二冲激响应宽度中确定不大于第一冲激响应宽度的第三冲激响应宽度。a2. The signal processing device determines a third impulse response width that is not greater than the first impulse response width from the plurality of second impulse response widths.
其中,第三冲激响应宽度小于或等于第一冲激响应宽度。Wherein, the third impulse response width is less than or equal to the first impulse response width.
a3、信号处理设备基于第三冲激响应宽度,从第一信号中确定第二信号。a3. The signal processing device determines the second signal from the first signal based on the third impulse response width.
在本申请实施例中,信号处理设备从第一信号中确定第三冲激响应宽度的信号,并将第三冲激响应宽度的信号作为第二信号。In the embodiment of the present application, the signal processing device determines a signal of the third impulse response width from the first signal, and uses the signal of the third impulse response width as the second signal.
a4、信号处理设备从第二信号中确定最小第二峰值旁瓣比的信号,得到目标信号。a4. The signal processing device determines the signal with the smallest second peak-to-side lobe ratio from the second signal to obtain the target signal.
在本申请实施例中,得到第二信号后,可以对多个第二信号的第二峰值旁瓣比进行排序,从排序后的多个第二峰值旁瓣比中确定最小的第二峰值旁瓣比,并将最小的第二峰值旁瓣的信号作为目标信号。其中,目标信号的脉宽为目标脉宽;目标信号的带宽为目标带宽。In this embodiment of the present application, after the second signal is obtained, the second peak-to-side lobe ratios of multiple second signals may be sorted, and the smallest second peak-to-side lobe ratio is determined from the sorted multiple second peak-to-side lobe ratios Lobe ratio, and take the signal with the smallest second peak side lobe as the target signal. Wherein, the pulse width of the target signal is the target pulse width; the bandwidth of the target signal is the target bandwidth.
本申请实施例所提供的信号处理方法,可以对第一切比雪夫窗函数的边缘点进行修改,避免第一切比雪夫窗函数生成目标信号时在边缘点引起失真导致合成的目标信号的精度低,提高了合成目标信号的精度,进一步降低了合成的目标信号的峰值旁瓣比,提高了SAR图像的清晰度。The signal processing method provided by the embodiment of the present application can modify the edge point of the first Chebyshev window function, so as to avoid the accuracy of the synthesized target signal caused by distortion caused by the edge point when the first Chebyshev window function generates the target signal Low, which improves the precision of the synthesized target signal, further reduces the peak-to-side lobe ratio of the synthesized target signal, and improves the clarity of the SAR image.
基于前述实施例,本申请实施例提供了一种信号处理方法,如图9所示,该方法包括:Based on the foregoing embodiments, an embodiment of the present application provides a signal processing method. As shown in FIG. 9 , the method includes:
步骤301、信号处理设备获取目标脉宽、目标采样率和第一峰值旁瓣比。Step 301: The signal processing device acquires a target pulse width, a target sampling rate and a first peak-to-sidelobe ratio.
步骤302、信号处理设备基于目标脉宽、目标采样率和第一峰值旁瓣比,生成第一切比雪夫窗函数,并确定第一冲激响应宽度。Step 302: The signal processing device generates a first Chebyshev window function based on the target pulse width, the target sampling rate and the first peak-to-side lobe ratio, and determines the first impulse response width.
步骤303、信号处理设备对第一切比雪夫窗函数进行分析,得到第一目标点和第二目标点。Step 303: The signal processing device analyzes the first Chebyshev window function to obtain the first target point and the second target point.
其中,边缘点包括第一目标点和第二目标点。The edge points include a first target point and a second target point.
步骤304、信号处理设备基于每一权重参数对第一目标点和第二目标点的位置参数进行加权处理,得到第一目标点的第一加权位置参数和第二目标点的第二加权位置参数。Step 304: The signal processing device performs weighting processing on the position parameters of the first target point and the second target point based on each weight parameter to obtain the first weighted position parameter of the first target point and the second weighted position parameter of the second target point. .
步骤305、信号处理设备基于第一加权位置参数更新第一切比雪夫窗函数的第一目标点的位置参数,并基于第二加权位置参数更新第一切比雪夫窗函数的第二目标点的位置参数,得到第二切比雪夫窗函数。Step 305: The signal processing device updates the position parameter of the first target point of the first Chebyshev window function based on the first weighted position parameter, and updates the position parameter of the second target point of the first Chebyshev window function based on the second weighted position parameter. positional parameters to obtain the second Chebyshev window function.
步骤306、信号处理设备确定目标带宽。Step 306: The signal processing device determines the target bandwidth.
