CN113498071A - Method, apparatus and program for predicting future quality of service of a wireless communication link - Google Patents
Method, apparatus and program for predicting future quality of service of a wireless communication link Download PDFInfo
- Publication number
- CN113498071A CN113498071A CN202110296888.8A CN202110296888A CN113498071A CN 113498071 A CN113498071 A CN 113498071A CN 202110296888 A CN202110296888 A CN 202110296888A CN 113498071 A CN113498071 A CN 113498071A
- Authority
- CN
- China
- Prior art keywords
- future
- service
- model
- time
- machine learning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 112
- 238000004891 communication Methods 0.000 title claims abstract description 101
- 238000010801 machine learning Methods 0.000 claims abstract description 119
- 230000007613 environmental effect Effects 0.000 claims abstract description 44
- 238000004590 computer program Methods 0.000 claims abstract description 12
- 238000012549 training Methods 0.000 claims description 62
- 238000009826 distribution Methods 0.000 claims description 60
- 230000006870 function Effects 0.000 claims description 29
- 238000004422 calculation algorithm Methods 0.000 claims description 24
- 238000000714 time series forecasting Methods 0.000 claims description 21
- 238000010295 mobile communication Methods 0.000 claims description 19
- 238000005311 autocorrelation function Methods 0.000 claims description 5
- 230000002123 temporal effect Effects 0.000 claims description 5
- 210000004027 cell Anatomy 0.000 description 40
- 230000005540 biological transmission Effects 0.000 description 27
- 230000000875 corresponding effect Effects 0.000 description 19
- 230000000694 effects Effects 0.000 description 13
- 238000011161 development Methods 0.000 description 9
- 230000018109 developmental process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000004088 simulation Methods 0.000 description 9
- 238000003491 array Methods 0.000 description 8
- 238000013528 artificial neural network Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 5
- 238000012706 support-vector machine Methods 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- OAWXYINGQXLWOE-UHFFFAOYSA-N (2-acetyloxybenzoyl) 2-acetyloxybenzoate Chemical compound CC(=O)OC1=CC=CC=C1C(=O)OC(=O)C1=CC=CC=C1OC(C)=O OAWXYINGQXLWOE-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000001934 delay Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000009897 systematic effect Effects 0.000 description 3
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000002015 acyclic group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000007635 classification algorithm Methods 0.000 description 2
- 238000002790 cross-validation Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000013501 data transformation Methods 0.000 description 2
- 238000013277 forecasting method Methods 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000013179 statistical model Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013529 biological neural network Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010224 classification analysis Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013257 coordination network Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/373—Predicting channel quality or other radio frequency [RF] parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/30—Services specially adapted for particular environments, situations or purposes
- H04W4/40—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
- H04W4/46—Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/391—Modelling the propagation channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/142—Network analysis or design using statistical or mathematical methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/147—Network analysis or design for predicting network behaviour
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Algebra (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Probability & Statistics with Applications (AREA)
- Pure & Applied Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明涉及预测无线通信链路的未来服务质量的方法、装置和程序,具体而言涉及一种装置、方法和计算机程序,用于基于使用时间序列预测预测的预测未来环境模型来预测无线通信链路的未来服务质量。该方法包括在多个时间点上确定移动收发器的环境中的一个或多个活动收发器的多个环境模型。该方法包括使用对多个环境模型的时间序列预测来确定一个或多个活动收发器在未来时间点的预测的未来环境模型。该方法包括使用机器学习模型预测未来时间点的无线通信链路的未来服务质量。机器学习模型被训练来提供关于给定环境模型的预测服务质量的信息。预测的未来环境模型被用作机器学习模型的输入。
The present invention relates to a method, apparatus and program for predicting the future quality of service of a wireless communication link, and in particular to an apparatus, method and computer program for predicting a wireless communication link based on a predicted future environment model using time series prediction prediction Road future service quality. The method includes determining a plurality of environmental models of one or more active transceivers in the environment of the mobile transceiver at a plurality of points in time. The method includes determining a predicted future environment model for one or more active transceivers at future points in time using time series predictions of the plurality of environment models. The method includes using a machine learning model to predict future quality of service of the wireless communication link at future points in time. Machine learning models are trained to provide information about the predicted quality of service for a given environment model. The predicted future environment model is used as the input to the machine learning model.
Description
技术领域technical field
本发明涉及一种装置、方法和计算机程序,用于基于使用时间序 列预测预测的预测未来环境模型来预测无线通信链路的未来服务质 量。The present invention relates to an apparatus, method and computer program for predicting future quality of service of a wireless communication link based on a predicted future environment model predicted using time series forecasting.
背景技术Background technique
移动收发器之间的通信是一个研究和开发的领域。例如,在车辆 应用中,正在进行研究,以便在不断变化的环境中提高车辆之间无线 通信的性能和可预测性两者。例如,在协同驾驶的范围内,当服务质 量(QoS)条件变化时,对两个车辆之间的无线通信链路的未来服务质量 (QoS)的预测改善了车辆应用的功能。实际上,当没有提供预测QoS (PQoS)时,应用可能只对变化做出反应,并且因此可能被限制在通信 系统的下界性能。PQoS系统可利用无线电接入技术(RAT)在车辆、通 信节点上运行,无线电接入技术为诸如处于其独立模式的LTE-V(车 辆通信的长期演进)或5G-V2X(用于车辆到任意事物通信的第五代移动通信系统)或IEEE 802.11p(美国电气与电子工程师协会的标准)。这 些技术的组合也可应用于多RAT系统。在这种PQoS系统中,车辆可 交换关于通信周围环境的信息,以便提供PQoS。Communication between mobile transceivers is an area of research and development. For example, in vehicle applications, research is underway to improve both the performance and predictability of wireless communication between vehicles in changing environments. For example, in the context of collaborative driving, prediction of the future quality of service (QoS) of a wireless communication link between two vehicles improves the functionality of vehicle applications as quality of service (QoS) conditions change. In practice, when no predictive QoS (PQoS) is provided, the application may only react to changes and thus may be limited to the lower bound performance of the communication system. PQoS systems can operate on vehicles, communication nodes, using radio access technologies (RATs) such as LTE-V (Long Term Evolution for Vehicle Communications) or 5G-V2X (for vehicle-to-anywhere) in its standalone mode The fifth generation mobile communication system for transaction communication) or IEEE 802.11p (standard of the American Institute of Electrical and Electronics Engineers). Combinations of these techniques can also be applied to multi-RAT systems. In such a PQoS system, vehicles can exchange information about the communication surroundings in order to provide PQoS.
在文献中,信道模型(半随机的,如空间信道模型(SCM);以及确 定性的,如光线跟踪)提供了来自其它通信节点的路径损耗和干扰的估 计。统计模型可提供关于周围车辆和服务质量之间的某种映射的思 想。在Ma、Chen和Refai的“Performance and Reliabilityof DSRC Vehicular Safety Communication:A Formal Analysis and IEEE 802.11pVANets:Experimental evaluation of packet inter-reception time provide suchmodel”中示出了示例。Jornod、El Assad、Kwoczek和Kürner的 论文“Prediction ofPacket Inter Reception Time for Platooning using Conditional ExponentialDistribution”提供了环境密度和分组间接收时 间之间的统计联系。该论文还显示了一种将周围环境划分为圆形区域 以代表发射器周围的通信量密度的方法。它使用收发器之间的距离来 估计链路的QoS。In the literature, channel models (semi-random, such as spatial channel models (SCM); and deterministic, such as ray tracing) provide estimates of path loss and interference from other communication nodes. Statistical models can provide ideas about some kind of mapping between surrounding vehicles and quality of service. An example is shown in "Performance and Reliability of DSRC Vehicular Safety Communication: A Formal Analysis and IEEE 802.11 pVANets: Experimental evaluation of packet inter-reception time provide such model" by Ma, Chen and Refai. The paper "Prediction of Packet Inter Reception Time for Platooning using Conditional ExponentialDistribution" by Jornod, El Assad, Kwoczek and Kürner provides a statistical link between ambient density and reception time between packets. The paper also shows a way to divide the surrounding environment into circular regions to represent the traffic density around the transmitter. It uses the distance between transceivers to estimate the QoS of the link.
发明内容SUMMARY OF THE INVENTION
可能需要一种用于预测车辆之间无线通信链路的服务质量的改 进概念。There may be a need for an improved concept for predicting the quality of service of wireless communication links between vehicles.
实施例基于这样的发现,即用于预测服务质量的先前方法集中于 提供对单个时间点的预测,而不是使用跟踪移动收发器的环境的逐渐 发展并因此跟踪移动收发器和另一个移动收发器之间的无线通信链 路的服务质量的逐渐发展的预测方法。在本公开的实施例中,通过执 行基于先前生成的环境模型的时间序列预测来预测移动收发器周围 的活动收发器的未来环境模型。基于针对未来某个时间点(或多个时间 点)预测的环境模型,使用机器学习模型来确定未来一个或多个时间点 的服务质量。因此,通过使用对环境模型的时间序列预测,预测了受 环境中的变化影响的无线通信链路的服务质量的发展。Embodiments are based on the discovery that previous methods for predicting quality of service have focused on providing predictions for a single point in time, rather than using the gradual development of the environment for tracking a mobile transceiver and thus tracking a mobile transceiver and another mobile transceiver. An evolving prediction method for the quality of service between wireless communication links. In an embodiment of the present disclosure, future environmental models of active transceivers around the mobile transceiver are predicted by performing a time series forecast based on previously generated environmental models. Based on an environmental model predicted for a future point in time (or points in time), a machine learning model is used to determine the quality of service at one or more points in time in the future. Thus, by using time series predictions of the environment model, the development of the quality of service of the wireless communication link affected by changes in the environment is predicted.
实施例提供了一种用于预测移动收发器和另一个移动收发器之 间的无线通信链路的未来服务质量的方法。该方法包括在多个时间点 上确定移动收发器的环境中的一个或多个活动收发器的多个环境模 型。该方法包括使用对多个环境模型的时间序列预测来确定一个或多 个活动收发器在未来时间点的预测的未来环境模型。该方法包括使用 机器学习模型预测未来时间点的无线通信链路的未来服务质量。机器 学习模型被训练来提供关于给定环境模型的预测服务质量的信息。预 测的未来环境模型被用作机器学习模型的输入。通过执行时间序列预 测,移动收发器的无线电环境在未来的时间点被建模。该预测的未来 环境模型又可经由机器学习模型用于预测无线链路的未来服务质量。Embodiments provide a method for predicting future quality of service of a wireless communication link between a mobile transceiver and another mobile transceiver. The method includes determining multiple environment models of one or more active transceivers in the environment of the mobile transceiver at multiple points in time. The method includes determining a predicted future environment model for one or more active transceivers at future points in time using time series forecasts for the plurality of environment models. The method includes using a machine learning model to predict future quality of service of the wireless communication link at future points in time. The machine learning model is trained to provide information about the predicted quality of service given the environmental model. The predicted future environment model is used as the input to the machine learning model. By performing time series predictions, the radio environment of the mobile transceiver is modeled at future points in time. This predicted future environment model can in turn be used to predict the future quality of service of the wireless link via a machine learning model.
在各种实施例中,基于统计拟合函数或基于时间自相关函数来执 行时间序列预测。这种基于统计的方法具有较低的计算开销。In various embodiments, time series forecasting is performed based on a statistical fitting function or based on a temporal autocorrelation function. This statistics-based approach has low computational overhead.
备选地,可使用另一个机器学习模型来执行时间序列预测。基于 机器学习的时间序列预测在具有较大数量相关特征并且在较高的计 算量下的场景中可能是有用的。Alternatively, another machine learning model can be used to perform time series forecasting. Machine learning-based time series forecasting may be useful in scenarios with a large number of correlated features and under high computational cost.
例如,可确定时间序列预测,使得环境模型朝向预测的未来环境 模型的进展被预测。换句话说,多个环境模型下的数据可外推至预测 的未来环境模型。For example, a time series forecast may be determined such that the progress of the environmental model towards a predicted future environmental model is predicted. In other words, data from multiple environmental models can be extrapolated to predicted future environmental models.
例如,时间序列预测可产生预测的未来环境模型。基于预测的未 来环境模型来预测未来服务质量。换句话说,时间序列预测可能不适 用于服务质量本身,而是用于作为未来服务质量的预测的基础的环境 模型。For example, time series forecasting can produce predicted future environmental models. Predict future service quality based on a predicted future environment model. In other words, time series forecasting may not be applied to the quality of service itself, but to an environmental model that underlies predictions of future quality of service.
在各种实施例中,为至少两个未来的时间点预测无线通信链路的 未来服务质量。例如,预测的未来环境模型可针对至少两个未来的时 间点进行预测,并且随后用于预测至少两个未来的时间点的未来服务 质量。In various embodiments, the future quality of service of the wireless communication link is predicted for at least two future points in time. For example, the predicted future environment model may be predicted for at least two future points in time, and then used to predict future quality of service for at least two future points in time.
例如,通过确定在至少两个未来的时间点的一个或多个活动收发 器的预测未来环境模型,并使用在至少两个未来的时间点的一个或多 个活动收发器的预测未来环境模型作为机器学习模型的输入,可预测 至少两个未来的时间点的无线通信链路的未来服务质量。因此,可在 未来时间点的时间线上提供未来服务质量的预测。For example, by determining a predicted future environment model for one or more active transceivers at at least two future points in time, and using the predicted future environment model for one or more active transceivers at at least two future points in time as The input of the machine learning model can predict the future quality of service of the wireless communication link for at least two future time points. Therefore, predictions of future service quality can be provided on a timeline of future points in time.
在实施例中,在多个时间点上确定一个或多个活动收发器的多个 环境模型。该方法可包括在多个时间点确定无线通信链路的服务质 量。该方法可包括使用在多个时间点的多个环境模型作为训练输入以 及在相应的多个时间点的无线通信链路的服务质量作为机器学习模 型的训练的训练输出来训练机器学习模型。因此,机器学习模型可在 由移动收发器生成和/或为移动收发器生成的环境模型上进行训练。In an embodiment, multiple environmental models for one or more active transceivers are determined at multiple points in time. The method may include determining the quality of service of the wireless communication link at multiple points in time. The method may include training the machine learning model using the plurality of environment models at the plurality of time points as training inputs and the quality of service of the wireless communication link at the corresponding plurality of time points as training outputs of the training of the machine learning model. Thus, the machine learning model can be trained on the environment model generated by and/or for the mobile transceiver.
例如,可训练机器学习模型来实现回归算法。基于回归的机器学 习算法可用于确定数值(在一定范围内),诸如未来服务质量。For example, a machine learning model can be trained to implement a regression algorithm. Regression-based machine learning algorithms can be used to determine values (within a certain range), such as future quality of service.
在各种实施例中,机器学习模型可被训练以提供给定环境模型的 预测服务质量的概率分布。这样做可避免常见的服务质量预测值使预 测发生偏差的情况。In various embodiments, a machine learning model may be trained to provide a probability distribution of predicted quality of service given an environmental model. Doing so avoids the common quality of service forecasts that skew the forecasts.
在一些实施例中,一个或多个活动收发器被放置在环境模型内的 网格上。该网格可包括多个邻接的小区(cell)。一个或多个活动收发器 可被聚集在网格内的每个小区中。例如,该网格可用于促进环境模型 的维护并限制机器学习模型的输入数量。In some embodiments, one or more active transceivers are placed on a grid within the environment model. The grid may include multiple contiguous cells. One or more active transceivers may be clustered in each cell within the grid. For example, the grid can be used to facilitate maintenance of environmental models and limit the number of inputs to machine learning models.
例如,网格可为圆形网格。由其它活动收发器进行的传输基于它 们的距离影响无线通信链路,该距离可由圆形网格来建模。For example, the grid may be a circular grid. Transmissions by other active transceivers affect the wireless communication link based on their distance, which can be modeled by a circular grid.
预测服务质量可涉及分组间接收时间、分组差错率、时延和数据 速率中的至少一个。这些是可使用上述机器学习模型预测的服务质量 特性。Predicting quality of service may relate to at least one of inter-packet reception time, packet error rate, delay, and data rate. These are the quality of service characteristics that can be predicted using the machine learning model described above.
本公开的实施例还提供了一种计算机程序,当该计算机程序在计 算机、处理器或可编程硬件部件上执行时,该计算机程序具有用于执 行上述方法的程序代码。Embodiments of the present disclosure also provide a computer program having program code for performing the above-described method when the computer program is executed on a computer, processor or programmable hardware component.
本公开的实施例还提供了一种用于预测移动收发器和另一个移 动收发器之间的无线通信链路的未来服务质量的装置。该装置包括用 于在移动通信系统中通信的一个或多个接口。该装置包括配置成执行 上述方法的控制模块。Embodiments of the present disclosure also provide an apparatus for predicting future quality of service of a wireless communication link between a mobile transceiver and another mobile transceiver. The apparatus includes one or more interfaces for communicating in a mobile communication system. The apparatus includes a control module configured to perform the above-described method.
附图说明Description of drawings
一些其它特征或方面将仅作为示例使用装置或方法或计算机程 序或计算机程序产品的以下非限制性实施例并参照附图来描述,在附 图中:Some other features or aspects will be described, by way of example only, using the following non-limiting embodiments of an apparatus or method or computer program or computer program product and with reference to the accompanying drawings, in which:
图1a和图1b示出了用于预测移动收发器和另一个移动收发器之 间的无线通信链路的未来服务质量的方法的实施例的流程图;Figures 1a and 1b illustrate a flowchart of an embodiment of a method for predicting future quality of service of a wireless communication link between a mobile transceiver and another mobile transceiver;
图1c示出了用于预测移动收发器和另一个移动收发器之间的无 线通信链路的未来服务质量的装置以及包括该装置的移动收发器(诸 如车辆)的示意图;Figure 1c shows a schematic diagram of an apparatus for predicting future quality of service of a wireless communication link between a mobile transceiver and another mobile transceiver, and a mobile transceiver (such as a vehicle) including the apparatus;
图1d示出了用于训练机器学习模型的方法的实施例的流程图;Figure 1d shows a flowchart of an embodiment of a method for training a machine learning model;
图2示出了与环境模型相关的服务质量属性随时间的发展的表;Figure 2 shows a table of the development of quality of service attributes related to the environment model over time;
图3a至图3d示出了与机器学习模型的训练相关的示意图。Figures 3a to 3d show schematic diagrams related to the training of machine learning models.
具体实施方式Detailed ways
现在将参照附图更全面地描述各种示例性实施例,在附图中示出 了一些示例性实施例。在附图中,为了清楚起见,线、层或区域的厚 度可能被夸大。任选部件可用折线、断续线或点划线来表示。Various exemplary embodiments will now be described more fully with reference to the accompanying drawings, in which some exemplary embodiments are shown. In the drawings, the thickness of lines, layers or regions may be exaggerated for clarity. Optional components can be represented by broken lines, broken lines, or dashed-dotted lines.
因此,尽管示例性实施例能够有各种修改和备选形式,但是其实 施例在附图中以示例的方式示出,并将在本文中详细描述。然而,应 当理解,并不打算将示例性实施例限制于所公开的特定形式,相反, 示例性实施例将覆盖落入本发明的范围内的所有修改、等同物和备选 方案。贯穿附图的描述,相同的数字是指相同或相似的元件。Thus, while the exemplary embodiments are capable of various modifications and alternative forms, embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intention to limit exemplary embodiments to the particular forms disclosed, but on the contrary, exemplary embodiments are to cover all modifications, equivalents, and alternatives falling within the scope of the invention. Throughout the description of the drawings, the same numerals refer to the same or similar elements.
如本文所用,术语“或”是指非排他性的“或”,除非另有说明(例如, “否则”或“或在替代方案中”)。此外,如本文所用,用于描述元件之间 的关系的词语应该被广义地解释为包括直接关系或中间元件的存在, 除非另有说明。例如,当元件被称为“连接”或“联接”到另一个元件时, 该元件可直接连接或联接到另一个元件,或者可存在居间元件。相反,当元件被称为“直接连接”或“直接联接”到另一个元件时,不存在居间 元件。类似地,诸如“在...之间”、“相邻”等的词语应该以类似的方式 来解释。As used herein, the term "or" refers to a non-exclusive "or" unless stated otherwise (eg, "otherwise" or "or in the alternative"). Furthermore, as used herein, terms used to describe a relationship between elements should be construed broadly to include the direct relationship or the presence of intervening elements, unless stated otherwise. For example, when an element is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, there are no intervening elements present. Similarly, words such as "between", "adjacent", etc. should be interpreted in a similar fashion.
本文使用的术语仅仅是为了描述特定实施例,而并不旨在限制示 例性实施例。如本文所用,单数形式“一”、“一个”和“该”也旨在包括 复数形式,除非上下文另有明确说明。还应当理解,当在本文中使用 时,术语“包括”、“包含”或“含有”指定所陈述的特征、整数、步骤、 操作、元件或部件的存在,但不排除一个或多个其它特征、整数、步 骤、操作、元件、部件或它们的组合的存在或添加。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the exemplary embodiments. As used herein, the singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will also be understood that the terms "comprising", "comprising" or "containing" when used herein designate the presence of stated features, integers, steps, operations, elements or components, but do not exclude one or more other features , an integer, a step, an operation, an element, a component, or the presence or addition of a combination thereof.
除非另有定义,本文使用的所有术语(包括技术和科学术语)具有 与示例性实施例所属领域的普通技术人员通常理解的含义相同的含 义。还应当理解,术语(例如在常用词典中定义的那些术语)应当被解 释为具有与它们在相关领域的上下文中的含义一致的含义,并且除非 在本文中明确如此定义,否则不会以理想化或过于正式的意义来解 释。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which example embodiments belong. It is also to be understood that terms, such as those defined in commonly used dictionaries, should be construed to have meanings consistent with their meanings in the context of the relevant art, and are not intended to be idealized unless explicitly so defined herein Or in an overly formal sense to explain.
图1a和图1b示出了用于预测移动收发器100和另一个移动收发 器102之间的无线通信链路的未来服务质量的方法的实施例的流程 图。该方法包括在多个时间点上确定110移动收发器的环境中的一个 或多个活动收发器104的多个环境模型。该方法包括使用对多个环境 模型的时间序列预测125来确定120一个或多个活动收发器在未来时 间点的预测的未来环境模型。该方法包括使用机器学习模型预测130 未来时间点的无线通信链路的未来服务质量。机器学习模型被训练来 提供关于给定环境模型的预测服务质量的信息。预测的未来环境模型 作为机器学习模型的输入来使用135。Figures 1a and 1b show a flow diagram of an embodiment of a method for predicting future quality of service of a wireless communication link between a
图1c示出了用于预测移动收发器100和另一个移动收发器102 之间的无线通信链路的未来服务质量的对应装置10以及包括该装置 10的移动收发器100(诸如车辆)的示意图。该装置包括用于在移动通 信系统中通信的一个或多个接口12。该装置包括控制模块14,该控 制模块14被配置成执行图1a、图1b和/或图1d所示的方法中的至少 一种。通常,控制模块14可例如结合一个或多个接口12来提供装置 10的功能。Figure 1c shows a schematic diagram of a
以下描述涉及图1a和/或图1b的方法和图1c的装置两者。结合 图1a和/或图1b的方法描述的特征同样可应用于图1c的装置。The following description refers to both the method of Figures Ia and/or Ib and the apparatus of Figure Ic. Features described in connection with the method of Figure 1a and/or Figure 1b are equally applicable to the device of Figure 1c.
本公开的实施例涉及用于预测移动收发器和另一个移动收发器 之间的无线通信链路的未来服务质量的方法、装置和计算机程序。为 了预测未来的服务可用性和QoS,对无线电环境有一个良好的了解可 能是有益的。无线电环境的典型特性可能是路径损耗、干扰条件、系 统的负载、载波频率数量、多种无线电接入技术(RAT)等。无线电环 境模拟得越详细,其分类所需的信息量就越大。Embodiments of the present disclosure relate to methods, apparatus and computer programs for predicting future quality of service of a wireless communication link between a mobile transceiver and another mobile transceiver. In order to predict future service availability and QoS, it may be beneficial to have a good understanding of the radio environment. Typical characteristics of a radio environment may be path loss, interference conditions, system loading, number of carrier frequencies, multiple radio access technologies (RATs), etc. The more detailed the radio environment is modeled, the greater the amount of information required for its classification.
如上所述,无线通信链路的未来QoS被确定。在这种情况下,前 缀“未来”表示预测未来某个时间点的QoS。为了实现这一点,可为未 来预测一个或多个活动收发器的存在(以及因此的活动)(例如,使用一 个或多个活动收发器的轨迹),并且对未来QoS的预测可基于对一个 或多个活动收发器的未来活动的预测。被预测的QoS可包括一个或多 个方面,诸如无线链路上的预测最小、平均和/或最大数据传输速率、 最小、平均和/或最大分组或比特误码率、分组的两次成功传输之间的 最小、平均或最大时间(例如,也表示为分组间接收时间PIR)、最小、 平均或最大时延等。换句话说,预测服务质量可涉及无线通信链路的 分组间接收时间、分组差错率、时延和数据速率中的至少一个。通常, 预测的QoS可指示无线链路的预期性能和/或预期可靠性。As described above, the future QoS of the wireless communication link is determined. In this case, the prefix "future" means predicting the QoS at a point in time in the future. To accomplish this, the presence (and thus activity) of one or more active transceivers can be predicted for the future (eg, using the trajectory of the one or more active transceivers), and the prediction of future QoS can be based on a prediction of one or more active transceivers. Forecast of future activity for multiple active transceivers. The predicted QoS may include one or more aspects, such as predicted minimum, average and/or maximum data transmission rates, minimum, average and/or maximum packet or bit error rates, two successful transmissions of packets on the wireless link Minimum, average or maximum time between (eg, also expressed as inter-packet reception time PIR), minimum, average or maximum delay, etc. In other words, predicting quality of service may relate to at least one of inter-packet reception time, packet error rate, delay, and data rate of the wireless communication link. Generally, the predicted QoS may indicate the expected performance and/or expected reliability of the wireless link.
在实施例中,无线链路的未来QoS可由移动收发器预测,即由无 线链路上的无线传输的接收器预测。因此,该方法可由移动收发器执 行,和/或移动收发器可包括图1c的装置。In an embodiment, the future QoS of the wireless link may be predicted by the mobile transceiver, i.e. by the receiver of the wireless transmission on the wireless link. Thus, the method may be performed by a mobile transceiver, and/or the mobile transceiver may include the apparatus of Figure 1c.
该方法包括在多个时间点上确定110移动收发器的环境中的一个 或多个活动收发器104的多个环境模型。通常,一个或多个活动收发 器的环境模型可针对一个或多个活动收发器的存在和/或传输活动来 对移动收发器的环境进行建模。例如,环境模型可包括和/或表示一个 或多个活动收发器在移动收发器的环境中的位置。在各种实施例中, 环境模型可限于移动收发器周围的预定范围,例如预定的圆形距离, 或者根据网格的预定尺寸。例如,一个或多个活动收发器可被放置在 环境模型内的网格上。该网格可包括多个相邻的小区。一个或多个活 动收发器可被聚集在网格内的每个小区中。换句话说,一个或多个移 动收发器的位置和/或距离可由它们被置于的网格的小区来表示。The method includes determining 110 a plurality of environmental models of one or more
例如,在一些情况下,网格可为二维矩形网格。换句话说,网格 的小区可具有矩形形状。另外,网格的每个小区可具有(基本上)相同 的大小/尺寸。For example, in some cases, the grid may be a two-dimensional rectangular grid. In other words, the cells of the grid may have a rectangular shape. Additionally, each cell of the grid may have (substantially) the same size/dimension.
备选地,网格可为圆形网格,例如一维圆形网格。在一维圆形网 格中,网格的小区沿着一个尺寸(即距中心的距离)形成,使得多个同 心圆形成网格,圆之间的空间是网格的小区。在二维圆形网格中,两 个相邻圆之间的每个空间被进一步细分,例如分成象限。换句话说, 网格可由圆形成,两个圆之间的空间是(在一维圆形网格中)或者包括 (在二维圆形网格中)网格的小区。如果使用二维圆形网格,两个圆之 间的每个空间可被划分成例如象限,使得在两个圆之间的空间中存在 多个小区。圆形网格的每个圆可代表距离。例如,放置在圆形网格的 中心点(即移动收发器所处的位置)和第一个圆(从中心点起)之间的小 区中的活动收发器可具有距移动收发器至多n米的距离,放置在第一 个圆和第二个圆之间的小区中的活动收发器可具有距活动收发器的 多于n米且至多2n米的距离,等等。这种网格应用于图2的表格中。Alternatively, the grid may be a circular grid, such as a one-dimensional circular grid. In a one-dimensional circular grid, the cells of the grid are formed along one dimension (i.e., the distance from the center) such that multiple concentric circles form the grid, and the spaces between the circles are the cells of the grid. In a two-dimensional circular grid, each space between two adjacent circles is further subdivided, such as into quadrants. In other words, the grid may be formed by circles, the space between two circles being (in a one-dimensional circular grid) or including (in a two-dimensional circular grid) a cell of the grid. If a two-dimensional circular grid is used, each space between two circles can be divided into quadrants, for example, so that there are multiple cells in the space between the two circles. Each circle of the circular grid can represent a distance. For example, an active transceiver in a cell placed between the center point of the circular grid (i.e. where the mobile transceiver is located) and the first circle (from the center point) may have a distance of at most n meters from the mobile transceiver , the active transceiver placed in the cell between the first circle and the second circle may have a distance of more than n meters and at most 2 n meters from the active transceiver, and so on. This grid is used in the table of Figure 2.
在实施例中,确定110多个环境模型可包括获得关于一个或多个 活动收发器的信息。例如,该方法可包括经由一个或多个活动收发器 的无线消息(例如,无线车对车消息,如果活动收发器是车辆的话)收 集关于一个或多个活动收发器的位置的信息。例如,可处理一个或多 个活动收发器的周期性状态消息,以收集关于一个或多个活动收发器 的位置的信息。因此,该方法可包括接收一个或多个活动收发器的无 线传输。移动收发器可接收一个或多个活动收发器(例如,其它车辆/ 收发器)的无线传输。基于接收到的无线传输,可确定一个或多个活动 收发器的位置。例如,无线传输可包括关于已经发送相应无线消息的活动收发器的位置的信息。该方法可包括基于所接收的一个或多个活 动收发器的无线传输来确定一个或多个活动收发器的环境模型。更一 般地说,该方法可包括基于所确定的一个或多个活动收发器的位置来 生成环境模型。In an embodiment, determining 110 more than one environment model may include obtaining information about one or more active transceivers. For example, the method may include collecting information about the location of the one or more active transceivers via wireless messages (e.g., wireless vehicle-to-vehicle messages, if the active transceiver is a vehicle) via the one or more active transceivers. For example, periodic status messages of one or more active transceivers may be processed to collect information about the location of the one or more active transceivers. Accordingly, the method may include receiving wireless transmissions from one or more active transceivers. The mobile transceiver may receive wireless transmissions from one or more active transceivers (eg, other vehicles/transceivers). Based on the received wireless transmissions, the location of one or more active transceivers can be determined. For example, the wireless transmission may include information about the location of the active transceiver that has sent the corresponding wireless message. The method may include determining an environmental model of the one or more active transceivers based on the received wireless transmissions of the one or more active transceivers. More generally, the method may include generating an environment model based on the determined locations of the one or more active transceivers.
在各种实施例中,该方法可包括从另一个移动收发器(例如从一 个或多个活动收发器的移动收发器)接收多个环境模型的至少一个子 集的至少一部分。例如,在确定它们的环境模型之后,移动收发器可 与其它移动收发器共享信息,例如通过广播相应的环境模型。换句话 说,该方法可包括向其它移动收发器广播环境模型。In various embodiments, the method may include receiving at least a portion of at least a subset of at least a subset of the plurality of environment models from another mobile transceiver (e.g., from a mobile transceiver of one or more active transceivers). For example, after determining their environment models, mobile transceivers may share information with other mobile transceivers, such as by broadcasting the corresponding environment models. In other words, the method may include broadcasting the environment model to other mobile transceivers.
基于由移动收发器共同收集的信息,每个移动收发器/车辆可执行 对其与其它移动收发器保持的无线链路的未来QoS的预测。Based on the information collectively collected by the mobile transceivers, each mobile transceiver/vehicle can perform predictions of the future QoS of the wireless links it maintains with other mobile transceivers.
在实施例中,在多个时间点上确定一个或多个活动收发器的多个 环境模型。多个环境模型中的每一个可表示在多个时间点中的一个时 间点移动收发器的环境中的一个或多个活动收发器。多个环境模型可 随时间推移(例如周期性地)生成。图2示出了在多个时间点(例如每0.5 秒)生成的多个环境模型的示例。在本公开的上下文中,术语“在(未来的)一个或多个时间点处或对于(未来的)一个或多个时间点”仅仅表示 执行了与该一个或多个时间点相关的动作,并且不一定表示该动作精 确地在相同的一个或多个未来时间点处执行。然而,在一些情况下, 可在相同的时间点执行相应的动作,例如在特定时间点确定(而不是预 测)服务质量的情况下。In an embodiment, multiple environmental models for one or more active transceivers are determined at multiple points in time. Each of the plurality of environment models may represent one or more active transceivers in an environment in which the transceiver is moved at one of the plurality of points in time. Multiple environment models can be generated over time (e.g. periodically). Figure 2 shows an example of multiple environment models generated at multiple points in time (eg, every 0.5 seconds). In the context of this disclosure, the term "at or for (future) one or more points in time" simply means that an action was performed in relation to the one or more points in time, and does not necessarily mean that the action is performed at exactly the same point or points in the future. However, in some cases, corresponding actions may be performed at the same point in time, such as where the quality of service is determined (rather than predicted) at a particular point in time.
该方法包括使用对多个环境模型的时间序列预测125来确定120 一个或多个活动收发器在未来时间点的预测的未来环境模型。通常, 基于关于一个或多个数值的历史数据,时间序列预测预测一个或多个 数值在时间间隔(包括多个时间点)上的发展。换句话说,可基于关于 数值的历史数据来预测一个或多个数值的趋势,并且可预测数值的发 展的时间序列。在实施例中,一个或多个数值可表示(即形成)环境模 型。例如,每个环境模型可用多个数值来表示。例如,每个环境可包 括关于网格的每个小区的活动收发器的数量的数字信息,其中网格的 每个小区的活动收发器的数量是对其执行时间序列预测的值。因此, 移动收发器的环境中的一个或多个活动收发器的多个环境模型可为 关于一个或多个数值的历史数据(表示预测的未来环境模型)。The method includes determining 120 a predicted future environment model for one or more active transceivers at future points in time using 125 time series predictions for the plurality of environment models. Typically, time series forecasting predicts the development of one or more values over time intervals, including multiple points in time, based on historical data about one or more values. In other words, the trend of one or more values can be predicted based on historical data about the values, and the time series of developments of the values can be predicted. In an embodiment, one or more values may represent (i.e. form) an environment model. For example, each environment model can be represented by multiple values. For example, each environment may include numerical information about the number of active transceivers per cell of the grid, where the number of active transceivers per cell of the grid is a value for which time-series predictions are performed. Thus, the plurality of environmental models for one or more active transceivers in the environment of the mobile transceiver may be historical data (representing predicted future environmental models) for one or more values.
存在不同的方法来执行时间序列预测。在一些实施例中,可使用 基于统计的方法。例如,可基于统计拟合函数或基于时间自相关函数 来执行125时间序列预测。在统计拟合函数中,可通过对关于数值的 历史数据执行拟合来预测该数值的趋势。时间自相关是对时间序列执 行的自相关函数,用于预测时间序列在未来的时间点或时间段的发 展。这两个函数都可应用于上述目标。例如,统计拟合函数或时间自 相关函数可应用于多个环境模型中,以确定预测的未来环境模型(在未 来的时间点,或者在至少两个未来的时间点)。Different methods exist to perform time series forecasting. In some embodiments, statistical based methods may be used. For example, time series forecasting can be performed 125 based on a statistical fitting function or based on a temporal autocorrelation function. In a statistical fit function, you can predict the trend of a value by performing a fit to historical data about that value. Temporal autocorrelation is an autocorrelation function performed on a time series to predict the development of the time series at a future time point or period. Both functions can be applied to the above targets. For example, a statistical fit function or temporal autocorrelation function can be applied to multiple environmental models to determine a predicted future environmental model (at a future time point, or at least two future time points).
备选地,可使用机器学习来执行时间序列预测。换句话说,时间 序列预测125是使用另一个机器学习模型来执行的。通常,如稍后将 介绍的,经由机器学习模型的数值的预测可使用基于回归的机器学习 算法来执行。为了训练另一个机器学习模型,多个环境模型(由数值表 示)可被分成训练输入、训练输出和未使用的环境模型。例如,如果未 来环境模型将在预定时间间隔之外的时间点被预测,则对于每个训练 样本,可选择多个环境模型的子集作为用于训练另一个机器学习模型 的训练输入,并且可将为距离环境模型的子集(在未来)预定时间间隔 之外的时间确定的环境模型用作训练输出。该子划分可在多个环境模型上以滑动窗口的方式重复。基于该训练,另一个机器学习模型可被 配置成生成未来某个时间点的预测的未来环境模型,该未来某个时间 点是被输入到该另一个机器学习模型中的预定时间间隔。再次,该另 一个机器学习模型可以滑动窗口方式对多个环境模型的子集使用,以 确定至少两个/多个未来的时间点的预测的未来环境模型(或者更确切 地说,至少两个/多个预测的未来环境模型)。相同的概念可应用于基 于统计的函数。Alternatively, machine learning can be used to perform time series forecasting. In other words, time series forecasting 125 is performed using another machine learning model. Typically, as will be described later, the prediction of numerical values via a machine learning model can be performed using regression-based machine learning algorithms. To train another machine learning model, multiple environment models (represented by numerical values) can be divided into training input, training output, and unused environment models. For example, if a future environment model is to be predicted at points in time outside of a predetermined time interval, then for each training sample, a subset of multiple environment models can be selected as training inputs for training another machine learning model, and the Environment models determined for times other than a predetermined time interval (in the future) from a subset of the environment models are used as training outputs. This subdivision can be repeated in a sliding window fashion over multiple environment models. Based on this training, another machine learning model may be configured to generate a predicted future environment model for a future point in time that is a predetermined time interval that is input into the other machine learning model. Again, this other machine learning model can be used on a subset of the plurality of environment models in a sliding window fashion to determine predicted future environment models for at least two/more future points in time (or rather, at least two / Multiple predicted future environmental models). The same concept can be applied to statistics-based functions.
这两种方法都试图预测环境模型在未来的发展(即,直到未来的 时间点),以便能够随后使用预测的未来环境模型来预测未来的服务质 量。换句话说,可确定125时间序列预测,使得环境模型朝向预测的 未来环境模型的进展被预测。在任何情况下,未来环境模型的预测可 尝试对一个或多个活动收发器的移动以及移动收发器(和另一个移动 收发器)的相应移动进行建模。Both of these approaches attempt to predict the future development of the environmental model (i.e., up to a future point in time) so that the predicted future environmental model can then be used to predict future quality of service. In other words, the time series forecast can be determined 125 such that the progress of the environmental model towards the predicted future environmental model is predicted. In any case, the prediction of the future environment model may attempt to model the movement of one or more active transceivers and the corresponding movement of the mobile transceiver (and another mobile transceiver).
与直觉相反,时间序列预测可能不能直接应用于未来服务质量的 预测(因为在没有一些附加输入的情况下这可能不太可靠),而是应用 于作为未来服务质量的预测的基础的环境模型。换句话说,时间序列 预测可产生预测的未来环境模型,其中未来服务质量基于预测的未来 环境模型来预测。Counterintuitively, time series forecasting may not be directly applied to forecasts of future quality of service (as this may not be reliable without some additional input), but rather to an environmental model that underlies forecasts of future quality of service. In other words, time series forecasting can produce a predicted future environment model, where future service quality is predicted based on the predicted future environment model.
该方法包括使用机器学习模型预测130未来时间点的无线通信链 路的未来服务质量。预测的未来环境模型作为机器学习模型的输入来 使用135。机器学习模型的输出可为无线通信链路的未来服务质量, 或者可基于机器学习模型的输出来预测无线通信链路的未来服务质 量。The method includes predicting 130 future quality of service of the wireless communication link at future points in time using a machine learning model. Predicted future environment models are used as input to machine learning models135. The output of the machine learning model may be the future quality of service of the wireless communication link, or the future quality of service of the wireless communication link may be predicted based on the output of the machine learning model.
机器学习是指这样的算法和统计模型:在不使用显式指令,而是 依赖模型和推理的情况下,计算机系统可使用该算法和统计模型来执 行特定任务。例如,在机器学习中,可使用从历史和/或训练数据的分 析中推断出的数据转换,而不是基于规则的数据转换。例如,可使用 机器学习模型或使用机器学习算法来分析图像的内容。为了使机器学 习模型分析图像的内容,可使用训练图像作为输入和训练内容信息作 为输出来训练机器学习模型。通过用大量训练图像和相关联的训练内 容信息训练机器学习模型,机器学习模型“学习”识别图像的内容,因 此可使用机器学习模型识别训练图像中未包括的图像的内容。同样的 原理也可用于其它类型的传感器数据:通过使用训练传感器数据和期 望的输出来训练机器学习模型,机器学习模型“学习”传感器数据和输 出之间的转换,该转换可用于基于提供给机器学习模型的非训练传感 器数据来提供输出。在实施例中,机器学习模型被训练成提供环境模 型和根据环境模型预测的无线通信链路的服务质量之间的转换。换句 话说,机器学习模型被训练成将环境模型与无线通信链路的预测服务 质量相关联。Machine learning refers to algorithms and statistical models that computer systems can use to perform specific tasks without using explicit instructions, but relying on models and reasoning. For example, in machine learning, data transformations inferred from analysis of historical and/or training data may be used instead of rule-based data transformations. For example, the content of an image can be analyzed using a machine learning model or using a machine learning algorithm. In order for the machine learning model to analyze the content of the image, the machine learning model can be trained using the training image as input and the training content information as output. By training a machine learning model with a large number of training images and associated training content information, the machine learning model "learns" to identify the content of the images, and thus the machine learning model can be used to identify the content of images not included in the training images. The same principle can be used for other types of sensor data: by training a machine learning model with the training sensor data and the desired output, the machine learning model "learns" a transformation between the sensor data and the output that can be used to Learn the model's untrained sensor data to provide output. In an embodiment, the machine learning model is trained to provide a translation between the environment model and the quality of service of the wireless communication link predicted from the environment model. In other words, the machine learning model is trained to correlate the environment model with the predicted quality of service of the wireless communication link.
使用训练输入数据来训练机器学习模型。上面指定的示例使用了 一种称为“监督学习”的训练方法。在监督学习中,使用多个训练样本 来训练机器学习模型,其中每个样本可包括多个输入数据值和多个期 望输出值,即每个训练样本与期望输出值相关联。通过指定训练样本 和期望输出值两者,机器学习模型基于与训练期间提供的样本相似的 输入样本来“学习”提供哪个输出值。监督学习可基于监督学习算法, 例如分类算法、回归算法或相似性学习算法。当输出被限制为有限的 一组值时,即输入被分类为该有限的一组值之一时,可使用分类算法。 当输出可能具有任何数值(在一定范围内)时,可使用回归算法。相似性学习算法类似于分类算法和回归算法两者,但基于使用相似性函数 从示例中学习,该函数测量两个对象的相似性或相关性。Use the training input data to train a machine learning model. The example specified above uses a training method called "supervised learning". In supervised learning, a machine learning model is trained using multiple training samples, where each sample may include multiple input data values and multiple expected output values, that is, each training sample is associated with an expected output value. By specifying both training samples and expected output values, the machine learning model "learns" which output value to provide based on input samples that are similar to the samples provided during training. Supervised learning can be based on supervised learning algorithms, such as classification algorithms, regression algorithms, or similarity learning algorithms. Classification algorithms can be used when the output is restricted to a finite set of values, i.e. when the input is classified as one of the finite set of values. Regression algorithms can be used when the output may have any value (within a certain range). Similarity learning algorithms are similar to both classification and regression algorithms, but are based on learning from examples using a similarity function that measures the similarity or relatedness of two objects.
通常,机器学习模型被训练来提供关于给定环境模型的预测服务 质量的信息。例如,无线通信链路的预测服务质量可用数值来表示, 该数值可使用基于回归的机器学习算法来获得。例如,预测服务质量 可涉及分组间接收时间、分组差错率、时延和数据速率中的至少一个, 这些指标都可由数值来表示。因此,机器学习模型可被训练为实现(即, 基于)回归算法,例如,以预测无线通信链路的分组间接收时间、分组 差错率、时延和数据速率中的至少一个。Typically, machine learning models are trained to provide information about the predicted quality of service for a given environment model. For example, the predicted quality of service of a wireless communication link can be represented by a numerical value, which can be obtained using a regression-based machine learning algorithm. For example, the predicted quality of service may involve at least one of inter-packet reception time, packet error rate, delay, and data rate, all of which may be represented by numerical values. Accordingly, a machine learning model can be trained to implement (i.e., be based on) a regression algorithm, for example, to predict at least one of inter-packet reception time, packet error rate, latency, and data rate of a wireless communication link.
在一些实施例中,机器学习模型是专门为移动收发器训练的。备 选地,机器学习模型可为适用于不同移动收发器的通用机器学习模 型。在任一种情况下,该方法可包括训练机器学习模型,或者机器学 习模型可由另一个实体训练(可为其使用另一种方法,如图1d所示)。In some embodiments, the machine learning model is trained specifically for mobile transceivers. Alternatively, the machine learning model may be a general machine learning model applicable to different mobile transceivers. In either case, the method may include training a machine learning model, or the machine learning model may be trained by another entity (for which another method may be used, as shown in Figure Id).
通常,机器学习模型可被训练成将(预测)服务质量与移动收发器 的环境中的一个或多个活动收发器的环境模型相关联。因此,环境模 型和相应的服务质量可用于训练机器学习模型。通常,使用多个训练 样本来训练机器学习模型。在实施例中,在多个时间点上确定一个或 多个活动收发器的多个环境模型。相应地,该方法可包括在多个时间 点确定140无线通信链路的服务质量。换句话说,对于多个时间点, 可确定服务质量(根据移动收发器的环境中的一个或多个活动收发 器)。例如,服务质量可通过确定无线通信链路的度量(诸如无线通信 链路的分组间接收时间、分组差错率、时延和/或数据速率)来确定。 该方法可包括使用在多个时间点的多个环境模型作为训练输入以及 在相应的多个时间点的无线通信链路的服务质量作为机器学习模型 的训练的训练输出来训练145机器学习模型。换句话说,多个环境模 型中的环境模型可与相应的服务质量一起作为用于机器学习模型的 训练的训练样本使用。Generally, a machine learning model can be trained to associate (predicted) quality of service with an environment model of one or more active transceivers in the environment of the mobile transceiver. Therefore, the environment model and the corresponding quality of service can be used to train the machine learning model. Typically, a machine learning model is trained using multiple training samples. In an embodiment, multiple environmental models for one or more active transceivers are determined at multiple points in time. Accordingly, the method may include determining 140 the quality of service of the wireless communication link at multiple points in time. In other words, for multiple points in time, the quality of service (from one or more active transceivers in the environment of the mobile transceiver) can be determined. For example, quality of service may be determined by determining metrics of the wireless communication link, such as the inter-packet reception time, packet error rate, latency, and/or data rate of the wireless communication link. The method may include
在一些实施例中,机器学习模型的输出可为不同于各种服务质量 特性的“原始”值的东西。例如,一些重要的特性(诸如无线链路的分组 间接收时间(PIR时间))通常处于它们的最小值(即传输时间),因为相 应的传输第一次是成功的。在这种情况下训练机器学习模型可产生偏 向该最小值的机器学习模型。这可通过训练机器学习模型输出代理值 来避免,该代理值可用于确定实际的服务质量特性。一个这样的代理 是概率分布,它模拟了对于给定的环境模型,服务质量特性的给定值 (诸如分组间接收时间、分组差错率、时延和数据速率)的概率有多高。 换句话说,机器学习模型可被训练以提供给定环境模型的预测服务质 量的概率分布。例如,如结合图3a至图3d所示,服务质量的一些特 性(诸如分组间接收时间(PIR时间))可使用概率的指数分布来建模。这 种指数分布可使用以下公式来建模,其中γ为服务质量特性,并且λ为 率。In some embodiments, the output of the machine learning model may be something other than the "raw" values of various quality of service characteristics. For example, some important characteristics such as the packet-to-packet reception time (PIR time) of the wireless link are usually at their minimum value (i.e. the transmission time) because the corresponding transmission is successful the first time. Training a machine learning model in this case produces a machine learning model that is biased towards this minimum. This can be avoided by training a machine learning model to output proxy values that can be used to determine actual quality of service characteristics. One such proxy is a probability distribution, which models how probable a given value of a quality of service characteristic (such as inter-packet reception time, packet error rate, delay, and data rate) is probable for a given environmental model. In other words, a machine learning model can be trained to provide a probability distribution of predicted quality of service given an environmental model. For example, as shown in conjunction with Figures 3a to 3d, some characteristics of quality of service, such as inter-packet reception time (PIR time), may be modeled using an exponential distribution of probabilities. This exponential distribution can be modeled using the following formula, where γ is the quality of service characteristic and λ is the rate.
该率可被建模为环境模型(即,移动收发器的环境中的一个或多 个活动收发器的分布)和发射器与接收器之间的距离(天线间距离,IAD) 的函数λ(x)。This rate can be modeled as a function of the environment model (ie, the distribution of one or more active transceivers in the environment of the mobile transceiver) and the distance between the transmitter and receiver (inter-antenna distance, IAD) λ( x).
该率指示服务质量的特性(例如PIR时间)的(指数)概率分布。因 此,机器学习模型可被训练以提供给定环境模型的(预测)服务质量的 (预测)率,并因此提供概率分布。该方法可包括基于由机器学习模型 提供的率/概率分布来确定无线链路的预测未来服务质量。另外的细节 可在结合图3a至图3d提供的示例中找到,其中基于模拟数据训练合 适的机器学习模型。The rate is indicative of an (exponential) probability distribution of a characteristic of the quality of service (eg PIR time). Thus, a machine learning model can be trained to provide (predicted) rates of (predicted) quality of service for a given environment model, and thus probability distributions. The method may include determining a predicted future quality of service for the wireless link based on the rate/probability distribution provided by the machine learning model. Additional details can be found in the examples provided in conjunction with Figures 3a to 3d, where a suitable machine learning model is trained based on simulated data.
随后,该率可用于确定预测的未来服务质量。对于指数分布,可 使用1/λ来获得预测的未来服务质量值。可使用指数分布的分位数函数 (也称为逆累积分布函数)来获得预测的未来服务质量值的分位数:This rate can then be used to determine predicted future quality of service. For exponential distributions, 1/λ can be used to obtain predicted future quality of service values. The quantile function of the exponential distribution (also known as the inverse cumulative distribution function) can be used to obtain the quantile of the predicted future quality of service value:
例如,使用p=0.75获得第三分位数,并且使用p=0.9获得第九 分位数。For example, use p=0.75 to obtain the third quantile, and use p=0.9 to obtain the ninth quantile.
在各种实施例中,为未来的多个时间点(即,未来的至少两个时 间点)预测未来的服务质量。例如,该方法可包括预测未来的多个时间 点上未来服务质量的发展。通过确定在未来的多个时间点的预测的未 来环境模型(或者更确切地说,多个预测的未来环境模型),并且使用 预测的未来环境模型作为机器学习模型的输入,可在未来的多个时间 点上缩放本公开的实施例。换句话说,通过确定120在至少两个未来 的时间点的一个或多个活动收发器的预测未来环境模型,并且使用 135在至少两个未来的时间点的一个或多个活动收发器的预测未来环 境模型作为机器学习模型的输入,可预测至少两个未来的时间点的无 线通信链路的未来服务质量。In various embodiments, future quality of service is predicted for multiple points in time in the future (i.e., at least two points in time in the future). For example, the method may include predicting future developments in quality of service at multiple points in time in the future. By determining a predicted future environment model (or rather, a plurality of predicted future environment models) at multiple points in the future, and using the predicted future environment model as an input to a machine learning model, many future Embodiments of the present disclosure are scaled at each point in time. In other words, by determining 120 a predicted future environment model of the one or more active transceivers at at least two future points in time, and using 135 the predicted one or more active transceivers at at least two future points in time The future environment model is used as an input to the machine learning model, which can predict the future quality of service of the wireless communication link for at least two future time points.
在下文中,示出了另一种方法,该方法可用于独立于上面提供的 方法来训练机器学习模型。图1d示出了用于训练机器学习模型的方 法的实施例的流程图。图1d的方法包括:确定140在多个时间点的 无线通信链路的服务质量;以及使用在多个时间点的多个环境模型作 为训练输入以及在相应的多个时间点的无线通信链路的服务质量作 为机器学习模型的训练的训练输出来训练145机器学习模型。In the following, another method is shown that can be used to train a machine learning model independently of the method provided above. Figure Id shows a flowchart of an embodiment of a method for training a machine learning model. The method of FIG. Id includes determining 140 the quality of service of the wireless communication link at the plurality of time points; and using the plurality of environment models at the plurality of time points as training input and the wireless communication link at the corresponding plurality of time points The quality of service is used as the training output of the training of the machine learning model to train 145 machine learning models.
机器学习算法通常基于机器学习模型。换句话说,术语“机器学 习算法”可表示可用于创建、训练或使用机器学习模型的一组指令。术 语“机器学习模型”可表示代表例如基于由机器学习算法执行的训练的 所学知识的数据结构和/或规则集。在实施例中,机器学习算法的使用 可意味着底层机器学习模型(或多个底层机器学习模型)的使用。机器 学习模型的使用可意味着机器学习模型和/或作为机器学习模型的数 据结构/规则集是由机器学习算法训练的。Machine learning algorithms are usually based on machine learning models. In other words, the term "machine learning algorithm" can refer to a set of instructions that can be used to create, train, or use a machine learning model. The term "machine learning model" may refer to a data structure and/or set of rules representing, for example, learned knowledge based on training performed by a machine learning algorithm. In an embodiment, the use of a machine learning algorithm may imply the use of an underlying machine learning model (or multiple underlying machine learning models). The use of a machine learning model may mean that the machine learning model and/or the data structure/rule set that is the machine learning model is trained by a machine learning algorithm.
例如,机器学习模型可为人工神经网络(ANN)。ANN是由诸如可 在大脑中找到的生物神经网络启发的系统。ANN包括多个互连的节点 和节点之间的多个连接(所谓的边)。通常有三种类型的节点,即,接 收输入值的输入节点、(仅)连接到其它节点的隐藏节点以及提供输出 值的输出节点。每个节点可代表人工神经元。每个边可从一个节点向 另一个节点传输信息。节点的输出可定义为其输入之和的(非线性)函 数。节点的输入可用在基于边的或提供输入的节点的“权重”的函数中。 节点的和/或边的权重可在学习过程中调整。换句话说,人工神经网络 的训练可包括调整人工神经网络的节点的和/或边的权重,即对于给定 的输入实现期望的输出。在至少一些实施例中,机器学习模型可为深 度神经网络,例如包括一层或多层隐藏节点(即隐藏层)(优选地多层隐 藏节点)的神经网络。For example, the machine learning model may be an artificial neural network (ANN). ANNs are systems inspired by biological neural networks such as those found in the brain. An ANN consists of multiple interconnected nodes and multiple connections (so-called edges) between nodes. There are generally three types of nodes, namely input nodes that receive input values, hidden nodes that are (only) connected to other nodes, and output nodes that provide output values. Each node can represent an artificial neuron. Each edge can transmit information from one node to another. The output of a node can be defined as a (non-linear) function of the sum of its inputs. A node's input can be used in edge-based or "weights" functions of the node that provides the input. The weights of nodes and/or edges can be adjusted during the learning process. In other words, training of the artificial neural network may include adjusting the weights of the nodes and/or edges of the artificial neural network, i.e. to achieve a desired output for a given input. In at least some embodiments, the machine learning model may be a deep neural network, such as a neural network comprising one or more layers of hidden nodes (i.e., hidden layers), preferably multiple layers of hidden nodes.
图3c示出了机器学习模型的示例性架构的示意图。机器学习模 型包括具有输入节点的输入层,输入节点用于移动收发器和另一个移 动收发器之间的距离d,以及用于宽度为g的圆形网格的小区中的活动 收发器(由A1,g...An,g表示)的数量,其中n是所考虑的圆形网格的小区的 数量。该架构还包括nh个隐藏层,每个隐藏层具有nn个节点该架构还包括输出层,该输出层输出率λ和因此服务质量的概率分布。Figure 3c shows a schematic diagram of an exemplary architecture of a machine learning model. The machine learning model consists of an input layer with input nodes for the distance d between a mobile transceiver and another mobile transceiver, and for active transceivers in cells of a circular grid of width g (by A 1,g ... An ,g represents the number of), where n is the number of cells of the circular grid under consideration. The architecture also includes n h hidden layers, each with n n nodes The architecture also includes an output layer that outputs a probability distribution of rate λ and thus quality of service.
在一些实施例中,机器学习模型可为支持向量机。支持向量机(即 支持向量网络)是具有相关联的学习算法的监督学习模型,该学习算法 可用于例如在分类或回归分析中分析数据。支持向量机可通过提供具 有属于两个类别之一的多个训练输入值的输入来训练。支持向量机可 被训练为向两个类别之一分配新的输入值。备选地,机器学习模型可 为贝叶斯网络,它是概率定向无环图形模型。贝叶斯网络可使用定向 无环图形来表示一组随机变量及其条件依赖性。备选地,机器学习模 型可基于遗传算法,遗传算法是模拟自然选择的过程的搜索算法和启 发式技术。In some embodiments, the machine learning model may be a support vector machine. A support vector machine (i.e., a support vector network) is a supervised learning model with an associated learning algorithm that can be used to analyze data, for example, in classification or regression analysis. A support vector machine can be trained by providing an input with multiple training input values belonging to one of two categories. A support vector machine can be trained to assign new input values to one of two classes. Alternatively, the machine learning model may be a Bayesian network, which is a probabilistic oriented acyclic graphical model. Bayesian networks can use directed acyclic graphs to represent a set of random variables and their conditional dependencies. Alternatively, the machine learning model may be based on genetic algorithms, which are search algorithms and heuristic techniques that simulate the process of natural selection.
装置10和移动收发器100、102、104(例如车辆或实体)可通过移 动通信系统进行通信。移动通信系统可例如对应于第三代合作伙伴计 划(3GPP)标准化移动通信网络中的一种,其中术语移动通信系统被用 作移动通信网络的同义词。因此,消息(输入数据、测量数据、控制信 息)可通过多个网络节点(例如,因特网、路由器、交换机等)和移动通 信系统进行通信,该系统产生实施例中考虑的延迟或时延。
移动或无线通信系统可对应于第五代移动通信系统(5G或新无线 电),并且可使用毫米波技术。移动通信系统可对应于或包括例如长期 演进(LTE)、高级长期演进(LTE-A)、高速分组接入(HSPA)、通用移动 电信系统(UMTS)或UMTS陆地无线接入网络(UTRAN)、演进的 UTRAN(e-UTRAN)、全球移动通信系统(GSM)或增强型数据速率GSM 演进(EDGE)网络、GSM/EDGE无线接入网络(GERAN)或具有不同标 准(例如,微波接入全球互操作(WIMAX)网络IEEE 802.16或无线局域 网(WLAN)IEEE 802.11)的移动通信网络,通常是正交频分多址(OFDMA)网络、时分多址(TDMA)网络、码分多址(CDMA)网络、宽 带CDMA(WCDMA)网络、频分多址(FDMA)网络、空分多址(SDMA) 网络等。The mobile or wireless communication system may correspond to a fifth-generation mobile communication system (5G or new radio), and may use millimeter wave technology. A mobile communication system may correspond to or include, for example, Long Term Evolution (LTE), Long Term Evolution-Advanced (LTE-A), High Speed Packet Access (HSPA), Universal Mobile Telecommunications System (UMTS) or UMTS Terrestrial Radio Access Network (UTRAN), Evolved UTRAN (e-UTRAN), Global System for Mobile Communications (GSM) or Enhanced Data Rates for GSM Evolution (EDGE) networks, GSM/EDGE Radio Access Network (GERAN) or networks with different standards (eg Global Interoperability for Microwave Access) A mobile communication network operating (WIMAX) network IEEE 802.16 or Wireless Local Area Network (WLAN) IEEE 802.11), typically an Orthogonal Frequency Division Multiple Access (OFDMA) network, Time Division Multiple Access (TDMA) network, Code Division Multiple Access (CDMA) network , Wideband CDMA (WCDMA) network, Frequency Division Multiple Access (FDMA) network, Spatial Division Multiple Access (SDMA) network, etc.
服务提供可由诸如基站收发器、中继站或UE的网络部件来执行, 该网络部件例如在多个UE/车辆的集群或组中协调服务提供。基站收 发器可操作用于或被配置成与一个或多个活动的移动收发器/车辆通 信,并且基站收发器可位于另一个基站收发器(例如宏小区基站收发器 或小小区基站收发器)的覆盖区域中或附近。因此,实施例可提供包括 两个或更多个移动收发器/车辆100、102和一个或多个基站收发器的 移动通信系统,其中基站收发器可建立宏小区或小小区,例如微微小 区、城域小区或毫微微小区。移动收发器或UE可对应于智能手机、 蜂窝电话、膝上型电脑、笔记本电脑、个人计算机、个人数字助理(PDA)、通用串行总线(USB)棒、轿车、车辆、道路参与者、交通实体、 交通基础设施等。根据3GPP术语,移动收发器也可被称为用户设备(UE)或移动电话。例如,移动收发器、另一个移动收发器和/或一个或 多个活动收发器的至少一个子集可为车辆,例如陆地车辆、公路车辆、 轿车、汽车、非公路车辆、机动车辆、卡车或货车。The service provisioning may be performed by a network element such as a base transceiver station, a relay station or a UE that coordinates the service provisioning eg in a cluster or group of multiple UEs/vehicles. The base station transceiver is operable or configured to communicate with one or more active mobile transceivers/vehicles, and the base station transceiver may be located at another base station transceiver (eg, a macrocell base station transceiver or a small cell base station transceiver) in or near the coverage area. Accordingly, embodiments may provide a mobile communication system comprising two or more mobile transceivers/
基站收发器可位于网络或系统的固定或静止部分中。基站收发器 可为或对应于远程无线电头端、传输点、接入点、宏小区、小小区、 微小区、毫微微小区、城域小区等。基站收发器可为有线网络的无线 接口,其能够实现向UE或移动收发器的无线电信号传输。这种无线 电信号可符合例如由3GPP标准化的无线电信号,或者通常符合一个 或多个以上列出的系统。因此,基站收发器可对应于NodeB、eNodeB、 gNodeB、基站收发台(BTS)、接入点、远程无线电头端、中继站、传 输点等,其可进一步细分为远程单元和中央单元。Base transceiver stations may be located in fixed or stationary parts of a network or system. A base transceiver station may be or correspond to a remote radio head, transmission point, access point, macro cell, small cell, micro cell, femto cell, metro cell, or the like. The base station transceiver may be a wireless interface to a wired network that enables radio signal transmission to the UE or mobile transceiver. Such radio signals may conform, for example, to radio signals standardized by 3GPP, or generally conform to one or more of the systems listed above. Thus, a base transceiver station may correspond to a NodeB, eNodeB, gNodeB, base transceiver station (BTS), access point, remote radio head, relay station, transmission point, etc., which may be further subdivided into remote units and central units.
移动收发器或车辆100可与基站收发器或小区相关联。术语小区 是指由例如NodeB(NB)、eNodeB(eNB)、gNodeB、远程无线电头端、 传输点等的基站收发器提供的无线电服务的覆盖区域。基站收发器可 在一个或多个频率层上操作一个或多个小区,在一些实施例中,小区 可对应于扇区。例如,扇区可使用扇区天线来实现,扇区天线提供了 覆盖远程单元或基站收发器周围的角向部段的特性。在一些实施例 中,基站收发器可例如分别操作覆盖120°(在三个小区的情况下)、 60°(在六个小区的情况下)的扇区的三个或六个小区。基站收发器可操 作多个扇区化天线。在下文中,小区可表示生成该小区的相应基站收 发器,或者同样地,基站收发器可表示基站收发器生成的小区。A mobile transceiver or
在实施例中,装置10可包括在服务器、基站、NodeB、UE、移 动收发器、中继站或任何服务协调网络实体中。应当注意,术语网络 部件可包括多个子部件,诸如基站、服务器等。In an embodiment, the
在实施例中,一个或多个接口12可对应于用于获得、接收、发 送或提供模拟或数字信号或信息的任何装置,例如任何连接器、触点、 引脚、寄存器、输入端口、输出端口、导体、通道等,其允许提供或 获得信号或信息。接口可为无线的或有线的,并且它可被配置成与另 外的内部或外部部件通信,即发送或接收信号、信息。一个或多个接 口12可包括另外的部件,以实现移动通信系统中的相应通信,这些 部件可包括收发器(发射器和/或接收器)部件,诸如一个或多个低噪声 放大器(LNA)、一个或多个功率放大器(PA)、一个或多个双功器、一 个或多个双工器、一个或多个滤波器或滤波器电路、一个或多个转换 器、一个或多个混频器、相应地适配的射频部件等。一个或多个接口 12可联接到一个或多个天线,这些天线可对应于任何发射和/或接收 天线,诸如喇叭天线、偶极天线、贴片天线、扇面天线等。天线可布 置成限定的几何设置,诸如均匀阵列、线性阵列、圆形阵列、三角形 阵列、均匀场天线、场阵列、它们的组合等。在一些示例中,一个或 多个接口12可用于发送或接收或者发送和接收信息的目的,诸如信 息、输入数据、控制信息、另外的信息消息等。In an embodiment, the one or
如图1c所示,相应的一个或多个接口12联接到装置10处的相 应控制模块14。在实施例中,控制模块14可使用一个或多个处理单 元、一个或多个处理设备、用于处理的任何装置(诸如处理器、计算机 或可利用相应地适配的软件操作的可编程硬件部件)来实现。换句话 说,控制模块14的所述功能也可在软件中实现,该软件然后在一个 或多个可编程硬件部件上执行。这种硬件部件可包括通用处理器、数 字信号处理器(DSP)、微控制器等。A respective one or
在实施例中,通信(即发送、接收或两者)可直接发生在移动收发 器/车辆100、102之间,例如向/从控制中心转发输入数据或控制信息。 这种通信可利用移动通信系统。这种通信可直接进行,例如借助于设 备到设备(D2D)通信。这种通信可使用移动通信系统的规范来进行。 D2D的示例是车辆之间的直接通信,也分别被称为车辆对车辆通信 (V2V)、车对车通信、专用短程通信(DSRC)。支持这种D2D通信的技 术包括802.11p、3GPP系统(4G、5G、NR及以上)等。In embodiments, communication (i.e. sending, receiving, or both) may occur directly between the mobile transceivers/
在实施例中,一个或多个接口12可被配置成在移动通信系统中 无线通信。为此,使用无线电资源,例如频率、时间、代码和/或空间 资源,其可用于与基站收发器的无线通信以及直接通信。无线电资源 的分配可由基站收发器控制,即确定哪些资源用于D2D以及哪些不用 于。这里和下面,相应部件的无线电资源可对应于无线电载波上可想 到的任何无线电资源,并且它们可在相应的载波上使用相同或不同的 粒度。无线电资源可对应于资源块(如在 LTE/LTE-A/LTE-unlicensed(LTE-U)中的RB)、一个或多个载波、子载 波、一个或多个无线电帧、无线电子帧、无线电时隙、潜在地具有相 应扩频因子的一个或多个代码序列、一个或多个空间资源(诸如空间子 信道、空间预编码向量)、它们的任意组合等。例如,在直接蜂窝车辆 到任意事物(C-V2X)中,其中V2X至少包括V2V、V2-基础设施(V2I) 等,根据3GPP版本14及以上版本的传输可由基础设施(所谓的模式 3)管理或者在UE中运行。In an embodiment, the one or
该方法、装置或移动收发器的更多细节和方面结合所提出的概念 或上面或下面描述的一个或多个示例(例如,图2至图3d)来提及。该 方法、装置或移动收发器可包括对应于所提出的概念的一个或多个方 面或上面或下面描述的一个或多个示例的一个或多个附加任选特征。Further details and aspects of the method, apparatus or mobile transceiver are referred to in connection with the concepts presented or one or more examples described above or below (e.g. Figures 2 to 3d). The method, apparatus or mobile transceiver may include one or more additional optional features corresponding to one or more aspects of the presented concepts or one or more examples described above or below.
各种实施例涉及一种使用时间序列预测来增加QoS预测中的预 测时域的方法。在协同驾驶的范围内,当服务质量(QoS)条件变化时, 对未来服务质量的预测能够实现车辆应用。实际上,当没有提供预测 QoS(PQoS)时,应用仅可对变化做出反应,并且因此被限制在通信系 统的下界性能。PQoS系统可在车辆(通信节点)上利用诸如处于其独立 模式的LTE-V或5G-V2X或IEEE 802.11p的无线接入技术(RAT)运 行。这些技术的组合也可应用于多RAT系统。在这种PQoS系统中, 车辆可交换关于通信周围环境的信息,以便提供PQoS。因此,实施 例可涉及用于在未来预测QoS的方法。Various embodiments relate to a method of increasing the prediction time domain in QoS prediction using time series prediction. In the context of collaborative driving, when quality of service (QoS) conditions change, prediction of future QoS enables vehicle applications. In fact, when no predictive QoS (PQoS) is provided, the application can only react to changes and is therefore limited to the lower bound performance of the communication system. The PQoS system may operate on the vehicle (communication node) using a radio access technology (RAT) such as LTE-V or 5G-V2X or IEEE 802.11p in its standalone mode. Combinations of these techniques can also be applied to multi-RAT systems. In such a PQoS system, vehicles can exchange information about the communication surroundings in order to provide PQoS. Accordingly, embodiments may relate to methods for predicting QoS in the future.
在例如诸如Jornod、El Assad、Kwoczek和Kürner的论文 “Prediction of PacketInter Reception Time for Platooning using Conditional ExponentialDistribution”的其它方法中,提供了环境密度和 分组间接收时间之间的统计联系。然而,在该论文中所示的方法中, 预测只是瞬时的,而实施例旨在预测未来的服务质量。更具体地说, 在统计学意义上,预测涉及瞬时数据的建模和未来值的预报预测。根 据该定义,使用时间序列预测进行预报,并且预报的结果用于预测未 来的服务质量。In other methods such as the paper "Prediction of Packet Inter Reception Time for Platooning using Conditional ExponentialDistribution" by Jornod, El Assad, Kwoczek and Kürner, a statistical relationship between ambient density and inter-packet reception time is provided. However, in the method shown in this paper, the prediction is only instantaneous, and the embodiments aim to predict the future quality of service. More specifically, in a statistical sense, forecasting involves the modeling of instantaneous data and the forecast prediction of future values. According to this definition, forecasts are made using time series forecasts, and the results of forecasts are used to predict future quality of service.
实施例可提供一种在未来使用历史数据和时间序列预测来预报 QoS的方法。Embodiments may provide a method for forecasting QoS in the future using historical data and time series forecasting.
该方法包括以下特征中的一个或多个:The method includes one or more of the following features:
1.从接收器(即移动收发器)收集传输数据(即无线传输)以及周围 通信节点(即一个或多个活动收发器)的位置。1. Collect transmission data (i.e. wireless transmissions) from receivers (i.e. mobile transceivers) and the locations of surrounding communication nodes (i.e. one or more active transceivers).
2.计算来自该接收器的感兴趣的QoS指标(即服务质量)2. Calculate the QoS metrics of interest from this receiver (ie Quality of Service)
3.对周围通信环境建模(例如通过生成环境模型),例如获得周围 通信环境的指标。3. Model the surrounding communication environment (e.g. by generating an environment model), e.g. to obtain indicators of the surrounding communication environment.
4.就发射器和接收器的时间和位置而言,将传输数据的计算的 QoS指标与周围通信环境模型相匹配(例如,将服务质量与相应的环境 模型相联系),例如,使得能够估计周围环境的指标与QoS的指标之 间的相关性。4. Matching the calculated QoS metrics of the transmitted data to a model of the surrounding communication environment in terms of the time and location of the transmitter and receiver (e.g., linking the quality of service to the corresponding environment model), e.g., to enable estimation The correlation between the indicators of the surrounding environment and the indicators of QoS.
5.在收集的数据上训练分布模型(例如机器学习模型)(参见表)5. Train a distribution model (e.g. a machine learning model) on the collected data (see table)
6.在未来执行时间序列预测,以在预测时域预报未来的QoS(例 如,使用时间序列预测来确定预测的未来环境模型),例如,能够根据 周围环境的指标和QoS的指标之间的相关性的变化来预测QoS6. Perform time-series forecasting in the future to predict future QoS in the forecasting time domain (e.g., use time-series forecasting to determine a predicted future environment model), e.g., be able to base on the correlation between the indicators of the surrounding environment and the indicators of QoS change in nature to predict QoS
7.改变预测时域以获得沿时间/方向的动态链路QoS图(例如,在 未来的至少两个时间点确定预测的未来环境模型),例如,以能够创建 QoS图,该QoS图使得能够在调整应用设置方面进行决策。7. Change the prediction time domain to obtain a dynamic link QoS map along time/direction (e.g. to determine a predicted future environment model at least two time points in the future), e.g. to be able to create a QoS map that enables Make decisions about adjusting app settings.
8.用积累的数据重复先前的一个或多个特征,以改进学习(例如, 加强学习)8. Repeat one or more previous features with accumulated data to improve learning (e.g., reinforcement learning)
通信环境数据收集可通过使用无线电接收器作为传感器或者通 过与通信共享该信息来执行。周围通信环境的建模可使用针对无线电 活动的网格状抽象方法来执行。例如,周围的通信环境可使用环境的 网格状划分来建模,并且根据通信车辆的数量和它们的消息的周期性 来分配无线电活动数值级别。例如,可执行未来的时间序列预测,以 通过使用先前环境预测因子值和先前的QoS值之间的相关性的变化 来预报预测时域的未来QoS。时间序列预测可通过使用从过去t0-tp到 t0的样本来模拟(图2 210)在t0+tf(图2 230)的QoS的分布来执行(其 中,t0是当前时间(图2 220),tp是回看时间,例如10s,并且tf是预测时域)。预测时域的变化可导致多链路QoS图,每个未来时间步长一 个。它可能随着时间/位移而变化,在这个意义上,它是动态的。计算 和预报的QoS指标可为分组差错率(PER)、分组间接收(PIR)时间、时 延、数据速率。例如,时间序列预测可使用统计预测方法,诸如多层感知器(例如,如图3c所示)。Communication environment data collection can be performed by using a radio receiver as a sensor or by sharing this information with the communication. Modeling of the surrounding communication environment may be performed using a grid-like abstraction approach to radio activity. For example, the surrounding communication environment may be modeled using a grid-like division of the environment, with radio activity numerical levels assigned according to the number of communicating vehicles and the periodicity of their messages. For example, future time series forecasting may be performed to predict future QoS in the forecast time domain by using changes in correlation between previous environmental predictor values and previous QoS values. Time series forecasting can be performed by using samples from the past t 0 -t p to t 0 to simulate ( FIG. 2 210 ) the distribution of QoS at t 0 +t f ( FIG. 2 230 ) (where t 0 is the current time (Fig. 2 220), t p is the lookback time, eg 10s, and t f is the prediction time domain). Changes in the prediction time domain can result in multi-link QoS maps, one for each future time step. It may change with time/displacement, in that sense it is dynamic. The calculated and predicted QoS indicators can be packet error rate (PER), inter-packet reception (PIR) time, delay, and data rate. For example, time series forecasting may use statistical forecasting methods, such as multilayer perceptrons (eg, as shown in Figure 3c).
图2提供了用于例如根据结合图3a至图3d提供的示例之一训练 预测模型的数据的示例。图2示出了与环境模型相关的服务质量属性 随时间的发展的表。该表包括各种列,第一列显示时间戳(时间),第 二和第三列显示目的地和源节点的标识(dst和src),第四列显示分组 的大小(大小),第五列显示PIR值(pir),第六列显示发射器和接收器 之间的距离(dist,其保持相当恒定),并且第七列和随后的列显示了围 绕接收器(src)的地理区域(即,圆形网格的小区或环面)中的节点的数 量d*,其中*表示最大距离(例如,d30=0直到30米,d60=大于30, 直到60等等)。矩形210限定了回看数据,矩形220限定了当前时间 步长(定义了到预测时域的预定义时间间隔),并且矩形230限定了目 标预测时域,例如8秒。这个“滑动窗口”可应用于所有时间步长,以 便训练预测模型,当我们查看未来数据时,它将有效地成为预报模型。Figure 2 provides an example of data used to train a predictive model, e.g. according to one of the examples provided in conjunction with Figures 3a to 3d. Figure 2 shows a table of the development of quality of service attributes related to the environment model over time. The table includes various columns, the first column shows the timestamp (time), the second and third columns show the identities of the destination and source nodes (dst and src), the fourth column shows the size of the packet (size), the fifth column The column shows the PIR value (pir), the sixth column shows the distance between the transmitter and receiver (dist, which remains fairly constant), and the seventh and subsequent columns show the geographic area around the receiver (src) ( That is, the number of nodes d* in a cell or torus of a circular grid, where * represents the maximum distance (eg, d30 = 0 up to 30 meters, d60 = greater than 30 up to 60, etc.).
在各种实施例中,该方法包括监测周围通信环境的指标(诸如网 格小区中周围通信车辆的数量),并将该变化与QoS的变化相关联。 例如,该方法可包括根据周围通信车辆的指标的变化和QoS的变化的 相关性来预测QoS(适用于V2V通信)。该方法可包括将关于周围通信 环境的信息用于V2V链路。该方法可包括创建QoS图。该方法可包 括执行通信环境指标和QoS变化之间的匹配。该方法可包括使用环境 预测因子和QoS之间的相关性的过去变化来预测QoS未来值。实施 例可在更高层(消息级)使用聚集的通信活动,其中我们希望预测隐藏 节点的影响和由于周围通信车辆造成的信道过载。In various embodiments, the method includes monitoring an indicator of the surrounding communication environment, such as the number of surrounding communicating vehicles in a cell of the grid, and correlating the change with a change in QoS. For example, the method may include predicting QoS (suitable for V2V communication) based on a correlation between changes in indicators of surrounding communication vehicles and changes in QoS. The method may include using information about the surrounding communication environment for the V2V link. The method may include creating a QoS map. The method may include performing a match between communication environment metrics and QoS changes. The method may include predicting a future value of QoS using past changes in the correlation between environmental predictors and QoS. Embodiments may use aggregated communication activity at a higher layer (message level) where we wish to predict the impact of hidden nodes and channel overload due to surrounding communicating vehicles.
图3a至图3d示出了与机器学习模型的训练相关的示意图。在下 文中,介绍两种类似的方法,这两种方法涉及机器学习模型的训练, 该机器学习模型适合于为给定的环境模型提供关于预测的服务质量 的概率分布。虽然机器学习模型是使用模拟环境模型来训练的,但是 相同的原理可应用于在“真实的”移动收发器/车辆中收集的数据。Figures 3a to 3d show schematic diagrams related to the training of machine learning models. In the following, two similar approaches are presented, both involving the training of a machine learning model adapted to provide a probability distribution on the predicted quality of service for a given environment model. While machine learning models are trained using simulated environment models, the same principles can be applied to data collected in "real" mobile transceivers/vehicles.
在下文中,介绍这两种方法的背景。AQoSA(自适应服务质量适 配)的一个有趣的应用是高密度列队行驶(HDPL):这是一个协同的车 辆应用,其中车辆协调它们的控制,以实现低于15m的较小的车间距 (IVD)。在AQoSA的范围内,需要能够预报未来QoS的预测系统。该 预测系统可利用其周围环境知识来发挥作用。以下场景的特点是在椭 圆形多车道测试跑道上在25米/秒的速度下的五卡车HDPL行驶。这 种队列的目标是5和25m之间的IVD。它是通过广播列队行驶控制消 息(PCM)来协调的,该消息是利用IEEE 802.11p无线接入技术(RAT) 以20Hz的速率传输的700B的消息。为了挑战通信系统,引入了在 相反方向的车道上密度不断增加的车辆流量。在发射器周围400m范 围内,这种周围的流量达到200以上的车辆数量。周围的车辆利用相 同的RAT以10Hz的速率广播400B CAM(协同感知消息)。周围交通 的机动性在城市机动性模拟(SUMO)中进行建模,这是一种模拟工具, 它充分利用了其能力来生成具有特定密度的随机车辆。该流量模拟器 与网络模拟器ns-3相结合,网络模拟器利用其IEEE 802.11p模型来操 作无线传输。这种设置允许模拟真实的车辆运动以及相当精确的通信 系统模型。利用ns-3的跟踪能力,收集了总共106个传输观测值。这 些观测值包括观测到的PIR时间和在下文中描述的环境预测因子。表 示为γ的PIR时间被定义为从接收器开始测量的一对通信伙伴中的两 个连续消息之间的持续时间。PIR值是连续传输失败的结果,这产生 了高PIR值的低表示。然而,这些较高的值对于应用来说是非常重要的,因为它们可能会限制应用的性能。直接预测γ最有可能导致对0.05 秒的PCM传输周期的系统预测,因为它是最小PIR和最有代表性的 值。相反,PIR概率分布可被建模。第一组特征是IAD d,即发射器 和接收器之间的距离,在它们的天线之间计算出。第二组包括发射器周围的环面内的通信车辆的数量Dn,g=card(an,g)或由其组成。环面an,g由它们的半径差和它们的指数来限定。在G.Jornod、A.El Assaad、A.Kwoczek和T.Kürner在2019年第28届IEEE欧洲网络和 通信会议中的“Packet inter-reception time modelingfor high-density platooning in varying surrounding traffic density”中给出了这些特征的进 一步描述。在模拟中,计算了在PIR、400m半径内的车辆的总数量和 IAD之间的关系的表示。在这种情况下,当周围通信车辆的数量超过 150辆时,PIR急剧增加。总数对目标也有影响;当IAD变得大于100m 时,这种影响急剧降低。In the following, the background of these two methods is presented. An interesting application of AQoSA (Adaptive Quality of Service Adaptation) is High Density Platooning (HDPL): this is a cooperative vehicle application in which vehicles coordinate their control to achieve a small inter-vehicle distance of less than 15m ( IVD). Within the scope of AQoSA, prediction systems that can predict future QoS are required. The predictive system can use its knowledge of its surroundings to function. The following scenario features five-truck HDPL driving at 25 m/s on an oval multi-lane test track. This cohort targets IVDs between 5 and 25m. It is coordinated by broadcasting a platooning control message (PCM), which is a 700B message transmitted at a rate of 20Hz using IEEE 802.11p Radio Access Technology (RAT). To challenge the communication system, increasing densities of vehicular traffic in the opposite lanes are introduced. Within a range of 400m around the transmitter, this surrounding traffic reaches more than 200 vehicles. Surrounding vehicles utilize the same RAT to broadcast 400B CAMs (co-aware messages) at a rate of 10Hz. The mobility of surrounding traffic is modeled in Simulation of Urban Mobility (SUMO), a simulation tool that takes full advantage of its ability to generate random vehicles with a specific density. This traffic simulator is combined with the network simulator ns-3, which utilizes its IEEE 802.11p model to operate wireless transmissions. This setup allows simulation of real vehicle motion as well as a fairly accurate model of the communication system. Using the tracking capabilities of the ns-3, a total of 106 transmission observations were collected. These observations include observed PIR times and environmental predictors described below. The PIR time, denoted γ, is defined as the duration between two consecutive messages in a pair of communication partners measured from the receiver. The PIR value is the result of consecutive transmission failures, which produces a low representation of a high PIR value. However, these higher values are very important for the application as they may limit the performance of the application. A direct prediction of γ most likely results in a systematic prediction for a PCM transmission period of 0.05 sec, as it is the smallest PIR and the most representative value. Instead, a PIR probability distribution can be modeled. The first set of features is the IAD d, the distance between the transmitter and receiver, calculated between their antennas. The second group includes or consists of the number of communicating vehicles Dn,g =card(an ,g ) in the torus around the transmitter. The torus an , g is determined by the difference of their radii and their indices to limit. In "Packet inter-reception time modeling for high-density platooning in varying surrounding traffic density" by G. Jornod, A. El Assaad, A. Kwoczek and T. Kürner at the 28th IEEE European Conference on Networking and Communications 2019 A further description of these features is provided. In the simulations, a representation of the relationship between the PIR, the total number of vehicles within a 400m radius and the IAD was calculated. In this case, when the number of surrounding communication vehicles exceeds 150, the PIR increases sharply. The total also has an effect on the target; this effect decreases sharply when the IAD becomes larger than 100m.
在下文中,基于提供指数分布的参数的非线性函数的学习,提供 预测模型(其可实现结合图1a至图1d介绍的机器学习模型)。In the following, based on the learning of nonlinear functions providing exponentially distributed parameters, a predictive model is provided (which can implement the machine learning model introduced in connection with Figs. 1a to 1d).
PIR的分布可视为条件指数分布。在文献中,显示通过指数分布、 对数正态分布、威布尔分布、伽玛分布对PIR进行了很好的建模,优 选最后两种分布,其通过了90%显著性检验。因此,在下文中,PIR 可用指数分布来建模。指数分布可被看作是伽马分布的特例,其优点 是具有单个参数,即率λ>0。其概率密度函数(PDF)表示为:The distribution of PIR can be regarded as a conditional exponential distribution. In the literature, PIR is shown to be well modeled by exponential distribution, lognormal distribution, Weibull distribution, gamma distribution, the last two distributions being preferred, which pass the 90% significance test. Therefore, in the following, PIR can be modeled with an exponential distribution. The exponential distribution can be seen as a special case of the gamma distribution, with the advantage of having a single parameter, the rate λ>0. Its probability density function (PDF) is expressed as:
并且在图3a中示出了几个感兴趣的率λ,以及在图3b中示出了 其累积密度函数(CDF)。λ被空间预测因子参数化:And several rates of interest λ are shown in Fig. 3a, and their cumulative density function (CDF) in Fig. 3b. λ is parameterized by the spatial predictor:
其中,x是仅具有相互作用(例如省略d2)的预测因子d和Dn,g的二 次多项式组合。这种建模允许计算训练数据的范围内预测因子的任何 组合的PIR密度。建模的目的则是利用观测数据逼近非线性函数λ(x)。 为此,使用了MLP回归器(参见图3c)。使用了基于Keras的实现,其 中使用亚当优化算法训练该模型,以负对数似然作为损失函数:where x is a quadratic polynomial combination of predictors d and Dn,g with only interactions (eg, omitting d2 ). This modeling allows the calculation of PIR densities for any combination of predictors within the range of training data. The purpose of modeling is to approximate the nonlinear function λ(x) using the observed data. For this, an MLP regressor was used (see Fig. 3c). A Keras-based implementation was used, where the model was trained using the Adam optimization algorithm with negative log-likelihood as the loss function:
其中,Ω是包含训练数据的指数的集合。为大小的选择进行了k 倍交叉验证,并使用scikit-learn应用了隐藏层的数量(分别为n∈{1,2, 3}和m∈{100,500,1000}),k=8。该模型的一个局限性是它没有利 用预测因子的先前值。事实上,PIR时间代表两次成功事件之间的时 间:连续分组失败的来源可能发生在两次观测之间。然而,考虑到预 测因子是移动的车辆,它们的运动足够平滑,使得模型对这种局限性 是鲁棒的。这两个python库的组合的使用使得学习策略的快速原型化 成为可能。选择MLP回归器是因为它能够捕捉在数据探索阶段期间 突出显示的非线性性。where Ω is the set of indices containing the training data. A k-fold cross-validation was performed for the choice of size and the number of hidden layers (n ∈ {1, 2, 3} and m ∈ {100, 500, 1000}, respectively) was applied using scikit-learn, k=8. A limitation of this model is that it does not take advantage of previous values of the predictors. In fact, the PIR time represents the time between two successful events: the source of consecutive grouping failures may occur between two observations. However, considering that the predictors are moving vehicles, their motion is smooth enough that the model is robust to this limitation. The combined use of these two python libraries enables rapid prototyping of learning strategies. The MLP regressor was chosen for its ability to capture nonlinearities highlighted during the data exploration phase.
下面提出另一种方法。在下文中,示出了使用通信节点的空间分 布进行的PIR分布的预测。以前的研究表明,PIR可用指数分布来建 模。此外,IAD和周围的通信流量密度改变通信系统的性能。在下面 的概念中,利用这两个前提来建立将预测目标的分布与节点的空间分 布的变化联系起来的模型。随后,研究了在以五卡车HDPL为特征的 全尺寸系统级车辆自组织网络(VANET)模拟中对这种关系的快速学 习。Another method is proposed below. In the following, the prediction of the PIR distribution using the spatial distribution of communication nodes is shown. Previous studies have shown that PIR can be modeled with an exponential distribution. In addition, the IAD and surrounding communication traffic density changes the performance of the communication system. In the following concepts, these two premises are used to build a model that relates the distribution of predicted targets to changes in the spatial distribution of nodes. Subsequently, the fast learning of this relationship in a full-scale system-level Vehicle Ad hoc Network (VANET) simulation featuring a five-truck HDPL is investigated.
利用ns-3的跟踪能力,收集了总共4·107个传输观测值。其中, 2.5·106在接收侧上具有队列成员,并且9·105描述了队列内通信。这些 观测值包括观测到的PIR时间、源和目的地以及关于周围车辆的位置 的信息。图3d示出了PIR的示例性分布。PIR时间显示出重尾分布, 这激发了对其分布的进一步建模,而不是简单地预测值。实际上,PIR 值是连续传输失败的结果,这产生了高PIR值的低表示。然而,这些 较高的值对于应用来说是非常重要的,因为它们可能会限制应用的性 能。如在Jornod,El Assaad、Kwoczek和Kürner的“Prediction of Packet Inter-Reception Time for Platooning using ConditionalExponential Distribution,”in 16th Int.IEEE Symp.Wireless Commun.Sys.(ISWCS),2019,第265–270页中强调的,简单的预测最有可能导致最有代表性 的值0.05秒的系统预测。然而,车辆数量的分布不同于以前的研究。 实际上,车辆是以随机方式引入场景的。车辆随后在场景中沿着随机 路线行驶,并可能聚集,这是一种实验设计选择,旨在研究该方法对 未知或不太频繁的情况的鲁棒性。Using the tracking capabilities of the ns-3, a total of 4·10 7 transmission observations were collected. Of these, 2.5·10 6 has queue members on the receiving side, and 9·10 5 describes intra-queue communication. These observations include the observed PIR time, source and destination, and information about the location of surrounding vehicles. Figure 3d shows an exemplary distribution of PIR. PIR time shows a heavy-tailed distribution, which motivates further modeling of its distribution, rather than simply predicting values. In effect, the PIR value is the result of successive transmission failures, which produce a low representation of a high PIR value. However, these higher values are very important for the application as they may limit the performance of the application. As in Jornod, El Assaad, Kwoczek and Kürner, "Prediction of Packet Inter-Reception Time for Platooning using ConditionalExponential Distribution," in 16th Int. IEEE Symp. Wireless Commun. Sys. (ISWCS), 2019, pp. 265–270 Emphasized that simple predictions most likely resulted in the most representative value of 0.05 sec for systematic predictions. However, the distribution of the number of vehicles differs from previous studies. In effect, vehicles are introduced into the scene in a random fashion. Vehicles then follow random routes in the scene, possibly clustering, an experimental design choice to investigate the robustness of the method to unknown or less frequent situations.
在以前的研究中,显示出考虑IAD和周围车辆的数量之间的相互 作用的重要性。模拟了IAD和车号间隔的组合的平均PIR。观测到在 125m以上平均PIR值的急剧增加。一般来说,它也会随着周围车辆 的数量和IAD两者而增加。在80至100辆车辆之间的区域中,观测 到了较高的PIR值。该区域以及它诱导的第二梯度在以前的结果中没 有看到。实际上,在该先前的研究中,周围的车辆被限制在笔直的公 路上。在这个新的场景中,周围车辆的空间分布更急剧地变化。这种 新模式以及从原点到椭圆的顶部的第二条增加路径的出现是这种新 分布的结果。这进一步激发了该分布的建模以及非线性回归模型的使 用。In previous studies, the importance of considering the interaction between the IAD and the number of surrounding vehicles was shown. The average PIR for the combination of IAD and car number interval was simulated. A sharp increase in the average PIR value above 125m was observed. In general, it also increases with both the number of surrounding vehicles and the IAD. In the region between 80 and 100 vehicles, higher PIR values were observed. This region and the second gradient it induces were not seen in previous results. Indeed, in this previous study, surrounding vehicles were restricted to straight roads. In this new scene, the spatial distribution of surrounding vehicles changes more dramatically. This new pattern and the appearance of a second incremental path from the origin to the top of the ellipse are the result of this new distribution. This further motivated the modeling of this distribution and the use of nonlinear regression models.
在下文中,介绍了建模策略。第一步是计算目标关键绩效指标 (KPI),PIR时间(即服务质量)。第二步是周围通信环境的建模(即环境 模型),其包括位置日志预处理和环境的抽象化。第三步是将这些环境 特征和我们目标(即训练数据的生成)的分布之间的关系形式化。第四 步也是最后一步是为这种关系的学习创建策略。在这个示例中,预测 目标是PIR时间。如前所述,该度量在VANET研究中越来越受到重 视。在HDPL的范围内,它衡量车辆不能依靠通信与其它车辆协调的 时间。此外,由于预测算法,现代控制系统能够应对低更新输入速率。 然而,对于不规则的输入,它们的表现较差。这种规律性被PIR分布 所捕捉。PIR是从每个源的接收器测量的两个消息的接收之间的时间 差。该KPI是针对所有接收到的信息为队列成员研究的。因为这些消 息是周期性消息,所以PIR时间是传输周期的倍数,加上或减去经历 的时延。它反映了连续丢弃消息的数量。In the following, modeling strategies are introduced. The first step is to calculate the target key performance indicator (KPI), PIR time (i.e. quality of service). The second step is the modeling of the surrounding communication environment (ie, the environment model), which includes location log preprocessing and abstraction of the environment. The third step is to formalize the relationship between these environmental features and the distribution of our objective (i.e. the generation of training data). The fourth and final step is to create a strategy for the learning of this relationship. In this example, the prediction target is PIR time. As mentioned earlier, this metric has received increasing attention in VANET research. Within the scope of HDPL, it measures the time when a vehicle cannot rely on communications to coordinate with other vehicles. Furthermore, modern control systems are able to cope with low update input rates due to predictive algorithms. However, they perform poorly on irregular inputs. This regularity is captured by the PIR distribution. PIR is the time difference between the reception of two messages measured from the receiver of each source. This KPI is studied for cohort members for all received information. Because these messages are periodic, the PIR time is a multiple of the transmission period, plus or minus the delay experienced. It reflects the number of consecutively discarded messages.
在下文中,介绍了环境特征。一个目标是考虑所有通信车辆(即 一个或多个活动收发器)的位置。主要挑战是输入的数量是可变的(理 论上,如果关注点不在特定范围内,该数量可从几辆车跨越到无穷大)。 此外,即使范围缩小到特定范围,大多数预测方法也需要固定大小和 有序的输入。结果,使用了用于周围通信环境信息的适当的聚集方法 (来表示环境模型)。在G.Jornod、A.El Assaad、A.Kwoczek和T.Kürner 在2019年第28届IEEE欧洲网络和通信会议(EuCNC)第187–192页 的“Packet inter-reception time modeling forhigh-density platooning in varying surrounding traffic density”中,介绍了基于环面的环境模型(即, 基于圆形网格),例如在图3a至图3d中所示。核心思想是在接收器周围的同心圆中划分空间,并计算形成的环面中存在的车辆的数量。这 些圆的半径是粒度参数r的倍数。结果,An,r是包含在中的车辆的数 量,该车辆是以接收器为中心的具有半径差的同心环面中的通 信车辆,是环面的指数。In the following, environmental characteristics are introduced. One goal is to consider the location of all communicating vehicles (ie one or more active transceivers). The main challenge is that the number of inputs is variable (theoretically, this number can span from a few cars to infinity if the focus is not within a certain range). Furthermore, most forecasting methods require fixed-size and ordered inputs even when the scope is narrowed down to a specific range. As a result, an appropriate aggregation method (to represent the environment model) for surrounding communication environment information is used. In G. Jornod, A. El Assaad, A. Kwoczek and T. Kürner, "Packet inter-reception time modeling for high-density platooning in 28th IEEE European Conference on Networks and Communications (EuCNC) 2019, pp. 187–192 In "varying surrounding traffic density", a torus-based environment model (ie, based on a circular mesh) is introduced, such as shown in Figures 3a to 3d. The core idea is to divide the space in concentric circles around the receiver and count the number of vehicles present in the formed torus. The radius of these circles is a multiple of the particle size parameter r. As a result, An,r is contained in The number of vehicles in which the vehicle is centered on the receiver with a radius difference communication vehicles in the concentric torus, is the index of the torus.
利用该模型,捕获周围车辆的空间分布对信道负载的影响。环面 被定义为:Using this model, the effect of the spatial distribution of surrounding vehicles on the channel loading is captured. The torus is defined as:
An,r=card(an,r) An,r =card(an ,r )
其中是周围车辆位置向量的集合,n是环面指数,r是其粒度值, 并且xr是接收器的位置向量。环面划分设计用于高速公路使用情况和 在相对车道上车辆进入的特定场景。in is the set of surrounding vehicle position vectors, n is the torus index, r is its granularity value, and x r is the receiver's position vector. Torus partitioning is designed for highway usage and specific scenarios of vehicle entry in opposite lanes.
在该示例中,这种建模(即环境模型)通过引入扇区划分来完善。 这种划分捕获了干扰节点的位置,尤其是相对于发射器位置,当IAD 相对较高时,发射器可能检测不到这些干扰。该空间被划分为角度α的ns个规则扇区,这些扇区以接收器(即圆形网格的中心点)为中心,并与 接收器-发射器区段对齐。划分方法可定义为:In this example, this modeling (ie, the environment model) is complemented by the introduction of sectorization. This division captures the location of interfering nodes, especially relative to the transmitter location, which may not be detected by the transmitter when the IAD is relatively high. The space is divided into ns regular sectors of angle α centered on the receiver (ie, the center point of the circular grid) and aligned with the receiver-transmitter segment. The division method can be defined as:
其中,是提供正x轴和向量x之间的角度的函数,β是产生Rx–Tx 和Rx–干扰车辆向量之间的角度的函数。是角度α=2π/ns的第m 个扇区内的车辆的数量。最后,引入偏移π/2,以便表示当ns=2时 的前/后划分,而不是左/右划分。通过结合基于环面的模型和基于扇 形的模型,获得了所谓的环面-扇区模型。其部段由环面和扇区的交点 限定。在该示例中,表示环面与扇区的交点。类似地,包 含在部段中的车辆组及其基数被定义为:in, is the function that provides the angle between the positive x-axis and the vector x, and β is the function that produces the angle between the Rx–Tx and Rx–disturbing vehicle vectors. is the mth sector of the angle α=2π/ ns the number of vehicles inside. Finally, an offset π/2 is introduced in order to represent the front/back division when ns = 2, rather than the left/right division. By combining a torus-based model and a sector-based model, a so-called torus-sector model is obtained. Its segments are defined by the intersection of the torus and the sector. In this example, represents a torus with sector intersection. Similarly, the groups of vehicles included in a segment and their cardinality are defined as:
可以注意到,和在该示例中,扇区总是相 对于发射器定向,并且环面反映了干扰源的距离。当通过特征的多项 式组合的步骤与IAD组合时,该环境模型提供了解决隐藏节点问题的 可能性。这个问题可通过加权过程在目标和特征之间的关系的建模中 解决。It can be noticed that, and In this example, the sector is always oriented relative to the transmitter, and the torus reflects the distance to the interferer. When combined with IAD through the step of polynomial combination of features, this environment model offers the possibility to solve the hidden node problem. This problem can be addressed in the modeling of the relationship between objects and features through a weighting process.
集合表示周围的节点位置。这被区分为两种情况:全局知识和 局部知识。在全局知识的情况下,它包含模拟中的所有节点,并且表 示为该集合可从传输日志和位置日志获得。在局部知识的情况下, 该集合被表示为并收集了接收器在最后T秒内从其接收到CAM的 节点。根据信道负载,在具有较低T值的情况下,该集合中包含的节 点的数量可急剧减少。当没有实现集体感知系统时,该缩减的集合也 反映了周围通信环境的现实知识。同样,可使用传输日志来计算该集 合。在示例的评估中,T被设置为10秒。gather Indicates the surrounding node location. This is distinguished into two cases: global knowledge and local knowledge. In the case of global knowledge, it contains all nodes in the simulation and is represented as This collection is available from the transport log and the location log. In the case of local knowledge, the set is represented as and collected the nodes from which the receiver received the CAM in the last T seconds. Depending on the channel load, with a lower value of T, the number of nodes contained in the set can be drastically reduced. This reduced set also reflects real-world knowledge of the surrounding communication environment when no collective perception system is implemented. Again, the transport log can be used to calculate the set. In the evaluation of the example, T is set to 10 seconds.
在该示例中,预测目标是PIR时间。在下文中,Γ表示作为随机 变量的PIR。如图3d所示,其分布是重尾的。分布的这种特征可能妨 碍旨在直接预测PIR的经典回归方法的使用。实际上,由于较低的值 比较大的值更具代表性,简单的预测将导致对更具代表性的值的系统 预测,这恰好是传输周期。相反,可预测目标值的分布,这在解决学 习方法之前增加了分布建模的步骤。在文献中,显示通过指数分布、 对数正态分布、威布尔分布、伽玛分布对PIR进行了很好的建模。In this example, the prediction target is PIR time. Hereinafter, Γ denotes PIR as a random variable. As shown in Figure 3d, its distribution is heavy-tailed. This characteristic of the distribution may preclude the use of classical regression methods aimed at directly predicting PIR. In fact, since lower values are more representative than larger values, a simple prediction will result in a systematic prediction of the more representative value, which happens to be the transmission period. Instead, the distribution of target values can be predicted, which adds a distribution modeling step before solving the learning method. In the literature, PIR is shown to be well modeled by exponential distribution, lognormal distribution, Weibull distribution, gamma distribution.
指数分布的概率密度函数(PDF)给出如下:The probability density function (PDF) of the exponential distribution is given as:
其优点是具有单个参数,即率λ。因此,建模任务可能是找到适 合收集的数据的合适的λ。可注意到,在没有相对时延的情况下,PIR 时间是离散变量。在M.E.Renda、G.Resta、P.Santi、F.Martelli和 A.Franchini的“IEEE 802.11p VANets:Experimentalevaluation of packet inter-reception time,”Comput.Commun.,第75卷,第26–38页,2016中,用几何分布对PIR进行建模。指数分布是这种分布的连续模 拟。它使得可以避免在收集的数据中消除相对时延的步骤。It has the advantage of having a single parameter, the rate λ. Therefore, the modeling task may be to find a suitable λ for the collected data. Note that in the absence of relative delay, the PIR time is a discrete variable. In M.E.Renda, G.Resta, P.Santi, F.Martelli, and A.Franchini, "IEEE 802.11p VANets: Experimentalevaluation of packet inter-reception time," Comput. Commun., Vol. 75, pp. 26–38, In 2016, PIR was modeled with a geometric distribution. An exponential distribution is a continuous analog of this distribution. It makes it possible to avoid the step of eliminating relative delays in the collected data.
上一小节描述了环境特征。在此之前,显示了研究周围车辆数量 和IAD的影响及其相互作用的前提。结果表明,车辆的数量和IAD 共同影响CAM信息的平均PIR。一方面,基于接收器周围的车辆数 量,另一方面,基于IAD,计算条件CDF。第一个观测结果是所有提供的CDF都类似于指数分布的CDF。第二个观测结果是,该率λ随着 车辆的数量nv和IADd的变化而变化。当结合两个环面划分的间隔(nv,1和nv,1)时,该率也不同,这显示了周围节点的空间分布的影响。这促 进了λ与环境特征的参数化。建议将λ作为空间分布特征和IAD的多项式组合的函数:The previous subsection described the environmental characteristics. Before this, the premise for studying the effects of the number of surrounding vehicles and IAD and their interactions was shown. The results show that the number of vehicles and IAD together affect the average PIR of the CAM information. Based on the number of vehicles around the receiver, on the one hand, and on the IAD, on the other hand, the conditional CDF is calculated. The first observation is that all provided CDFs resemble those of an exponential distribution. The second observation is that the rate λ varies with the number of vehicles n v and IADd . The rate is also different when combining the two torus-divided intervals ( nv,1 and nv,1 ), which shows the effect of the spatial distribution of the surrounding nodes. This facilitates the parameterization of λ with environmental features. It is recommended to use λ as a function of a polynomial combination of spatial distribution features and IAD:
其中,x是仅具有相互作用(例如省略d2)的二次多项式组合。因此, 剩余的步骤是逼近函数λ(x),使得Γ~Exp(λ(x))。这个过程被称为条件 密度估计(CDE)。where x is a combination of quadratic polynomials with only interactions (eg omitting d 2 ). Therefore, the remaining steps are to approximate the function λ(x) such that Γ ~ Exp(λ(x)). This process is called conditional density estimation (CDE).
在下文中,显示了一种学习方法(例如,用于训练机器学习模型)。 目标可能是提供一种灵活的方法,该方法实现对PIR分布的快速学习。 非线性函数λ(x)可用多层感知机(MLP)逼近。Keras的界面可被充分利 用并与scikit-learn结合用于超参数优化。然后,通过交叉验证的网格 搜索自动进行隐藏层的数量nh和层内节点的数量nn的选择。该模型(即,机器学习模型)使用亚当优化算法训练,以负对数似然作为损失 函数:In the following, a learning method (eg, for training a machine learning model) is shown. The goal might be to provide a flexible method that enables fast learning of the PIR distribution. The nonlinear function λ(x) can be approximated by a multilayer perceptron (MLP). The Keras interface can be fully exploited and combined with scikit-learn for hyperparameter optimization. Then, the selection of the number of hidden layers n h and the number of intra-layer nodes n n is made automatically by a cross-validated grid search. The model (i.e., the machine learning model) is trained using the Adam optimization algorithm with the negative log-likelihood as the loss function:
其中Ω1是训练数据的集合。MLP被输入特征的多项式组合(即基 于环境模型的多项式组合),并输出率λ(其可用于确定服务质量的概率 分布)。图3c示出了基于环面的环境模型的这个过程。学习模型具有 三个参数:学习率LR、隐藏层的数量nh和每层中的神经元的数量nn。 例如,可假设在每层中具有相同数量的神经元。环面-扇区模型的性能 可根据参数r和ns进行比较。这通过使用MLP回归器对由队列成员在 前30分钟内收集的数据(即多个环境模型和相应的服务质量)进行。k 倍交叉验证策略用于训练集和测试集之间的分割。该策略应用于每个 评估的模型,并被报告为平均性能。该模型选择步骤还可包括三个学习参数(学习率、层的大小和数量)。报告了r和ns的每个组合的最佳性 能模型。然后,在总的模拟持续时间内使用该最佳性能模型。MLP回 归器是用由训练队列成员收集的数据迭代地训练的。在这个训练过程 中,每次迭代都更新回归器的权重。根据测试数据评估模型的性能, 测试数据包括由剩余卡车在模拟持续时间内收集的所有观测结果。上 面给出的对数似然被用作MLP模型的训练的损失函数。where Ω 1 is the set of training data. The MLP is fed a polynomial combination of features (ie, a polynomial combination based on an environment model) and outputs a rate λ (which can be used to determine the probability distribution of the quality of service). Figure 3c illustrates this process for a torus-based environment model. The learning model has three parameters: the learning rate LR, the number of hidden layers n h and the number of neurons in each layer n n . For example, it can be assumed that there are the same number of neurons in each layer. The performance of the torus-sector model can be compared according to the parameters r and ns . This was done using an MLP regressor on data collected by cohort members during the first 30 minutes (ie, multiple environmental models and corresponding quality of service). A k-fold cross-validation strategy is used to split between training and test sets. The strategy is applied to each model evaluated and is reported as the average performance. The model selection step may also include three learning parameters (learning rate, size and number of layers). The best performing model is reported for each combination of r and n s . This best performing model is then used for the total simulation duration. The MLP regressor is iteratively trained with data collected by members of the training cohort. During this training process, the weights of the regressor are updated at each iteration. The performance of the model is evaluated against test data, which includes all observations collected by the remaining trucks for the duration of the simulation. The log-likelihood given above is used as the loss function for the training of the MLP model.
评估发现,性能最佳的环面-扇区模型参数对于全局范围为r=30、 ns=8LR=0.0001、nn=1000和nh=9,对于局部范围为r=60、ns=4, LR=0.0001、nn=500和nh=10。评估了以下值:r=n30m,其中 n∈{1,2,3,4,6,13}、ns∈{1,2,4,8}、LR={0.1,0.01,0.001,0.0001}、 nn={50,100,500,1000}并且nh={2,3,...,10}。The evaluation found that the best performing torus-sector model parameters were r=30, ns = 8LR =0.0001, nn =1000 and nh=9 for the global scope and r=60, ns =9 for the
使用先前模型比较的结果,在整个模拟期间以在线方式训练所选 择的模型。每次训练节点接收到传输时,都会更新拟合的模型。对两 个数据集执行该模型的性能:(i)直到感兴趣节点的接收时间为止所收 集的数据,其为训练集的子集;(ii)以及由其它队列成员收集的全部数 据。The selected model is trained online throughout the simulation using the results of previous model comparisons. The fitted model is updated each time the training node receives a transmission. The performance of the model was performed on two datasets: (i) data collected up to the reception time of the node of interest, which is a subset of the training set; (ii) and all data collected by other cohort members.
评估显示,即使在收敛后,模型也可继续学习,以提高其鲁棒性。Evaluations show that even after convergence, the model can continue to learn to improve its robustness.
该概念的更多细节和方面结合所提出的概念或上面或下面描述 的一个或多个示例(例如,图1a至图2)来提及。该概念可包括对应于 所提出的概念的一个或多个方面或上面或下面描述的一个或多个示 例的一个或多个附加任选特征。Further details and aspects of this concept are mentioned in connection with the proposed concept or one or more examples described above or below (e.g., Figures 1a-2). The concept may include one or more additional optional features corresponding to one or more aspects of the proposed concept or one or more examples described above or below.
如已经提到的,在实施例中,相应的方法可实现为计算机程序或 代码,其可在相应的硬件上执行。因此,另一个实施例是具有程序代 码的计算机程序,当该计算机程序在计算机、处理器或可编程硬件部 件上执行时,该程序代码用于执行上述方法中的至少一种。另一个实 施例是存储指令的计算机可读存储介质,当被计算机、处理器或可编 程硬件部件执行时,该指令导致计算机实现本文描述的方法中的一 种。As already mentioned, in the embodiments, the corresponding methods can be implemented as computer programs or codes, which can be executed on corresponding hardware. Thus, another embodiment is a computer program having program code for performing at least one of the above-described methods when the computer program is executed on a computer, processor or programmable hardware component. Another embodiment is a computer-readable storage medium storing instructions that, when executed by a computer, processor or programmable hardware component, cause the computer to implement one of the methods described herein.
本领域技术人员将容易认识到,上述各种方法的步骤可由编程的 计算机来执行,例如,可确定或计算时隙的位置。这里,一些实施例 还旨在覆盖程序存储设备,例如数字数据存储介质,其是机器或计算 机可读的,并且对机器可执行或计算机可执行的指令程序进行编码, 其中所述指令执行本文描述的方法的一些或所有步骤。程序存储设备 可为例如数字存储器、诸如磁盘和磁带的磁存储介质、硬盘驱动器或 光学可读数字数据存储介质。实施例还旨在覆盖被编程为执行本文描 述的方法的所述步骤的计算机或被编程为执行上述方法的所述步骤 的(现场)可编程逻辑阵列((F)PLA)或(现场)可编程门阵列((F)PGA)。Those skilled in the art will readily recognize that the steps of the various methods described above may be performed by a programmed computer, for example, to determine or calculate the location of a time slot. Here, some embodiments are also intended to cover program storage devices, such as digital data storage media, that are machine- or computer-readable and encode a machine-executable or computer-executable program of instructions that perform the operations described herein. some or all steps of the method. The program storage devices may be, for example, digital memories, magnetic storage media such as magnetic disks and tapes, hard drives, or optically readable digital data storage media. The embodiments are also intended to cover computers programmed to perform the steps of the methods described herein or (field) programmable logic arrays ((F)PLAs) or (field) programmable logic arrays ((F)PLAs) programmed to perform the steps of the methods described above. Program Gate Array ((F)PGA).
说明书和附图仅仅说明了本发明的原理。因此,应当理解,本领 域的技术人员将能够设计各种布置,尽管在本文中没有明确描述或示 出,但是这些布置体现了本发明的原理,并且包括在其精神和范围内。 此外,本文叙述的所有示例主要旨在明确地仅用于教学目的,以帮助 读者理解本发明的原理和发明人为推进本领域所贡献的概念,并且被 解释为不限于这些具体叙述的示例和条件。此外,本文叙述本发明的 原理、方面和实施例的所有陈述以及其具体示例旨在包含其等同物。The description and drawings merely illustrate the principles of the invention. Accordingly, it should be understood that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples recited herein are primarily intended to be used expressly for teaching purposes only to assist the reader in understanding the principles of the invention and the concepts contributed by the inventors to advance the art, and are to be construed as not limited to these specifically recited examples and conditions . Furthermore, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass equivalents thereof.
当由处理器提供时,功能可由单个专用处理器、单个共享处理器 或多个单独的处理器提供,其中一些处理器可为共享的。此外,术语 “处理器”或“控制器”的明确使用不应被解释为专门指能够执行软件的 硬件,并且可隐含地包括但不限于数字信号处理器(DSP)硬件、网络 处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、用于存储 软件的只读存储器(ROM)、随机存取存储器(RAM)和非易失性存储。 也可包括其它常规的或定制的硬件。它们的功能可通过程序逻辑的操 作、通过专用逻辑、通过程序控制和专用逻辑的交互、或者甚至手动 地实现,具体技术能够由实现者在根据上下文更具体地理解时选择。When provided by a processor, the functions may be provided by a single dedicated processor, a single shared processor, or multiple separate processors, some of which may be shared. Furthermore, explicit use of the terms "processor" or "controller" should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, but is not limited to, digital signal processor (DSP) hardware, network processors, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Read Only Memory (ROM) for storing software, Random Access Memory (RAM), and non-volatile storage. Other conventional or custom hardware may also be included. Their function may be implemented through the operation of program logic, through dedicated logic, through the interaction of program control and dedicated logic, or even manually, the specific technique being selectable by the implementer as more specifically understood from the context.
本领域技术人员应该理解,本文的任何框图都代表体现本发明的 原理的说明性电路的概念图。类似地,应当理解,任何流程表单、流 程图、状态转换图、伪代码等表示各种过程,这些过程可基本上在计 算机可读介质中表示,并且如此由计算机或处理器执行,无论是否明 确示出了这样的计算机或处理器。It should be understood by those skilled in the art that any block diagrams herein represent conceptual diagrams of illustrative circuitry embodying the principles of the invention. Similarly, it should be understood that any process sheet, flowchart, state transition diagram, pseudo-code, etc. represent various processes that can be substantially represented in a computer-readable medium and so executed by a computer or processor, whether explicitly or not Such a computer or processor is shown.
此外,所附权利要求书由此被结合到详细描述中,其中每项权利 要求可作为单独的实施例独立存在。虽然每项权利要求可作为单独的 实施例独立存在,但是应当注意,尽管从属权利要求在权利要求书中 可指与一个或多个其它权利要求的特定组合,但是其它实施例也可包 括该从属权利要求与每个其它从属权利要求的主题的组合。除非声明 特定的组合不是意图的,否则本文建议这样的组合。此外,还旨在将 权利要求的特征包括到任何其它独立权利要求,即使该权利要求不直 接从属于独立权利要求。Furthermore, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment. Although each claim may stand on its own as a separate embodiment, it should be noted that although a dependent claim may in a claim refer to a specific combination with one or more other claims, other embodiments may also include the dependent claim Claims combine with the subject-matter of each other dependent claim. Unless it is stated that a particular combination is not intended, such a combination is suggested herein. Furthermore, it is intended that the features of a claim be included in any other independent claim, even if the claim is not directly dependent on the independent claim.
还应当注意,说明书或权利要求书中公开的方法可由具有用于执 行这些方法的每个相应步骤的装置的设备来实现。It should also be noted that the methods disclosed in the specification or claims may be implemented by an apparatus having means for performing each respective step of the methods.
附图标记列表List of reference signs
10 装置10 devices
12 一个或多个接口12 One or more interfaces
14 控制模块14 Control Module
100 移动收发器100 Mobile Transceivers
102 另一个移动收发器102 Another mobile transceiver
104 一个或多个活动收发器104 One or more active transceivers
110 确定多个环境模型110 Identifying Multiple Environment Models
120 确定预测的未来环境模型120 Determining predicted future environmental models
120 执行时间序列预测120 Performing Time Series Forecasting
130 预测未来的服务质量130 Predicting future service quality
135 使用预测的未来环境模型作为机器学习模型的输入135 Using Predicted Future Environment Models as Input to Machine Learning Models
140 确定服务质量140 Determining Quality of Service
145 训练机器学习模型145 Training Machine Learning Models
Claims (15)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20164409.3A EP3883273A1 (en) | 2020-03-20 | 2020-03-20 | Method, apparatus and computer program for predicting a future quality of service of a wireless communication link |
EP20164409.3 | 2020-03-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113498071A true CN113498071A (en) | 2021-10-12 |
CN113498071B CN113498071B (en) | 2024-12-17 |
Family
ID=69941175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110296888.8A Active CN113498071B (en) | 2020-03-20 | 2021-03-19 | Method, apparatus and program for predicting future quality of service of wireless communication link |
Country Status (3)
Country | Link |
---|---|
US (1) | US11641244B2 (en) |
EP (1) | EP3883273A1 (en) |
CN (1) | CN113498071B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117692940A (en) * | 2024-02-04 | 2024-03-12 | 北京大业桥科技股份有限公司 | Microwave system performance detection method based on microwave link |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023152879A1 (en) * | 2022-02-10 | 2023-08-17 | 日本電信電話株式会社 | Model setting device, model setting system, model setting method, and model setting program |
WO2023152877A1 (en) * | 2022-02-10 | 2023-08-17 | 日本電信電話株式会社 | Communication quality prediction apparatus, communication quality prediction system, communication quality prediction method, and communication quality prediction program |
US20230291673A1 (en) * | 2022-02-27 | 2023-09-14 | Arris Enterprises Llc | Quadrant-based latency and jitter measurement |
DE102022213214A1 (en) * | 2022-12-07 | 2024-06-13 | Robert Bosch Gesellschaft mit beschränkter Haftung | Device and computer-implemented method for operating a mobile terminal, device and method for supporting the mobile terminal in this method |
CN116132310B (en) * | 2023-02-17 | 2023-10-20 | 西安电子科技大学广州研究院 | Large-scale software defined network performance prediction method |
CN115993488A (en) * | 2023-03-24 | 2023-04-21 | 天津安力信通讯科技有限公司 | Intelligent monitoring method and system for electromagnetic environment |
US20250077382A1 (en) * | 2023-08-30 | 2025-03-06 | Intuit, Inc. | Real-time remote system shutdown prediction |
WO2025078014A1 (en) * | 2023-10-12 | 2025-04-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Managing use of energy saving applications for cells |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007068087A (en) * | 2005-09-02 | 2007-03-15 | Nippon Telegr & Teleph Corp <Ntt> | Multipoint connection communication service subjective quality estimation method and apparatus |
US20150098440A1 (en) * | 2013-10-07 | 2015-04-09 | Nokia Solutions And Networks Oy | Interference Estimation Resource Definition and Usage for Enhanced Receivers |
CN104935659A (en) * | 2015-06-17 | 2015-09-23 | 大连理工大学 | An Access Algorithm Based on Quality of Service Awareness in Vehicular Networks |
US20170264466A1 (en) * | 2016-03-11 | 2017-09-14 | Qualcomm Incorporated | Noise and interference estimation in wireless systems using multiple transmission time intervals |
US20180109402A1 (en) * | 2015-04-17 | 2018-04-19 | Samsung Electronics Co., Ltd. | Device and method for estimating channel in communication system |
CN108353248A (en) * | 2015-08-27 | 2018-07-31 | Fzc哥络普斯 | Method and apparatus for locating a mobile device |
US20190036630A1 (en) * | 2017-10-12 | 2019-01-31 | Intel Corporation | Radio link quality prediction |
CN110290505A (en) * | 2019-06-26 | 2019-09-27 | 江苏大学 | A method for assigning V2V link parameters in a predictable channel of Internet of Vehicles |
CN110505597A (en) * | 2019-07-31 | 2019-11-26 | 北京邮电大学 | A data transmission method for wireless sensor network |
WO2020016039A1 (en) * | 2018-07-19 | 2020-01-23 | Volkswagen Aktiengesellschaft | Apparatus, method, and computer program for a mobile transceiver |
CN110876147A (en) * | 2018-09-04 | 2020-03-10 | 大众汽车有限公司 | Method, device, vehicle, and backend server for predicting quality of service of communication |
EP3621323A1 (en) * | 2018-09-04 | 2020-03-11 | Volkswagen Aktiengesellschaft | Method for setting up an abstracted channel representation for a communication between at least two moving communication partners, apparatus for performing a step of the method, vehicle and computer program |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8423066B2 (en) | 2010-02-23 | 2013-04-16 | Research In Motion Limited | Method and apparatus for opportunistic communication scheduling in a wireless communication network using motion information |
US20160196527A1 (en) | 2015-01-06 | 2016-07-07 | Falkonry, Inc. | Condition monitoring and prediction for smart logistics |
US10713594B2 (en) * | 2015-03-20 | 2020-07-14 | Salesforce.Com, Inc. | Systems, methods, and apparatuses for implementing machine learning model training and deployment with a rollback mechanism |
US9992701B2 (en) | 2016-03-18 | 2018-06-05 | Dell Products, Lp | Method and apparatus for adaptive transmission techniques with connection context aware radio communication management and path prediction |
US20190095961A1 (en) * | 2017-09-22 | 2019-03-28 | Facebook, Inc. | Applying a trained model for predicting quality of a content item along a graduated scale |
US11257002B2 (en) * | 2017-11-22 | 2022-02-22 | Amazon Technologies, Inc. | Dynamic accuracy-based deployment and monitoring of machine learning models in provider networks |
KR102806947B1 (en) | 2018-03-18 | 2025-05-12 | 드라이브유 테크 엘티디. | Devices, systems and methods for autonomous and remotely operated vehicles |
US11329874B2 (en) | 2018-04-12 | 2022-05-10 | Qualcomm Incorporated | Vehicle to everything (V2X) centralized predictive quality of service (QoS) |
US11244242B2 (en) * | 2018-09-07 | 2022-02-08 | Intel Corporation | Technologies for distributing gradient descent computation in a heterogeneous multi-access edge computing (MEC) networks |
US11044185B2 (en) * | 2018-12-14 | 2021-06-22 | At&T Intellectual Property I, L.P. | Latency prediction and guidance in wireless communication systems |
US11159408B2 (en) | 2019-06-25 | 2021-10-26 | Intel Corporation | Link performance prediction technologies |
US20230194279A1 (en) * | 2020-04-17 | 2023-06-22 | Telefonaktiebolaget Lm Ericsson (Publ) | Predicting wireless quality of service (qos) for connected vehicles |
EP3902314B1 (en) * | 2020-04-21 | 2022-10-12 | Rohde & Schwarz GmbH & Co. KG | Method of training a test system for mobile network testing, test system as well as method of mobile testing |
EP3923200A1 (en) * | 2020-06-09 | 2021-12-15 | Elektrobit Automotive GmbH | Prediction of future sensory observations of a distance ranging device |
US20210110323A1 (en) * | 2020-12-22 | 2021-04-15 | Juan Pablo Munoz | Optimizing charging, fueling, and parking overheads of fleet vehicles in a maas architecture |
US20230177968A1 (en) * | 2021-06-11 | 2023-06-08 | Netdrones, Inc. | Systems and methods for configuring a swarm of drones |
-
2020
- 2020-03-20 EP EP20164409.3A patent/EP3883273A1/en active Pending
-
2021
- 2021-03-17 US US17/203,827 patent/US11641244B2/en active Active
- 2021-03-19 CN CN202110296888.8A patent/CN113498071B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007068087A (en) * | 2005-09-02 | 2007-03-15 | Nippon Telegr & Teleph Corp <Ntt> | Multipoint connection communication service subjective quality estimation method and apparatus |
US20150098440A1 (en) * | 2013-10-07 | 2015-04-09 | Nokia Solutions And Networks Oy | Interference Estimation Resource Definition and Usage for Enhanced Receivers |
US20180109402A1 (en) * | 2015-04-17 | 2018-04-19 | Samsung Electronics Co., Ltd. | Device and method for estimating channel in communication system |
CN104935659A (en) * | 2015-06-17 | 2015-09-23 | 大连理工大学 | An Access Algorithm Based on Quality of Service Awareness in Vehicular Networks |
CN108353248A (en) * | 2015-08-27 | 2018-07-31 | Fzc哥络普斯 | Method and apparatus for locating a mobile device |
US20170264466A1 (en) * | 2016-03-11 | 2017-09-14 | Qualcomm Incorporated | Noise and interference estimation in wireless systems using multiple transmission time intervals |
US20190036630A1 (en) * | 2017-10-12 | 2019-01-31 | Intel Corporation | Radio link quality prediction |
WO2020016039A1 (en) * | 2018-07-19 | 2020-01-23 | Volkswagen Aktiengesellschaft | Apparatus, method, and computer program for a mobile transceiver |
CN110876147A (en) * | 2018-09-04 | 2020-03-10 | 大众汽车有限公司 | Method, device, vehicle, and backend server for predicting quality of service of communication |
EP3621274A1 (en) * | 2018-09-04 | 2020-03-11 | Volkswagen Aktiengesellschaft | Method for predicting a quality of service for a communication between at least two moving communication partners, apparatus for performing steps of the method, vehicle, backend server and computer program |
EP3621323A1 (en) * | 2018-09-04 | 2020-03-11 | Volkswagen Aktiengesellschaft | Method for setting up an abstracted channel representation for a communication between at least two moving communication partners, apparatus for performing a step of the method, vehicle and computer program |
CN110290505A (en) * | 2019-06-26 | 2019-09-27 | 江苏大学 | A method for assigning V2V link parameters in a predictable channel of Internet of Vehicles |
CN110505597A (en) * | 2019-07-31 | 2019-11-26 | 北京邮电大学 | A data transmission method for wireless sensor network |
Non-Patent Citations (4)
Title |
---|
""R1-1911276 Physical Layer Structure for NR V2X Sidelink_final"", 3GPP TSG_RAN\\WG1_RL1, 8 October 2019 (2019-10-08) * |
GUILLAUME JORNOD; AHMAD EL ASSAAD,ETC.: "Prediction of Packet Inter-Reception Time for Platooning using Conditional Exponential Distribution", 《2019 16TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS)》, 30 August 2019 (2019-08-30), pages 265 - 270, XP033636303, DOI: 10.1109/ISWCS.2019.8877231 * |
曾格平;陈越;: "基于链路质量的移动Ad hoc路由算法", 电脑知识与技术, no. 04, 5 February 2013 (2013-02-05) * |
翁丽娜;刘轶铭;刘磊;王兆伟;: "无线链路质量评估及预测方法综述", 中国电子科学研究院学报, no. 03, 20 June 2016 (2016-06-20) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117692940A (en) * | 2024-02-04 | 2024-03-12 | 北京大业桥科技股份有限公司 | Microwave system performance detection method based on microwave link |
CN117692940B (en) * | 2024-02-04 | 2024-04-26 | 北京大业桥科技股份有限公司 | Microwave system performance detection method based on microwave link |
Also Published As
Publication number | Publication date |
---|---|
US11641244B2 (en) | 2023-05-02 |
CN113498071B (en) | 2024-12-17 |
US20210297171A1 (en) | 2021-09-23 |
EP3883273A1 (en) | 2021-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113498071B (en) | Method, apparatus and program for predicting future quality of service of wireless communication link | |
Aldossari et al. | Machine learning for wireless communication channel modeling: An overview | |
CN113498095B (en) | Method, apparatus and computer program product for predicting future quality of service of a wireless communication link | |
Fourati et al. | A survey of 5G network systems: challenges and machine learning approaches | |
JP7710116B2 (en) | Model construction method and device | |
CN116420369A (en) | Learning-based spectrum occupancy prediction using multidimensional correlation | |
EP4047382A1 (en) | Rf-fingerprinting map update | |
Qureshi et al. | Toward addressing training data scarcity challenge in emerging radio access networks: A survey and framework | |
WO2020152389A1 (en) | Machine learning for a communication network | |
US20210203396A1 (en) | Method and apparatus for controlling beam adaptively in wireless communication sysyem | |
JP2024547061A (en) | Communication methods and devices | |
Alablani et al. | An SDN/ML-based adaptive cell selection approach for HetNets: A real-world case study in London, UK | |
EP3796687B1 (en) | Method, apparatus and computer program for predicting a future quality of service of a wireless communication link | |
Gures et al. | A comparative study of machine learning-based load balancing in high-speed train system | |
Koudouridis et al. | An architecture and performance evaluation framework for artificial intelligence solutions in beyond 5G radio access networks | |
Mallikarjun et al. | Machine learning based sinr prediction in private campus networks | |
US20250008346A1 (en) | Methods and devices for multi-cell radio resource management algorithms | |
US11751077B2 (en) | Method, computer program, apparatus, and vehicle for generating a quality of service map | |
Stoynov et al. | Low power wide area networks operating in the ism band-overview and unresolved challenges | |
Glinskiy et al. | ALPACA: An Asymmetric Loss Prediction Algorithm for Channel Adaptation Based on a Convolutional-Recurrent Neural Network in URLLC Systems | |
Jornod et al. | Prediction of packet inter-reception time for platooning using conditional exponential distribution | |
US20240306026A1 (en) | Correlation-based measurement reporting reduction | |
Khan | Resource scheduling and cell association in 5G-V2X | |
Toheeb et al. | Gaussian Interpolation-Based Channel State Prediction for Vehicular Networks: Improving Link Reliability in Fading Environments | |
Fernandes | Analysis and classification of handovers in mobile telecommunications networks applying supervised learning algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |