CN113526125B - A cell specimen sample handling system and method based on multi-label positioning - Google Patents
A cell specimen sample handling system and method based on multi-label positioning Download PDFInfo
- Publication number
- CN113526125B CN113526125B CN202110855988.XA CN202110855988A CN113526125B CN 113526125 B CN113526125 B CN 113526125B CN 202110855988 A CN202110855988 A CN 202110855988A CN 113526125 B CN113526125 B CN 113526125B
- Authority
- CN
- China
- Prior art keywords
- sample
- cell
- mobile robot
- coordinates
- label
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G47/00—Article or material-handling devices associated with conveyors; Methods employing such devices
- B65G47/74—Feeding, transfer, or discharging devices of particular kinds or types
- B65G47/90—Devices for picking-up and depositing articles or materials
- B65G47/91—Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers
- B65G47/915—Devices for picking-up and depositing articles or materials incorporating pneumatic, e.g. suction, grippers provided with drive systems with rotary movements only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J15/00—Gripping heads and other end effectors
- B25J15/08—Gripping heads and other end effectors having finger members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J18/00—Arms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
- B25J9/1697—Vision controlled systems
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Manipulator (AREA)
Abstract
Description
技术领域technical field
本公开属于机器人搬运技术领域,尤其涉及一种基于多标签定位的细胞标本样片搬运系统及方法。The disclosure belongs to the technical field of robot handling, and in particular relates to a multi-label localization-based cell specimen sample handling system and method.
背景技术Background technique
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。The statements in this section merely provide background information related to the present disclosure and do not necessarily constitute prior art.
随着人工智能的快速发展,各行各业的智能化越来越明显;搬运机器人的应用越来越广泛,在医院或生物研究所等一些需要大量观察分析细胞的场所,使用移动机器人搬运细胞标本样片将会节省大量人力物力。With the rapid development of artificial intelligence, the intelligence of all walks of life is becoming more and more obvious; the application of handling robots is becoming more and more extensive. In some places such as hospitals or biological research institutes that require a large number of observation and analysis of cells, mobile robots are used to carry cell specimens Samples will save a lot of manpower and material resources.
在移动机器人搬运细胞标本样片过程中对于操作稳定性要求较高,如果出现一些误操作将会导致细胞样本污染或者损坏;由于细胞标本样片托盘凹槽对取放精度要求较高,而移动机器人并不像普通机械臂那样固定在固定位置,移动机器人在移动过程中存在一定的导航误差导致移动机器人的机械臂坐标系在世界坐标系中位置不固定,而基于机器视觉的目标提取算法也无法做到高精度目标定位,进而导致了无法保证搬运精度,无法做到每次都将细胞标本样片分毫不差的放入样片托盘凹槽中;因此在当前技术下移动机器人搬运细胞标本样片过程中的稳定性存在着不足。In the process of moving cell specimens, the mobile robot has high requirements for operational stability. If some misoperations occur, the cell samples will be polluted or damaged; because the cell specimen tray groove requires high precision for picking and placing, and the mobile robot does not Unlike ordinary manipulators that are fixed at a fixed position, the mobile robot has certain navigation errors during the movement process, which causes the position of the manipulator coordinate system of the mobile robot in the world coordinate system to be unstable, and the target extraction algorithm based on machine vision cannot do it. high-precision target positioning, which leads to the inability to guarantee the handling accuracy, and it is impossible to put the cell specimens into the grooves of the sample trays every time; Stability is lacking.
发明内容Contents of the invention
本公开为了解决上述问题,提出了一种基于多标签定位的细胞标本样片搬运系统及方法;本公开使用容易识别的二维码标签提取坐标偏差,对机器人进行世界坐标系重定位修正,解决了机械臂由于自主导航精度不够而造成的抓取偏差问题,从而保证了机械臂在不同载物台上不同样片托盘间精确搬运细胞标本样片。In order to solve the above problems, the present disclosure proposes a cell specimen sample handling system and method based on multi-label positioning; the present disclosure uses easily identifiable two-dimensional code labels to extract coordinate deviations, and repositions and corrects the world coordinate system of the robot, which solves the problem of The grasping deviation problem caused by the lack of autonomous navigation accuracy of the robotic arm ensures that the robotic arm can accurately transport cell specimen samples between different sample trays on different stages.