步骤307、信号处理设备基于目标带宽,采用驻定相位原理算法对每一第二切比雪夫窗函数进行处理,得到第一时频函数。Step 307: The signal processing device uses the stationary phase principle algorithm to process each second Chebyshev window function based on the target bandwidth to obtain a first time-frequency function.
步骤308、信号处理设备对每一第一时频函数进行分析,确定连接点的位置参数。Step 308: The signal processing device analyzes each first time-frequency function to determine the position parameter of the connection point.
其中,连接点为第一时频函数中线性函数对应的直线和非线性函数对应的曲线之间的连接点。其中,第一时频函数为离散函数。The connection point is the connection point between the straight line corresponding to the linear function and the curve corresponding to the nonlinear function in the first time-frequency function. The first time-frequency function is a discrete function.
在本申请实施例中,可以对第一时频函数中的多个点的位置参数的变化规律进行分析,来确定第一时频函数中的线性函数对应的直线和非线性函数对应的曲线之间的连接点。其中,连接点可以为至少一个。In the embodiment of the present application, the variation law of the position parameters of multiple points in the first time-frequency function can be analyzed to determine the difference between the straight line corresponding to the linear function in the first time-frequency function and the curve corresponding to the nonlinear function connection point between. Wherein, the connection point may be at least one.
在一种可行的实现方式中,连接点的个数为两个,如图10所示,第一时频函数中线性函数对应两段直线,两段直线之间对应一曲线,该曲线为第一时频函数中非线性函数对应的曲线,曲线与两条直线之间相交的两个点为确定的两个连接点。需要说明的是,第一个连接点和第二连接点是中心对称的,当确定第一个连接点后,便可以根据中心对称性确定第二个连接点。In a feasible implementation manner, the number of connection points is two. As shown in FIG. 10 , the linear function in the first time-frequency function corresponds to two straight lines, and the two straight lines correspond to a curve, and the curve is the first time-frequency function. A curve corresponding to a nonlinear function in a time-frequency function, the two points where the curve and the two straight lines intersect are determined two connection points. It should be noted that the first connection point and the second connection point are center-symmetrical, and after the first connection point is determined, the second connection point can be determined according to the center symmetry.
在本申请实施例中,可以对第一时频函数进行差分运算,并从差分运算的结果中确定连接点的位置参数;还可以通过对线性函数对应的直线和非线性函数对应的曲线进行分析来确定连接点的位置参数。In the embodiment of the present application, a differential operation can be performed on the first time-frequency function, and the position parameter of the connection point can be determined from the result of the differential operation; the straight line corresponding to the linear function and the curve corresponding to the nonlinear function can also be analyzed. to determine the location parameters of the connection point.
在一种可行的实现方式中,第一时频函数的离散形式为f0=[f1,f2,…,fN],对f0进行差分运算得到df0=[f2-f1,f3-f2,…,fN-fN-1)],然后将使得df0最大的点作为连接点,并根据线性函数的表达式确定连接点的位置参数。In a feasible implementation manner, the discrete form of the first time-frequency function is f 0 =[f 1 ,f 2 ,...,f N ], and the difference operation is performed on f 0 to obtain df 0 =[f 2 -f 1 ,f 3 -f 2 ,…,f N -f N-1 )], then the point that maximizes df 0 is taken as the connection point, and the position parameter of the connection point is determined according to the expression of the linear function.
步骤309、信号处理设备确定每一第一时频函数中线性函数的表达式。Step 309: The signal processing device determines the expression of the linear function in each first time-frequency function.
在本申请实施例中,可以基于确定的连接点的位置参数,来确定第一时频函数中线性函数对应的点(函数点),可以从线性函数中确定任意两个点,并根据确定的两个点的位置参数来确定线性函数的斜率,并根据线性函数中的其它点的位置参数以及斜率,得到线性函数的表达式。In this embodiment of the present application, the point (function point) corresponding to the linear function in the first time-frequency function may be determined based on the determined position parameter of the connection point, any two points may be determined from the linear function, and according to the determined The position parameters of the two points are used to determine the slope of the linear function, and the expression of the linear function is obtained according to the position parameters and slopes of other points in the linear function.
其中,连接点的位置参数为线性函数对应的直线与非线性参数对应的曲线之间的连接点。The position parameter of the connection point is the connection point between the straight line corresponding to the linear function and the curve corresponding to the nonlinear parameter.
步骤310、信号处理设备基于线性函数的表达式和连接点的位置参数,对每一第一时频函数的点的位置参数进行修改,得到多个第二时频函数。
其中,第一时频函数的点的位置参数指的是第一时频函数的非线性函数的部分点的位置参数。Wherein, the position parameter of the point of the first time-frequency function refers to the position parameter of the partial point of the nonlinear function of the first time-frequency function.
其中,步骤310可以通过c1-c3来实现:Wherein, step 310 can be implemented by c1-c3:
c1、信号处理设备基于连接点的位置参数和表达式,确定第三目标点的位置参数。c1. The signal processing device determines the position parameter of the third target point based on the position parameter and the expression of the connection point.
在本申请实施例中,可以先根据连接点的位置参数的第一位置参数来确定第三目标点的位置参数的第一位置参数,之后将第三目标点的位置参数的第一位置参数代入表达式中,得到第三目标点的第二位置参数;其中,第三目标点的位置参数包括第三目标点的第一位置参数和第三目标点的第二位置参数。In the embodiment of the present application, the first position parameter of the position parameter of the third target point may be determined according to the first position parameter of the position parameter of the connection point, and then the first position parameter of the position parameter of the third target point is substituted into In the expression, the second position parameter of the third target point is obtained; wherein, the position parameter of the third target point includes the first position parameter of the third target point and the second position parameter of the third target point.
c2、信号处理设备基于连接点的第一位置参数和第三目标点的第一位置参数,从非线性函数的点中确定第四目标点的第一位置参数;其中,位置参数包括第一位置参数和第二位置参数。c2, the signal processing device determines the first position parameter of the fourth target point from the points of the nonlinear function based on the first position parameter of the connection point and the first position parameter of the third target point; wherein, the position parameter includes the first position parameters and second positional parameters.
其中,第四目标点为非线性函数中的连接点和第三目标点之间的点。The fourth target point is a point between the connection point in the nonlinear function and the third target point.
在本申请实施例中,可以基于连接点的第一位置参数和第三目标点的第一位置参数,从非线性函数的点中确定连接点和第三目标点之间的第四目标点,之后从非线性函数的点的位置参数中确定第四目标点的第一位置参数。In this embodiment of the present application, the fourth target point between the connection point and the third target point may be determined from the points of the nonlinear function based on the first position parameter of the connection point and the first position parameter of the third target point, Then, the first position parameter of the fourth target point is determined from the position parameters of the point of the nonlinear function.
具体地,可以将第一位置参数代入表达式中,得到第四目标点的待更新第二位置参数。Specifically, the first position parameter can be substituted into the expression to obtain the second position parameter to be updated of the fourth target point.
c3、信号处理设备基于表达式和第四目标点的第一位置参数,确定第四目标点的更新第二位置参数,并采用更新位置参数替换第一时频函数中第四目标点的第二位置参数,得到多个第二时频函数。c3, the signal processing device determines the updated second position parameter of the fourth target point based on the expression and the first position parameter of the fourth target point, and uses the updated position parameter to replace the second position parameter of the fourth target point in the first time-frequency function position parameter to obtain multiple second time-frequency functions.
在本申请实施例中,对于任一第一时频函数而言,通过将第四目标点的第一位置参数代入线性函数的的表达式中,得到第四目标点的更新第二位置参数,并用更新第二位置参数替换非线性函数中第四目标点的第二位置参数,得到第二时频函数。In the embodiment of the present application, for any first time-frequency function, the updated second position parameter of the fourth target point is obtained by substituting the first position parameter of the fourth target point into the expression of the linear function, And replace the second position parameter of the fourth target point in the nonlinear function with the updated second position parameter to obtain the second time-frequency function.
步骤311、信号处理设备从多个第二冲激响应宽度中确定不大于第一冲激响应宽度的第三冲激响应宽度。Step 311: The signal processing device determines, from the plurality of second impulse response widths, a third impulse response width that is not greater than the first impulse response width.
其中,第三冲激响应宽度为对多个第二冲激响应宽度进行筛选后得到的信号,以便后续根据第三冲激响应宽度确定目标信号,可以进一步提高确定的目标信号的精确度。The third impulse response width is a signal obtained by screening multiple second impulse response widths, so that the target signal is subsequently determined according to the third impulse response width, which can further improve the accuracy of the determined target signal.
步骤312、信号处理设备基于第三冲激响应宽度,从第一信号中确定第二信号。Step 312: The signal processing device determines the second signal from the first signal based on the third impulse response width.
在本申请实施例中,可以从第一信号中确定与第三冲激响应宽度相同的信号,并将该信号作为第二信号;其中,第二信号的冲激响应宽度与第三冲激响应宽度相同。In this embodiment of the present application, a signal with the same width as the third impulse response may be determined from the first signal, and the signal may be used as the second signal; wherein the impulse response width of the second signal is the same as the third impulse response width. same width.
步骤313、信号处理设备从第二信号中确定最小第二峰值旁瓣比的信号,得到目标信号。Step 313: The signal processing device determines the signal with the smallest second peak-to-sidelobe ratio from the second signal to obtain the target signal.
在本申请实施例中,当权重参数改变时,连接点的位置参数、第二峰值旁瓣比和第二冲激响应宽度均会发生改变;第二信号的峰值旁瓣比小于相关技术中确定的非线性调频信号的峰值旁瓣比,此时,对第二信号再次进行筛选,得到第二信号中最小峰值旁瓣比的信号,并将该信号作为目标信号,进一步保证了确定的目标信号的精度,以使得目标信号的峰值旁瓣比可以达到最优,提高了SAR图像的清晰度。In this embodiment of the present application, when the weight parameter is changed, the position parameter of the connection point, the second peak-to-side lobe ratio, and the second impulse response width will all change; the peak-to-side lobe ratio of the second signal is smaller than that determined in the related art The peak-to-side lobe ratio of the nonlinear FM signal, at this time, the second signal is screened again to obtain the signal with the smallest peak-to-side lobe ratio in the second signal, and this signal is used as the target signal, which further ensures the determined target signal. , so that the peak-to-side lobe ratio of the target signal can be optimized, and the clarity of the SAR image is improved.
需要说明的是,本实施例中与其它实施例中相同步骤和相同内容的说明,可以参照其它实施例中的描述,此处不再赘述。It should be noted that, for the description of the same steps and the same content in this embodiment as in other embodiments, reference may be made to the descriptions in other embodiments, and details are not repeated here.
如图11所示,信号处理设备基于第一峰值旁瓣比、目标脉宽以及目标采样率,生成第一切比雪夫窗函数,并计算第一切比雪夫窗函数的第一冲激响应宽度IRW0,通过多个权重参数α的每一权重参数,对第一切比雪夫窗函数进行权重修改(加权处理),得到多个第二切比雪夫窗函数,之后采用POSP算法每一第二切比雪夫窗函数进行处理,得到多个第一时频函数;对每一第一时频函数进行分析确定第一时频函数中的线性函数(线性成分)的斜率Kp以及第一时频函数中的线性函数与非线性函数的连接点Nt的位置参数,并根据Kp和线性函数的点的位置参数来确定线性函数的表达式,并基于Nt的位置参数和表达式确定第三目标点(Nt+Ni)的位置参数;其中,Ni小于Nt,且Ni大于等于1,之后对连接点和第三目标点之间的点的位置参数进行修改,得到第二时频函数,对第二时频函数进行积分,得到第一信号。As shown in FIG. 11 , the signal processing device generates a first Chebyshev window function based on the first peak-to-sidelobe ratio, the target pulse width, and the target sampling rate, and calculates the first impulse response width of the first Chebyshev window function IRW0, through each weight parameter of multiple weight parameters α, weight modification (weighted processing) is performed on the first Chebyshev window function to obtain multiple second Chebyshev window functions, and then the POSP algorithm is used for each second Chebyshev window function. The Bishev window function is processed to obtain a plurality of first time-frequency functions; each first time-frequency function is analyzed to determine the slope Kp of the linear function (linear component) in the first time-frequency function and the first time-frequency function The position parameter of the connection point Nt of the linear function and the nonlinear function in The position parameter of the target point (N t +N i ); wherein, N i is less than N t , and N i is greater than or equal to 1, then the position parameter of the point between the connection point and the third target point is modified to obtain the second Time-frequency function, integrating the second time-frequency function to obtain the first signal.
需要说明的是,权重参数α和连接点Ni都是变量,当α和Ni改变时计算的第一信号的冲激响应宽度IRW以及峰值旁瓣比PSLR也会随之改变。每一权重参数α对应与一个第一信号,也就是说,最终可以得到多个第一信号,并确定每一个第一信号中的IRW和PSLR,并通过获取的第一冲激响应宽度IRW0、第一信号的IRW和PSLR来对第一信号进行筛选,具体可以先从第一信号中选取满足IRW≤IRW0的第二信号,再从第二信号中筛选出PSLR最小的信号作为目标信号。It should be noted that the weight parameter α and the connection point Ni are both variables, and the calculated impulse response width IRW and peak sidelobe ratio PSLR of the first signal will also change when α and Ni change. Each weight parameter α corresponds to a first signal, that is to say, a plurality of first signals can be finally obtained, and the IRW and PSLR in each first signal are determined, and the obtained first impulse response width IRW0, The IRW and PSLR of the first signal are used to screen the first signal. Specifically, a second signal satisfying IRW≤IRW0 may be selected from the first signal, and then a signal with the smallest PSLR may be selected from the second signal as the target signal.
如图12所示,是通过第二切比雪夫窗函数生成的目标信号的第二峰值旁瓣比和第二冲激响应宽度,与其它窗函数生成的目标信号的峰值旁瓣比和冲激响应宽度的对比结果图,明显可以看出通过对第二切比雪夫窗函数的峰值旁瓣比低于其它窗函数生成的目标信号的峰值旁瓣比,即就是说生成的目标信号优于其它窗函数生成的目标信号。As shown in Figure 12, it is the second peak sidelobe ratio and the second impulse response width of the target signal generated by the second Chebyshev window function, and the peak sidelobe ratio and the impulse response width of the target signal generated by other window functions. The comparison result of the response width shows that the peak-to-side lobe ratio of the second Chebyshev window function is lower than the peak-to-side lobe ratio of the target signal generated by other window functions, that is to say, the generated target signal is better than other window functions. The target signal generated by the window function.
本申请实施例所提供的信号处理方法,可以对第一切比雪夫窗函数的边缘点进行修改,避免第一切比雪夫窗函数生成目标信号时在边缘点引起失真导致合成的目标信号的精度低,提高了合成目标信号的精度,进一步降低了合成的目标信号的峰值旁瓣比,提高了SAR图像的清晰度。The signal processing method provided by the embodiment of the present application can modify the edge point of the first Chebyshev window function, so as to avoid the accuracy of the synthesized target signal caused by distortion caused by the edge point when the first Chebyshev window function generates the target signal Low, which improves the precision of the synthesized target signal, further reduces the peak-to-side lobe ratio of the synthesized target signal, and improves the clarity of the SAR image.
基于前述实施例,本申请实施例还提供了一种信号处理设备,该信号处理设备可以应用于图1、图2和图9对应的实施例提供的信号处理方法中,参考图13,该信号处理设备4包括:处理器41、存储器42和通信总线43;Based on the foregoing embodiments, an embodiment of the present application further provides a signal processing device, which can be applied to the signal processing methods provided by the embodiments corresponding to FIG. 1 , FIG. 2 , and FIG. 9 . Referring to FIG. 13 , the signal processing device The
通信总线43用于实现处理器41和存储器42之间的通信连接;The
处理器41用于执行存储器42中的信号处理程序,以实现以下步骤:The
生成第一切比雪夫窗函数,并确定第一切比雪夫窗函数的第一冲激响应宽度;generating the first Chebyshev window function, and determining the first impulse response width of the first Chebyshev window function;
确定权重参数,并基于权重参数对第一切比雪夫窗函数的边缘点进行修改,得到第二切比雪夫窗函数;Determine the weight parameter, and modify the edge point of the first Chebyshev window function based on the weight parameter to obtain the second Chebyshev window function;
基于第二切比雪夫窗函数,确定第一时频函数;determining the first time-frequency function based on the second Chebyshev window function;
基于第一时频函数和第一冲激响应宽度,确定目标信号。The target signal is determined based on the first time-frequency function and the first impulse response width.
在本申请的其他实施例中,处理器41用于执行存储器42中的信号处理程序的生成第一切比雪夫窗函数,并确定第一切比雪夫窗函数的第一冲激响应宽度,以实现以下步骤:In other embodiments of the present application, the
获取目标脉宽、目标采样率和第一峰值旁瓣比;Obtain the target pulse width, the target sampling rate and the first peak-to-side lobe ratio;
基于目标脉宽、目标采样率和第一峰值旁瓣比,生成第一切比雪夫窗函数,并确定第一冲激响应宽度。Based on the target pulse width, the target sampling rate, and the first peak-to-sidelobe ratio, a first Chebyshev window function is generated, and a first impulse response width is determined.
在本申请的其他实施例中,处理器41用于执行存储器42中的信号处理程序的确定权重参数,并基于权重参数对第一切比雪夫窗函数的边缘点进行修改,得到第二切比雪夫窗函数,以实现以下步骤:In other embodiments of the present application, the
对第一切比雪夫窗函数进行分析,得到第一目标点和第二目标点;其中,边缘点包括第一目标点和第二目标点;The first Chebyshev window function is analyzed to obtain the first target point and the second target point; wherein, the edge point includes the first target point and the second target point;
基于每一权重参数对第一目标点和第二目标点的位置参数进行加权处理,得到第一目标点的第一加权位置参数和第二目标点的第二加权位置参数;Perform weighting processing on the position parameters of the first target point and the second target point based on each weight parameter to obtain the first weighted position parameter of the first target point and the second weighted position parameter of the second target point;
基于第一加权位置参数更新第一切比雪夫窗函数的第一目标点的位置参数,并基于第二加权位置参数更新第一切比雪夫窗函数的第二目标点的位置参数,得到第二切比雪夫窗函数。The position parameter of the first target point of the first Chebyshev window function is updated based on the first weighted position parameter, and the position parameter of the second target point of the first Chebyshev window function is updated based on the second weighted position parameter to obtain the second Chebyshev window function.
