[go: up one dir, main page]

CN113507972B - 用于色谱效应的经涂覆的流动路径部件 - Google Patents

用于色谱效应的经涂覆的流动路径部件 Download PDF

Info

Publication number
CN113507972B
CN113507972B CN202080017473.6A CN202080017473A CN113507972B CN 113507972 B CN113507972 B CN 113507972B CN 202080017473 A CN202080017473 A CN 202080017473A CN 113507972 B CN113507972 B CN 113507972B
Authority
CN
China
Prior art keywords
modifier
sample
formula
alkyl
chromatography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080017473.6A
Other languages
English (en)
Other versions
CN113507972A (zh
Inventor
M·A·劳伯
M·吉拉尔
M·H·德拉诺
M·多尼根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waters Technologies Corp
Original Assignee
Waters Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waters Technologies Corp filed Critical Waters Technologies Corp
Publication of CN113507972A publication Critical patent/CN113507972A/zh
Application granted granted Critical
Publication of CN113507972B publication Critical patent/CN113507972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction, e.g. ion-exchange, ion-pair, ion-suppression or ion-exclusion
    • B01D15/366Ion-pair, e.g. ion-pair reversed phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/22Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the construction of the column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/32Bonded phase chromatography
    • B01D15/325Reversed phase
    • B01D15/327Reversed phase with hydrophobic interaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction, e.g. ion-exchange, ion-pair, ion-suppression or ion-exclusion
    • B01D15/361Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 and B01D15/30 - B01D15/36, e.g. affinity, ligand exchange or chiral chromatography
    • B01D15/3847Multimodal interactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • B01D15/1864Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using two or more columns
    • B01D15/1871Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using two or more columns placed in series
    • B01D15/1878Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns using two or more columns placed in series for multi-dimensional chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/20Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the sorbent material
    • B01D15/206Packing or coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/56Packing methods or coating methods
    • G01N2030/567Packing methods or coating methods coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

本公开涉及使用色谱法确定样品中的分析物。本公开提供了从样品中分离分析物的方法。该方法包括将包含该分析物的样品引入色谱系统中。该色谱系统具有:设置在该色谱系统内部的流动路径,该流动路径的至少一部分具有活性涂层;以及在该色谱柱内部具有固定相材料的色谱柱,该固定相材料有利于通过与该样品中的至少一种分析物相互作用来分离该样品中的该分析物。将该活性涂层选择成通过(1)排斥力、(2)次级相互作用或(3)与该固定相材料相互作用不同的保留机制与该样品中的至少一种分析物相互作用。

Description

用于色谱效应的经涂覆的流动路径部件
相关申请的交叉引用
本专利申请要求于2019年2月27日提交的名称为“Coated Flow Path Componentsfor Chromatographic Effects(用于色谱效应的经涂覆的流动路径部件)”的美国临时专利申请号62/811,029的优先权和权益,该专利申请的全部内容据此以引用方式并入。
技术领域
本公开涉及从样品中分离分析物的方法。更具体地讲,本公开涉及活性涂层,该活性涂层气相沉积到色谱系统的流动路径(润湿表面)的至少一部分上,以通过排斥力、次级相互作用或与固定相材料相互作用不同的保留机制与样品中的至少一种分析物相互作用。
背景技术
与金属相互作用的分析物通常被证明分离极具挑战性。期望具有分散程度最低的高效色谱系统,这要求流动路径的直径减小并且能够承受越来越快的流速下的越来越高的压力。因此,色谱流动路径选择的材料本质上通常是金属的。尽管存在以下事实:已知某些分析物(例如,生物分子、蛋白质、聚糖、肽、寡核苷酸、杀虫剂、双膦酸、阴离子代谢物和两性离子比如氨基酸和神经递质)的特性与金属表面具有不利的相互作用(所谓的色谱次级相互作用)。
所提出的用于金属特异性结合相互作用的机制需要理解路易斯酸碱化学理论。纯金属和金属合金(连同它们的对应氧化物层)具有末端金属原子,该末端金属原子具有路易斯酸特性。更简单地,这些金属原子显示出接受供体电子的倾向。对于带有正电荷的任何表面金属离子而言,这种倾向甚至更为明显。具有足够的路易斯碱特性的分析物(可提供非成键电子的任何物质)可潜在地吸附到这些位点,从而形成有问题的非共价络合物。正是这些物质被定义为与金属相互作用的分析物。
例如,具有磷酸酯基团的分析物是能够进行高亲和力金属螯合的优异的多齿配体。这种相互作用导致磷酸化物质与流动路径金属结合,从而减少检测到的此类物质的量,这是特别麻烦的效应,因为磷酸化物质常常是测定中最重要的分析物。
分析物的其他特性同样可引起问题。例如,羧酸酯基团也具有螯合到金属的能力,尽管亲和力比磷酸酯基团低。然而,羧酸酯官能团在例如生物分子中是普遍存在的,从而为累积的基于多齿的吸附损失提供了机会。这些复杂性不仅可存在于肽和蛋白质上,而且还存在于聚糖上。例如,N-聚糖物质有时可以包含一个或多个磷酸酯基团以及包含唾液酸残基的一种或多种羧酸酯。另外,较小的生物分子(诸如核苷酸和糖类,比如糖磷酸酯)可表现出与前述N-聚糖分子类似的行为。此外,色谱次级相互作用对于生物分子特别是较大的结构可能尤其成问题,因为它们具有形成微环境的能力(通过其大小和结构顺序),该微环境可能与分离部件和流动路径表面发生不利的相互作用。在这种情况下,具有较大结构的生物分子或分析物可呈现具有化学性质的结构区域,该化学性质放大与流动路径的材料的次级相互作用。这与累积的金属螯合效应相结合可削弱生物分子、杀虫剂、双膦酸、阴离子代谢物和两性离子如氨基酸和神经递质的总体有效分离。
使用金属流动路径的替代方案是使用由聚合物材料诸如聚醚醚酮(PEEK)构成的流动路径。PEEK管材与大多数聚合物材料一样,通过挤出方法形成。利用聚合物树脂,该制造方法可导致高度可变的内径。因此,PEEK柱硬件在保留时间中产生了不利的差异,如可从一根柱和下一根柱之间的切换所观察到的。通常,这种变化可以比金属构造的柱高三倍。此外,用于制造基于聚合物的熔块的技术尚未充分优化,无法为商业HPLC柱提供合适的坚固部件。例如,可商购获得的PEEK熔块往往表现出不可接受的低渗透性。
因此,需要进行持续的努力,以减少分析物与金属(或其他)色谱表面的螯合和不想要的次级色谱相互作用,从而有利于具有较高分辨率的色谱分离。
发明内容
减少分析物与金属(或其他)色谱表面的不想要的次级色谱相互作用的一种解决方案是使用烷基甲硅烷基涂层来最大程度减少金属流动路径的分析物之间的相互作用(使得流动路径对感兴趣的分析物呈惰性),如2018年9月17日提交的美国专利申请号16/133,089中所详述的。
如本文所述,还有益的是用表现出对色谱分离有影响的化学特性的有机二氧化硅官能团对流动路径部件进行改性。这些所谓的“活性”涂层可引入与分析物的库仑排斥效应,以防止它们以不利地影响色谱分离的方式与流动路径的底物材料(例如,金属、塑料等)相互作用。此外,可产生“活性”涂层,其通过微妙的次级相互作用为分离增加增强的选择性。此外,可制备提供完全正交的保留机构的“活性”涂层,该“活性”涂层有利于在与用柱的固定相实现的工艺不同的工艺中吸附、分配和解吸分析物。
本公开提供了优于当前系统和方法的许多优点。例如,本公开的技术不仅减少了分析物与金属或聚合物表面之间的不想要的相互作用,而且以使得例如通过增强选择性来积极影响分离的方式对色谱流动路径的表面进行改性。这样,不仅可通过色谱固定相材料而且还可通过与分析物相互作用的其他色谱表面来实现和增强色谱分离。
在一个方面,本技术涉及一种分离样品中的分析物的方法。该方法包括将包含分析物的样品引入色谱系统中。色谱系统包括:设置在色谱系统内部的流动路径,其中流动路径的至少一部分具有活性涂层;以及在色谱柱内部具有固定相材料的色谱柱,该固定相材料有利于通过与样品中的至少一种分析物相互作用来分离样品中的分析物。将活性涂层选择成通过(1)排斥力、(2)次级相互作用或(3)与固定相材料相互作用不同的保留机制与样品中的至少一种分析物相互作用。该方法可包括本文所述的实施方案中的一个或多个。
在一些实施方案中,分析物和活性涂层是带负电的。分析物和活性涂层可以是带正电的。
在一些实施方案中,通过气相沉积将活性涂层施加到流动路径。活性涂层可施加到玻璃料上。玻璃料可定位在色谱柱的出口处。在一些实施方案中,玻璃料定位在色谱柱的入口处。色谱柱可具有两个玻璃料,一个玻璃料定位在色谱柱的出口处,并且另一个玻璃料定位在色谱柱的入口处。
在一些实施方案中,次级相互作用是离子交换分配。
在另一个方面,本技术涉及用于分离样品中的分析物的色谱装置。该装置包括:样品注射器,该样品注射器具有用于将样品注射到流动相中的样品注射针;与样品注射器流体连通的样品贮存器容器;样品注射器下游的色谱柱,该色谱柱具有流体连接器;以及连接样品注射器和色谱柱的流体导管。在一些实施方案中,流体连接器用以连接该装置和柱后检测器。流体导管、样品注射器、样品贮存器容器和色谱柱的内表面形成具有润湿表面的流体流动路径。流体流动路径的润湿表面的至少一部分涂覆有具有式I的烷基甲硅烷基涂层:
每个X独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、ORA、RB、RC、RD和卤素。RA表示与流体系统的内表面的附接点,并且至少一个X为ORA。RB不存在,或表示疏水性改性剂。RC表示电荷改性剂,并且至少一个X为RC。RD不存在,或表示螯合剂或冠醚。Y为选自(C1-C20)烷基、-O[(CH2)2O]1-20-、-(C1-C10)[NH(CO)NH(C1-C10)]1-20-或-(C1-C10)[烷基苯基(C1-C10)烷基]1-20-的桥联部分。该装置可包括本文所述的实施方案中的一个或多个实施方案。
在一些实施方案中,电荷改性剂具有与样品中的至少一种分析物相同的电荷。电荷改性剂(RC)可通过甲硅烷基醚部分附接到式I,并且具有选自下列的组成:正环己基氨基甲基甲硅烷基、N-(2-氨基乙基)-3-氨基丙基甲硅烷基、正环己基-3-氨基丙基甲硅烷基、N-(2-氨基乙基)-3-氨基丙基甲基甲硅烷基、正环己基氨基甲基甲硅烷基、双(甲硅烷基丙基)-正甲胺、3-氨基丙基二异丙基甲硅烷基、(3-氨基丙基)甲硅烷基、N,N-二乙基-3-氨基丙基甲硅烷基、丙磺酸甲硅烷基、N-(羟乙基)-N,N-双(甲硅烷基丙基)胺、2-(4-吡啶基乙基)甲硅烷基、三(甲硅烷基甲基)胺、羧乙基甲硅烷基和甲硅烷基丙基甲基膦酸酯。
在一些实施方案中,电荷改性剂(RC)为
Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点。至少一个Z为与式I的附接点。
在一些实施方案中,电荷改性剂(RC)为
Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点。至少一个Z为与式I的附接点。
在一些实施方案中,电荷改性剂(RC)为季铵。
式I的烷基甲硅烷基涂层可为至少厚。在一些实施方案中,电荷改性剂(RC)具有介于约0.01μmol/m2和约10μmol/m2之间的表面覆盖率。电荷改性剂(RC)可具有介于约0.02μmol/m2和约1μmol/m2之间的表面覆盖率。
在一些实施方案中,存在疏水性改性剂(RB)。疏水性改性剂(RB)可具有净电中性。疏水性改性剂(RB)可通过甲硅烷基醚部分附接到式I,并且可具有选自以下的组成:正癸基甲硅烷基、三甲基甲硅烷基、正丙基甲硅烷基、叔丁基二甲基甲硅烷基、4-苯基丁基甲硅烷基、正十八烷基二异丁基甲硅烷基、6-苯基己基甲硅烷基、正十八烷基甲硅烷基、正甲基-O-甲基氨基甲酸酯甲硅烷基、苯基甲硅烷基、二苯基甲基甲硅烷基、磺基甜菜碱甲硅烷基、羧基甜菜碱甲硅烷基、缩水甘油氧基丙基甲硅烷基、水解的缩水甘油氧基丙基甲硅烷基和N-(丙基)葡糖酰胺甲硅烷基。
在一些实施方案中,疏水性改性剂(RB)为
Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点。至少一个Z为与式I的附接点。
在一些实施方案中,疏水性改性剂(RB)为
Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点。至少一个Z为与式I的附接点。
在一些实施方案中,式I的烷基甲硅烷基涂层为
至少一个X为电荷改性剂(RC),其中RC
并且至少一个X为疏水性改性剂(RB),其中RB
Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点。至少一个Z为与式I的附接点。
在一些实施方案中,式I的烷基甲硅烷基涂层为
至少一个X为电荷改性剂(RC),其中RC
并且至少一个X为疏水性改性剂(RB),其中RB
Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点。至少一个Z为与式I的附接点。
在一些实施方案中,式I的烷基甲硅烷基涂层为
至少一个X为电荷改性剂(RC),其中RC
并且至少一个X为疏水性改性剂(RB),其中RB
Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点。至少一个Z为与式I的附接点。
在一些实施方案中,疏水性改性剂(RB)具有介于约0.01μmol/m2和约10μmol/m2之间的表面覆盖率。疏水性改性剂(RB)可具有介于约0.03μmol/m2和约0.9μmol/m2之间的表面覆盖率。在一些实施方案中,疏水性改性剂具有介于约0.5μmol/m2和约3μmol/m2之间的表面覆盖率。
色谱柱可包括具有涂覆有式I的烷基甲硅烷基涂层的润湿表面的玻璃料。玻璃料可定位在色谱柱的出口处。在一些实施方案中,玻璃料定位在色谱柱的入口处。色谱柱可具有两个玻璃料,一个玻璃料定位在色谱柱的出口处,并且另一个玻璃料定位在色谱柱的入口处。
在一些实施方案中,存在疏水性改性剂(RB)。
该装置还可包括色谱柱下游的检测器,并且其中流体流动路径还包括检测器。检测器可以是质谱仪,并且流体流动路径包括电喷针的润湿表面。
在一些实施方案中,存在RD。RD可为螯合剂,并且该螯合剂可为乙二胺四乙酸。在一些实施方案中,RD为螯合剂,并且该螯合剂为羟乙磷酸。RD可为冠醚,并且该冠醚可选自18-冠-6、12-冠-4、15-冠-5、二苯并-18-冠-6和二氮杂-18-冠-6。
在另一方面,本技术的特征在于一种分离包含阴离子化合物的样品的方法。该方法包括将包含阴离子化合物的样品引入到流体系统中,该流体系统包括设置在流体系统内部的流动路径,其中流动路径的至少一部分包括具有式I的烷基甲硅烷基涂层:
每个X独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、ORA、RB、RC、RD和卤素。RA表示与流体系统的内表面的附接点,并且至少一个X为ORA。RB不存在,或表示疏水性改性剂。RC表示带负电的改性剂,并且至少一个X为RC。RD不存在,或表示螯合剂或冠醚。Y为选自(C1-C20)烷基、-O[(CH2)2O]1-20-、-(C1-C10)[NH(CO)NH(C1-C10)]1-20-或-(C1-C10)[烷基苯基(C1-C10)烷基]1-20-的桥联部分。该方法还包括:通过流体系统洗脱样品,其中阴离子化合物被带负电的改性剂(RC)排斥;以及分离阴离子化合物。该方法可包括本文所述的实施方案中的一个或多个。
在一些实施方案中,阴离子化合物是核酸。阴离子化合物可以是寡核苷酸。
在一些实施方案中,式I的烷基甲硅烷基涂层为
并且带负电的改性剂(RC)为
在另一方面,本技术的特征在于一种分离包含肽的样品的方法。该方法包括将包含肽的样品引入到色谱柱中,该色谱柱具有设置在色谱柱内的疏水性固定相和位于色谱柱出口处的玻璃料,其中玻璃料涂覆有具有式I的烷基甲硅烷基涂层:
每个X独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、ORA、RB、RC、RD和卤素。RA表示与流体系统的内表面的附接点,并且至少一个X为ORA。RB表示疏水性改性剂,并且至少一个X为RB。RC表示电荷改性剂,并且至少一个X为RC。Y为选自(C1-C20)烷基、-O[(CH2)2O]1-20-、-(C1-C10)[NH(CO)NH(C1-C10)]1-20-或-(C1-C10)[烷基苯基(C1-C10)烷基]1-20-的桥联部分。电荷改性剂具有介于约0.03μmol/m2至约0.9μmol/m2之间的表面覆盖率,并且疏水性改性剂具有介于约0.5μmol/m2至约3μmol/m2之间的表面覆盖率。该方法还包括通过色谱柱洗脱样品并分离肽。该方法可包括本文所述的实施方案中的一个或多个。
在一些实施方案中,电荷改性剂是N,N-(二乙基氨基丙基)甲硅烷基。疏水性改性剂可以是正癸基甲硅烷基。
在一些实施方案中,肽包括Asp和异ASP异构肽对。该方法还可包括在经涂覆的玻璃料上分配Asp和异ASP异构体肽对。
在一些实施方案中,疏水性固定相包括桥联的乙烯杂化C18固定相。
样品可包含胰蛋白酶化免疫球蛋白。在一些实施方案中,胰蛋白酶化免疫球蛋白是曲妥珠单抗。
在另一方面,本技术包括一种分离包含蛋白质的样品的方法。该方法包括将包含蛋白质的样品引入到色谱柱中,该色谱柱具有设置在色谱柱内的疏水性固定相和位于色谱柱入口处的玻璃料,其中玻璃料涂覆有具有式I的烷基甲硅烷基涂层:
每个X独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、ORA、RB、RC、RD和卤素。RA表示与流体系统的内表面的附接点,并且至少一个X为ORA。RC表示电荷改性剂,并且至少一个X为RC。Y为选自(C1-C20)烷基、-O[(CH2)2O]1-20-、-(C1-C10)[NH(CO)NH(C1-C10)]1-20-或-(C1-C10)[烷基苯基(C1-C10)烷基]1-20-的桥联部分。电荷改性剂具有介于约0.1μmol/m2至约3μmol/m2之间的表面覆盖率。该方法还包括通过色谱柱洗脱样品并分离蛋白质。该方法可包括本文所述的实施方案中的一个或多个。
在一些实施方案中,疏水性固定相包括桥联的乙烯杂化C4固定相。电荷改性剂可为甲硅烷基丙基甲基膦酸酯。
该方法还可包括:使具有一定离子强度的流动相流动通过色谱柱,使得蛋白质被保留在玻璃料上;增加流动相的离子强度以从玻璃料中置换蛋白质的一部分;以及通过色谱柱洗脱所置换的蛋白质。
结合一个方面和/或实施方案示出或描述的特征可与其他方面和/或实施方案的特征组合。这种修改和变化旨在包括在本发明的范围内。
附图说明
通过以下结合附图所作的详细描述,将更充分地理解本技术,在附图中:
图1是根据本技术的例示性实施方案的包括色谱柱和各种其他部件的色谱流动系统的示意图。流体被载送通过色谱流动系统,其中流体流动路径从流体管理器延伸到检测器。
图2是示出根据本技术的例示性实施方案的涂层的示例性实施方案的图表。
具体实施方式
在液相色谱中,重要的是对流动路径及其化学特性给予慎重考虑。一般来讲,有利的是,在设计流动路径以使其对样品分析物呈惰性的同时,考虑到优选的是其对分离没有任何影响。低结合表面因此引起关注,低结合表面包括有机二氧化硅涂层,诸如通过气相反应沉积的那些涂层(参见例如于2018年9月17日提交的美国专利申请号16/133,089)。与这些惰性的低结合表面相反,本文所述的技术涉及‘活性’涂层,即影响分离的涂层。液相色谱的流动路径部件可用有机二氧化硅(烷基甲硅烷基)官能团进行改性,以有目的地表现出对色谱分离有效的化学性质。诸如这样的‘活性’涂层可引入与分析物的库仑排斥效应,以防止分析物与流动路径的底物材料相互作用。此外,可产生‘活性’涂层,其通过次级相互作用为分离增加增强的选择性。此外,可制备提供完全正交的保留机制的‘活性’涂层,该‘活性’涂层有利于在与用柱的固定相实现的工艺不同的工艺中吸附、分配和解吸分析物。
适用于实现这些色谱效应的涂层可通过多种方式构造。有机二氧化硅(烷基甲硅烷基)是用于涂覆金属流动路径部件和聚合物流动路径部件两者的通用组合物,该流动路径部件范围可从注射针和柱前加热器到柱后管材、柱外壳、玻璃料、检测器流通池和电喷雾针。有机二氧化硅(烷基甲硅烷基)涂层可经由气相或溶液相反应并且用大量不同的硅烷化试剂施加。例如,烷基甲硅烷基涂层可经由气相沉积施加,然后可有意地掺杂有带电表面改性剂。
一般来讲,本技术的多个方面涉及(1)具有烷基甲硅烷基‘活性’涂层的装置;(2)分离样品中的分析物(特别是金属相互作用的分析物)的方法;以及(3)包括涂覆有烷基甲硅烷基‘活性’涂层的各种色谱部件的试剂盒和使用说明。在一些方面,使用涂层对流动路径进行改性以解决流动路径与分析物的相互作用并与分析物相互作用,从而改善色谱分离,例如增加感兴趣分析物的选择性。也就是说,活性涂层最大程度减少与金属相互作用的分析物的表面反应,同时与分析物相互作用以改善分离。减少/消除分析物与金属之间的相互作用是有利的,因为这允许精确定量和分析包含金属相互作用的分析物的样品,例如生物分子、蛋白质、聚糖、肽、寡核苷酸、杀虫剂、双膦酸、阴离子代谢物以及两性离子比如氨基酸和神经递质。生物分子可选自肽或肽片段、寡肽、蛋白质、聚糖、核酸或核酸片段、生长因子、碳水化合物、脂肪酸和脂质。在一个方面,生物分子为蛋白质、肽或聚糖。生物分子可以是磷酸聚糖或磷酸肽。
除了减少/消除分析物与金属之间的相互作用之外,‘活性’涂层还具有涂层与分析物相互作用以改善分离的其他优点。活性涂层可通过(例如)从金属表面主动排斥分析物、在涂层和分析物之间引入增强选择性的次级相互作用以及/或者提供不同于固定相材料的保持机制的正交保持机制来改善分离。
在本技术中,流体系统(例如,液相色谱系统)的润湿表面上的气相沉积的烷基甲硅烷基涂层对流体流动路径进行改性以在烷基甲硅烷基涂层与分析物之间引入相互作用。因此,它们是‘活性’涂层(这意味着样品的分析物与烷基甲硅烷基涂层相互作用)。
装置
图1是可用于分离样品中的分析物的色谱流动系统/装置100的代表性示意图。色谱流动系统100包括若干部件,该若干部件包括流体管理器系统105(例如,控制流动通过系统的流动相);管材110(其也可被微加工流体导管替换或与微加工流体导管配套使用);流体连接器115(例如,流体帽);玻璃料120;色谱柱125;样品注射器135,该样品注射器包括用于将样品插入或注入流动相中的样品注射针(未示出);用于在注射之前盛装样品的小瓶、沉降器或样品贮存器130;位于色谱柱125下游的检测器150;以及用于控制流压力的压力调节器140。样品贮存器130与样品注射针流体连通。色谱系统/装置的部件的内表面形成具有润湿表面的流体流动路径。流体流动路径可具有至少20、至少25、至少30、至少35或至少40的长度与直径比率。
流体流动路径可包括检测器150。检测器150可为质谱仪。流体流动路径可包括电喷针的润湿表面(未示出)。
润湿表面的至少一部分可涂覆有烷基甲硅烷基涂层,如本文所详述,该烷基甲硅烷基涂层被选择成与样品中的分析物相互作用以改善样品中分析物的分离。涂层可通过气相沉积来施加。因此,本技术的方法和装置提供以下优点:能够使用耐高压材料(例如,不锈钢)来形成流动系统,但也能够定制流体流动路径的润湿表面以提供烷基甲硅烷基涂层与感兴趣分析物之间的选定相互作用,以改善分离。
烷基甲硅烷基涂层可在整个系统中由从流体管理器系统105一直延伸到检测器150的管材或流体导管110提供。涂层也可被施加到流体流体路径的部分上。即,可选择涂覆一个或多个部件或部件的部分而不是整个流体路径。例如,可涂覆柱125的内部部分及其玻璃料120和端盖115,而流动路径的其余部分可保持不被改性。此外,可以涂覆可移除/可替换的部件。例如,包含样品贮存器的小瓶或沉降器130以及熔块120可被涂覆。
在一些实施方案中,一个或两个玻璃料120具有润湿表面,该润湿表面涂覆有本文详述的烷基甲硅烷基涂层中的一个烷基甲硅烷基涂层(如图2所示的涂层)。玻璃料120可定位在柱125的入口或出口处。在一些实施方案中,柱125具有定位在柱125的入口和出口两者处的玻璃料120。在一些实施方案中,色谱柱125可被设计成使得入口和/或出口玻璃料120是可替换的。这样,如果玻璃料120涂覆有本文所述的烷基甲硅烷基涂层,则玻璃料120可容易地用具有不同烷基甲硅烷基涂层的玻璃料替换以实现不同的效果。
在一个方面,本文所述的流体系统的流动路径至少部分地由管材的内表面限定。在另一方面,本文所述的流体系统的流动路径至少部分地由微加工流体导管的内表面限定。在另一方面,本文所述的流体系统的流动路径至少部分地由柱的内表面限定。在另一方面,本文所述的流体系统的流动路径至少部分地由通过熔块的通道限定。在另一方面,本文所述的流体系统的流动路径至少部分地由样品注射针的内表面限定。在另一方面,本文所述的流体系统的流动路径在柱的整个内表面上从样品注射针的内表面延伸。在另一方面,流动路径从设置在整个流体系统中的样品注射针的内表面上游并与其流体连通的样品贮存器容器(例如,沉降器)延伸到连接器/检测器的端口。
在一些实施方案中,仅色谱柱的润湿表面和位于色谱柱上游的部件涂覆有本文所述的烷基甲硅烷基涂层,而位于柱下游的润湿表面未被涂覆。可经由气相沉积将涂层施加到润湿表面上。
流体流动路径的润湿表面的至少一部分涂覆有具有式I的烷基甲硅烷基涂层:
每个X独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、ORA、RB、RC、RD和卤素。在一些实施方案中,X独立地选自ORA、RB、RC和RD。(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH和卤素是反应性/可水解基团。在一些实施方案中,这些基团提供残余反应性基团,其中当涉及硅烷反应性时氨基>卤素>烷氧基。在一些实施方案中,所用的具体涂层(例如,式I中X的具体选择)取决于正在进行的色谱分离的类型。目标是在存在于色谱流动路径中的各种材料上形成化学稳定(良好保质期)的涂层。然而,亲水性涂层在反相液相色谱中不具有相互作用,而亲水性涂层可在亲水性相互作用色谱中表现出一些保留。虽然一个涂层可足以进行多种不同的化学分离,但也可将不同的涂层用于不同的液相色谱模式。
RA表示与流体系统的内表面的附接点,并且至少一个X为ORA。RB不存在,或表示疏水性改性剂。RC表示电荷改性剂,并且至少一个X为RC。RD不存在,或表示螯合剂或冠醚。Y为选自(C1-C20)烷基、-O[(CH2)2O]1-20-、-(C1-C10)[NH(CO)NH(C1-C10)]1-20-或-(C1-C10)[烷基苯基(C1-C10)烷基]1-20-的桥联部分。Y的选择可由化学方面考虑和物理方面考虑两者来决定。不受理论的限制,短烷基链可产生刚性更高、机械强度更高的底物。然而,烷基侨联的(Y)基团可产生具有显著疏水性的材料。因此,可采用含杂原子的Y基团。此外,苯基/芳族基团可用于引入π电子,该电子改变底物的静电密度和吸附性质。
因此,式I的烷基甲硅烷基涂层具有至少一个为ORA的X、与流体系统的内表面的附接点和至少一个为RC(其表示电荷改性剂)的X。疏水性改性剂RB和螯合剂或冠醚RD可不存在。在一些实施方案中,式I的烷基甲硅烷基涂层具有电荷改性剂。在一些实施方案中,式I的烷基甲硅烷基涂层具有电荷改性剂和疏水性改性剂。在一些实施方案中,式I的烷基甲硅烷基涂层具有电荷改性剂以及螯合剂或冠醚。在一些实施方案中,式I的烷基甲硅烷基涂层具有电荷改性剂、疏水性改性剂以及螯合剂或冠醚。
在其他实施方案中,式I的烷基甲硅烷基涂层具有至少一个为ORA的X、与流体系统的内表面的附接点和至少一个为RC(其表示螯合剂或冠醚)的X。在一些实施方案中,式I的烷基甲硅烷基涂层具有螯合剂或冠醚以及疏水性改性剂。
当在化学式的上下文中使用时,连字符(“-”)指示附接点。例如,当Y为-[(C1-C10)烷基苯基(C1-C10)烷基]1-20-时,这意味着Y经由(C1-C10)烷基连接到一个SiX3,并且经由另一个(C1-C10)烷基连接到另一个SiX3。这适用于其余的变量。
在一个实施方案中,式I中的Y为(C1-C15)烷基、(C1-C12)烷基或(C1-C10)烷基。在一些实施方案中,式I中的Y为甲基、乙基、丙基、异丙基、丁基、仲丁基、异丁基、叔丁基、戊基、己基、庚基、壬基或癸基。在另一方面,式I中的Y为乙基或癸基。
在一些实施方案中,X可以是另一个Y桥联部分。这样,烷基甲硅烷基涂层可具有由两个分开的Y桥联部分桥联的多于两个Si原子。当多个Y桥联部分在烷基甲硅烷基涂层中时,Y桥联部分可以是相同的Y部分或不同的Y部分。多个桥联部分可导致烷基甲硅烷基涂层处于直链或支链状态。此外,具有多个Y桥联部分的烷基甲硅烷基涂层可利用广泛的桥联进行高度交联。第一桥联烷基甲硅烷基组合物可以是高度交联的,具有一定的表面异质性以及桥联部分与硅烷醇的混合。然后可用本文所述的改性剂(例如,电荷改性剂、疏水性改性剂、螯合剂和/或冠醚、或表面活性剂)中的一种或多种改性剂对该表面进行改性。
在一些实施方案中,活性烷基甲硅烷基涂层至少部分地由如本文所述的式I构成。这样,式I的烷基甲硅烷基涂层为所述涂层的至少一部分。所述涂层可具有利用如本文所述的多种改性剂的其他Y桥联部分。
此外,当本文所述的活性烷基甲硅烷基涂层具有多个Y桥联部分时,可定制涂层以提供不同的微孔隙度和密度。可调节沉积或水解的温度、蒸气浓度和速率以改变涂层的孔隙度、密度和厚度。较致密的涂层有利于最大程度降低离子和液体传输。较致密的涂层是优选的,以减轻腐蚀并限制分析物与流动路径底物之间的长距离相互作用。
一般来讲,首先经由气相沉积将桥联硅烷试剂施加到流体流动路径的润湿表面以实现高堆积,例如大于约厚的基底层,从而一旦沉积到流体流动路径的润湿表面上就产生式I。例如,厚度可介于约至约之间。涂层的厚度可为约 试剂可为例如双(三氯甲硅烷基)乙烷、双(3-三甲氧基甲硅烷基丙基)-N-甲胺、1,4-双(甲氧基二甲基甲硅烷基)苯、双(三甲氧基甲硅烷基乙基)苯、1,8-双(三乙氧基甲硅烷基)辛烷或1,4-双(三乙氧基甲硅烷基)苯。
在一些实施方案中,使用单一改性剂,例如单一电荷改性剂。在其他实施方案中,使用多种改性剂,例如多种电荷改性剂或者电荷改性剂与疏水性改性剂的组合。
电荷改性剂(RC)
可将电荷改性盐化试剂施加到合适的基底层上。这些带电荷表面改性剂由解离常数选定在期望pKa范围内的强酸/碱或弱酸/碱构成,并且可包括但不限于三甲氧基甲硅烷基丙基甲基膦酸酯和N,N-(二乙基氨基丙基)三甲氧基硅烷。强酸在一些应用中可为期望的,并且被选择为具有约-2至约2的pKa,而其他应用中pKa为约2至约7的弱酸则是更期望的。其他应用可受益于pKa为约7至11的弱碱,而一些应用可受益于pKa为约11至约14的强碱。用一些pKa(而不是永久电荷)进行表面改性提供了通过pH使所改性表面放电的机会。这允许表面通过简单的洗涤而再生。另选地,如果电荷是永久的,则存在保留相反电荷的样品组分的可能性,并且此类污染物可积聚在带电表面上并且可能难以去除。通过选择用pH使表面放电并移除由电荷保留的污染物,可改善分析的稳健性。
也可使用具有固定电荷的表面改性剂,诸如季胺。这些表面改性剂可在气相沉积过程中原位掺入,或者通过本领域技术人员广泛使用的次级液相反应掺入。在一些实施方案中,液相反应可包括多个步骤,以便构建期望的电荷改性部分。例如,对于带负电核酸或磷酸肽的分离,表面电荷可以是负电荷。在此类情况下,分析物被从表面排斥并且未因非特异性吸附而造成损失。
电荷改性剂(RC)可与样品中的至少一种分析物具有相同的电荷。当电荷改性剂与样品中的至少一种分析物具有相同的电荷时,电荷改性剂向具有相同电荷的样品引入库仑排斥效应(即,如电荷排斥)。这种排斥效应保护分析物不与流动路径的底物材料相互作用。合适的电荷改性剂的选择也可取决于实际限制,例如合适的硅烷试剂是否有来源,或者如果其需要合成,则其可蒸发或制备成可溶于合适的溶剂体系中以进行反应。此外,应当考虑所得涂层的稳定性。例如,同时作为亲核物质的强碱可能是有问题的,因为其可自催化其水解降解。
除了向具有相同电荷的样品引入库仑排斥效应之外,电荷改性剂还可通过经由与所实施液相色谱柱的保留机构正交的保留机构强效保留一类分析物来促进多维色谱。例如,将吸附至具有含电荷改性剂的烷基甲硅烷基涂层的流动路径部件(例如,色谱柱入口处的玻璃料)的分析物以分散流动相变化梯度或一组分散流动相变化洗脱到下游色谱柱,并因此在色谱柱的填充床上进行次级梯度的洗脱。
电荷改性剂可以是例如以下电荷改性剂中的任何一种或多种电荷改性剂:季胺、
Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点。至少一个Z为与式I的附接点。因此,电荷改性剂通过甲硅烷基醚部分与式I的烷基甲硅烷基涂层共价键合。相应的电荷改性试剂可用于获得最终涂层产品的电荷改性剂,例如,电荷改性试剂可以是三甲氧基甲硅烷基丙基甲基膦酸酯或N,N-(二乙基氨基丙基)三甲氧基硅烷或2-(4-吡啶基乙基)三乙氧基硅烷。
在一些实施方案中,将单一电荷改性剂施加到气相沉积的烷基甲硅烷基(式I)。在其他实施方案中,将多种电荷改性剂施加到气相沉积的烷基甲硅烷基(式I)。该多种电荷改性剂可以是在式I的多个X位置处施加的相同电荷改性剂。或者,多种电荷改性剂可以是在式I的不同X位置处施加的不同电荷改性剂。
在一些实施方案中,气相沉积烷基甲硅烷基涂层可有意地掺杂有带电表面改性剂(RC),例如2018年12月25日公布的名称为“High Purity Chromatographic MaterialsComprising an Ionizable Modifier(包含可电离改性剂的高纯度色谱材料)”的美国专利号10,159,911的带电表面改性剂,该专利的全部内容据此以引用方式并入。
电荷改性剂(RC)可具有介于约0.01μmol/m2至约10μmol/m2之间的表面覆盖率。在一些实施方案中,电荷改性剂(RC)具有介于约0.02μmol/m2至约1μmol/m2之间的表面覆盖率。在一些实施方案中,电荷改性剂(RC)具有介于约0.1μmol/m2至约1μmol/m2之间的表面覆盖率。
可由图2的涂层#3得到的具有含电荷改性剂(RC)的式I的烷基甲硅烷基涂层的活性涂层的示例示于下文中。虽然下文所示的最终烷基甲硅烷基涂层具有用于其他电荷改性剂(RC)的多个点,但这些点也可以是(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH或卤素,如本文所述。此外,虽然下文所示的最终烷基甲硅烷基涂层具有用于其他电荷改性剂(RC)的多个点,但这些点也可以是疏水性改性剂(RB)和/或螯合剂或冠醚。下文所示的电荷改性剂(RC)也可以是其他与色谱流动路径表面的附接点,即RA
疏水性改性剂(RB)
在一些实施方案中,将具有电荷改性剂(RC)的烷基甲硅烷基涂层与疏水性改性剂(RB)组合。疏水性改性剂可具有净电中性。涵盖在疏水性改性剂的试剂选择内的是两性离子改性剂,诸如羧基甜菜碱和磺基甜菜碱试剂。两性离子改性剂提供宏观净中性表面,但也赋予微观库仑效应,该微观库仑效应可排斥广泛范围的分析物,包括具有不同电荷特性的那些分析物。
疏水性改性剂(RB)可具有介于约0.01μmol/m2至约10μmol/m2之间的表面覆盖率。在一些实施方案中,疏水性改性剂(RB)具有介于约0.03μmol/m2至约0.9μmol/m2之间的表面覆盖率。在一些实施方案中,疏水性改性剂(RB)具有介于约0.5μmol/m2至约3μmol/m2之间的表面覆盖率。
疏水性改性剂(RB)通过甲硅烷基醚部分附接到式I,并且具有选自下列中的一者或多者的组成:
Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点。至少一个Z为与式I的附接点。因此,疏水性改性剂通过甲硅烷基醚部分与式I的烷基甲硅烷基涂层共价键合。可使用对应的疏水性改性试剂来获得最终涂层产品的电荷改性剂,例如,电荷改性试剂可以是(3-缩水甘油氧基丙基)三甲氧基硅烷、水解的(3-缩水甘油氧基丙基)三甲氧基硅烷、正癸基三氯硅烷或N-(3-三甲氧基甲硅烷基丙基)葡糖酰胺。
对应于本技术的示例性实施方案的若干涂层示于图2中。这些涂层包括仅具有电荷改性剂(RC)的涂层,例如涂层#1和#3,以及具有电荷改性剂(RC)和疏水性改性剂(RB)两者的涂层,例如涂层#2、#4和#5。
疏水性改性剂与电荷改性剂的组合可用于增加微弱但控制良好的次级相互作用。由于具有几乎相同的疏水性而原本可能共洗脱的分子可经过例如涂覆有图2所示的涂层#4的玻璃料,其中当基于水和乙腈之间的梯度的流动相与不同酸性、疏水性和离子配对强度的酸改性剂一起施加时,分子可经历微弱的离子交换分配。甲酸改性的流动相就这一点而言特别有用,因为它不减弱静电效应。当分离例如肽、测定柠檬酸循环代谢物和聚糖时,这可能是特别有用的。疏水性改性剂与电荷改性剂的组合也可用于亲水性相互作用色谱中。
可由图2的涂层#4得到的具有含电荷改性剂(RC)和疏水性改性剂(RB)的式I的烷基甲硅烷基涂层的活性涂层的示例示于下文中。虽然下文所示的所得涂层具有多种电荷改性剂(RC),但这些点中的任一个或全部点可以是疏水性改性剂(RB)或(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、或卤素或螯合剂或冠醚,如本文所述。在一些实施方案中,电荷改性剂(RC)和疏水性改性剂(RB)无需直接连接,例如,电荷改性剂(RC)和疏水性改性剂(RB)可通过具有Y(如本文所定义)化学组成的一个或多个桥联硅部分连接。
螯合剂和冠醚(RD)
在一些实施方案中,将具有电荷改性剂(RC)的烷基甲硅烷基涂层与离子清除配体(例如螯合剂或冠醚)组合。螯合剂可以是例如乙二胺四乙酸或羟乙磷酸。冠醚可以是例如18-冠-6、12-冠-4、15-冠-5、二苯并-18-冠-6或二氮杂-18-冠-6。
螯合剂和冠醚可通过直接共价附接或通过使用次级连接基部分而共价附接到硅烷化/烷基甲硅烷基涂层上。螯合剂和冠醚可清除可存在于流动相、流动路径和体系中的离子,例如Ca2+、Fe3+和/或K+,这些离子导致不期望的气相离子加合物,并且造成质谱仪结垢和停用。例如,螯合剂或冠醚可将金属离子拉出流动相以改善MS谱。通常,甚至MS级流动相也将包含痕量的金属离子,诸如钠和钾,因此质谱的质量通常受影响。50ppb浓度的钾可产生2%至10%相对强度的钾化加合物离子。诸如此类的活性涂层可多价螯合这些金属离子,从而确保它们在电离时不存在于色谱流出物中。继而,即使当采用具有可疑纯度的流动相时,也可用低于2%相对强度的离子加合物信号获得质谱。这种类型的涂层可在流动路径中的注射器和后柱之前使用。
在一些实施方案中,螯合剂和冠醚可在不存在电荷改性剂的情况下与式I的烷基甲硅烷基涂层直接组合。
在一些实施方案中,螯合剂和冠醚也可与本文所述的疏水性改性剂结合使用。在一些实施方案中,螯合剂和冠醚可与本文所述的电荷改性剂和疏水性改性剂两者结合使用。
因此,当螯合剂和/或冠醚用作活性涂层时,用于分离样品中的分析物的色谱装置包括:样品注射器,该样品注射器具有用于将样品注射到流动相中的样品注射针;与样品注射器流体连通的样品贮存器容器;样品注射器下游的色谱柱,该色谱柱具有流体连接器;以及连接样品注射器和色谱柱的流体导管。流体导管、样品注射器、样品贮存器容器和色谱柱的内表面形成具有润湿表面的流体流动路径。流体流动路径的润湿表面的至少一部分涂覆有具有式I的烷基甲硅烷基涂层:
其中每个X独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、ORA、RB、RC、RD和卤素。RA表示与流体系统的内表面的附接点,并且至少一个X为ORA。RB不存在,或表示疏水性改性剂。RC不存在,或表示电荷改性剂。RD表示螯合剂或冠醚,并且至少一个X为RD。Y为选自(C1-C20)烷基、-O[(CH2)2O]1-20-、-(C1-C10)[NH(CO)NH(C1-C10)]1-20-或-(C1-C10)[烷基苯基(C1-C10)烷基]1-20-的桥联部分。
抑菌改性剂
在一些实施方案中,用于分离样品中的分析物的色谱装置包括流动相贮存器、与流动相贮存器连通的流动相泵、具有与流动相贮存器连通的第一端部和与流动相泵连通的第二端部的流动相入口管路,以及在流动相入口管路的第一端部处的沉降器。流动相贮存器、流动相泵和流动相入口管路的内表面形成具有润湿表面的流体流动路径。沉降器的外表面也具有与流动相接触的润湿表面。与流动相接触的润湿表面的至少一部分涂覆有具有式I的烷基甲硅烷基涂层:
其中每个X独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、ORA、RB、RC、RD、RE和卤素。RA表示与流体系统的内表面的附接点,并且至少一个X为ORA。RB不存在,或表示疏水性改性剂。RC不存在,或表示电荷改性剂。RD不存在,或表示螯合剂或冠醚。RE为抑菌部分,并且至少一个X为RE。Y为选自(C1-C20)烷基、-O[(CH2)2O]1-20-、-(C1-C10)[NH(CO)NH(C1-C10)]1-20-或-(C1-C10)[烷基苯基(C1-C10)烷基]1-20-的桥联部分。
在一些实施方案中,抑菌部分为两性离子。两性离子涂层可通过用双(三氯甲硅烷基)乙烷硅烷化,然后用N,N-(二乙基氨基丙基)三甲氧基硅烷衍生化,随后与氯代或溴代烷基羧酸反应来制备。在一些实施方案中,抑菌部分为季铵。
在一些实施方案中,将抑菌涂层施加到流动路径内的所有部件,包括入口过滤器、入口流动相管路、泵、传输管路、样品进样器、玻璃料和流动相容器(参见例如图1),以提供系统保护,防止细菌生长和过早柱故障。
抑菌部分可单独使用,或与电荷改性剂、疏水性改性剂和/或螯合剂或冠醚结合使用。
表面活性剂
在一些实施方案中,表面活性剂可用作活性涂层以溶解蛋白质(包括疏水性膜蛋白),并且提供有利于酶反应(诸如蛋白水解和聚糖释放)的变性环境。
用于分离样品中的分析物的色谱装置包括:样品注射器,该样品注射器具有用于将样品注射到流动相中的样品注射针;与样品注射器流体连通的样品贮存器容器;样品注射器下游的色谱柱,该色谱柱具有流体连接器;以及连接样品注射器和色谱柱的流体导管。流体导管、样品注射器、样品贮存器容器和色谱柱的内表面形成具有润湿表面的流体流动路径。流体流动路径的润湿表面的至少一部分涂覆有具有式I的烷基甲硅烷基涂层:
其中每个X独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、ORA、RB、RC、RD、RE、RF和卤素。RA表示与流体系统的内表面的附接点,并且至少一个X为ORA。RB不存在,或表示疏水性改性剂。RC不存在,或表示电荷改性剂。RD不存在,或表示螯合剂或冠醚。RE不存在,或表示抑菌部分。RF表示表面活性剂,并且至少一个X为RF。Y为选自(C1-C20)烷基、-O[(CH2)2O]1-20-、-(C1-C10)[NH(CO)NH(C1-C10)]1-20-或-(C1-C10)[烷基苯基(C1-C10)烷基]1-20-的桥联部分。
在一些实施方案中,表面活性剂(RF)为十二烷基硫酸钠、3-10(癸基二甲基铵)丙烷磺酸盐两性洗涤剂、脱氧胆酸钠、十六烷基三甲基溴化铵、triton、聚山梨酸酯或它们的组合。
方法
本文所述的装置和烷基甲硅烷基涂层可用于色谱方法中以分离样品中的分析物。一般来讲,该方法包括将包含分析物的样品引入到色谱系统(例如,液相色谱系统)中。色谱系统包括设置在色谱系统内部的流动路径,其中该流动路径的至少一部分具有活性涂层。色谱系统还包括色谱柱,该色谱柱在色谱柱的内部具有固定相材料,该固定相材料有利于通过与样品中的至少一种分析物相互作用来分离样品中的分析物。例如,色谱系统可以是如本文详细描述的图1的色谱系统。
将活性涂层选择成与样品中的至少一种分析物相互作用。该相互作用可通过排斥力、次级相互作用、或与固定相材料相互作用不同的保留机制来实现。次级相互作用可为离子交换分配。
分析物和活性涂层可带负电。分析物和活性涂层可带正电。当分析物和活性涂层均具有相同的电荷时,活性涂层排斥分析物并防止分析物与底物(例如,金属色谱柱或玻璃料)相互作用。
可经由气相沉积将活性涂层施加到流动路径上。活性涂层可施加到玻璃料上。玻璃料可定位在色谱柱的入口、出口处或入口和出口两处(参见图1)。活性涂层可为本文所述的涂层中的任一个涂层。
本技术包括一种分离包含阴离子化合物的样品的方法。该方法包括将包含阴离子化合物的样品引入到流体系统中,该流体系统包括设置在流体系统内部的流动路径,其中流动路径的至少一部分包括具有带负电的改性剂的(如本文所述的)式I的烷基甲硅烷基涂层。样品通过流体系统洗脱,并且阴离子化合物被带负电的改性剂排斥。该方法还包括分离阴离子化合物。阴离子化合物可为例如核酸或寡核苷酸。烷基甲硅烷基涂层可以是例如图2所示的涂层#1(双(三氯甲硅烷基)乙烷,然后是三甲氧基甲硅烷基丙基甲基膦酸酯)。该方法可用于在高于其等电点的pH下分析核酸或寡核苷酸。
类似地,该方法可应用于包含阳离子的样品,其中(如本文所述的)式I的烷基甲硅烷基涂层具有带正电的改性剂。
本技术还包括一种分离包含肽的样品的方法。该方法包括将包含肽的样品引入到色谱柱中,该色谱柱具有设置在色谱柱内的疏水性固定相和位于色谱柱出口处的玻璃料。在一些实施方案中,疏水性固定相为桥联的乙烯杂化C18固定相。玻璃料涂覆有(如本文所述的)式I的烷基甲硅烷基涂层,其中烷基甲硅烷基涂层具有电荷改性剂和疏水性改性剂两者。电荷改性剂具有介于约0.03μmol/m2至约0.9μmol/m2之间的表面覆盖率,并且疏水性改性剂具有介于约0.5μmol/m2至约3μmol/m2之间的表面覆盖率。该方法还包括通过色谱柱洗脱样品并分离肽。
电荷改性剂可为N,N-(二乙基氨基丙基)甲硅烷基,并且疏水性改性剂可为正癸基甲硅烷基(即,图2中的涂层#4)。在一些实施方案中,电荷改性剂N,N-(二乙基氨基丙基)甲硅烷基占表面覆盖率的10%,并且疏水性改性剂正癸基甲硅烷基占表面覆盖率的90%。可使用电荷改性剂和疏水性改性剂的表面覆盖率的其他比率和百分比。
肽可以是Asp和异ASP异构肽对。该方法还可包括在经涂覆的玻璃料上分配Asp和异ASP异构体肽对。
样品可包含胰蛋白酶化免疫球蛋白。在一些实施方案中,胰蛋白酶化免疫球蛋白是曲妥珠单抗。
本技术还包括一种分离包含蛋白质的样品的方法。该方法包括将包含蛋白质的样品引入到色谱柱中,该色谱柱具有设置在色谱柱内的疏水性固定相和位于色谱柱入口处的玻璃料。在一些实施方案中,疏水性固定相为桥联的乙烯杂化C4固定相。玻璃料涂覆有(如本文所述的)式I的烷基甲硅烷基涂层,该烷基甲硅烷基涂层具有表面覆盖率介于约0.1μmol/m2至约3μmol/m2之间的电荷改性剂。在一些实施方案中,电荷改性剂为甲硅烷基丙基甲基膦酸酯(即,图2中的涂层#1)。该方法中所用的烷基甲硅烷基涂层不具有疏水性改性剂。该方法还包括通过色谱柱洗脱样品并分离蛋白质。
该方法还可包括使具有一定离子强度的流动相流动通过色谱柱,使得蛋白质保留在玻璃料上。可增加流动相的离子强度以从玻璃料中置换蛋白质的一部分。该方法还包括通过色谱柱洗脱所置换的蛋白质。
在另一个实施方案中,该方法包括在引入分析物之前用具有如本文所述的抑菌部分的涂层涂覆流动路径。流动路径包括例如流动相贮存器、流动相入口管路、流动相泵和沉降器。在一些实施方案中,沿着色谱系统的部分或整个流动路径包括抑菌涂层。
在一些实施方案中,该方法包括用如本文所述的具有表面活性剂的涂层涂覆色谱系统的流动路径的至少一部分。
试剂盒
本技术还包括试剂盒。该试剂盒包括色谱部件,例如色谱柱,其已涂覆有如上所述的式I的烷基甲硅烷基涂层。在试剂盒中可提供其他部件,这些部件也可包括本文所述的涂层,例如管材、玻璃料和/或连接器。试剂盒还可包括用于分离分析物(例如,生物分子、蛋白质、聚糖、肽、寡核苷酸、杀虫剂、双膦酸、阴离子或阳离子化合物以及两性离子比如氨基酸和神经递质)的说明书。
实施例
实施例1:分析物特异性排斥涂层和用于分析寡核苷酸的设备
这是分析物特异性排斥涂层和用于分析寡核苷酸的设备的示例。活性涂层可被设计成使得其具有与感兴趣分析物相同的电荷。设计用于此类应用的涂层在图2(涂层#1)中有所描述。该涂层可通过用双(三氯甲硅烷基)乙烷,然后用三甲氧基甲硅烷基丙基甲基膦酸酯硅烷化来构造。一旦施加到针、柱外壳、玻璃料以及柱前和柱后管材(参见例如图1),该涂层就产生流动路径,其中所有表面都主动排斥阴离子化合物。在实施过程中,该流动路径可使得LC系统可专用于分离某些分析物,诸如核酸或寡核苷酸。这些类型的分析物为多阴离子,并且众所周知易于吸附到金属表面上。可以预测,相反电荷的化合物可以通过常规样品注射及时地吸附到涂层。然而,据信这些被吸附的分子将平衡以提供自身也表现出对寡核苷酸低结合特性的表面。由于这种动态平衡,必须有意地选择和优化表面电荷。
实施例2:选择性增强经涂覆的流动路径部件和用于分析柠檬酸循环代谢物和 Asp/异Asp肽异构体的方法
这是选择性增强经涂覆的流动路径部件和用于分析柠檬酸循环代谢物和Asp/异Asp肽异构体的方法的示例。活性涂层可用于增强分离的选择性。许多色谱应用难以在关键组分之间产生分离,诸如柠檬酸循环组的酸或免疫球蛋白水解消化中的Asp/异Asp肽异构体。为此,可将经电荷改性的活性涂层与某些色谱模式和柱组合,以实现更有效、定制的分离。在一个方面,用碱性、带电荷部分改性的表面对于该应用将是理想的,诸如经由用双(三氯甲硅烷基)乙烷,然后用低覆盖率的N,N-(二乙基氨基丙基)三甲氧基硅烷和高覆盖率的正癸基三氯硅烷硅烷化而形成的涂层(即图2,涂层#4)。在这种情况下,N,N-(二乙基氨基丙基)三甲氧基硅烷的理想覆盖率将对应于0.03μmol/m2至0.9μmol/m2,并且正癸基三氯硅烷的理想覆盖率将对应于0.5μmol/m2至3μmol/m2
可选择流动路径的高表面积部件以用作选择性增强剂,以免其表面积太不显著而不能对整个分离设备的保留性或选择性产生影响。为此,可将液相色谱(LC)柱外壳的玻璃料改性以表现出活性涂层,并且有利地将其用作选择性增强剂以增加微弱但良好控制的次级相互作用。在一个示例性实施方案中,0.2μm孔隙度的不锈钢玻璃料用图2的涂层#4进行改性并用于肽BEH C181.7μm 2.1×150mm柱(可从WatersTechnologies Corporation(Milford,MA)商购获得)的出口。任选地,该经涂覆的玻璃料可被构造成具有经得起高表面积选择性增强剂的交换和置换的特殊设计特征的柱格式。将胰蛋白酶化免疫球蛋白(诸如曲妥珠单抗)的样品装载到柱上,然后施加基于水和乙腈之间的梯度的流动相。可施加具有不同酸性、疏水性和离子配对强度的酸改性剂,但是甲酸改性的流动相是尤其吸引人的,因为它们不减弱静电效应。由于具有几乎相同的疏水性而可能共洗脱的肽将经过选择性增强剂,其中它们将经历微弱的离子交换分配。就Asp和异Asp异构肽对而言,含异Asp的物质将被分配,因此比含ASP的物质保留地更广泛,假定异Asp残基是酸性稍强的(pKa 3.1相对于3.9)。该方法同样适用于许多其他类型的分离,包括柠檬酸循环代谢物和聚糖的测定。在其他实施方案中,可采用酸性阳离子交换选择性增强剂。在其他实施方案中,选择性增强剂可与亲水性相互作用色谱(HILIC)一起使用。
实施例3:具有正交保留性以进行多维色谱的活性涂层
这是具有正交保留性以进行多维色谱的活性涂层的示例。活性涂层也可用于促进多维色谱。如同选择性增强剂一样,高表面积流动部件如玻璃料形成优选的底物。与选择性增强剂不同,该活性涂层旨在通过与所实施LC柱的保留机制正交的保留机制来强效保留一类分析物。虽然该涂层可在流动路径中的任何位置处实施,但有利的是考虑将其结合在柱的顶部(入口)处。吸附到该流动路径部件的分析物以分散流动相变化梯度或一组分散流动相变化洗脱到下游LC柱,并因此在LC色谱柱的填充床上进行次级梯度的洗脱。在一个方面,用强酸性、带电荷部分改性的表面对于该应用将是理想的,诸如通过用双(三氯甲硅烷基)乙烷,然后用三甲氧基甲硅烷基丙基甲基膦酸酯硅烷化而形成的涂层。对于本专利申请,三甲氧基甲硅烷基丙基甲基膦酸酯的理想覆盖率将对应于0.1μmol/m2至3μmol/m2
例如,在一个示例性实施方案中,0.2μm孔隙度的不锈钢玻璃料用具有高覆盖率的三甲氧基甲硅烷基丙基甲基膦酸酯(2μmol/m2)的图2的涂料#1型式进行改性,并且用于肽BEH C181.7μm2.1×150mm柱(可从Waters TechnologiesCorporation(Milford,MA)商购获得)的入口。在水性、低离子强度条件下将经蛋白水解的蛋白质样品装载到柱上。肽因此通过阳离子交换而保留在入口玻璃料上。然后可采用流动相离子强度的增加来将肽的子集(碱性最低)置换到LC柱的填充床上。此后施加水和乙腈之间的梯度以洗脱被置换的肽,从而获得第二维度色谱图。该方法通过增加离子强度的步骤继续进行,直到全部样品被分析。同样,该方法同样适用于许多其他类型的分离和分析物,不仅适用于肽和蛋白水解的蛋白质。它也适用于与HILIC LC柱一起使用。
实施例4:具有离子清除配体的活性涂层
这是具有离子清除配体的活性涂层的示例。可将经涂覆的流动路径部件进行改性以带有离子清除配体,诸如螯合剂或冠醚。为了使液相色谱在与质谱联用时最有效,流动相、流动路径和系统必须不含非挥发性离子,当存在时,非挥发性离子如果不造成质谱仪结垢和停用,则可产生不期望的气相离子加合物。
许多化合物显示出多价螯合金属离子的能力,无论它们是碱金属、碱土金属和过渡金属。螯合剂诸如乙二胺四乙酸和羟乙磷酸普遍用于溶液中以清除Ca2+和Fe3+。此外,冠醚可用于以高亲和力选择性地配位某些阳离子。例如,18-冠-6因其对钾(K+)离子的高亲和力而被广泛认可。在本发明的一些方面,这些配体可通过直接共价附接或通过使用次级连接基部分而共价附接到硅烷化/烷基甲硅烷基涂层上。
在一个示例中,0.2μm孔隙度的不锈钢玻璃料用双(三氯甲硅烷基)乙烷涂层进行改性,随后用冠醚衍生化,该冠醚包括但不限于18-冠-6、12-冠-4、15-冠-5、二苯并-18-冠-6和二氮杂-18-冠-6。该玻璃料可用作LC柱的出口或用于单独的容器中,以清除可能存在于流动相中或从仪器流动路径浸出的杂质金属阳离子。在使用本发明时,有可能最大程度减少在各种类型的分子(包括但不限于肽、聚糖和蛋白质)的正离子模式电喷雾MS谱中原本经常遇到的钠和钾分析物加合物离子的形成。
实施例5:具有抑菌特性的活性涂层
这是具有抑菌特性的活性涂层的示例。在液相色谱中,不包含有机溶剂且pH值在生理范围内的流动相将易于支持微生物生长。虽然建议频繁改变流动相以防止细菌在表面上积聚,尤其在含水流动相中积聚,但是顾客在实践中通常不会这样做。LC系统的微生物污染可导致柱结垢,从而导致不可接受的分离,并将导致柱的过早故障。
设计作为抑菌剂的活性涂层表示理想溶液,因为该抑菌剂可施加到流动路径内的所有部件,包括入口过滤器、入口流动相管路、泵、传输管路、样品进样器、玻璃料和流动相容器(参见例如图1),以提供系统保护,防止细菌生长和过早柱故障。
在一个实施方案中,两性离子涂层可通过用双(三氯甲硅烷基)乙烷硅烷化,然后用N,N-(二乙基氨基丙基)三甲氧基硅烷衍生化,随后与氯代或溴代烷基羧酸反应来制备。已证实季铵具有强效的抗微生物活性,并且可施加到玻璃料或脱气装置管路的表面以减少或消除生长,因此避免过早的柱故障。。不受理论的限制,据信包含季铵和两性离子的活性涂层破坏脂质双层的形成,从而干扰生物生长的整体机制。在一些实施方案中,抑菌涂层用于分析物注射之前的区域,例如沉降器和流动相入口管路。
实施例6:具有表面活性剂的活性涂层
这是具有表面活性剂的活性涂层的示例。表面活性剂用于溶解蛋白质(包括疏水性膜蛋白),并且提供有利于酶反应(诸如蛋白水解和聚糖释放)的变性环境。在实施过程中,由于表面活性剂的带高电荷性质,观察到分析物信号减弱,因此不鼓励在LC/MS分析中使用离子表面活性剂。该问题可通过使用固定到装置上(或涂覆在装置上)并且不易释放到MS系统中的表面活性剂来缓解。该MS友好型解决方案将实现在系统中进行一步在线蛋白质消化,其中表面活性剂被固定并且不能释放到耦接至固定化胰蛋白酶或其他蛋白水解酶柱的MS仪器中。具有期望性质的表面活性剂部分包括但不限于十二烷基硫酸钠、3-10(癸基二甲基铵)丙烷磺酸盐两性洗涤剂、脱氧胆酸钠、十六烷基三甲基溴化铵、triton和聚山梨酸酯。在另选的实施方案中,离液序列高的部分可掺入到活性涂层中,并且可由与胍和脲具有化学相似性的化学结构组成。在这些实施例的每一个实施例中,活性涂层将通过操纵其经熵驱动的、基于水合的折叠而引起蛋白质分析物的变性。
虽然本公开已经参考其示例性实施方案具体示出和描述,但是本领域技术人员将理解,在不脱离所附权利要求所涵盖的本技术的范围的情况下,可以在形式和细节上进行各种改变。

Claims (53)

1.一种分离样品中的分析物的方法,所述方法包括:
将包含所述分析物的样品引入到色谱系统中,所述色谱系统包括:
设置在所述色谱系统内部的流动路径,所述流动路径的至少一部分具有活性涂层;以及
色谱柱,所述色谱柱在所述色谱柱的内部具有固定相材料,所述固定相材料有利于通过与所述样品中的至少一种分析物相互作用来分离所述样品中的所述分析物;
其中将所述活性涂层选择成通过(1)库伦排斥力、(2)离子交换分配或(3)与所述固定相材料相互作用不同的电荷改性剂保留机制与所述样品中的至少一种分析物相互作用。
2.根据权利要求1所述的方法,其中所述分析物和所述活性涂层是带负电的。
3.根据权利要求1所述的方法,其中所述分析物和所述活性涂层是带正电的。
4.根据权利要求1所述的方法,其中通过气相沉积将所述活性涂层施加到所述流动路径。
5.根据权利要求1所述的方法,其中将活性涂层施加到玻璃料。
6.根据权利要求5所述的方法,其中所述玻璃料位于所述色谱柱的出口处。
7.根据权利要求5所述的方法,其中所述玻璃料位于所述色谱柱的入口处。
8.一种用于分离样品中的分析物的色谱装置,包括:
样品注射器,所述样品注射器具有用于将所述样品注射到流动相中的样品注射针;
样品贮存器容器,所述样品贮存器容器与所述样品注射器流体连通;
在所述样品注射器的下游的色谱柱,所述色谱柱具有流体连接器;以及
流体导管,所述流体导管连接所述样品注射器和所述色谱柱;
其中所述流体导管、所述样品注射器、所述样品贮存器容器和所述色谱柱的内表面形成具有润湿表面的流体流动路径;并且
其中所述流体流动路径的所述润湿表面的至少一部分涂覆有具有式I的烷基甲硅烷基涂层:
其中每个X独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、ORA、RB、RC、RD和卤素;
RA表示与所述内表面的附接点,并且至少一个X为ORA
RB不存在,或表示疏水性改性剂;
RC表示电荷改性剂,并且至少一个X为RC
RD不存在、为螯合剂或为冠醚;并且
Y为选自(C1-C20)烷基、-O[(CH2)2O]1-20-、-(C1-C10)[NH(CO)NH(C1-C10)]1-20-或-(C1-C10)[烷基苯基(C1-C10)烷基]1-20-的桥联部分。
9.根据权利要求8所述的色谱装置,其中所述电荷改性剂具有与所述样品中的至少一种分析物相同的电荷。
10.根据权利要求8所述的色谱装置,其中所述电荷改性剂(RC)通过甲硅烷基醚部分附接到式I,并且具有选自下列的组成:正环己基氨基甲基甲硅烷基、N-(2-氨基乙基)-3-氨基丙基甲硅烷基、正环己基-3-氨基丙基甲硅烷基、N-(2-氨基乙基)-3-氨基丙基甲基甲硅烷基、双(甲硅烷基丙基)-正甲胺、3-氨基丙基二异丙基甲硅烷基、(3-氨基丙基)甲硅烷基、N,N-二乙基-3-氨基丙基甲硅烷基、丙磺酸甲硅烷基、N-(羟乙基)-N,N-双(甲硅烷基丙基)胺、2-(4-吡啶基乙基)甲硅烷基、三(甲硅烷基甲基)胺、羧乙基甲硅烷基和甲硅烷基丙基甲基膦酸酯。
11.根据权利要求10所述的色谱装置,其中所述电荷改性剂(RC)为
其中Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点;并且
其中至少一个Z为与式I的附接点。
12.根据权利要求10所述的色谱装置,其中所述电荷改性剂(RC)为
其中Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点;并且
其中至少一个Z为与式I的附接点。
13.根据权利要求8所述的色谱装置,其中所述电荷改性剂(RC)是季胺。
14.根据权利要求8所述的色谱装置,其中式I的烷基甲硅烷基涂层为至少厚。
15.根据权利要求8所述的色谱装置,其中所述电荷改性剂(RC)具有介于0.01μmol/m2和10μmol/m2之间的表面覆盖率。
16.根据权利要求8所述的色谱装置,其中所述电荷改性剂(RC)具有介于0.02μmol/m2和1μmol/m2之间的表面覆盖率。
17.根据权利要求8所述的色谱装置,其中存在所述疏水性改性剂(RB)。
18.根据权利要求17所述的色谱装置,其中所述疏水性改性剂(RB)具有净中性电荷。
19.根据权利要求17所述的色谱装置,其中所述疏水性改性剂(RB)通过甲硅烷基醚部分附接到式I,并且具有选自以下的组成:正癸基甲硅烷基、三甲基甲硅烷基、正丙基甲硅烷基、叔丁基二甲基甲硅烷基、4-苯基丁基甲硅烷基、正十八烷基二异丁基甲硅烷基、6-苯基己基甲硅烷基、正十八烷基甲硅烷基、正甲基-O-甲基氨基甲酸酯甲硅烷基、苯基甲硅烷基、二苯基甲基甲硅烷基、磺基甜菜碱甲硅烷基、羧基甜菜碱甲硅烷基、缩水甘油氧基丙基甲硅烷基、水解的缩水甘油氧基丙基甲硅烷基和N-(丙基)葡糖酰胺甲硅烷基。
20.根据权利要求19所述的色谱装置,其中所述疏水性改性剂(RB)为
其中Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点;并且
其中至少一个Z为与式I的附接点。
21.根据权利要求19所述的色谱装置,其中所述疏水性改性剂(RB)为
其中Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点;并且
其中至少一个Z为与式I的附接点。
22.根据权利要求17所述的色谱装置,其中式I的烷基甲硅烷基涂层为
至少一个X为所述电荷改性剂(RC),其中RC
并且至少一个X为所述疏水性改性剂(RB),其中RB
其中Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点;并且
其中至少一个Z为与式I的附接点。
23.根据权利要求17所述的色谱装置,其中式I的烷基甲硅烷基涂层为
至少一个X为所述电荷改性剂(RC),其中RC
并且至少一个X为所述疏水性改性剂(RB),其中RB
其中Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点;并且
其中至少一个Z为与式I的附接点。
24.根据权利要求17所述的色谱装置,其中式I的烷基甲硅烷基涂层为
至少一个X为所述电荷改性剂(RC),其中RC
并且至少一个X为所述疏水性改性剂(RB),其中RB
其中Z独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、卤素或与式I的附接点;并且
其中至少一个Z为与式I的附接点。
25.根据权利要求17所述的色谱装置,其中所述疏水性改性剂(RB)具有介于0.01μmol/m2和10μmol/m2之间的表面覆盖率。
26.根据权利要求17所述的色谱装置,其中所述疏水性改性剂(RB)具有介于0.03μmol/m2和0.9μmol/m2之间的表面覆盖率。
27.根据权利要求17所述的色谱装置,其中所述疏水性改性剂具有介于0.5μmol/m2和3μmol/m2之间的表面覆盖率。
28.根据权利要求8所述的色谱装置,其中所述色谱柱包括具有涂覆有式I的烷基甲硅烷基涂层的润湿表面的玻璃料。
29.根据权利要求28所述的色谱装置,其中存在所述疏水性改性剂(RB)。
30.根据权利要求28所述的色谱装置,其中所述玻璃料定位在所述色谱柱的出口处。
31.根据权利要求28所述的色谱装置,其中所述玻璃料定位在所述色谱柱的入口处。
32.根据权利要求8所述的色谱装置,所述色谱装置还包括所述色谱柱下游的检测器,其中所述流体流动路径还包括所述检测器。
33.根据权利要求32所述的色谱装置,其中所述检测器为质谱仪,并且所述流体流动路径包括电喷针的润湿表面。
34.根据权利要求8所述的色谱装置,其中存在RD
35.根据权利要求34所述的色谱装置,其中RD为螯合剂,并且所述螯合剂为乙二胺四乙酸。
36.根据权利要求34所述的色谱装置,其中RD为螯合剂,并且所述螯合剂为羟乙磷酸。
37.根据权利要求34所述的色谱装置,其中RD为冠醚,并且所述冠醚选自18-冠-6、12-冠-4、15-冠-5、二苯并-18-冠-6和二氮杂-18-冠-6。
38.一种分离包含阴离子化合物的样品的方法,所述方法包括:
将包含所述阴离子化合物的所述样品引入到流体系统中,所述流体系统包括设置在所述流体系统内部的流动路径,其中所述流动路径的至少一部分包括具有式I的烷基甲硅烷基涂层:
其中每个X独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、ORA、RB、RC、RD和卤素;
RA表示与所述流体系统的内表面的附接点,并且至少一个X为ORA
RB不存在,或表示疏水性改性剂;
RC表示带负电的改性剂,并且至少一个X为RC
RD不存在、为螯合剂或为冠醚;并且
Y为选自(C1-C20)烷基、-O[(CH2)2O]1-20-、-(C1-C10)[NH(CO)NH(C1-C10)]1-20-或-(C1-C10)[烷基苯基(C1-C10)烷基]1-20-的桥联部分;并且
通过所述流体系统洗脱所述样品,其中所述阴离子化合物被所述带负电的改性剂(RC)排斥;并且
分离所述阴离子化合物。
39.根据权利要求38所述的方法,其中所述阴离子化合物为核酸。
40.根据权利要求38所述的方法,其中所述阴离子化合物为寡核苷酸。
41.根据权利要求38所述的方法,其中式I的烷基甲硅烷基涂层为
并且所述带负电的改性剂(RC)为
42.一种分离包含肽的样品的方法,所述方法包括:
将包含肽的所述样品引入到色谱柱中,所述色谱柱具有设置在所述色谱柱内的疏水性固定相和位于所述色谱柱的出口处的玻璃料,其中所述玻璃料涂覆有具有式I的烷基甲硅烷基涂层:
其中每个X独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、ORA、RB、RC、RD和卤素;
RA表示与所述色谱柱的内表面的附接点,并且至少一个X为ORA
RB表示疏水性改性剂,并且至少一个X为RB
RC表示电荷改性剂,并且至少一个X为RC;并且
Y为选自(C1-C20)烷基、-O[(CH2)2O]1-20-、-(C1-C10)[NH(CO)NH(C1-C10)]1-20-或-(C1-C10)[烷基苯基(C1-C10)烷基]1-20-的桥联部分;
其中所述电荷改性剂具有介于0.03μmol/m2至0.9μmol/m2之间的表面覆盖率,并且所述疏水性改性剂具有介于0.5μmol/m2至3μmol/m2之间的表面覆盖率;并且
通过所述色谱柱洗脱所述样品;并且
分离所述肽。
43.根据权利要求42所述的方法,其中所述电荷改性剂为N,N-(二乙基氨基丙基)甲硅烷基。
44.根据权利要求42所述的方法,其中所述疏水性改性剂为正癸基甲硅烷基。
45.根据权利要求42所述的方法,其中所述肽包括Asp和异ASP异构肽对。
46.根据权利要求45所述的方法,所述方法还包括在所述经涂覆的玻璃料上分配所述Asp和异ASP异构肽对。
47.根据权利要求42所述的方法,其中所述疏水性固定相包括桥联的乙烯杂化C18固定相。
48.根据权利要求42所述的方法,其中所述样品包含胰蛋白酶化免疫球蛋白。
49.根据权利要求48所述的方法,其中所述胰蛋白酶化免疫球蛋白为曲妥珠单抗。
50.一种分离包含蛋白质的样品的方法,所述方法包括:
将包含蛋白质的所述样品引入到色谱柱中,所述色谱柱具有设置在所述色谱柱内的疏水性固定相和位于所述色谱柱的入口处的玻璃料,其中所述玻璃料涂覆有具有式I的烷基甲硅烷基涂层:
其中每个X独立地选自(C1-C6)烷氧基、-NH(C1-C6)烷基、-N((C1-C6)烷基)2、OH、ORA、Rc和卤素;
RA表示与所述色谱柱的内表面的附接点,并且至少一个X为ORA
RC表示电荷改性剂,并且至少一个X为RC;并且
Y为选自(C1-C20)烷基、-O[(CH2)2O]1-20-、-(C1-C10)[NH(CO)NH(C1-C10)]1-20-或-(C1-C10)[烷基苯基(C1-C10)烷基]1-20-的桥联部分;
其中所述电荷改性剂具有介于0.1μmol/m2至3μmol/m2之间的表面覆盖率;并且
通过所述色谱柱洗脱所述样品;并且
分离所述蛋白质。
51.根据权利要求50所述的方法,其中所述疏水性固定相包括桥联的乙烯杂化C4固定相。
52.根据权利要求50所述的方法,其中所述电荷改性剂为甲硅烷基丙基甲基膦酸酯。
53.根据权利要求50所述的方法,所述方法还包括:
使具有一定离子强度的流动相流动通过所述色谱柱,使得所述蛋白质保留在所述玻璃料上;
增加所述流动相的离子强度以从所述玻璃料中置换所述蛋白质的一部分;以及
通过所述色谱柱洗脱所置换的蛋白质。
CN202080017473.6A 2019-02-27 2020-02-25 用于色谱效应的经涂覆的流动路径部件 Active CN113507972B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962811029P 2019-02-27 2019-02-27
US62/811029 2019-02-27
PCT/IB2020/051612 WO2020174402A1 (en) 2019-02-27 2020-02-25 Coated flow path components for chromatographic effects

Publications (2)

Publication Number Publication Date
CN113507972A CN113507972A (zh) 2021-10-15
CN113507972B true CN113507972B (zh) 2023-10-20

Family

ID=69784485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080017473.6A Active CN113507972B (zh) 2019-02-27 2020-02-25 用于色谱效应的经涂覆的流动路径部件

Country Status (4)

Country Link
US (2) US11994499B2 (zh)
EP (2) EP4470647A1 (zh)
CN (1) CN113507972B (zh)
WO (1) WO2020174402A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding
US20240302334A1 (en) * 2023-03-10 2024-09-12 Waters Technologies Corporation Analysis of oligosaccharides using a liquid chromatography system and a chromatographic column in which the lc system and column's internal metal surface has been modified with a layer of inert material

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2108403A (en) * 1979-04-27 1983-05-18 Hewlett Packard Co Silica transfer tubing
EP0579102A1 (en) * 1992-07-17 1994-01-19 Waters Investments Limited Liquid chromatography stationary phases with reduced silanol interactions
WO1998059234A1 (en) * 1997-06-24 1998-12-30 The University Of Wyoming Method and apparatus for detection of a controlled substance
WO2000032044A1 (en) * 1998-12-04 2000-06-08 The Regents Of The University Of California A new support for high performance affinity chromatography and other uses
WO2002059591A1 (en) * 2001-01-24 2002-08-01 University Of South Florida Sol-gel open tubular ods columns with charged inner surface for capillary electrochromatography
WO2005018770A2 (en) * 2003-08-20 2005-03-03 California Institute Of Technology Design of an ic-processed polymer nano-liquid chromatography system on-a-chip and method of making it
WO2005052544A2 (en) * 2003-11-20 2005-06-09 Sigma-Aldrich Co. Polysilazane thermosetting polymers for use in chromatographic systems and applications
EP1698394A2 (en) * 2005-02-10 2006-09-06 Agilent Technologies, Inc. Deactivated surfaces for chromatographic separations and methods of making and using the same
WO2007149498A2 (en) * 2006-06-21 2007-12-27 Northeastern University Narrow bore porous layer open tube capillary column and uses thereof
CN101505653A (zh) * 2006-08-15 2009-08-12 佛罗里达大学研究基金会有限公司 冷凝物葡萄糖分析仪
EP2144057A1 (en) * 2007-04-27 2010-01-13 Arkray, Inc. Analysis chip and analysis apparatus
WO2010009311A1 (en) * 2008-07-18 2010-01-21 Waters Technologies Corporation Devices having an inert surface and methods of making same
GB201021705D0 (en) * 2010-12-22 2011-02-02 Agilent Technologies Inc Dual-material approach for high pressure bioinert flow path components
WO2013173494A1 (en) * 2012-05-15 2013-11-21 Waters Technologies Corporation Chromatographic materials
CN103958016A (zh) * 2011-10-03 2014-07-30 塞克姆公司 用于疏水性置换色谱法的中性两性离子置换剂分子
CN104294236A (zh) * 2013-07-19 2015-01-21 安捷伦科技有限公司 在内表面上具有惰性气相涂层的金属部件
CN105126792A (zh) * 2009-08-04 2015-12-09 沃特世科技公司 包含可离子化改性剂的高纯度色谱材料
WO2016114850A1 (en) * 2015-01-14 2016-07-21 Agilent Technologies, Inc. Components with an atomic layer deposition coating and methods of producing the same
CN109154604A (zh) * 2016-04-24 2019-01-04 沃特世科技公司 用于对用两亲强碱性部分改性的聚糖进行分析的带电表面反相色谱材料方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029583A (en) * 1975-02-28 1977-06-14 Purdue Research Foundation Chromatographic supports and methods and apparatus for preparing the same
US20030138973A1 (en) * 1998-07-14 2003-07-24 Peter Wagner Microdevices for screening biomolecules
JP4962490B2 (ja) * 2006-03-29 2012-06-27 ダイソー株式会社 修飾シリカゲル及びその利用
JP2010527003A (ja) * 2007-05-08 2010-08-05 ウオーターズ・テクノロジーズ・コーポレイシヨン クロマトグラフィーおよび電気泳動分離媒体および装置
EP2362214B1 (en) * 2008-08-01 2017-03-01 Shiseido Company, Ltd. Sample injection device, sample injection method, and liquid chromatography device
WO2010096200A2 (en) * 2009-02-23 2010-08-26 Restek Corporation Gas chromatography inlet liner having at least one indicator
US10159911B2 (en) 2009-08-04 2018-12-25 Waters Technologies Corporation High purity chromatographic materials comprising an ionizable modifier
GB2502272B (en) * 2012-05-21 2014-08-20 Thermo Electron Mfg Ltd Method and apparatus for reaction chromatography
JP6326856B2 (ja) * 2013-06-24 2018-05-23 セイコーエプソン株式会社 電気泳動粒子、電気泳動分散液、表示シート、表示装置および電子機器
US10876206B2 (en) 2015-09-01 2020-12-29 Silcotek Corp. Thermal chemical vapor deposition coating
US11709155B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
US11959894B2 (en) 2018-02-23 2024-04-16 Silcotek Corp Liquid chromatography technique

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2108403A (en) * 1979-04-27 1983-05-18 Hewlett Packard Co Silica transfer tubing
EP0579102A1 (en) * 1992-07-17 1994-01-19 Waters Investments Limited Liquid chromatography stationary phases with reduced silanol interactions
US5374755A (en) * 1992-07-17 1994-12-20 Millipore Corporation Liquid chromatography stationary phases with reduced silanol interactions
WO1998059234A1 (en) * 1997-06-24 1998-12-30 The University Of Wyoming Method and apparatus for detection of a controlled substance
WO2000032044A1 (en) * 1998-12-04 2000-06-08 The Regents Of The University Of California A new support for high performance affinity chromatography and other uses
WO2002059591A1 (en) * 2001-01-24 2002-08-01 University Of South Florida Sol-gel open tubular ods columns with charged inner surface for capillary electrochromatography
WO2005018770A2 (en) * 2003-08-20 2005-03-03 California Institute Of Technology Design of an ic-processed polymer nano-liquid chromatography system on-a-chip and method of making it
WO2005052544A2 (en) * 2003-11-20 2005-06-09 Sigma-Aldrich Co. Polysilazane thermosetting polymers for use in chromatographic systems and applications
EP1698394A2 (en) * 2005-02-10 2006-09-06 Agilent Technologies, Inc. Deactivated surfaces for chromatographic separations and methods of making and using the same
WO2007149498A2 (en) * 2006-06-21 2007-12-27 Northeastern University Narrow bore porous layer open tube capillary column and uses thereof
CN101505653A (zh) * 2006-08-15 2009-08-12 佛罗里达大学研究基金会有限公司 冷凝物葡萄糖分析仪
EP2144057A1 (en) * 2007-04-27 2010-01-13 Arkray, Inc. Analysis chip and analysis apparatus
WO2010009311A1 (en) * 2008-07-18 2010-01-21 Waters Technologies Corporation Devices having an inert surface and methods of making same
CN105126792A (zh) * 2009-08-04 2015-12-09 沃特世科技公司 包含可离子化改性剂的高纯度色谱材料
GB201021705D0 (en) * 2010-12-22 2011-02-02 Agilent Technologies Inc Dual-material approach for high pressure bioinert flow path components
CN103958016A (zh) * 2011-10-03 2014-07-30 塞克姆公司 用于疏水性置换色谱法的中性两性离子置换剂分子
WO2013173494A1 (en) * 2012-05-15 2013-11-21 Waters Technologies Corporation Chromatographic materials
CN106457066A (zh) * 2012-05-15 2017-02-22 沃特世科技公司 用于分离不饱和分子的色谱材料
CN104294236A (zh) * 2013-07-19 2015-01-21 安捷伦科技有限公司 在内表面上具有惰性气相涂层的金属部件
EP2826884A1 (en) * 2013-07-19 2015-01-21 Agilent Technologies, Inc. Metal components with inert vapor phase coating on internal surfaces
WO2016114850A1 (en) * 2015-01-14 2016-07-21 Agilent Technologies, Inc. Components with an atomic layer deposition coating and methods of producing the same
CN107109644A (zh) * 2015-01-14 2017-08-29 安捷伦科技有限公司 具有原子层沉积涂层的部件及其制备方法
CN109154604A (zh) * 2016-04-24 2019-01-04 沃特世科技公司 用于对用两亲强碱性部分改性的聚糖进行分析的带电表面反相色谱材料方法

Also Published As

Publication number Publication date
EP3930868B1 (en) 2024-07-17
EP4470647A1 (en) 2024-12-04
EP3930868A1 (en) 2022-01-05
US20240302333A1 (en) 2024-09-12
US20200271629A1 (en) 2020-08-27
CN113507972A (zh) 2021-10-15
WO2020174402A1 (en) 2020-09-03
US11994499B2 (en) 2024-05-28

Similar Documents

Publication Publication Date Title
US20230393103A1 (en) Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
US20240302333A1 (en) Coated flow path components for chromatographic effects
JP2005529335A (ja) 開放チャンネルを使って生体分子を固体相として抽出するシステムと方法
US12201975B2 (en) Device including a hydrophilic, non-ionic coating for size exclusion chromatography
US20230393104A1 (en) Use of vapor deposition coated flow paths for improved analytical analysis
US20090321357A1 (en) Affinity Particle And Affinity Separation Method
US12180581B2 (en) Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
US20240226845A1 (en) Dipodal silane bonded sorbents for solid phase extraction and use thereof for oligonucleotide extraction
US12121829B2 (en) Chromatographic seal and coated flow paths for minimizing analyte adsorption
CN110418795B (zh) 色谱组合物
EP3821238B1 (en) Chromatographic system and method for trap-elute mixed mode chromatography
CN115398223A (zh) 用于尺寸排阻色谱分离的保护柱构造
US12181452B2 (en) Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
US20240335830A1 (en) Coatings with immobilized affinity ligands and enzymes and use thereof in liquid chromatography assays
WO2016028075A1 (ko) 마이크로 중공사막 효소 반응기 - 텐덤 질량분석법을 이용한 단세포군 항체 기반 온라인 인단백질 프로테오믹스 분석방법
EP4090741A1 (en) Improved performance and dynamic range for oligonucleotide bioanalysis through reduction of non-specific binding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant