[go: up one dir, main page]

CN113504596B - Composite polarizer with wide viewing angle - Google Patents

Composite polarizer with wide viewing angle Download PDF

Info

Publication number
CN113504596B
CN113504596B CN202110727429.0A CN202110727429A CN113504596B CN 113504596 B CN113504596 B CN 113504596B CN 202110727429 A CN202110727429 A CN 202110727429A CN 113504596 B CN113504596 B CN 113504596B
Authority
CN
China
Prior art keywords
layer
polarizer
liquid crystal
polarizing
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110727429.0A
Other languages
Chinese (zh)
Other versions
CN113504596A (en
Inventor
孙玉宝
张弛
牛瑞
马红梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN202110727429.0A priority Critical patent/CN113504596B/en
Publication of CN113504596A publication Critical patent/CN113504596A/en
Application granted granted Critical
Publication of CN113504596B publication Critical patent/CN113504596B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明为一种宽视角复合偏光片。该复合偏光片的组成为:在光路上依次为第一偏光层,旋光层,第二偏光层;所述旋光层的旋光角度与所述第一、第二偏光层透光轴间的夹角相同或互补;所述的第一、第二偏光片透光轴间的夹角范围为45度~135度。该复合偏光片通过第一偏光层、旋光层、第二偏光层依次组合的两个偏光层的设置,构成了一个具有偏光作用的复合偏光片。与现有的偏光片相比,本发明在不同方位角的透过率是均匀一致的,可以解决有机发光显示器件中由于偏光片的使用而产生的亮度变化。

Figure 202110727429

The invention is a composite polarizer with a wide viewing angle. The composition of the composite polarizer is: on the optical path, there are successively a first polarizing layer, an optically active layer, and a second polarizing layer; the angle between the optical rotation angle of the optically active layer and the transmission axes of the first and second polarizing layers The same or complementary; the angle between the transmission axes of the first and second polarizers ranges from 45 degrees to 135 degrees. In the composite polarizer, a composite polarizer with polarizing effect is formed through the arrangement of two polarizing layers in which the first polarizing layer, the optical active layer and the second polarizing layer are sequentially combined. Compared with the existing polarizer, the transmittance of the present invention is uniform at different azimuth angles, and can solve the brightness change caused by the use of the polarizer in the organic light-emitting display device.

Figure 202110727429

Description

一种宽视角复合偏光片Composite polarizer with wide viewing angle

技术领域technical field

本发明涉及偏光片技术领域,具体为一种宽视角复合偏光片。可应用于显示器件中以减少不同视角的亮度变化。The invention relates to the technical field of polarizers, in particular to a composite polarizer with a wide viewing angle. The invention can be applied in display devices to reduce brightness variation in different viewing angles.

背景技术Background technique

偏光片是一种基础的光学器件,可以用来将自然光转化为偏振光,也可以用于选择透过不同偏振态的偏振光。偏光片被广泛的应用于包括液晶显示、有机发光显示等在内的众多显示器件中。在液晶显示中,偏光片与液晶层共同构成了实现显示功能的光开关。在有机发光显示等主动发光显示器件中,偏光片用于减少环境光的反射。在3D显示中,偏光片用于产生偏振光。偏光片的性能直接影响显示器件的显示效果。现有的偏光片主要包括金属偏光片、碘系偏光片、染料系偏光片和聚乙烯偏光片。对于任意类型的偏光片,其偏光效果的实现都依赖具有光学各向异性的分子/分子团的定向排列。以显示器件中常用的碘系偏光片为例,其偏光效果通过在聚乙烯醇膜上定向排列的碘离子实现。当光线透过偏光片时,偏振方向沿碘离子排列方向的线偏振光被吸收,出射光为线偏振光。在偏光片中,被吸收的偏振光的偏振方向称为吸光轴方向,出射光的偏振方向称为透光轴方向,吸光轴与透光轴方向正交。Polarizer is a basic optical device that can be used to convert natural light into polarized light, and can also be used to selectively transmit polarized light of different polarization states. Polarizers are widely used in many display devices including liquid crystal displays, organic light-emitting displays, and the like. In a liquid crystal display, the polarizer and the liquid crystal layer together constitute an optical switch that realizes the display function. In active light-emitting display devices such as organic light-emitting displays, polarizers are used to reduce the reflection of ambient light. In 3D displays, polarizers are used to generate polarized light. The performance of the polarizer directly affects the display effect of the display device. Existing polarizers mainly include metal polarizers, iodine-based polarizers, dye-based polarizers and polyethylene polarizers. For any type of polarizer, the realization of its polarizing effect depends on the alignment of molecules/molecular groups with optical anisotropy. Taking the iodine-based polarizer commonly used in display devices as an example, its polarizing effect is realized by the iodine ions aligned on the polyvinyl alcohol film. When light passes through the polarizer, the linearly polarized light whose polarization direction is along the iodide ion arrangement direction is absorbed, and the outgoing light is linearly polarized light. In a polarizer, the polarization direction of the absorbed polarized light is called the absorption axis direction, and the polarization direction of the outgoing light is called the transmission axis direction, and the absorption axis is perpendicular to the transmission axis direction.

由于偏光片的功能源自各向异性结构,单片偏光片在不同的视角下具有不同的透过率。当入射角达到45°时,传统偏光片在不同方位角的透过率差值约为20%。而当入射角增大到75°时,不同方位角的透过率差值高达60%。在有机发光显示器件中,偏光片的视角特性得到了直观的体现。在有机发光显示器件中仅使用一片圆偏光片来减少反射,所以偏光片的视角特性极大的影响了不同视角下的显示亮度。即便有机发光显示器件中的发光组件的发光均匀性要优于液晶显示器件中的背光源,有机发光显示器件在不同视角的显示亮度均匀性仍然差于液晶显示器件。偏光片在不同视角下透过率不均匀的问题极大的影响了显示器件的显示效果。现阶段对于偏光片视角的研究主要集中在优化两片正交偏光片在不同视角的对比度方面。通过在偏光片的结构中增加补偿膜可以减小两正交偏光片在倾斜视角下的漏光,从而增大在倾斜视角的对比度。例如通过增加补偿膜结构来增加倾斜视角下的对比度(发明名称“为一种宽视角液晶显示器用偏光片”的中国发明专利CN202010253314.8)。从本质上来说,现有偏光片在不同视角下透过率不均匀的问题是由于其结构特点造成的。偏光中起到偏光效果的偏光层可以看作是由多个一维结构组成的二维平面,而在不同视角下观察则是在在三维空间内进行的,偏光层的结构在不同的视角下表现出明显差异。当极角相同时,由碘离子构成的吸光轴以及偏光层的透光轴在不同方位角下的投影是完全不同的。在偏光片中增加补偿膜等附加结构并不能改变偏光片中偏光层的结构特点,现有偏光片的偏光层结构依然是二维的,所以在不同视角下仍然存在透过率不均匀的问题。到目前为止,偏光片在不同视角下的透过率依然是不均匀的。想要解决偏光片在不同视角下透过率不均匀的问题,需要使偏光层中的透光轴在不同视角下的投影具有一致性,这就意味着偏光层中需要包含在三维空间内具有对称性的三维结构。然而偏光层的各向异性的二维结构是实现偏光效果的基础,对于偏光层结构的改变会极大影响偏光层的偏光效果。设计具有对称性三维结构的同时具有理想偏光效果的偏光片面临着诸多的问题,一方面要打破偏光片本身的结构限制,将二维结构转变为三维结构,另一方面要在保留偏光片中二维各向异性结构的同时实现在三维空间内的对称性。在不同视角下透过率均匀的宽视角偏光片在具有重大应用前景的同时也是一项巨大的挑战。Since the function of the polarizer comes from the anisotropic structure, a single polarizer has different transmittance under different viewing angles. When the incident angle reaches 45°, the transmittance difference of the traditional polarizer at different azimuth angles is about 20%. And when the incident angle increases to 75°, the transmittance difference of different azimuth angles is as high as 60%. In organic light-emitting display devices, the viewing angle characteristics of polarizers are intuitively reflected. Only one piece of circular polarizer is used in the organic light-emitting display device to reduce reflection, so the viewing angle characteristics of the polarizer greatly affect the display brightness under different viewing angles. Even though the luminous uniformity of the light-emitting components in the organic light-emitting display device is better than that of the backlight in the liquid crystal display device, the display brightness uniformity of the organic light-emitting display device at different viewing angles is still worse than that of the liquid crystal display device. The uneven transmittance of the polarizer under different viewing angles greatly affects the display effect of the display device. At present, research on the viewing angle of polarizers is mainly focused on optimizing the contrast of two crossed polarizers at different viewing angles. By adding a compensation film to the structure of the polarizer, the light leakage of the two crossed polarizers at an oblique viewing angle can be reduced, thereby increasing the contrast at an oblique viewing angle. For example, the contrast ratio at oblique viewing angles can be increased by adding a compensation film structure (Chinese invention patent CN202010253314.8 with the title of the invention "a polarizer for a wide viewing angle liquid crystal display"). Essentially, the problem of uneven transmittance of existing polarizers under different viewing angles is due to their structural characteristics. The polarizing layer that plays a polarizing effect in polarized light can be regarded as a two-dimensional plane composed of multiple one-dimensional structures, while observation under different viewing angles is carried out in a three-dimensional space. The structure of the polarizing layer is different under different viewing angles. showed significant differences. When the polar angle is the same, the projections of the light absorption axis formed by iodide ions and the light transmission axis of the polarizing layer at different azimuth angles are completely different. Adding additional structures such as compensation films to the polarizer cannot change the structural characteristics of the polarizing layer in the polarizer. The structure of the polarizing layer of the existing polarizer is still two-dimensional, so there is still the problem of uneven transmittance under different viewing angles. . So far, the transmittance of polarizers under different viewing angles is still uneven. In order to solve the problem of uneven transmittance of the polarizer at different viewing angles, it is necessary to make the projection of the transmission axis in the polarizing layer consistent at different viewing angles, which means that the polarizing layer needs to contain Symmetrical three-dimensional structures. However, the anisotropic two-dimensional structure of the polarizing layer is the basis for realizing the polarizing effect, and changes to the structure of the polarizing layer will greatly affect the polarizing effect of the polarizing layer. Designing a polarizer with a symmetrical three-dimensional structure and ideal polarizing effect faces many problems. On the one hand, it is necessary to break the structural limitations of the polarizer itself and transform the two-dimensional structure into a three-dimensional structure. Two-dimensional anisotropic structures simultaneously achieve symmetry in three-dimensional space. A wide viewing angle polarizer with uniform transmittance under different viewing angles is a great challenge while having great application prospects.

发明内容Contents of the invention

本发明针对现有偏光片在不同视角下透过率不均匀的问题,提出了一种宽视角复合偏光片。该复合偏光片由第一偏光层、旋光层、第二偏光层依次组合而成,并构成了一个具有偏光作用的复合偏光片。在本发明中,两个偏光层在不同平面内并且其透光轴方向不同,两偏光层中的透光轴构成的三维结构在不同视角下的投影具有很强的一致性,旋光层的设计消除了由于偏光层结构变化对偏光效果的影响,所以本发明在不同视角下具有均匀透过率的同时还具有理想的偏光效果。与现有的偏光片相比,本发明在不同方位角的透过率是均匀一致的,可以应用在有机发光显示器件中来减少不同视角下的亮度变化。Aiming at the problem of uneven transmittance of the existing polarizer under different viewing angles, the invention proposes a composite polarizer with a wide viewing angle. The composite polarizer is composed of a first polarizer layer, an optical active layer and a second polarizer layer in sequence, and forms a composite polarizer with polarizing effect. In the present invention, the two polarizing layers are in different planes and the directions of their light transmission axes are different. The projections of the three-dimensional structures formed by the light transmission axes in the two polarizing layers under different viewing angles have strong consistency. The design of the optically active layer The influence of the structure change of the polarizing layer on the polarizing effect is eliminated, so the present invention has uniform transmittance under different viewing angles and also has an ideal polarizing effect. Compared with the existing polarizer, the transmittance of the present invention is uniform at different azimuth angles, and can be applied in organic light-emitting display devices to reduce brightness variation under different viewing angles.

本发明的技术方案为:Technical scheme of the present invention is:

一种宽视角复合偏光片,其特征为该偏光片的组成为:在光路上依次为第一偏光层,旋光层,第二偏光层;A composite polarizer with a wide viewing angle is characterized in that the polarizer is composed of: a first polarizing layer, an optically active layer, and a second polarizing layer on the optical path;

所述的第一、第二偏光层透光轴间的夹角范围为45度~135度;The range of the included angle between the transmission axes of the first and second polarizing layers is 45 degrees to 135 degrees;

所述的旋光层的旋光角度与所述第一、第二偏光层透光轴间的夹角相同或互补。The optical rotation angle of the optical active layer is the same as or complementary to the angle between the transmission axes of the first and second polarizing layers.

可选地,所述的旋光层为液晶旋光层或组合波片旋光层。Optionally, the optically active layer is a liquid crystal optically active layer or a combined wave plate optically active layer.

所述的偏光层包括但不限于吸收型偏光片、偏振选择器、金属线栅或反射型偏光片;The polarizing layer includes but is not limited to absorbing polarizers, polarization selectors, metal wire grids or reflective polarizers;

所述的液晶旋光层的构成材料为液晶材料或液晶聚合物材料。The constituent material of the liquid crystal optically active layer is a liquid crystal material or a liquid crystal polymer material.

所述的液晶旋光层中液晶分子扭曲角与第一、第二偏光层透光轴间的夹角相同或互补。The twist angle of the liquid crystal molecules in the liquid crystal optical active layer is the same as or complementary to the angle between the transmission axes of the first and second polarizing layers.

所述的组合波片旋光层由2-20片波片组成,且波片的慢轴方向呈左旋或右旋扭曲排列。The optical active layer of the combined wave plate is composed of 2-20 wave plates, and the direction of the slow axis of the wave plates is arranged in a left-handed or right-handed twist.

所述的组合波片旋光层中相邻波片的慢轴之间的夹角小于等于60°。The included angle between the slow axes of adjacent wave plates in the combined wave plate optical active layer is less than or equal to 60°.

本发明的实质性特点为:Substantive features of the present invention are:

现有的偏光片只包含有一层偏光层,其透光轴在不用视角下的投影明显不同,所以在不同视角下的透过率有着明显的差别,当入射角为75°时,不同方位角下的透过率差值高达60%。本发明提出的宽视角复合偏光片中创新性地使用了两层透光轴方向不同的偏光层,并在其中设置了旋光层,偏光片中两偏光层的透光轴构成的三维结构在不同视角下的投影具有一致性,所以本发明在不同视角下具有均匀的透过率。The existing polarizer only contains one layer of polarizing layer, and the projection of its transmission axis is obviously different under different viewing angles, so the transmittance under different viewing angles has obvious differences. When the incident angle is 75°, different azimuth angles The transmittance difference is as high as 60%. In the wide viewing angle composite polarizer proposed by the present invention, two polarizing layers with different light transmission axis directions are innovatively used, and an optical active layer is arranged in it. The three-dimensional structure formed by the light transmission axes of the two polarizing layers in the polarizer is different. The projection under viewing angles is consistent, so the present invention has uniform transmittance under different viewing angles.

本发明的有益效果为:The beneficial effects of the present invention are:

本发明提出的宽视角复合偏光片在不同视角下具有更均匀的透过率,其不同方位角下的透过率变化仅为传统偏光片的五分之一。当本发明应用在有机发光显示器件等显示器件中时,显示器件在不同方位角下的亮度变化可以降低80%。The composite polarizer with a wide viewing angle provided by the present invention has more uniform transmittance under different viewing angles, and the variation of the transmittance under different azimuth angles is only one-fifth of that of the traditional polarizer. When the present invention is applied to display devices such as organic light-emitting display devices, the luminance variation of the display device at different azimuth angles can be reduced by 80%.

附图说明Description of drawings

图1为对偏光片不同视角透过率观测的参考系示意图;Figure 1 is a schematic diagram of a reference system for observing the transmittance of a polarizer at different viewing angles;

图2为本发明提出的宽视角复合偏光片的剖面结构示意图;Fig. 2 is the schematic cross-sectional structure diagram of the composite polarizer with wide view angle proposed by the present invention;

图3为本发明实施例1提供的一种宽视角复合偏光片的剖面结构示意图;Fig. 3 is a schematic cross-sectional structure diagram of a wide viewing angle composite polarizer provided in Embodiment 1 of the present invention;

图4为图3中液晶层的剖面结构示意图;FIG. 4 is a schematic cross-sectional structure diagram of the liquid crystal layer in FIG. 3;

图5为宽视角复合偏光片两侧的透光轴方向示意图;Figure 5 is a schematic diagram of the direction of the light transmission axis on both sides of the composite polarizer with a wide viewing angle;

图6为入射光通过宽视角复合偏光片时偏振态变化的示意图;Fig. 6 is a schematic diagram of polarization state change when incident light passes through a wide viewing angle composite polarizer;

图7为传统的碘系偏光片在不同视角下的透过率变化示意图;Fig. 7 is a schematic diagram of the transmittance variation of a traditional iodine-based polarizer under different viewing angles;

图8为本发明实施例1中提供的宽视角复合偏光片在不同视角下的透过率变化示意图;Fig. 8 is a schematic diagram of the transmittance variation of the wide viewing angle composite polarizer provided in Example 1 of the present invention under different viewing angles;

图9为使用传统的碘系偏光片的有机发光显示器件在不同视角下的亮度变化;Fig. 9 shows the brightness variation of an organic light-emitting display device using a traditional iodine-based polarizer under different viewing angles;

图10为使用本发明实施例1中提供的宽视角复合偏光片的有机发光显示器件在不同视角下的亮度变化;Fig. 10 shows the brightness variation of the organic light-emitting display device using the wide viewing angle composite polarizer provided in Example 1 of the present invention under different viewing angles;

图11为本发明实施例2提供的一种宽视角复合偏光片的剖面结构示意图;11 is a schematic cross-sectional structure diagram of a wide viewing angle composite polarizer provided in Embodiment 2 of the present invention;

图12为图9中组成液晶聚合物旋光层的三种单体的结构式;Fig. 12 is the structural formula of three kinds of monomers forming the liquid crystal polymer optically active layer in Fig. 9;

图13为本发明实施例2中提供的宽视角复合偏光片在不同视角下的透过率变化示意图;Fig. 13 is a schematic diagram of the transmittance variation of the wide viewing angle composite polarizer provided in Example 2 of the present invention under different viewing angles;

图14为本发明实施例3提供的一种宽视角复合偏光片的剖面结构示意图;Fig. 14 is a schematic cross-sectional structure diagram of a wide viewing angle composite polarizer provided in Embodiment 3 of the present invention;

图15为本发明实施例3中提供的宽视角复合偏光片在不同视角下的透过率变化示意图。FIG. 15 is a schematic diagram of the transmittance variation of the wide viewing angle composite polarizer provided in Example 3 of the present invention under different viewing angles.

具体实施方式Detailed ways

下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, but not to limit the present invention. In addition, it should be noted that, for the convenience of description, only some structures related to the present invention are shown in the drawings but not all structures.

实施例1Example 1

图1为对偏光片不同视角透过率观测的参考系示意图,参考图1,视线与Z轴的夹角为极角θ,视线在XY平面的投影与X轴的夹角为方位角

Figure BDA0003139171640000031
。在XY平面内,X轴方向规定为0°方向。Figure 1 is a schematic diagram of the reference system for observing the transmittance of polarizers at different viewing angles. Referring to Figure 1, the angle between the line of sight and the Z axis is the polar angle θ, and the angle between the projection of the line of sight on the XY plane and the X axis is the azimuth angle
Figure BDA0003139171640000031
. In the XY plane, the X-axis direction is defined as the 0° direction.

图2为本发明提出的宽视角复合偏光片的剖面结构示意图,在其结构中包括第一偏光层10、旋光层30和第二偏光层20。FIG. 2 is a schematic cross-sectional structure diagram of a wide viewing angle composite polarizer proposed by the present invention, which includes a first polarizing layer 10 , an optical active layer 30 and a second polarizing layer 20 .

图3为本发明实施例1提供的一种宽视角复合偏光片的剖面结构示意图,图4为图3中液晶层的剖面结构示意图,图5为宽视角复合偏光片两侧的透光轴方向,图6为入射光通过宽视角复合偏光片时偏振态变化的示意图,结合图3、图4、图5和图6,图5中双箭头的延伸方向表示宽视角复合偏光片两侧的透光轴方向。宽视角复合偏光片两侧透光轴分别沿0°方向和90°方向。Fig. 3 is a schematic cross-sectional structure diagram of a wide viewing angle composite polarizer provided in Example 1 of the present invention, Fig. 4 is a schematic cross-sectional structure schematic diagram of the liquid crystal layer in Fig. 3, and Fig. 5 is the light transmission axis direction on both sides of the wide viewing angle composite polarizer , Fig. 6 is a schematic diagram of the polarization state change when the incident light passes through the composite polarizer with a wide viewing angle. Combining Fig. 3, Fig. 4, Fig. 5 and Fig. 6, the extension direction of the double arrow in Fig. 5 indicates the transmission on both sides of the composite polarizer with a wide viewing angle. the direction of the optical axis. The light transmission axes on both sides of the wide viewing angle compound polarizer are along the 0° direction and the 90° direction respectively.

所述的复合宽视角偏光片的组成从下到上依次包括第一偏光层10、液晶旋光层30和第二偏光层20,其中第一偏光层10、第二偏光层20为碘系偏光片,液晶旋光层30为液晶盒;The composition of the composite wide viewing angle polarizer comprises from bottom to top a first polarizer layer 10, a liquid crystal optically active layer 30 and a second polarizer layer 20, wherein the first polarizer layer 10 and the second polarizer layer 20 are iodine-based polarizers , the liquid crystal optically active layer 30 is a liquid crystal cell;

所述第一、第二偏光层为碘系偏光片。The first and second polarizing layers are iodine-based polarizers.

所述第一、第二的偏光层厚度为80微米。The thickness of the first and second polarizing layers is 80 microns.

所述的液晶旋光层30从下到上依次包括下玻璃基板301、下取向层302、液晶层303、上取向层304和上玻璃基板305;The liquid crystal optically active layer 30 sequentially includes a lower glass substrate 301, a lower alignment layer 302, a liquid crystal layer 303, an upper alignment layer 304, and an upper glass substrate 305 from bottom to top;

第一偏光层10的透光轴方向沿0°方向,第二偏光层20的透光轴沿90°方向,液晶层303中包括靠近第一偏光层侧的第一表面3031和靠近第二偏光层侧的第二表面3032。The light transmission axis direction of the first polarizing layer 10 is along the 0° direction, the light transmission axis of the second polarizing layer 20 is along the 90° direction, and the liquid crystal layer 303 includes a first surface 3031 near the first polarizing layer side and a first surface 3031 near the second polarizing layer. The second surface 3032 on the layer side.