在本申请的其他实施例中,处理器41用于执行存储器42中的信号处理程序的基于第二切比雪夫窗函数,确定第一时频函数,以实现以下步骤:In other embodiments of the present application, the
确定目标带宽;Determine the target bandwidth;
基于目标带宽,采用驻定相位原理算法对每一第二切比雪夫窗函数进行处理,得到多个第一时频函数。Based on the target bandwidth, the stationary phase principle algorithm is used to process each second Chebyshev window function to obtain a plurality of first time-frequency functions.
在本申请的其他实施例中,处理器41用于执行存储器42中的信号处理程序的基于第一时频函数和第一冲激响应宽度,确定目标信号,以实现以下步骤:In other embodiments of the present application, the
对每一第一时频函数进行处理,确定多个第一信号;processing each first time-frequency function to determine a plurality of first signals;
确定每一第一信号的第二峰值旁瓣比和第二冲激响应宽度;determining a second peak-to-sidelobe ratio and a second impulse response width for each first signal;
基于第一冲激响应宽度、第二峰值旁瓣比和第二冲激响应宽度,从多个第一信号中确定目标信号。A target signal is determined from the plurality of first signals based on the first impulse response width, the second peak-to-sidelobe ratio, and the second impulse response width.
在本申请的其他实施例中,处理器41用于执行存储器42中的信号处理程序的对每一第一时频函数进行处理,确定多个第一信号,以实现以下步骤:In other embodiments of the present application, the
对每一第一时频函数进行积分,得到多个第一信号。Each first time-frequency function is integrated to obtain a plurality of first signals.
在本申请的其他实施例中,处理器41用于执行存储器42中的信号处理程序的对每一第一时频函数进行处理,确定多个第一信号以实现以下步骤:In other embodiments of the present application, the
对每一第一时频函数进行修改,得到多个第二时频函数;Modifying each first time-frequency function to obtain a plurality of second time-frequency functions;
对每一第二时频函数进行积分,得到多个第一信号。Each second time-frequency function is integrated to obtain a plurality of first signals.
在本申请的其他实施例中,处理器41用于执行存储器42中的信号处理程序的对每一第一时频函数进行修改,得到多个第二时频函数,以实现以下步骤:In other embodiments of the present application, the
对每一第一时频函数进行分析,确定连接点的位置参数;其中,连接点为第一时频函数中线性函数对应的直线和非线性函数对应的曲线之间的连接点;Each first time-frequency function is analyzed to determine the position parameter of the connection point; wherein, the connection point is the connection point between the straight line corresponding to the linear function and the curve corresponding to the nonlinear function in the first time-frequency function;
确定每一第一时频函数中线性函数的表达式;determining an expression for the linear function in each first time-frequency function;
基于线性函数的表达式和连接点的位置参数,对每一第一时频函数的点的位置参数进行修改,得到多个第二时频函数。Based on the expression of the linear function and the position parameter of the connection point, the position parameter of each point of the first time-frequency function is modified to obtain a plurality of second time-frequency functions.
在本申请的其他实施例中,处理器41用于执行存储器42中的信号处理程序的基于线性函数的表达式和连接点的位置参数,对每一第一时频函数的点的位置参数进行修改,得到多个第二时频函数,以实现以下步骤:In other embodiments of the present application, the
基于连接点的位置参数和表达式,确定第三目标点的位置参数;Determine the position parameter of the third target point based on the position parameter and expression of the connection point;
基于连接点的第一位置参数和第三目标点的第一位置参数,从非线性函数的点中确定第四目标点的第一位置参数;其中,位置参数包括第一位置参数和第二位置参数;Based on the first position parameter of the connection point and the first position parameter of the third target point, the first position parameter of the fourth target point is determined from the points of the nonlinear function; wherein the position parameter includes the first position parameter and the second position parameter;
基于表达式和第四目标点的第一位置参数,确定第四目标点的更新第二位置参数,并采用更新位置参数替换第一时频函数中第四目标点的第二位置参数,得到多个第二时频函数。Based on the expression and the first position parameter of the fourth target point, the updated second position parameter of the fourth target point is determined, and the updated position parameter is used to replace the second position parameter of the fourth target point in the first time-frequency function. a second time-frequency function.
在本申请的其他实施例中,处理器41用于执行存储器42中的信号处理程序的基于第一冲激响应宽度、第二峰值旁瓣比和第二冲激响应宽度,从多个第一信号中确定目标信号,以实现以下步骤:In other embodiments of the present application, the
从多个第二冲激响应宽度中确定不大于第一冲激响应宽度的第三冲激响应宽度;determining a third impulse response width not greater than the first impulse response width from the plurality of second impulse response widths;
基于第三冲激响应宽度,从第一信号中确定第二信号;determining the second signal from the first signal based on the third impulse response width;
从第二信号中确定最小第二峰值旁瓣比的信号,得到目标信号。The target signal is obtained by determining the signal with the smallest second peak-to-side lobe ratio from the second signal.
在本申请实施例所提供的信号处理设备,可以对第一切比雪夫窗函数的边缘点进行修改,避免第一切比雪夫窗函数生成目标信号时在边缘点引起失真导致合成的目标信号的精度低,提高了合成目标信号的精度,进一步降低了合成的目标信号的峰值旁瓣比,提高了SAR图像的清晰度。In the signal processing device provided by the embodiment of the present application, the edge points of the first Chebyshev window function can be modified, so as to avoid distortion caused by the edge points when the first Chebyshev window function generates the target signal, resulting in the synthesis of the target signal. The accuracy is low, the accuracy of the synthesized target signal is improved, the peak-to-side lobe ratio of the synthesized target signal is further reduced, and the clarity of the SAR image is improved.
基于前述实施例,本申请的实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有一个或者多个程序,该一个或者多个程序可被一个或者多个处理器执行,以实现图1、图2和图9对应的实施例提供的信号处理方法的步骤。Based on the foregoing embodiments, embodiments of the present application provide a computer-readable storage medium, where the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to The steps of implementing the signal processing method provided by the embodiments corresponding to FIG. 1 , FIG. 2 , and FIG. 9 are implemented.
需要说明的是,上述计算机可读存储介质可以是只读存储器(Read Only Memory,ROM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁性随机存取存储器(Ferromagnetic Random Access Memory,FRAM)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(Compact Disc Read-Only Memory,CD-ROM)等存储器;也可以是包括上述存储器之一或任意组合的各种电子设备,如移动电话、计算机、平板设备、个人数字助理等。It should be noted that the above-mentioned computer-readable storage medium may be a read-only memory (Read Only Memory, ROM), a programmable read-only memory (Programmable Read-Only Memory, PROM), an erasable programmable read-only memory (Erasable Programmable read only memory, ROM) Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Magnetic Random Access Memory (FRAM), Flash Memory (Flash Memory) , magnetic surface memory, optical disk, or memory such as Compact Disc Read-Only Memory (CD-ROM); it can also be a variety of electronic devices including one or any combination of the above memories, such as mobile phones, computers, tablet devices, personal digital assistants, etc.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or device comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。The above-mentioned serial numbers of the embodiments of the present application are only for description, and do not represent the advantages or disadvantages of the embodiments.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所描述的方法。From the description of the above embodiments, those skilled in the art can clearly understand that the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in the various embodiments of this application.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。The above are only the preferred embodiments of the present application, and are not intended to limit the patent scope of the present application. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present application, or directly or indirectly applied in other related technical fields , are similarly included within the scope of patent protection of this application.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110729880.6A CN113534152A (en) | 2021-06-29 | 2021-06-29 | A signal processing method, device and computer-readable storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110729880.6A CN113534152A (en) | 2021-06-29 | 2021-06-29 | A signal processing method, device and computer-readable storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113534152A true CN113534152A (en) | 2021-10-22 |
Family
ID=78097275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110729880.6A Pending CN113534152A (en) | 2021-06-29 | 2021-06-29 | A signal processing method, device and computer-readable storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113534152A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116502477A (en) * | 2023-06-28 | 2023-07-28 | 中国科学院空天信息创新研究院 | A Method of Realizing Nonlinear Frequency Sweeping SAR Based on Nonlinear Frequency Modulation Signal |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08122431A (en) * | 1994-10-19 | 1996-05-17 | Nec Corp | Method and apparatus for processing image data of synthetic aperture radar |
JP2006211127A (en) * | 2005-01-26 | 2006-08-10 | Toshiba Corp | Weight function generating method, reference signal generating method, transmission signal generator, signal processing apparatus, and antenna system |
CN105259534A (en) * | 2015-09-17 | 2016-01-20 | 中国科学院电子学研究所 | Generation method and device of non-linear frequency-modulated signals |
US20170269194A1 (en) * | 2016-03-15 | 2017-09-21 | Kabushiki Kaisha Toshiba | Signal processing device, radar apparatus and signal processing method |
CN108874743A (en) * | 2018-04-16 | 2018-11-23 | 北京理工大学 | A kind of adding window method controlling frequency spectrum principal subsidiary lobe characteristic |
CN109765528A (en) * | 2019-01-17 | 2019-05-17 | 中国科学院电子学研究所 | A kind of real-time generation method and device of nonlinear frequency modulation signal |
CN112748403A (en) * | 2020-12-14 | 2021-05-04 | 北京理工大学 | Nonlinear frequency modulation pulse train waveform design method based on frequency spectrum modulation agility |
-
2021
- 2021-06-29 CN CN202110729880.6A patent/CN113534152A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08122431A (en) * | 1994-10-19 | 1996-05-17 | Nec Corp | Method and apparatus for processing image data of synthetic aperture radar |
JP2006211127A (en) * | 2005-01-26 | 2006-08-10 | Toshiba Corp | Weight function generating method, reference signal generating method, transmission signal generator, signal processing apparatus, and antenna system |
CN105259534A (en) * | 2015-09-17 | 2016-01-20 | 中国科学院电子学研究所 | Generation method and device of non-linear frequency-modulated signals |
US20170269194A1 (en) * | 2016-03-15 | 2017-09-21 | Kabushiki Kaisha Toshiba | Signal processing device, radar apparatus and signal processing method |
JP2017166918A (en) * | 2016-03-15 | 2017-09-21 | 株式会社東芝 | Signal processor, radar device, signal processing method, and program |
CN108874743A (en) * | 2018-04-16 | 2018-11-23 | 北京理工大学 | A kind of adding window method controlling frequency spectrum principal subsidiary lobe characteristic |
CN109765528A (en) * | 2019-01-17 | 2019-05-17 | 中国科学院电子学研究所 | A kind of real-time generation method and device of nonlinear frequency modulation signal |
CN112748403A (en) * | 2020-12-14 | 2021-05-04 | 北京理工大学 | Nonlinear frequency modulation pulse train waveform design method based on frequency spectrum modulation agility |
Non-Patent Citations (1)
Title |
---|
YONGWEI ZHANG ET AL.: "A Novel NLFM Waveform With Low Sidelobes Based on Modified Chebyshev Window", IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, vol. 17, no. 5, pages 815 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116502477A (en) * | 2023-06-28 | 2023-07-28 | 中国科学院空天信息创新研究院 | A Method of Realizing Nonlinear Frequency Sweeping SAR Based on Nonlinear Frequency Modulation Signal |
CN116502477B (en) * | 2023-06-28 | 2023-09-01 | 中国科学院空天信息创新研究院 | A Method of Realizing Nonlinear Frequency Sweeping SAR Based on Nonlinear Frequency Modulation Signal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107315160B (en) | Estimation method of coprime array direction of arrival based on minimization of atomic norm of interpolated virtual array signal | |
Pan et al. | Deep learning-based 2-D frequency estimation of multiple sinusoidals | |
CN107329110A (en) | Wave arrival direction estimating method based on thinned array Direct interpolation | |
CN113655436B (en) | Method and device for optimizing broadband wave beam formation through channel calibration particle swarm | |
CN106680776B (en) | A low-sidelobe waveform design method insensitive to Doppler information | |
CN108874743B (en) | A Windowing Method for Controlling Main and Side Lobe Characteristics of Spectrum | |
CN107342751B (en) | Variable-step SA adaptive filtering algorithm based on cross-correlation entropy | |
Matei | Analytical design methods for directional Gaussian 2D FIR filters | |
Matei | Analytic design of directional and square-shaped 2D IIR filters based on digital prototypes | |
CN113534152A (en) | A signal processing method, device and computer-readable storage medium | |
CN109343058A (en) | Method and Device for Generating Orthogonal Nonlinear Frequency Modulation Signal Based on Hybrid Algorithm | |
Li et al. | Passive multipath time delay estimation using MCMC methods | |
Djurović | Quasi ML algorithm for 2-D PPS estimation | |
CN108919207A (en) | A kind of method and system improving airborne radar clutter rejection | |
Mohindru et al. | New tuning model for rectangular windowed FIR filter using fractional Fourier transform | |
Takizawa et al. | Joint learning of model parameters and coefficients for online nonlinear estimation | |
Sabre | Estimation of Additive Error in Mixed Spectra for Stable Processes | |
Rodríguez-Dagnino | Mathieu windows for signal processing | |
Babic et al. | Optimum low-order windows for discrete Fourier transform systems | |
CN114036975A (en) | Target signal extraction method based on frequency domain-wavenumber domain deconvolution | |
Zhang et al. | A Complex-Valued Convolutional Neural Network with Different Activation Functions in Polarimetric SAR Image Classification | |
Liu et al. | Time-frequency spatial smoothing MUSIC algorithm for DOA estimation based on co-prime array | |
CN109388061B (en) | Self-adaptive-optimization sparse Fourier transform method and system | |
Yang et al. | Adaptive importance sampling for estimating multi-component chirp signal parameters in colored noise | |
Su et al. | Deep learning enabled parameters estimation using time-frequency analysis of chirp signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20211022 |
|
RJ01 | Rejection of invention patent application after publication |