为了实现上述目的,第一方面,本公开提供了一种基于多标签定位的细胞标本样片搬运系统,采用如下技术方案:In order to achieve the above purpose, in the first aspect, the present disclosure provides a cell specimen sample handling system based on multi-label positioning, which adopts the following technical solution:
一种基于多标签定位的细胞标本样片搬运系统,包括移动机器人和机器人内部控制主机;所述移动机器人的机械臂上设置有激光雷达和相机;所述标签设置在放置细胞标本样片的托盘上;A cell sample sample handling system based on multi-label positioning, including a mobile robot and an internal control host of the robot; a laser radar and a camera are arranged on the mechanical arm of the mobile robot; the tags are arranged on a tray for placing cell sample samples;
所述雷达,用于感知所述移动机器人的周围环境;The radar is used to perceive the surrounding environment of the mobile robot;
所述相机,用于拍摄所述托盘图像;The camera is used to capture the image of the tray;
所述机器人内部控制主机,被配置为:The internal control host of the robot is configured as:
获取移动机器人停靠在标准位置时,标签在相机拍摄图像中的坐标信息,根据坐标信息计算标准位置矢量信息;Obtain the coordinate information of the label in the image captured by the camera when the mobile robot is docked at the standard position, and calculate the standard position vector information according to the coordinate information;
在感知所述移动机器人周围环境的基础上,利用SLAM算法建立全局地图,并确定所述移动机器人在全局地图中的位置,建立自主导航路线;On the basis of perceiving the surrounding environment of the mobile robot, the SLAM algorithm is used to establish a global map, and the position of the mobile robot in the global map is determined, and an autonomous navigation route is established;
依据自主导航路线,控制所述移动机器人移动到第一载物台的指定抓取位置;对指定抓取位置处相机拍摄的图像进行目标识别,读取标签在图像中的位置坐标信息,计算当前位置矢量信息;According to the autonomous navigation route, control the mobile robot to move to the designated grasping position of the first stage; perform target recognition on the image captured by the camera at the designated grasping position, read the position coordinate information of the label in the image, and calculate the current position vector information;
依据标准位置矢量信息和当前位置矢量信息,计算世界坐标系的修正量;Calculate the correction amount of the world coordinate system according to the standard position vector information and the current position vector information;
通过机器视觉技术对图像进行目标检测,确定托盘中的细胞标本样片,结合细胞标本样片所在托盘凹槽的位置信息,确定抓取坐标;Use machine vision technology to detect the target of the image, determine the cell specimen sample in the tray, and determine the grabbing coordinates in combination with the position information of the tray groove where the cell specimen sample is located;
通过修正量对抓取坐标进行修正,依据修正后的抓取坐标,控制所述机械臂对目标位置处的细胞标本样片进行抓取;Correcting the grasping coordinates by the correction amount, and controlling the mechanical arm to grasp the cell specimen sample at the target position according to the corrected grasping coordinates;
控制所述移动机器人对细胞标本样片进行搬运。Controlling the mobile robot to carry the cell sample sheet.
进一步的,所述机械臂上还设置有气动式抓具吸盘,用于抓取所述细胞标本样片。Further, the mechanical arm is also provided with a pneumatic gripper suction cup for grabbing the cell sample piece.
进一步的,所述标签为二维码标签,数量为三个,分别设置在所述托盘的三个角处。Further, the labels are two-dimensional code labels, and there are three in number, which are respectively arranged at three corners of the tray.
进一步的,所述移动机器人在指定抓取位置时,所述相机连续拍照,对图像进行机器视觉处理,捕捉二维码标签信息,通过所述移动机器人车体差速轮的特性缓慢的控制机体在原地缓慢旋转进行方向微调,直到在所述相机视野中捕捉到三个二维码标签同时出现。Further, when the mobile robot is at a specified grab position, the camera takes pictures continuously, performs machine vision processing on the images, captures the two-dimensional code label information, and slowly controls the body of the mobile robot through the characteristics of the differential wheel of the vehicle body Slowly rotate on the spot to fine-tune the direction until three QR code labels appear simultaneously in the field of view of the camera.
进一步的,所述移动机器人停靠在标准位置时,还获取所述托盘上每个细胞标本样片的存放凹槽的抓取坐标以及抓取和放置高度。Further, when the mobile robot stops at the standard position, it also obtains the grabbing coordinates and the grabbing and placing height of the storage groove of each cell specimen sample on the tray.
进一步的,确定抓取坐标后,将抓取坐标与世界坐标系的修正量和偏移角进行计算;确定当前抓取坐标后,控制所述机械臂以1mm/s的速度移动在所述托盘上方二维平面内向当前抓取坐标移动,直到移动到当前抓取坐标上空,停止水平移动,并垂直下降所述机械臂Z轴高度到抓取高度,执行抓取动作。Further, after determining the grabbing coordinates, calculate the correction amount and offset angle between the grabbing coordinates and the world coordinate system; after determining the current grabbing coordinates, control the mechanical arm to move on the pallet at a speed of 1 mm/s Move to the current grasping coordinates in the upper two-dimensional plane until it moves above the current grasping coordinates, stop the horizontal movement, and vertically lower the Z-axis height of the robotic arm to the grasping height, and execute the grasping action.
进一步的,执行完抓取动作后,将所述机械臂移的末端移动到拍照位置,获取所述托盘的图像信息,对抓取位置凹槽内进行细胞标本样片目标检测;若没检测到细胞标本样片,则判定为细胞标本样片抓取成功,反之判定为细胞标本样片抓取失败;若分析得细胞标本样片抓取失败,则重新执行抓取操作,直至抓取成功。Further, after performing the grabbing action, move the end of the mechanical arm to the photographing position, acquire the image information of the tray, and perform target detection of the cell specimen in the groove of the grabbing position; if no cell is detected If it is a sample sample, it is judged that the cell sample sample capture is successful, otherwise it is judged that the cell sample sample capture fails; if the analysis shows that the cell sample sample capture fails, the capture operation is re-executed until the capture is successful.
进一步的,成功抓取到细胞标本样片后,依据自主导航路线,控制所述移动机器人移动到第二载物台前指定抓取位置;对指定抓取位置处相机拍摄的图像进行目标识别,读取标签在图像中的位置坐标信息,计算当前位置矢量信息;Further, after the cell specimen sample is successfully captured, the mobile robot is controlled to move to the specified capture position in front of the second stage according to the autonomous navigation route; the target recognition is performed on the image captured by the camera at the specified capture position, and the reading Get the position coordinate information of the label in the image, and calculate the current position vector information;
依据标准位置矢量信息和当前位置矢量信息,计算世界坐标系的修正量;Calculate the correction amount of the world coordinate system according to the standard position vector information and the current position vector information;
通过机器视觉技术对图像进行目标检测,确定托盘中的空置凹槽,结合细胞标本样片所在托盘凹槽的位置信息,确定放置坐标;Use machine vision technology to detect the target of the image, determine the vacant groove in the tray, and determine the placement coordinates in combination with the position information of the tray groove where the cell specimen is located;
通过修正量对放置坐标进行修正,依据修正后的放置坐标,控制所述机械臂将细胞标本样片放置到目标空置凹槽中。The placement coordinates are corrected by the correction amount, and according to the corrected placement coordinates, the mechanical arm is controlled to place the cell sample piece into the target vacant groove.
进一步的,所述修正量包括标准位置矢量和当前位置矢量的偏移量和偏移角。Further, the correction amount includes an offset and an offset angle between the standard position vector and the current position vector.
为了实现上述目的,第二方面,本公开提供了一种基于多标签定位的细胞标本样片搬运方法,采用如下技术方案:In order to achieve the above purpose, in the second aspect, the present disclosure provides a cell specimen sample handling method based on multi-label positioning, which adopts the following technical scheme:
获取标准位置时标签在图像中的坐标信息,根据坐标信息计算标准位置矢量信息;Obtain the coordinate information of the label in the image at the standard position, and calculate the standard position vector information according to the coordinate information;
利用SLAM算法建立全局地图,并确定所述移动机器人在全局地图中的位置,建立自主导航路线;Utilize the SLAM algorithm to establish a global map, and determine the position of the mobile robot in the global map, and establish an autonomous navigation route;
依据自主导航路线,控制所述移动机器人移动到指定抓取位置;对指定抓取位置处拍摄的图像进行目标识别,读取标签在图像中的位置坐标信息,计算当前位置矢量信息;According to the autonomous navigation route, control the mobile robot to move to the designated grab position; perform target recognition on the image taken at the designated grab position, read the position coordinate information of the label in the image, and calculate the current position vector information;
依据标准位置矢量信息和当前位置矢量信息,计算世界坐标系的修正量;Calculate the correction amount of the world coordinate system according to the standard position vector information and the current position vector information;
通过机器视觉技术对图像进行目标检测,确定托盘中的细胞标本样片,结合细胞标本样片所在托盘凹槽的位置信息,确定抓取坐标;Use machine vision technology to detect the target of the image, determine the cell specimen sample in the tray, and determine the grabbing coordinates in combination with the position information of the tray groove where the cell specimen sample is located;
通过修正量对抓取坐标进行修正,依据修正后的抓取坐标,控制所述机械臂对目标位置处的细胞标本样片进行抓取,控制所述移动机器人对细胞标本样片进行搬运。The grasping coordinates are corrected by the correction amount, and according to the corrected grasping coordinates, the mechanical arm is controlled to grasp the cell specimen sample at the target position, and the mobile robot is controlled to transport the cell specimen specimen.
与现有技术相比,本公开的有益效果为:Compared with the prior art, the beneficial effects of the present disclosure are:
1.本公开使用容易识别的二维码标签提取坐标偏差,对机器人进行世界坐标系重定位修正,解决了机械臂由于自主导航精度不够而造成的抓取偏差问题,从而保证了机械臂在不同载物台上不同样片托盘间精确搬运细胞标本样片的目的。1. This disclosure uses an easily identifiable two-dimensional code label to extract coordinate deviations, and repositions and corrects the world coordinate system of the robot, which solves the problem of grasping deviation caused by insufficient autonomous navigation accuracy of the robotic arm, thereby ensuring that the robotic arm is in different positions. The purpose of accurately transporting cell specimen samples between different sample trays on the stage.
附图说明Description of drawings
构成本实施例的一部分的说明书附图用来提供对本实施例的进一步理解,本实施例的示意性实施例及其说明用于解释本实施例,并不构成对本实施例的不当限定。The accompanying drawings constituting a part of this embodiment are used to provide a further understanding of this embodiment, and the schematic embodiments and descriptions of this embodiment are used to explain this embodiment and do not constitute an improper limitation to this embodiment.
图1为本公开实施例1的结构示意图;FIG. 1 is a schematic structural diagram of
图2为本公开实施例1的标签布置图;FIG. 2 is a label layout diagram of
图3为本公开实施例1的坐标系转换示意图;FIG. 3 is a schematic diagram of coordinate system conversion in
图4为本公开实施例1的工作流程图;Fig. 4 is the work flowchart of
其中,1、移动机器人,2、机械臂,3、相机,4、气动抓具吸盘5、托盘,6、载物台。Among them, 1. Mobile robot, 2. Mechanical arm, 3. Camera, 4. Pneumatic gripper suction cup, 5. Tray, 6. Object stage.
具体实施方式:Detailed ways:
下面结合附图与实施例对本公开作进一步说明。The present disclosure will be further described below in conjunction with the accompanying drawings and embodiments.
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be pointed out that the following detailed description is exemplary and intended to provide further explanation to the present application. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
实施例1:Example 1:
如图1所示,本公开提供了一种基于多标签定位的细胞标本样片搬运系统,包括移动机器人1和机器人内部控制主机;所述移动机器人1的机械臂2上设置有激光雷达和相机3;所述标签设置在放置细胞标本样片的托盘5上;As shown in FIG. 1 , the present disclosure provides a cell specimen sample handling system based on multi-label positioning, including a
具体的,所述相机3位单目相机,所述机械臂2的末端设置气动抓具吸盘4,所述激光雷达设置在所述移动机器人1的底座上,通过所述激光雷达感知周围环境,所述移动机器人1的内部设置内部控制主机,所述内部控制主机通过SLAM算法建立全局导航地图,并可通过SLAM算法时刻知晓自己在地图中的位置,完成所述移动机器人1停靠点到载物台的自主导航;通过所述单目相机对载物台上的细胞标本样片所述托盘5拍照获取图像信息,并通过目标检测算法获取目标细胞标本样片位置信息;可通过所述机械臂2和所述气动抓具吸盘4对目标位置的细胞标本样片进行抓取搬移;可以理解的所述内部控制主机与所述相机3和所述激光雷达均建立连接,并且提供所述移动机器人的所有动作执行命令。Specifically, the camera is a 3-bit monocular camera, the end of the
本实施例的工作过程或原理为:The working process or principle of this embodiment are:
如图2中所示,所述标签选用二维码标签,在所述托盘5的左上、左下、右下三角分别固定一个二维码标签,分别定义为坐标A、B、C三点,并计算得矢量和且定义由此我们得到标准位置矢量信息,该标准位置矢量信息用于后续对世界坐标系进行重定位修正的计算;然后对所述托盘5上每个细胞标本样片的存放凹槽分别当以为:凹槽1、凹槽2、……、凹槽6,并取每个凹槽的中心位置为抓取坐标,分别定义为(x1,y1),(x2,y2),……,(x6,y6)。As shown in Figure 2, the two-dimensional code label is used for the label, and a two-dimensional code label is respectively fixed on the upper left, lower left, and lower right triangles of the
当所述移动机器人1自主导航并停靠到载物台(第一载物台)前时,对所述托盘5进行拍照,读取当前图像得到三个二维码标签在图像中的位置坐标信息,分别定义为A'、B'、C',计算出得矢量和以及定义为当前位置矢量,由此我们得到当前位置矢量信息。When the
如图3所示,为标准位置矢量和前位置矢量的关系,结合和进行矢量计算,求两向量的偏移量(a,b)和偏移角θ:As shown in Figure 3, it is the standard position vector and the front position vector relationship, combined and Perform vector calculations to find the offset (a, b) and offset angle θ of the two vectors:
偏移量:Offset:
偏移角:Offset angle:
两向量的偏移量和夹角定义为世界坐标系的修正量,由此数据可计算出所述移动机器人1当前停靠位置相对标准停靠位置的偏移误差,进而对世界坐标系进行修正。The offset and angle between the two vectors are defined as the correction of the world coordinate system, from which the offset error of the current docking position of the
所述移动机器人1通过所述单目相机对所述托盘5进行目标检测,判断出细胞标本样片所在托盘5凹槽的位置信息,进而判断出需要抓取的凹槽编号i,找到对应的抓取坐标(xi,yi)。将抓取坐标(xi,yi)与世界坐标系的修正量(a,b)和偏移角θ进行计算,求得当前抓取坐标(x'i,y'i):The
确定当前抓取坐标(xi',yi')后,控制所述机械臂2以1mm/s的速度移动在所述托盘5上方二维平面内向当前抓取坐标(xi',yi')移动,直到移动到当前抓取坐标上空,停止水平移动,并垂直下降机械臂Z轴高度到抓取高度z,执行抓取动作,控制抓具吸盘抓取目标细胞标本样片。After determining the current grabbing coordinates (xi ' , y i '), control the
执行完抓取动作后将所述机械臂2移的末端移动到拍照位置,对所述托盘5进行拍照获取图像信息,对抓取位置凹槽内进行细胞标本样片目标检测,若没检测到细胞标本样片则判定为细胞标本样片抓取成功,反之判定为细胞标本样片抓取失败。若分析得细胞标本样片抓取失败,则重新执行抓取操作,直至抓取成功。After performing the grasping action, move the end of the
成功抓取到细胞标本样片后,所述移动机器人1移动到第二载物台前指定抓取位置;然后所述移动机器人1打开所述机械臂2末端的单目相机的拍照功能并连续拍照,对照片进行机器视觉处理捕捉二维码标签信息,同时通过所述移动机器人1车体差速轮的特性缓慢的控制机体在原地缓慢旋转进行方向微调,直到在相机视野中捕捉到三个二维码标签同时出现,停止旋转移动机器人1车体。After successfully grabbing the cell specimen sample, the
所述移动机器人找到正确的拍照位置之后,通过所述机械臂2末端的相机对所述托盘5进行拍照。对相机拍摄的图像进行目标识别,读取出三个二维码标签在图像中的位置坐标信息,重复上述过程,获取移动机器人1在第二载物台前的世界坐标系的修正量。After the mobile robot finds the correct photographing position, the
所述移动机器人1通过单目相机对所述托盘5进行拍照获取图像信息,通过机器视觉技术对图像进行目标检测,寻找所述托盘5中空置凹槽。通过目标候选框的中心坐标可初略的判断出空置凹槽所在所述托盘5凹槽的位置信息,进而判断出凹槽编号j,找到对应的放置坐标(xj,yj),并通过世界坐标系的修正量进行修正,获得当前放置坐标(xj',yj')。然后控制所述机械臂以1mm/s的速度移动在所述托盘5上方二维平面内向当前放置坐标(xj',yj')移动,直到移动到当前放置坐标上空,停止水平移动,并垂直下降所述机械臂Z轴高度到放置高度z,执行放置动作,控制抓具吸盘将细胞标本样片放置到目标空置凹槽中。The
执行完放置动作后将所述机械臂2移末端移动到拍照位置,对所述托盘5进行拍照获取图像信息,对放置位置凹槽内进行细胞标本样片进行目标检测,若检测到细胞标本样片则判定为细胞标本样片放置成功,反之判定为细胞标本样片放置失败。若分析得细胞标本样片放置失败,则重新执行放置操作,直至放置成功。After performing the placement action, move the end of the
执行完上述业务,则判断为完成了一次对细胞标本样片的搬运。After performing the above business, it is judged that the handling of the cell sample piece has been completed.
初始化,将所述移动机器人1停靠在靠近载物台6的任意位置,对所述托盘5拍照读取二维码标签在照片中的坐标信息,并获得位置矢量和凹槽抓取坐标(x1,y1),(x2,y2),……,(x6,y6),定义该位置为标准位置,该位置矢量为标准位置矢量,该抓取坐标为标准抓取坐标;Initialize, dock the
所述移动机器人1在接收到搬运任务后,首先通过SLAM算法导航所述移动机器人1移动到载物台1前指定抓取位置;After the
所述移动机器人1通过单目相机捕捉二维码标签信息,并控制所述移动机器人1车体在原地缓慢旋转进行方向微调,直到在相机视野中捕捉到三个二维码标签同时出现;The
所述移动机器人1找到正确的拍照位置之后,通过单目相机捕捉三个二维码标签位置坐标信息,获得当前位置矢量 After the
结合和进行矢量计算,求两向量的偏移量(a,b)和偏移角θ,作为世界坐标系的修正量;combine and Carry out vector calculation, find the offset (a, b) and offset angle θ of the two vectors, as the correction amount of the world coordinate system;
所述移动机器人1通过单目相机对细胞标本样片进行目标检测,获得细胞标本样片的抓取坐标(xi,yi),若未检测到细胞标本样片,则导航所述移动机器人1回到等待区域,等待下次搬运任务;The
通过偏移量(a,b)和偏移角θ对细胞标本样片的抓取坐标(xi,yi)进行世界坐标系修正,获得当前抓取坐标(x'i,y'i);Correct the grab coordinates (xi, y i ) of the cell specimen in the world coordinate system through the offset (a, b) and offset angle θ to obtain the current grab coordinates (x ' i , y' i );
抓取动作,控制所述机械臂2以1mm/s的速度移动到当前抓取坐标上空,并垂直下降所述机械臂Z轴高度到抓取高度z,执行抓取动作,控制抓具吸盘抓取目标细胞标本样片;Grabbing action, control the
执行完抓取动作后将所述机械臂2移末端移动到拍照位置,对所述托盘5进行拍照获取图像信息,对抓取位置凹槽内进行细胞标本样片进行目标检测,若没检测到细胞标本样片则判定为细胞标本样片抓取成功,反之判定为细胞标本样片抓取失败。若分析得细胞标本样片抓取失败,则重新执行抓取操作,直至抓取成功;After performing the grasping action, move the end of the
执行抓取成功后,则导航所述移动机器人1到载物台2,执行放置动作。After the execution of the grabbing is successful, the
实施例2:Example 2:
本实施例提供了一种基于多标签定位的细胞标本样片搬运方法,采用了如实施例1中所述的基于多标签定位的细胞标本样片搬运系统,主要内容包括:This embodiment provides a cell sample sample handling method based on multi-label positioning, using the cell sample sample handling system based on multi-label positioning as described in Example 1, the main contents include:
获取标准位置时标签在图像中的坐标信息,根据坐标信息计算标准位置矢量信息;Obtain the coordinate information of the label in the image at the standard position, and calculate the standard position vector information according to the coordinate information;
利用SLAM算法建立全局地图,并确定所述移动机器人所述在全局地图中的位置,建立自主导航路线;Utilize the SLAM algorithm to establish a global map, and determine the position of the mobile robot in the global map, and establish an autonomous navigation route;
依据自主导航路线,控制所述移动机器人所述移动到指定抓取位置;对指定抓取位置处拍摄的图像进行目标识别,读取标签在图像中的位置坐标信息,计算当前位置矢量信息;According to the autonomous navigation route, control the mobile robot to move to a designated grab position; perform target recognition on the image taken at the designated grab position, read the position coordinate information of the label in the image, and calculate the current position vector information;
依据标准位置矢量信息和当前位置矢量信息,计算世界坐标系的修正量;Calculate the correction amount of the world coordinate system according to the standard position vector information and the current position vector information;
通过机器视觉技术对图像进行目标检测,确定托盘中的细胞标本样片,结合细胞标本样片所在托盘凹槽的位置信息,确定抓取坐标;Use machine vision technology to detect the target of the image, determine the cell specimen sample in the tray, and determine the grabbing coordinates in combination with the position information of the tray groove where the cell specimen sample is located;
通过修正量对抓取坐标进行修正,依据修正后的抓取坐标,控制所述机械臂2对目标位置处的细胞标本样片进行抓取,控制所述移动机器人所述对细胞标本样片进行搬运。The grasping coordinates are corrected by the correction amount, and according to the corrected grasping coordinates, the
以上所述仅为本实施例的优选实施例而已,并不用于限制本实施例,对于本领域的技术人员来说,本实施例可以有各种更改和变化。凡在本实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实施例的保护范围之内。The above descriptions are only preferred embodiments of this embodiment, and are not intended to limit this embodiment. For those skilled in the art, various modifications and changes may be made to this embodiment. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this embodiment shall be included in the protection scope of this embodiment.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110855988.XA CN113526125B (en) | 2021-07-28 | 2021-07-28 | A cell specimen sample handling system and method based on multi-label positioning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110855988.XA CN113526125B (en) | 2021-07-28 | 2021-07-28 | A cell specimen sample handling system and method based on multi-label positioning |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113526125A CN113526125A (en) | 2021-10-22 |
CN113526125B true CN113526125B (en) | 2022-11-22 |
Family
ID=78089373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110855988.XA Active CN113526125B (en) | 2021-07-28 | 2021-07-28 | A cell specimen sample handling system and method based on multi-label positioning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113526125B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114212474B (en) * | 2021-12-30 | 2024-04-30 | 楚天科技股份有限公司 | Automatic orderly feeding control method and device |
CN115008477B (en) * | 2022-08-09 | 2023-03-21 | 苏州华兴源创科技股份有限公司 | Manipulator movement compensation method, manipulator movement compensation device and computer-readable storage medium |
CN115847426A (en) * | 2023-01-16 | 2023-03-28 | 节卡机器人股份有限公司 | Robot motion control method, device, electronic equipment and storage medium |
CN116699166B (en) * | 2023-08-08 | 2024-01-02 | 国网浙江省电力有限公司宁波供电公司 | Visual identification-based oil chromatography sample automatic positioning method and system |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103282781A (en) * | 2010-11-23 | 2013-09-04 | 安德鲁联合有限公司 | Devices and methods for programmable manipulation of pipettes |
CN105835060A (en) * | 2016-05-23 | 2016-08-10 | 先驱智能机械(深圳)有限公司 | Control method, control device and mechanical arm system |
CN106556341A (en) * | 2016-10-08 | 2017-04-05 | 浙江国自机器人技术有限公司 | A kind of shelf pose deviation detecting method and system of feature based information graphic |
CN108466268A (en) * | 2018-03-27 | 2018-08-31 | 苏州大学 | A kind of freight classification method for carrying, system and mobile robot and storage medium |
CN109230475A (en) * | 2017-07-11 | 2019-01-18 | 浙江国自机器人技术有限公司 | Pallet deviation correction method and device |
CN109927012A (en) * | 2019-04-08 | 2019-06-25 | 清华大学 | Mobile crawl robot and automatic picking method |
CN110842928A (en) * | 2019-12-04 | 2020-02-28 | 中科新松有限公司 | Visual guiding and positioning device and method for compound robot |
CN111516006A (en) * | 2020-04-15 | 2020-08-11 | 昆山市工研院智能制造技术有限公司 | Composite robot operation method and system based on vision |
CN212655082U (en) * | 2020-03-26 | 2021-03-05 | 广州中国科学院先进技术研究所 | A sample delivery tray and sample delivery system |
CN112605993A (en) * | 2020-12-10 | 2021-04-06 | 南京理工大学 | Automatic file grabbing robot control system and method based on binocular vision guidance |
CN112684792A (en) * | 2020-12-01 | 2021-04-20 | 广东嘉腾机器人自动化有限公司 | Two-dimensional code array label detection method and storage device |
CN112706147A (en) * | 2019-10-24 | 2021-04-27 | 山东科曼智能科技有限公司 | High-load file robot based on flexible manipulator |
EP3822045A1 (en) * | 2018-07-13 | 2021-05-19 | OMRON Corporation | Manipulator control device, manipulator control method, and manipulator control program |
CN113084808A (en) * | 2021-04-02 | 2021-07-09 | 上海智能制造功能平台有限公司 | Monocular vision-based 2D plane grabbing method for mobile mechanical arm |
CN113084777A (en) * | 2021-04-29 | 2021-07-09 | 江西师范大学 | Automatic books robot of getting of library based on ROS |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6827099B2 (en) * | 2016-07-14 | 2021-02-10 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. | Method and device for dynamic position adjustment of robot gripper based on sample rack imaging data |
-
2021
- 2021-07-28 CN CN202110855988.XA patent/CN113526125B/en active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103282781A (en) * | 2010-11-23 | 2013-09-04 | 安德鲁联合有限公司 | Devices and methods for programmable manipulation of pipettes |
CN105835060A (en) * | 2016-05-23 | 2016-08-10 | 先驱智能机械(深圳)有限公司 | Control method, control device and mechanical arm system |
CN106556341A (en) * | 2016-10-08 | 2017-04-05 | 浙江国自机器人技术有限公司 | A kind of shelf pose deviation detecting method and system of feature based information graphic |
CN109230475A (en) * | 2017-07-11 | 2019-01-18 | 浙江国自机器人技术有限公司 | Pallet deviation correction method and device |
CN108466268A (en) * | 2018-03-27 | 2018-08-31 | 苏州大学 | A kind of freight classification method for carrying, system and mobile robot and storage medium |
EP3822045A1 (en) * | 2018-07-13 | 2021-05-19 | OMRON Corporation | Manipulator control device, manipulator control method, and manipulator control program |
CN109927012A (en) * | 2019-04-08 | 2019-06-25 | 清华大学 | Mobile crawl robot and automatic picking method |
CN112706147A (en) * | 2019-10-24 | 2021-04-27 | 山东科曼智能科技有限公司 | High-load file robot based on flexible manipulator |
CN110842928A (en) * | 2019-12-04 | 2020-02-28 | 中科新松有限公司 | Visual guiding and positioning device and method for compound robot |
CN212655082U (en) * | 2020-03-26 | 2021-03-05 | 广州中国科学院先进技术研究所 | A sample delivery tray and sample delivery system |
CN111516006A (en) * | 2020-04-15 | 2020-08-11 | 昆山市工研院智能制造技术有限公司 | Composite robot operation method and system based on vision |
CN112684792A (en) * | 2020-12-01 | 2021-04-20 | 广东嘉腾机器人自动化有限公司 | Two-dimensional code array label detection method and storage device |
CN112605993A (en) * | 2020-12-10 | 2021-04-06 | 南京理工大学 | Automatic file grabbing robot control system and method based on binocular vision guidance |
CN113084808A (en) * | 2021-04-02 | 2021-07-09 | 上海智能制造功能平台有限公司 | Monocular vision-based 2D plane grabbing method for mobile mechanical arm |
CN113084777A (en) * | 2021-04-29 | 2021-07-09 | 江西师范大学 | Automatic books robot of getting of library based on ROS |
Also Published As
Publication number | Publication date |
---|---|
CN113526125A (en) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113526125B (en) | A cell specimen sample handling system and method based on multi-label positioning | |
US12194638B2 (en) | Robotic system control method and controller | |
US11383380B2 (en) | Object pickup strategies for a robotic device | |
WO2017186172A1 (en) | Robot arm for holding cassette and automatic cassette transfer device | |
JP6374993B2 (en) | Control of multiple suction cups | |
CN113777336B (en) | Automatic detection system and method for biological specimen | |
CN113787515B (en) | Feeding and discharging method and device based on mobile robot and storage medium | |
CN115582827A (en) | A Grasping Method of Unloading Robot Based on 2D and 3D Vision Positioning | |
CN109571408B (en) | Robot, angle calibration method of inventory container and storage medium | |
CN110287865A (en) | Method, controller and system for stacking and correcting medical slides based on visual servoing | |
CN109641706B (en) | Goods picking method and system, and holding and placing system and robot applied to goods picking method and system | |
CN113021336B (en) | File taking and placing system and method based on master-slave mobile operation robot | |
Wang et al. | Coarse-to-fine visual object catching strategy applied in autonomous airport baggage trolley collection | |
TWI788253B (en) | Adaptive mobile manipulation apparatus and method | |
WO2023036212A1 (en) | Shelf locating method, shelf docking method and apparatus, device, and medium | |
EP4445343A1 (en) | Systems and methods for locating objects with unknown properties for robotic manipulation | |
TWI656421B (en) | Control method of self-propelled equipment | |
TWI867464B (en) | A method for controlling the relative movement of shelves using lidar and visual servo technology | |
JP7633423B2 (en) | Training data generating device and training data generating method, and machine learning device and machine learning method using training data | |
Zhao et al. | An Intelligent Material Handling System for Hybrid Robot based on Visual Navigation. | |
CN113409394A (en) | Intelligent forking method and system | |
Leitner et al. | Designing Cartman: a cartesian manipulator for the Amazon Robotics Challenge 2017 | |
Chang et al. | Hand-eye coordination for robotic assembly tasks | |
CN117103251A (en) | Robot autonomous moving grabbing method in large-scale dense block object environment | |
CN115709865A (en) | Cargo storage method and carrying equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501 Patentee after: Qilu University of Technology (Shandong Academy of Sciences) Country or region after: China Patentee after: SHANDONG YIZE TIANTAI MEDICAL TECHNOLOGY Co.,Ltd. Address before: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501 Patentee before: Qilu University of Technology Country or region before: China Patentee before: SHANDONG YIZE TIANTAI MEDICAL TECHNOLOGY Co.,Ltd. |