如图4所示,第一表面3031(即液晶层中靠近第一偏光层的表面)的液晶分子指向矢沿0°方向,第二表面3032(即液晶层中靠近第二偏光层的表面)的液晶分子指向矢沿90°方向。沿垂直于液晶层303方向上,液晶层303中的液晶分子指向矢均匀扭转90°。As shown in Figure 4, the director of the liquid crystal molecules on the first surface 3031 (i.e. the surface near the first polarizing layer in the liquid crystal layer) is along the 0° direction, and the second surface 3032 (i.e. the surface near the second polarizing layer in the liquid crystal layer) The director of the liquid crystal molecules is along the 90° direction. Along the direction perpendicular to the liquid crystal layer 303 , the directors of the liquid crystal molecules in the liquid crystal layer 303 are uniformly twisted by 90°.

在本实施例中提供的宽视角复合偏光片中。入射光I经过第一偏光层10后被转化成偏振方向沿0°方向的线偏振光P1;线偏振光P1经过液晶旋光层30时偏振方向被旋转90°,液晶旋光层并不能实现理想的偏振旋转,经过液晶旋光层30的出射光P2近似为偏振方向沿90°方向的线偏振光;P2经过第二偏光层20后变成偏振方向沿90°方向的线偏振光P3。当视角倾斜时,本发明提出的宽视角复合偏光片的透过率由第一、第二偏光层共同决定。第一、第二偏光层的透光轴方向正交,所以两偏光层在不同视角下的透过率可以相互补偿,从而在不同视角下获得均匀的透过率。In the wide viewing angle composite polarizer provided in this embodiment. The incident light I is converted into linearly polarized light P1 whose polarization direction is along the direction of 0° after passing through the first polarizing layer 10; when the linearly polarized light P1 passes through the liquid crystal optical rotation layer 30, the polarization direction is rotated by 90°, and the liquid crystal optical rotation layer cannot realize ideal Polarization rotation, the outgoing light P2 passing through the liquid crystal optical rotation layer 30 is approximately linearly polarized light whose polarization direction is along the 90° direction; P2 becomes linearly polarized light P3 whose polarization direction is along the 90° direction after passing through the second polarizing layer 20 . When the viewing angle is inclined, the transmittance of the composite polarizer with a wide viewing angle proposed by the present invention is jointly determined by the first and second polarizing layers. The transmission axes of the first and second polarizing layers are perpendicular to each other, so the transmittances of the two polarizing layers at different viewing angles can compensate each other, thereby obtaining uniform transmittance at different viewing angles.

图7为传统的碘系偏光片在不同视角下的透过率变化示意图,观测时偏光片的透光轴沿90°方向。参考图1和图7,横坐标为方位角

Figure BDA0003139171640000041
,纵坐标为透过率。图7中的6条曲线分别对应6个不同的极角:0°、15°、30°、45°、60°和75°。即分别在θ=0°、θ=15°、θ=30°、θ=45°、θ=60°和θ=75°时,测量了现有偏光片对自然光的透过率。随着极角的增大,偏光片在不同方位角下的透过率表现出了明显的差异。当极角为45°时,不同方位角的透过率差值为16%。当极角为60°时,不同方位角的透过率差值为32%。当极角为75°时,不同方位角的透过率差值为60%。FIG. 7 is a schematic diagram of the transmittance change of a traditional iodine-based polarizer under different viewing angles. When observed, the transmission axis of the polarizer is along a 90° direction. Referring to Figure 1 and Figure 7, the abscissa is the azimuth
Figure BDA0003139171640000041
, and the ordinate is the transmittance. The six curves in Figure 7 correspond to six different polar angles: 0°, 15°, 30°, 45°, 60° and 75°. That is, when θ=0°, θ=15°, θ=30°, θ=45°, θ=60° and θ=75°, the transmittance of the existing polarizer to natural light was measured. As the polar angle increases, the transmittance of the polarizer shows obvious differences at different azimuth angles. When the polar angle is 45°, the transmittance difference of different azimuth angles is 16%. When the polar angle is 60°, the transmittance difference of different azimuth angles is 32%. When the polar angle is 75°, the transmittance difference at different azimuth angles is 60%.

图8为本发明实施例1中提供的宽视角复合偏光片在不同视角下的透过率变化示意图,观测时入射侧的偏光层透光轴沿90°方向。参考图1和图8,横坐标为方位角

Figure BDA0003139171640000042
,纵坐标为透过率。图8中的6条曲线分别对应6个不同的极角:0°、15°、30°、45°、60°和75°。即分别在θ=0°、θ=15°、θ=30°、θ=45°、θ=60°和θ=75°时,测量了实施例1对自然光的透过率。这里使用光谱仪测试了偏光片在不同视角下对于波长为550nm的单色光的透过率。在任一极角下,实施例1在不同方位角下的透光率没有明显的变化。当极角为45°时,不同方位角的透过率差值为0.6%。当极角为60°时,不同方位角的透过率差值为3.7%。当极角为75°时,不同方位角的透过率差值为12.5%。相对于传统的偏光片,本发明提出的宽视角复合偏光片在不同视角下的透过率更加均匀。8 is a schematic diagram of the transmittance variation of the wide viewing angle composite polarizer provided in Example 1 of the present invention under different viewing angles. The light transmission axis of the polarizing layer on the incident side is along the 90° direction during observation. Referring to Figure 1 and Figure 8, the abscissa is the azimuth
Figure BDA0003139171640000042
, and the ordinate is the transmittance. The six curves in Figure 8 correspond to six different polar angles: 0°, 15°, 30°, 45°, 60° and 75°. That is, when θ=0°, θ=15°, θ=30°, θ=45°, θ=60° and θ=75°, the transmittance of Example 1 to natural light was measured. Here, a spectrometer is used to test the transmittance of the polarizer for monochromatic light with a wavelength of 550nm under different viewing angles. At any polar angle, the light transmittance of Example 1 has no obvious change under different azimuth angles. When the polar angle is 45°, the transmittance difference between different azimuth angles is 0.6%. When the polar angle is 60°, the transmittance difference of different azimuth angles is 3.7%. When the polar angle is 75°, the transmittance difference of different azimuth angles is 12.5%. Compared with the traditional polarizer, the wide viewing angle composite polarizer proposed by the present invention has more uniform transmittance under different viewing angles.

图9为使用传统碘系偏光片的有机发光显示器件在不同视角下的亮度变化,图10为使用本发明实施例1中提供的宽视角复合偏光片的有机发光显示器件在不同视角下的亮度变化,其中规定在正视角下的亮度为1。参考图9和图10,当视角倾斜时,使用传统碘系偏光片的有机发光显示器件在不同方位角下的亮度变化非常明显,使用本发明实施例1中提供的宽视角复合偏光片的有机发光显示器件在不同方位角下的亮度变化明显降低。在75度极角下,使用传统碘系偏光片的有机发光显示器件在不同方位角下的亮度变化为60%,使用本发明实施例1中提供的宽视角复合偏光片的有机发光显示器件在不同方位角下的亮度变化仅为12.5%。Figure 9 shows the luminance changes of an organic light-emitting display device using a traditional iodine-based polarizer at different viewing angles, and Figure 10 shows the brightness of an organic light-emitting display device using the wide viewing angle composite polarizer provided in Example 1 of the present invention at different viewing angles Variation, which specifies a brightness of 1 at a normal viewing angle. Referring to Figure 9 and Figure 10, when the viewing angle is inclined, the brightness of the organic light-emitting display device using the traditional iodine-based polarizer changes significantly at different azimuth angles. The luminance variation of the light-emitting display device under different azimuth angles is significantly reduced. At a polar angle of 75 degrees, the brightness change of the organic light-emitting display device using the traditional iodine-based polarizer at different azimuth angles is 60%, and the organic light-emitting display device using the wide viewing angle composite polarizer provided in Example 1 of the present invention has a The brightness variation under different azimuth angles is only 12.5%.

实施例2Example 2

图11为本发明实施例2提供的一种宽视角复合偏光片的剖面结构示意图,图12为图11中组成液晶聚合物旋光层的三种单体的结构式,参考图11和图12,复合宽视角偏光片包括第一偏光层10、液晶旋光层40以及第二偏光层20,其中第一偏光层10、第二偏光层20为碘系偏光片,液晶旋光层40为由HCM-021,HCM-020和HCM-009三种单体构成的液晶聚合物(单体购买自江苏和成显示技术有限公司)。液晶旋光层40包括下基底401和液晶聚合层402,其中下基底401厚度为1微米,液晶聚合物层402厚度为5微米。第一偏光层10的透光轴方向沿0°方向,第二偏光层20的透光轴沿90°方向,液晶聚合物层402中包括靠近第一偏光层侧的第一表面4021和靠近第二偏光层侧的第二表面4022。第一表面4021的液晶分子指向矢沿90°方向,第二表面4022的液晶分子指向矢沿0°方向。沿垂直于液晶聚合物层402方向上,液晶聚合物层402中的液晶分子指向矢均匀扭转-90°。在实施例1中,靠近偏光层的表面的液晶分子指向矢方向与偏光片透光轴方向平行,在实施例2中,液晶层靠近偏光层的表面的液晶分子指向矢方向与偏光片透光轴方向正交。此时液晶旋光层的旋光特性不变,实施例2表现出与实施例1相近的特性。Figure 11 is a schematic cross-sectional structure diagram of a wide viewing angle composite polarizer provided in Example 2 of the present invention, and Figure 12 is the structural formula of the three monomers forming the optically active layer of the liquid crystal polymer in Figure 11, referring to Figure 11 and Figure 12, composite The wide viewing angle polarizer includes a first polarizing layer 10, a liquid crystal optically active layer 40 and a second polarizing layer 20, wherein the first polarizing layer 10 and the second polarizing layer 20 are iodine polarizers, and the liquid crystal optically active layer 40 is made of HCM-021, A liquid crystal polymer composed of three monomers, HCM-020 and HCM-009 (the monomers were purchased from Jiangsu Hecheng Display Technology Co., Ltd.). The liquid crystal optical active layer 40 includes a lower substrate 401 and a liquid crystal polymer layer 402, wherein the thickness of the lower substrate 401 is 1 micron, and the thickness of the liquid crystal polymer layer 402 is 5 microns. The light transmission axis direction of the first polarizing layer 10 is along the 0° direction, the light transmission axis of the second polarizing layer 20 is along the 90° direction, and the liquid crystal polymer layer 402 includes a first surface 4021 near the first polarizing layer side and a first surface 4021 near the second polarizing layer. The second surface 4022 on the side of the two polarizing layers. The director of the liquid crystal molecules on the first surface 4021 is along the direction of 90°, and the director of the liquid crystal molecules on the second surface 4022 is along the direction of 0°. Along the direction perpendicular to the liquid crystal polymer layer 402, the directors of the liquid crystal molecules in the liquid crystal polymer layer 402 are uniformly twisted by -90°. In embodiment 1, the director direction of the liquid crystal molecules on the surface close to the polarizing layer is parallel to the light transmission axis direction of the polarizer; Axes are perpendicular to each other. At this time, the optical activity of the liquid crystal optically active layer remains unchanged, and Example 2 exhibits characteristics similar to those of Example 1.

图13为本发明实施例2中提供的宽视角复合偏光片在不同视角下的透过率变化示意图,观测时入射侧的偏光层透光轴沿90°方向。参考图1和图13,横坐标为方位角

Figure BDA0003139171640000051
,纵坐标为透过率。图13中的6条曲线分别对应6个不同的极角:0°、15°、30°、45°、60°和75°。即分别在θ=0°、θ=15°、θ=30°、θ=45°、θ=60°和θ=75°时,测量了实施例2对自然光的透过率。在任一极角下,实施例2在不同方位角下的透光率没有明显的变化。相对于传统的偏光片,本发明提出的宽视角复合偏光片在不同视角下的透过率更加均匀。FIG. 13 is a schematic diagram of the transmittance variation of the wide viewing angle composite polarizer provided in Example 2 of the present invention under different viewing angles. When observed, the light transmission axis of the polarizing layer on the incident side is along the 90° direction. Referring to Figure 1 and Figure 13, the abscissa is the azimuth
Figure BDA0003139171640000051
, and the ordinate is the transmittance. The six curves in Figure 13 correspond to six different polar angles: 0°, 15°, 30°, 45°, 60° and 75°. That is, when θ=0°, θ=15°, θ=30°, θ=45°, θ=60° and θ=75°, the transmittance of Example 2 to natural light was measured. At any polar angle, the light transmittance of Example 2 has no obvious change under different azimuth angles. Compared with the traditional polarizer, the wide viewing angle composite polarizer proposed by the present invention has more uniform transmittance under different viewing angles.

本实施例与实施例1的区别体现在两个方面。第一,实施例2中的液晶旋光层的材料为液晶聚合物,实施例1中的液晶旋光层材料为液晶。第二,实施例2中的液晶层表面处的液晶分子指向矢与同侧偏光片透光轴方向正交,实施例1中液晶层表面处的分子指向矢与同侧偏光片透光轴方向平行。液晶旋光层由液晶或液晶聚合物材料组成时最终结果相似,液晶层表面处的液晶分子指向矢与同侧偏光片透光轴方向正交或平行时最终结果相似。通过两个不同的实施例,说明在符合本发明的要求时使用不同的材料与不同的结构均可实现类似的效果。The difference between this embodiment and Embodiment 1 is reflected in two aspects. First, the material of the liquid crystal optically active layer in embodiment 2 is liquid crystal polymer, and the material of the liquid crystal optically active layer in embodiment 1 is liquid crystal. Second, the director of the liquid crystal molecules at the surface of the liquid crystal layer in embodiment 2 is perpendicular to the direction of the transmission axis of the polarizer on the same side, and the director of the molecules at the surface of the liquid crystal layer in embodiment 1 is perpendicular to the direction of the transmission axis of the polarizer on the same side parallel. The final result is similar when the liquid crystal optical active layer is composed of liquid crystal or liquid crystal polymer material, and the final result is similar when the director of the liquid crystal molecules on the surface of the liquid crystal layer is perpendicular to or parallel to the transmission axis of the polarizer on the same side. Through two different embodiments, it is illustrated that similar effects can be achieved by using different materials and different structures when meeting the requirements of the present invention.

实施例3Example 3

图14为本发明实施例3提供的一种宽视角复合偏光片的剖面结构示意图,复合宽视角偏光片包括第一偏光层10、组合波片旋光层50以及第二偏光层20,其中第一偏光层10、第二偏光层20为碘系偏光片,组合波片旋光层50为多层组合波片,波片为R138聚合物波片(购买自三利谱光电科技有限公司)。组合波片旋光层中包括材质、厚度相同的第一波片501、第二波片502、第三波片503、第四波片504、第五波片505、第六波片506、第七波片507、第八波片508和第九波片509。第一偏光层10的透光轴方向沿0°方向,第二偏光层20的透光轴沿90°方向,九片波片的慢轴方向依次为0°、10°、20°、30°、40°、50°、60°、70°、80°、和90°,相邻波片慢轴之间的夹角为10°,波片慢轴右旋扭曲。组合波片旋光层50可以起到与扭曲向列相液晶层类似的旋光作用,实施例3表现出于实施例1相近的特性。Fig. 14 is a schematic cross-sectional structure diagram of a wide viewing angle composite polarizer provided in Embodiment 3 of the present invention. The composite wide viewing angle polarizer includes a first polarizing layer 10, a combined wave plate optical rotation layer 50 and a second polarizing layer 20, wherein the first The polarizing layer 10 and the second polarizing layer 20 are iodine-based polarizers, the combined wave plate optically active layer 50 is a multi-layer combined wave plate, and the wave plate is an R138 polymer wave plate (purchased from Sanlipu Optoelectronics Technology Co., Ltd.). The combined wave plate optical active layer includes a first wave plate 501, a second wave plate 502, a third wave plate 503, a fourth wave plate 504, a fifth wave plate 505, a sixth wave plate 506, and a seventh wave plate of the same material and thickness. wave plate 507 , eighth wave plate 508 and ninth wave plate 509 . The light transmission axis direction of the first polarizing layer 10 is along the 0° direction, the light transmission axis direction of the second polarizing layer 20 is along the 90° direction, and the slow axis directions of the nine wave plates are 0°, 10°, 20°, and 30° in turn. , 40°, 50°, 60°, 70°, 80°, and 90°, the angle between the slow axes of adjacent wave plates is 10°, and the slow axes of the wave plates are right-handed. The combined wave plate optical rotation layer 50 can play an optical rotation function similar to that of the twisted nematic liquid crystal layer, and Example 3 exhibits similar characteristics to Example 1.

图15为本发明实施例3中提供的宽视角复合偏光片在不同视角下的透过率变化示意图,观测时入射侧的偏光层透光轴沿90°方向。参考图1和图15,横坐标为方位角

Figure BDA0003139171640000052
,纵坐标为透过率。图15中的6条曲线分别对应6个不同的极角:0°、15°、30°、45°、60°和75°。即分别在θ=0°、θ=15°、θ=30°、θ=45°、θ=60°和θ=75°时,测量了实施例3对自然光的透过率。在任一极角下,实施例3在不同方位角下的透光率没有明显的变化。相对于传统的偏光片,本发明提出的宽视角复合偏光片在不同视角下的透过率更加均匀。Fig. 15 is a schematic diagram of the transmittance variation of the wide viewing angle composite polarizer provided in Example 3 of the present invention under different viewing angles, and the light transmission axis of the polarizing layer on the incident side is along the 90° direction during observation. Referring to Figure 1 and Figure 15, the abscissa is the azimuth
Figure BDA0003139171640000052
, and the ordinate is the transmittance. The 6 curves in Figure 15 correspond to 6 different polar angles: 0°, 15°, 30°, 45°, 60° and 75°. That is, when θ=0°, θ=15°, θ=30°, θ=45°, θ=60° and θ=75°, the transmittance of Example 3 to natural light was measured. At any polar angle, the light transmittance of Example 3 has no obvious change under different azimuth angles. Compared with the traditional polarizer, the wide viewing angle composite polarizer proposed by the present invention has more uniform transmittance under different viewing angles.

注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互结合和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described here, and various obvious changes, readjustments, mutual combinations and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention, and the present invention The scope is determined by the scope of the appended claims.

本发明未尽事宜为公知技术。Matters not covered in the present invention are known technologies.

Claims (2)

1. A wide visual angle composite polarizer is characterized in that the polarizer comprises a first polarizing layer, an optical rotation layer and a second polarizing layer in sequence on an optical path;
the included angle between the light transmission axes of the first polarizing layer and the second polarizing layer ranges from 45 degrees to 135 degrees;
the optical rotation angle of the optical rotation layer is the same as or complementary to the included angle between the light transmission axes of the first and second polarizing layers;
the optical rotation layer is a liquid crystal optical rotation layer or a combined wave plate optical rotation layer;
the twist angle of liquid crystal molecules in the liquid crystal optical rotation layer is the same as or complementary with the included angle between the light transmission axes of the first polarizing layer and the second polarizing layer;
the combined wave plate rotating layer consists of 2-20 wave plates, and the slow axis direction of the wave plates is in left-handed or right-handed twisted arrangement;
the included angle between the slow axes of the adjacent wave plates in the optical rotation layer of the combined wave plate is less than or equal to 60 degrees.
2. The wide viewing angle composite polarizer according to claim 1, wherein the constituent material of said liquid crystal polarizing layer is a liquid crystal material or a liquid crystal polymer material.
CN202110727429.0A 2021-06-29 2021-06-29 Composite polarizer with wide viewing angle Active CN113504596B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110727429.0A CN113504596B (en) 2021-06-29 2021-06-29 Composite polarizer with wide viewing angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110727429.0A CN113504596B (en) 2021-06-29 2021-06-29 Composite polarizer with wide viewing angle

Publications (2)

Publication Number Publication Date
CN113504596A CN113504596A (en) 2021-10-15
CN113504596B true CN113504596B (en) 2022-11-29

Family

ID=78010906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110727429.0A Active CN113504596B (en) 2021-06-29 2021-06-29 Composite polarizer with wide viewing angle

Country Status (1)

Country Link
CN (1) CN113504596B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105867695A (en) * 2016-05-18 2016-08-17 福建捷联电子有限公司 Integrated touch displayer and manufacturing method thereof
CN108490681A (en) * 2018-07-06 2018-09-04 河北工业大学 A kind of liquid crystal material colour gamut widens device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000155214A (en) * 1998-11-19 2000-06-06 Nitto Denko Corp Wide view angule polarizing plate and liquid crystal display device
JP3960520B2 (en) * 2002-02-05 2007-08-15 日東電工株式会社 Polarizer, polarizing plate and image display device
US20070159580A1 (en) * 2003-12-19 2007-07-12 Nitto Denko Corporation Polarizing plate, optical film and image display
CN101377587A (en) * 2007-08-30 2009-03-04 颖台科技股份有限公司 Liquid crystal display and optical film
CN105974599A (en) * 2016-06-29 2016-09-28 河北工业大学 Broad waveband half wave plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105867695A (en) * 2016-05-18 2016-08-17 福建捷联电子有限公司 Integrated touch displayer and manufacturing method thereof
CN108490681A (en) * 2018-07-06 2018-09-04 河北工业大学 A kind of liquid crystal material colour gamut widens device

Also Published As

Publication number Publication date
CN113504596A (en) 2021-10-15

Similar Documents

Publication Publication Date Title
US20100277660A1 (en) Wire grid polarizer with combined functionality for liquid crystal displays
US7817226B2 (en) Liquid crystal display device
KR101260841B1 (en) In-Plane Switching Mode Liquid Crystal Display Device
WO2012090769A1 (en) Optical element and liquid crystal display device
CN102033256B (en) Polarization plates and the display device with this polarization plates
TW201227010A (en) Antireflective polarizing plate and image display apparatus comprising the same
CN102998849A (en) Semi-transparent semi-trans-LCD (Liquid Crystal Display) panel and display device on basis of ADS (Advanced Super Dimension Switch) display mode
WO2012133137A1 (en) Liquid crystal display device
US20190155082A1 (en) Liquid crystal display panel and liquid crystal display device
US20210333626A1 (en) Liquid crystal display device
US8134664B2 (en) Liquid crystal display device
JP2006146088A (en) Liquid crystal display
WO2013111867A1 (en) Liquid crystal display device
US6567142B1 (en) Reflective liquid crystal display device including a retardation film of two uniaxial films
CN113504596B (en) Composite polarizer with wide viewing angle
CN109683375B (en) Liquid crystal module
TW200426432A (en) Liquid crystal display device and electronic machine
CN202939393U (en) Transflective liquid crystal panel based on ADS display mode and display device
CN1595247A (en) Polarizers for Multi-domain Vertical Alignment Liquid Crystal Displays
JP2002169155A (en) Liquid crystal display
KR100439428B1 (en) Polarized light reflection element and liquid crystal display element having the same
TWI412844B (en) Reflective liquid crystal display
US11526053B2 (en) Optical assembly, liquid crystal display device, and electronic equipment
WO2023005601A1 (en) Display module, and display apparatus and display method thereof
US20190302520A1 (en) Color filter substrate and liquid crystal display device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant