CN113493699B - Method for producing aromatic hydrocarbon and/or liquid fuel from light hydrocarbon - Google Patents
Method for producing aromatic hydrocarbon and/or liquid fuel from light hydrocarbon Download PDFInfo
- Publication number
- CN113493699B CN113493699B CN202010265633.0A CN202010265633A CN113493699B CN 113493699 B CN113493699 B CN 113493699B CN 202010265633 A CN202010265633 A CN 202010265633A CN 113493699 B CN113493699 B CN 113493699B
- Authority
- CN
- China
- Prior art keywords
- aromatization
- catalyst
- dehydrogenation
- stream
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 34
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 33
- 150000004945 aromatic hydrocarbons Chemical class 0.000 title claims abstract description 31
- 239000007788 liquid Substances 0.000 title claims abstract description 27
- 239000000446 fuel Substances 0.000 title claims abstract description 19
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title abstract description 23
- 239000003054 catalyst Substances 0.000 claims abstract description 96
- 238000000034 method Methods 0.000 claims abstract description 77
- 238000006356 dehydrogenation reaction Methods 0.000 claims abstract description 76
- 238000005899 aromatization reaction Methods 0.000 claims abstract description 65
- 239000002808 molecular sieve Substances 0.000 claims abstract description 35
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims abstract description 35
- 238000006384 oligomerization reaction Methods 0.000 claims abstract description 30
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 26
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 239000010457 zeolite Substances 0.000 claims abstract description 26
- 150000001336 alkenes Chemical class 0.000 claims abstract description 25
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000005977 Ethylene Substances 0.000 claims description 56
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 55
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 54
- 230000008569 process Effects 0.000 claims description 35
- 239000011230 binding agent Substances 0.000 claims description 16
- 230000000694 effects Effects 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052733 gallium Inorganic materials 0.000 claims description 7
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims description 4
- 239000000376 reactant Substances 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000004927 clay Substances 0.000 claims description 3
- 239000007791 liquid phase Substances 0.000 claims description 3
- 229910052570 clay Inorganic materials 0.000 claims description 2
- 229910001657 ferrierite group Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- 229910052680 mordenite Inorganic materials 0.000 claims description 2
- 239000012071 phase Substances 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims 1
- 239000012808 vapor phase Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 71
- 150000001335 aliphatic alkanes Chemical class 0.000 abstract description 15
- 230000035425 carbon utilization Effects 0.000 abstract description 13
- 230000009849 deactivation Effects 0.000 abstract description 7
- 239000000047 product Substances 0.000 description 41
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 33
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 239000003502 gasoline Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 150000001491 aromatic compounds Chemical class 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 4
- -1 ZSM-5 as a catalyst Chemical compound 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000004939 coking Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000012263 liquid product Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910000510 noble metal Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 229910007610 Zn—Sn Inorganic materials 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001273 butane Substances 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000004230 steam cracking Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000219793 Trifolium Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000013386 optimize process Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000011165 process development Methods 0.000 description 1
- 239000012048 reactive intermediate Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000013215 result calculation Methods 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 238000013112 stability test Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000007039 two-step reaction Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G50/00—Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/02—Monocyclic hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/02—Monocyclic hydrocarbons
- C07C15/04—Benzene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/02—Monocyclic hydrocarbons
- C07C15/06—Toluene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C15/00—Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
- C07C15/02—Monocyclic hydrocarbons
- C07C15/067—C8H10 hydrocarbons
- C07C15/08—Xylenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/02—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
- C07C2/42—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/76—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
- C07C2/82—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
- C07C2/84—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling catalytic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域Technical field
本发明涉及由轻烃生产芳烃和/或液体燃料的方法。The present invention relates to a process for producing aromatic hydrocarbons and/or liquid fuels from light hydrocarbons.
背景技术Background technique
自2000年中期以来,页岩气的革命导致北美天然气(NG)和天然气液体(NGLs)产量呈指数增长。这直接导致了NGL组分尤其是乙烷的价格在近几年达到了低谷。丰富且低价的乙烷也使得乙烯的生产从传统的以石脑油为原料转换为以乙烷为主要原料,并且由于供应量不断增加,价格也趋于低下。另一方面,从石脑油催化重整切换至乙烷裂化,也使得芳烃生产量不足,价格上涨。客观上形成了与乙烷、乙烯价格上的一个较大的落差。Since the mid-2000s, the shale gas revolution has led to exponential growth in North American natural gas (NG) and natural gas liquids (NGLs) production. This has directly caused the price of NGL components, especially ethane, to reach a low point in recent years. Abundant and low-price ethane has also led to the conversion of ethylene production from traditional naphtha as the raw material to ethane as the main raw material, and due to the increasing supply, the price has also tended to be low. On the other hand, the switch from naphtha catalytic reforming to ethane cracking has also resulted in insufficient production of aromatics and increased prices. Objectively, there is a large price gap with ethane and ethylene.
将轻烃直接转化成芳烃化合物一直以来是学术界和工业界的主要兴趣之一。在过去的数十年中,Shell Oil、Exxon Mobil、SABIC和其它一些发明者已被授权或正在申请多项相关专利。从化学反应机理的角度来看,乙烷至芳烃的转化需要经过乙烯作为中间产物的步骤。即乙烷首先需要被脱氢活化至具有高反应性的中间体乙烯。然后,乙烯在酸性位上低聚/芳构化转化成芳烃化合物等。脱氢步骤通常需要由Pt、Pd等贵金属的脱氢功能来实现,低聚/芳构化则通常在沸石催化剂如ZSM-5上实现。因此,通过一步法将乙烷直接转化为芳烃产物需要在双功能催化剂存在下实现。然而由于热力学的限制,烷烃脱氢需要在较高温度下完成,例如乙烷脱氢,理想的条件是750℃以上。另一方面,ZSM-5分子筛催化的烯烃芳构化反应是放热过程,以400-500℃为适当的温度范围,过高的温度将导致焦化和大量裂解产物甲烷的生成,从而使催化剂快速失活。The direct conversion of light hydrocarbons into aromatic compounds has long been one of the major interests in academia and industry. Over the past few decades, Shell Oil, Exxon Mobil, SABIC and other inventors have been granted or are applying for multiple related patents. From the perspective of chemical reaction mechanism, the conversion of ethane to aromatics requires the step of ethylene as an intermediate product. That is, ethane first needs to be dehydrogenated and activated to the highly reactive intermediate ethylene. Then, ethylene is oligomerized/aromatized at the acidic site and converted into aromatic compounds and the like. The dehydrogenation step usually requires the dehydrogenation function of noble metals such as Pt and Pd, while oligomerization/aromatization is usually achieved on zeolite catalysts such as ZSM-5. Therefore, direct conversion of ethane into aromatic products via a one-step process requires the presence of a bifunctional catalyst. However, due to thermodynamic limitations, alkane dehydrogenation needs to be completed at a higher temperature, such as ethane dehydrogenation. The ideal condition is above 750°C. On the other hand, the olefin aromatization reaction catalyzed by ZSM-5 molecular sieve is an exothermic process. The appropriate temperature range is 400-500°C. Excessive temperature will lead to coking and the generation of a large amount of cracking product methane, thereby causing the catalyst to rapidly Deactivated.
鉴于此,目前的一步法工艺开发一般是选在550-650℃的温度范围内进行的,显然,这是为了兼顾两步反应条件的一种折衷的选择。在此温度条件下,乙烷转换率是有限的,最高乙烷至乙烯的平衡转化率低于30%,但对分子筛催化的碳氢化合物之间的转换,此温度已经过高,积碳和副产物生成严重。In view of this, the current one-step process development is generally carried out in the temperature range of 550-650°C. Obviously, this is a compromise choice to take into account the two-step reaction conditions. Under this temperature condition, the ethane conversion rate is limited, and the maximum equilibrium conversion rate of ethane to ethylene is less than 30%. However, for the conversion between hydrocarbons catalyzed by molecular sieves, this temperature is already too high, causing carbon deposition and By-product formation is severe.
从产物组成来说,一步法的主要缺点是裂解产物甲烷和重组分(一般是指碳数大于10的芳烃组分)的选择性甚高,从而导致碳利用率的低下。例如,在US8946107B2公开的结果中,甲烷选择性高达38%,通过添加0.08%的Fe可以降低甲烷选择性至24%,但同时乙烷转化率也降低了约10%。再例如,US10087124B2公开了在540-560℃、WHSV为1.0g-C2H6/g-cat.hr下从流化床反应器获得的乙烷芳构化结果,在三个循环寿命运行中的平均乙烷转化率仅为约30%,总芳烃选择性(A6+)接近70%,而重质芳烃组分(A10+)接近总碳基产物的20%,占总芳烃产物的30%。从而导致碳基原料的损失。In terms of product composition, the main disadvantage of the one-step method is that the selectivity of the cracked product methane and heavy components (generally refers to aromatic hydrocarbon components with a carbon number greater than 10) is very high, resulting in low carbon utilization. For example, in the results disclosed in US8946107B2, the methane selectivity is as high as 38%. By adding 0.08% Fe, the methane selectivity can be reduced to 24%, but at the same time, the ethane conversion rate is also reduced by about 10%. As another example, US10087124B2 discloses the ethane aromatization results obtained from a fluidized bed reactor at 540-560°C and a WHSV of 1.0gC 2 H 6 /g-cat.hr, averaged over three cycle life runs. The ethane conversion rate is only about 30%, the total aromatics selectivity (A6+) is close to 70%, and the heavy aromatic component (A10+) is close to 20% of the total carbon-based products and accounts for 30% of the total aromatic products. This results in the loss of carbon-based raw materials.
一步法中使用的双功能催化剂的另一个缺点是贵金属如Pt会在高温下烧结,经过若干次循环使用后,再生会越来越困难,催化剂活性也随之下降。在极端的情况下,需要使用氯化再分散的再生手段,但效果也是有限的。Another disadvantage of the bifunctional catalyst used in the one-step method is that precious metals such as Pt will sinter at high temperatures. After several cycles, regeneration will become increasingly difficult and the catalyst activity will decrease. In extreme cases, the regeneration method of chlorination and redispersion needs to be used, but the effect is also limited.
发明内容Contents of the invention
本发明的目的是为了克服现有技术中,轻烃转化为芳烃过程中存在的芳烃收率低,碳利用率低,催化剂容易失活等问题,提供一种新的轻烃脱氢芳构化生产芳烃的方法,通过该方法能够获得较高的芳烃收率和碳利用率,且能够有效地解决催化剂失活等问题,使催化剂的使用寿命大大延长。The purpose of the present invention is to overcome the problems in the prior art that exist in the process of converting light hydrocarbons into aromatic hydrocarbons, such as low aromatic hydrocarbon yield, low carbon utilization rate, and easy catalyst deactivation, and provide a new light hydrocarbon dehydrogenation aromatization method. The method of producing aromatic hydrocarbons can achieve higher aromatic hydrocarbon yield and carbon utilization, and can effectively solve problems such as catalyst deactivation and greatly extend the service life of the catalyst.
如前所述,一步法的温度选择是一个两难问题,目前一步法用于将烷烃转化为芳烃的主要缺点是(1)由于温度限制而限制了乙烷转化率;(2)由焦化引起的催化剂快速失活,因而需要频繁再生;(3)裂解产物甲烷含量较高;(4)液体产物中重质芳烃组分例如萘的比例高,由于甲烷和重质芳烃组分都是不希望得到的副产物,它们的生成导致碳利用率的降低;(5)贵金属如Pt作为主要催化剂组分,其价格昂贵、容易烧结,难以再生;(6)催化剂单程寿命只有数小时,因而在工艺设计中必须考虑使用复杂的反应器系统如流化床或移动床,这将不可避免地增加工艺的复杂性以及设备和运营成本。As mentioned before, the temperature selection of the one-step method is a dilemma. The main disadvantages of the current one-step method for converting alkanes to aromatics are (1) limited ethane conversion rate due to temperature limitations; (2) ethane conversion caused by coking The catalyst deactivates quickly and therefore requires frequent regeneration; (3) the methane content of the cracked product is high; (4) the proportion of heavy aromatic hydrocarbon components such as naphthalene in the liquid product is high, since both methane and heavy aromatic hydrocarbon components are undesirable By-products, their generation leads to a reduction in carbon utilization; (5) Precious metals such as Pt, as the main catalyst component, are expensive, easy to sinter, and difficult to regenerate; (6) The single-pass life of the catalyst is only a few hours, so in process design The use of complex reactor systems such as fluidized beds or moving beds must be considered, which will inevitably increase the complexity of the process as well as equipment and operating costs.
本发明的发明人发现,通过将脱氢与低聚/芳构化进行分离,分步骤执行,可以容易地获得高烷烃转化率和液体芳烃的收率,在整个两步法工艺中,无需使用贵金属催化剂,从而可以有效地降低催化剂成本。The inventors of the present invention have found that by separating dehydrogenation from oligomerization/aromatization and performing it in steps, high alkane conversion rates and liquid aromatic hydrocarbon yields can be easily obtained without using Precious metal catalysts can effectively reduce catalyst costs.
本发明提供了一种轻烃脱氢芳构化生产芳烃的方法,该方法包括以下步骤:The invention provides a method for producing aromatic hydrocarbons by dehydrogenating aromatization of light hydrocarbons, which method includes the following steps:
1)在脱氢反应条件下,将轻烃物流进行脱氢反应,得到含烯烃的物流;1) Under dehydrogenation reaction conditions, dehydrogenate the light hydrocarbon stream to obtain an olefin-containing stream;
2)在芳构化反应条件下,将含烯烃的物流与芳构化催化剂接触,进行低聚/芳构化反应,得到含有芳烃和/或液体燃料的物流;2) Under aromatization reaction conditions, contact the olefin-containing stream with an aromatization catalyst to perform an oligomerization/aromatization reaction to obtain a stream containing aromatic hydrocarbons and/or liquid fuel;
其中,所述芳构化催化剂含有沸石分子筛和负载在沸石分子筛上的活性金属组分和可选的粘结剂。Wherein, the aromatization catalyst contains a zeolite molecular sieve, an active metal component supported on the zeolite molecular sieve, and an optional binder.
如上所述,本发明打破现有技术使用双功能催化剂的思维定势,通过将脱氢与低聚/芳构化进行分离,步骤1)可以包括乙烷的催化脱氢、热脱氢和水蒸汽裂化等常规且成熟的工艺。步骤2)使用金属如Ga改性的沸石分子筛如ZSM-5作为催化剂,可以在低温条件下,特别是在350-550℃的范围内,选择性地将从步骤1)产生的烯烃(主要是乙烯)转化成芳族化合物,例如苯、甲苯、二甲苯和/或其它液体烃类。本发明使用不同的条件分步骤执行,获得了如下效果:1)可以通过改变脱氢区的条件来独立地控制轻烃转化,以实现高烷烃转化率和最慢的失活;2)产物选择性可在低聚/芳构化步骤中由工艺条件控制;3)通过使用负载金属的沸石分子筛催化剂,能够进一步降低反应温度,提高芳烃及液体油品的收率。从而通过该方法能够获得(1)较高的烷烃转化率,(2)较高的碳利用率,(3)较高的单循环芳烃生成量;且催化剂失活缓慢,单程寿命长,易再生,并具有良好的多循环稳定性。由于低温操作且催化剂寿命长、可以选择固定床反应器用于工业化生产,这将使工艺设计简单易行、成本低。鉴于这些技术优点和已证明的催化剂性能,可以预见,本发明方法在进行中试放大,以至实现商业化规模生产的过程中技术壁垒较小。As mentioned above, the present invention breaks the conventional thinking of using dual-functional catalysts. By separating dehydrogenation and oligomerization/aromatization, step 1) can include catalytic dehydrogenation of ethane, thermal dehydrogenation and water Conventional and mature processes such as steam cracking. Step 2) Using a metal such as Ga-modified zeolite molecular sieve such as ZSM-5 as a catalyst, the olefins (mainly olefins) produced from step 1) can be selectively converted under low temperature conditions, especially in the range of 350-550°C. Ethylene) is converted into aromatic compounds such as benzene, toluene, xylene and/or other liquid hydrocarbons. The present invention is executed step by step using different conditions and achieves the following effects: 1) light hydrocarbon conversion can be independently controlled by changing the conditions in the dehydrogenation zone to achieve high alkane conversion rate and the slowest deactivation; 2) product selection The properties can be controlled by process conditions in the oligomerization/aromatization step; 3) By using metal-loaded zeolite molecular sieve catalysts, the reaction temperature can be further reduced and the yield of aromatics and liquid oils can be increased. Therefore, this method can achieve (1) higher alkane conversion rate, (2) higher carbon utilization rate, (3) higher single-cycle aromatic hydrocarbon production; and the catalyst deactivation is slow, the single-pass life is long, and it is easy to regenerate. , and has good multi-cycle stability. Due to low-temperature operation and long catalyst life, fixed-bed reactors can be selected for industrial production, which will make process design simple and cost-effective. In view of these technical advantages and proven catalyst performance, it is foreseeable that the method of the present invention has smaller technical barriers in the process of pilot scale-up and commercial-scale production.
附图说明Description of the drawings
图1是本发明方法的一种实施方式的工艺流程图。Figure 1 is a process flow diagram of an embodiment of the method of the present invention.
图2是实施例1通过串联反应器,基于乙烷计算的BTX收率和产物选择性随时间变化的结果图。Figure 2 is a graph showing the changes in BTX yield and product selectivity over time calculated based on ethane in Example 1 through a series reactor.
图3是对比例1和对比例2中,一步法BTX收率随时间变化的结果图。Figure 3 is a graph showing the changes in BTX yield over time in the one-step method in Comparative Example 1 and Comparative Example 2.
图4是通过串联反应器,基于乙烷计算的在450℃下,通过含镓与不含镓的催化剂,BTX收率随时间变化的比较。Figure 4 is a comparison of the BTX yield as a function of time with gallium-containing and non-gallium catalysts at 450°C based on ethane calculations in a series reactor.
图5是在450℃、3bar多循环寿命实验中第一个循环运行中,根据乙烯计算的乙烯转化率、BTX收率、甲烷选择性(a)以及BTX组分选择性分布(b)随时间的变化。Figure 5 shows the ethylene conversion rate, BTX yield, methane selectivity (a) and BTX component selectivity distribution (b) calculated based on ethylene over time in the first cycle run of the multi-cycle life experiment at 450°C and 3 bar. The change.
图6是图5实验中催化剂循环稳定性的结果图,其中(a)为BTX收率或乙烯转化率降至一定水平所需的时间,(b)为催化剂的乙烯转化容量,(c)为催化剂的BTX生产容量。Figure 6 is a graph showing the results of the catalyst cycle stability in the experiment of Figure 5, where (a) is the time required for the BTX yield or ethylene conversion rate to drop to a certain level, (b) is the ethylene conversion capacity of the catalyst, and (c) is BTX production capacity of the catalyst.
具体实施方式Detailed ways
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。The endpoints of ranges and any values disclosed herein are not limited to the precise range or value, but these ranges or values are to be understood to include values approaching such ranges or values. For numerical ranges, the endpoint values of each range, the endpoint values of each range and individual point values, and the individual point values can be combined with each other to obtain one or more new numerical ranges. These values The scope shall be deemed to be specifically disclosed herein.
图1是显示本发明方法的简化工艺流程图。如图1所示,轻烃(轻质烷烃,沸点不超过-10℃)如乙烷将首先进行脱氢,生成对应的烯烃如乙烯,然后烯烃再进行低聚/芳构化,生成芳烃和其它液体燃料。Figure 1 is a simplified process flow diagram showing the method of the present invention. As shown in Figure 1, light hydrocarbons (light alkanes, boiling point does not exceed -10°C) such as ethane will first undergo dehydrogenation to generate corresponding olefins such as ethylene, and then the olefins will undergo oligomerization/aromatization to generate aromatic hydrocarbons and Other liquid fuels.
关于该两步法工艺,本发明的发明人在之前的专利文献中提到过,即将低级烷烃转化至芳族化合物分成两步,其中步骤1)的目标是烷烃脱氢以取得步骤2)进料适当高的烯烃浓度,步骤2)的目标是通过含烯烃物料的催化转换以取得高芳烃及其它液体燃料的生成量和系统效率。Regarding this two-step process, the inventor of the present invention has mentioned in previous patent documents that the conversion of lower alkanes into aromatic compounds is divided into two steps, in which the goal of step 1) is to dehydrogenate the alkane to obtain the progress of step 2). The goal of step 2) is to achieve high production volume and system efficiency of aromatic hydrocarbons and other liquid fuels through catalytic conversion of olefin-containing materials.
本发明将继续并扩展该两步法概念,集中于在较低温度条件下操作的步骤2),以在BTX收率、催化剂寿命、整体碳利用率和催化剂长期稳定性方面进一步改进为目的,优化工艺条件和催化剂性能。另外,产物构成不限于芳烃化合物,也可以包括汽油范围的烃类。该方法可以设计成不同的操作模式,例如以芳烃化合物最大化为目标、以汽油最大化为目标和整体催化剂性能和系统效率最佳为目标。操作模式的选择可以取决于市场、需求和经济性。The present invention will continue and expand this two-step process concept, focusing on step 2) operating at lower temperature conditions, with the aim of further improvements in BTX yield, catalyst life, overall carbon utilization and long-term catalyst stability, Optimize process conditions and catalyst performance. In addition, the product composition is not limited to aromatic compounds and may also include hydrocarbons in the gasoline range. The method can be designed to operate in different modes, such as targeting aromatics maximization, gasoline maximization, and overall catalyst performance and system efficiency optimization. The choice of operating mode can depend on market, demand and economics.
通过将乙烯芳构化(步骤2)从乙烷脱氢(步骤1)中分离出来,两个步骤都可以在它们的最佳条件下操作。By separating ethylene aromatization (step 2) from ethane dehydrogenation (step 1), both steps can be operated under their optimal conditions.
本发明中,步骤2)优选在较低温度条件下操作,优选300-600℃,进一步优选350-600℃,更优选400-550℃。本发明的发明人发现,较高温度有利于BTX的形成,但同时CH4和碳原子数大于10的重质芳烃产物(A10+)的生成也大幅增加,导致以轻质芳烃(A6-A9)和低碳碳氢化合物(C2-C5)产物量的总和定义并计算的碳利用率降低。In the present invention, step 2) is preferably operated under lower temperature conditions, preferably 300-600°C, further preferably 350-600°C, and more preferably 400-550°C. The inventor of the present invention found that higher temperatures are conducive to the formation of BTX, but at the same time, the generation of CH 4 and heavy aromatic hydrocarbon products with carbon atoms greater than 10 (A10+) also increases significantly, resulting in light aromatic hydrocarbons (A6-A9) The carbon utilization reduction is defined and calculated as the sum of the product amounts of lower carbon hydrocarbons (C2-C5).
具体的,以BTX为目标产物时,步骤2)的温度优选为450-550℃。Specifically, when BTX is used as the target product, the temperature in step 2) is preferably 450-550°C.
以汽油等其他液体燃料为目标产物时,步骤2)的温度优选为350-450℃。When using other liquid fuels such as gasoline as the target product, the temperature in step 2) is preferably 350-450°C.
本发明中,液体燃料是指C5以上碳氢化合物组分即汽油组分。In the present invention, liquid fuel refers to C5 or higher hydrocarbon components, that is, gasoline components.
以整体催化剂性能和系统效率最大化为目标时,步骤2)的温度优选为400-500℃。When maximizing overall catalyst performance and system efficiency is the goal, the temperature in step 2) is preferably 400-500°C.
步骤2)可以在常压下进行,也可以在1-5巴压力下进行。Step 2) can be carried out at normal pressure or at a pressure of 1-5 bar.
所述含烯烃的物流以乙烯计的液体时空速率WHSV可以为0.5-10g/g-cat/hr,优选为0.75-3g/g-cat/hr。The liquid hourly space velocity WHSV calculated as ethylene of the olefin-containing stream may be 0.5-10 g/g-cat/hr, preferably 0.75-3 g/g-cat/hr.
步骤2)可以在常用的固定床反应器、流化床反应器、移动床反应器中进行。Step 2) can be carried out in commonly used fixed bed reactors, fluidized bed reactors, and moving bed reactors.
步骤2)的催化剂为含有或不含有活性金属组分的沸石分子筛和用于催化剂成型的粘结剂。The catalyst in step 2) is a zeolite molecular sieve with or without active metal components and a binder used for catalyst shaping.
所述活性金属组分可以是元素周期表第IIIA族、第VIII族、第VIB族金属元素,例如Ga、Fe、Ni、Ag和Mo中的一种或多种,优选为Ga、Ni中的一种或多种。以催化剂的总量为基准,以元素计,活性金属组分的含量为0.4-5重量%,优选为0.8-2.5重量%,例如0.4、0.5、0.8、1、1.2、1.4、2、2.1、2.2、2.3、2.4、2.5重量%。The active metal component may be a metal element from Group IIIA, Group VIII and Group VIB of the periodic table of elements, such as one or more of Ga, Fe, Ni, Ag and Mo, preferably Ga and Ni. one or more. Based on the total amount of the catalyst and calculated as elements, the content of the active metal component is 0.4-5% by weight, preferably 0.8-2.5% by weight, such as 0.4, 0.5, 0.8, 1, 1.2, 1.4, 2, 2.1, 2.2, 2.3, 2.4, 2.5% by weight.
本发明中,所述沸石分子筛可以是各种具有沸石结构的分子筛,优选地,所述沸石分子筛的硅铝摩尔比为5-300,进一步优选为ZSM-5、ZSM-11、ZSM-12、ZSM-23、ZSM-35、Y型沸石、贝塔沸石、镁碱沸石(Ferrierite)和丝光沸石中的一种或多种。In the present invention, the zeolite molecular sieve can be various molecular sieves with a zeolite structure. Preferably, the silicon-aluminum molar ratio of the zeolite molecular sieve is 5-300, and further preferably ZSM-5, ZSM-11, ZSM-12, One or more of ZSM-23, ZSM-35, Y-type zeolite, beta zeolite, ferrierite and mordenite.
以催化剂的总量为基准,沸石分子筛的含量优选不低于50重量%,更优选70重量%以上,例如75-85重量%。Based on the total amount of the catalyst, the content of zeolite molecular sieve is preferably not less than 50% by weight, more preferably more than 70% by weight, such as 75-85% by weight.
所述芳构化催化剂可以是粉末也可以是成型体,优选地,所述芳构化催化剂为成型体,含有活性金属,沸石分子筛和粘结剂。所述粘结剂可以是各种能够使沸石分子筛成型为有型催化剂的物质,例如可以为二氧化硅、三氧化二铝、粘土、磷酸铝、氧化锆中的一种或多种。优选地,沸石分子筛和粘结剂的重量比为50-99:1-50,优选为70-90:10-30,进一步优选为75-85:15-25。The aromatization catalyst may be a powder or a shaped body. Preferably, the aromatization catalyst is a shaped body containing active metal, zeolite molecular sieve and binder. The binder can be various substances that can shape the zeolite molecular sieve into a shaped catalyst, for example, it can be one or more of silica, aluminum oxide, clay, aluminum phosphate, and zirconium oxide. Preferably, the weight ratio of zeolite molecular sieve and binder is 50-99:1-50, preferably 70-90:10-30, and further preferably 75-85:15-25.
根据本发明的一种优选实施方案,以芳构化催化剂的总量为基准,所述活性金属组分的含量为0.4-4重量%,优选0.8-2.4重量%,所述沸石分子筛的含量为50-99重量%,优选70-90重量%,所述粘结剂的含量为0.6-49.6重量%,优选7.6-29.2重量%。According to a preferred embodiment of the present invention, based on the total amount of aromatization catalyst, the content of the active metal component is 0.4-4% by weight, preferably 0.8-2.4% by weight, and the content of the zeolite molecular sieve is 50-99% by weight, preferably 70-90% by weight, and the content of the binder is 0.6-49.6% by weight, preferably 7.6-29.2% by weight.
上述催化剂可以为市售品,也可以采用已知的方法制备得到。例如首先采用浸渍法,如饱和浸渍法将活性金属组分负载到沸石分子筛上,然后采用常规的挤条法,将沸石分子筛与粘结剂挤出成型得到,例如成型为条型、柱形或三叶草型。The above-mentioned catalyst can be a commercial product or can be prepared by a known method. For example, first, an impregnation method, such as a saturated impregnation method, is used to load the active metal component onto the zeolite molecular sieve, and then a conventional extrusion method is used to extrude the zeolite molecular sieve and the binder into a shape, for example, into a strip, column, or Clover type.
根据本发明的一种优选实施方式,芳构化催化剂的合成通过湿浸渍将具有沸石分子筛粉末与粘合剂如勃姆石、水和活性金属组分的硝酸盐溶液混合以调成糊状。将该糊状物挤出、干燥并在500-650℃下煅烧8-12小时。将煅烧后的挤条粉碎并过筛,取20-40目的颗粒用于催化反应。According to a preferred embodiment of the present invention, the aromatization catalyst is synthesized by wet impregnation by mixing a zeolite molecular sieve powder with a nitrate solution of a binder such as boehmite, water and active metal components to form a paste. The paste is extruded, dried and calcined at 500-650°C for 8-12 hours. The calcined extruded bars are crushed and sieved, and particles of 20-40 mesh are taken for catalytic reaction.
本发明中,步骤1)脱氢反应可以是(乙烷)热脱氢、蒸汽裂化、催化脱氢和氧化脱氢(ODH)中的任意一种方式。In the present invention, the dehydrogenation reaction in step 1) may be any one of (ethane) thermal dehydrogenation, steam cracking, catalytic dehydrogenation and oxidative dehydrogenation (ODH).
由于脱氢反应独立进行,因此可以设定该脱氢反应的条件使得可以实现相当高的转化率(例如>50%),且温度可显著低于典型的乙烷裂化器的出口温度(一般>850℃),脱氢的温度例如为约750℃。由于相对较低的温度,在该区域中没有蒸汽时焦化可忽略不计,因此可以不通入蒸汽。为了促进降低烷烃的分压以促进轻烃的转化,优选向反应器中通入稀释剂,例如氮气。Since the dehydrogenation reaction proceeds independently, the conditions for the dehydrogenation reaction can be set such that relatively high conversions (e.g., >50%) can be achieved at temperatures significantly lower than typical ethane cracker outlet temperatures (generally > 850°C), the dehydrogenation temperature is, for example, about 750°C. Due to the relatively low temperature, coking is negligible in the absence of steam in this zone, so steam does not need to be introduced. In order to promote the reduction of the partial pressure of alkanes to promote the conversion of light hydrocarbons, it is preferred to pass a diluent, such as nitrogen, into the reactor.
如果在脱氢反应中没有使用蒸汽,产物流可以直接用于下一步的低聚/芳构化反应而无需冷却分离以除去水分并重新加热进行反应。这将节省整个工艺的成本。由于低聚/芳构化反应也是独立进行,因此可以通过选择合适的催化剂和控制反应条件,使脱氢反应得到的产物流(一般为烷烃/烯烃/氢气混合物)选择性地转化成芳族化合物或汽油产物。由于该步骤仅需发生低聚/芳构化反应,无需发生需要高活化能的低碳烷烃脱氢反应,因此使用的催化剂可以不含有强脱氢功能的贵金属如Pt,进而可以降低乙烯加氢成乙烷并进一步氢解成甲烷等主要副反应,从而甲烷的生成量将显著减少。If no steam is used in the dehydrogenation reaction, the product stream can be used directly for the next step of oligomerization/aromatization reaction without cooling separation to remove moisture and reheating for reaction. This will save the cost of the entire process. Since the oligomerization/aromatization reactions also proceed independently, the product stream obtained by the dehydrogenation reaction (generally an alkane/olefin/hydrogen mixture) can be selectively converted into aromatic compounds by selecting appropriate catalysts and controlling reaction conditions. or gasoline products. Since this step only requires the oligomerization/aromatization reaction and does not require the dehydrogenation of low-carbon alkanes that requires high activation energy, the catalyst used does not need to contain noble metals with strong dehydrogenation functions such as Pt, which can reduce the hydrogenation of ethylene. Major side reactions include ethane and further hydrogenolysis into methane, thus the amount of methane generated will be significantly reduced.
本发明中,所述脱氢反应可以在有脱氢催化剂的情况下进行,也可以在无脱氢催化剂的情况下进行。In the present invention, the dehydrogenation reaction can be carried out in the presence of a dehydrogenation catalyst or without a dehydrogenation catalyst.
所述脱氢催化剂可以是各种具有烷烃脱氢功能的催化剂,优选地,所述脱氢催化剂为负载型催化剂,该负载型催化剂含有载体和负载在该载体上的具有脱氢活性的金属组分,所述载体为不具有酸性中心的无机耐热氧化物。The dehydrogenation catalyst can be various catalysts with alkane dehydrogenation function. Preferably, the dehydrogenation catalyst is a supported catalyst. The supported catalyst contains a carrier and a metal group with dehydrogenation activity supported on the carrier. The carrier is an inorganic heat-resistant oxide without acidic centers.
优选地,所述具有脱氢活性的金属组分为贵金属组分如Pt或Pd。Preferably, the metal component with dehydrogenation activity is a noble metal component such as Pt or Pd.
根据本发明的一种实施方式,以所述脱氢催化剂的总量为基准,所述具有脱氢活性的金属组分的含量为0.01-2.0重量%,优选为0.02-0.2重量%。According to an embodiment of the present invention, based on the total amount of the dehydrogenation catalyst, the content of the metal component with dehydrogenation activity is 0.01-2.0% by weight, preferably 0.02-0.2% by weight.
优选地,所述载体为二氧化硅、氧化铝、碳化硅、粘土、氧化铈、氧化镧、氧化镁、氧化钛、氧化锆中的一种或多种。Preferably, the carrier is one or more of silica, alumina, silicon carbide, clay, cerium oxide, lanthanum oxide, magnesium oxide, titanium oxide, and zirconium oxide.
上述催化剂可以为市售品,也可以通过已知的方法制备得到。The above-mentioned catalyst may be a commercial product or may be prepared by a known method.
如上所述,由于本发明中脱氢反应独立进行,因此脱氢反应可以在有利于脱氢的条件下进行,优选地,所述脱氢反应在脱氢催化剂存在下进行时,所述脱氢反应在温度为低于900℃,优选为650-850℃,更优选650-800℃下进行。该温度低于一般的乙烷裂解反应温度(通常大于850℃)。As mentioned above, since the dehydrogenation reaction in the present invention is carried out independently, the dehydrogenation reaction can be carried out under conditions favorable to dehydrogenation. Preferably, when the dehydrogenation reaction is carried out in the presence of a dehydrogenation catalyst, the dehydrogenation reaction The reaction is carried out at a temperature below 900°C, preferably 650-850°C, more preferably 650-800°C. This temperature is lower than the general ethane cracking reaction temperature (usually greater than 850°C).
优选地,轻烃物流的GHSV为500-20000h-1,优选为800-5000h-1。Preferably, the GHSV of the light hydrocarbon stream is 500-20000h -1 , preferably 800-5000h -1 .
根据本发明的另一种实施方式,所述脱氢反应在没有所述脱氢催化剂存在下进行。此时,脱氢反应的温度优选为700-900℃。反应物停留时间优选为0.05-30秒。本发明中,反应物停留时间是指反应物在上述700-900℃的脱氢反应温度下停留的时间,也即脱氢反应的时间。According to another embodiment of the present invention, the dehydrogenation reaction is carried out in the absence of the dehydrogenation catalyst. At this time, the temperature of the dehydrogenation reaction is preferably 700-900°C. Reactant residence time is preferably 0.05-30 seconds. In the present invention, the residence time of the reactants refers to the time the reactants stay at the above-mentioned dehydrogenation reaction temperature of 700-900°C, that is, the time of the dehydrogenation reaction.
为了促进降低烷烃的分压以促进轻烃的转化,优选地,向脱氢反应器中通入稀释剂。所述稀释剂例如可以是氮气等对反应不产生不利影响的惰性气体。In order to promote the reduction of the partial pressure of alkanes to promote the conversion of light hydrocarbons, it is preferred to pass a diluent into the dehydrogenation reactor. The diluent may be, for example, nitrogen or other inert gases that do not adversely affect the reaction.
由于本发明步骤1)是为了使轻烃脱氢,目标产物为对应的烯烃,因此脱氢反应的目标以尽可能获得更多的烯烃为准,故将脱氢反应的产物称为“含烯烃的物流”。所述含烯烃的物流可以不经分离直接进行步骤2)所述的低聚/芳构化反应,由此一方面可以节省冷却分离和再次升温以达到低聚/芳构化反应所需温度的时间,缩短流程,还能大大降低由此产生的费用。因此,优选地,所述含烯烃的物流不经分离直接进行步骤2)所述低聚/芳构化反应。Since step 1) of the present invention is to dehydrogenate light hydrocarbons, and the target product is the corresponding olefin, the goal of the dehydrogenation reaction is to obtain as many olefins as possible, so the product of the dehydrogenation reaction is called "olefin-containing logistics”. The olefin-containing stream can be directly subjected to the oligomerization/aromatization reaction described in step 2) without separation, thereby saving the time required for cooling, separation and heating up again to reach the temperature required for the oligomerization/aromatization reaction. time, shorten the process, and greatly reduce the resulting costs. Therefore, preferably, the olefin-containing stream is directly subjected to the oligomerization/aromatization reaction of step 2) without separation.
本发明中,步骤2)所述低聚/芳构化反应是指步骤1)脱氢得到的烯烃物流发生低聚并芳构化形成芳烃的反应。需要说明的是,步骤2)低聚/芳构化反应的原料可以全部来源于步骤1),也可以根据需要在步骤1)产物的基础上进行调整得到,优选使其中乙烯含量不低于20体积%,优选20-50体积%。In the present invention, the oligomerization/aromatization reaction in step 2) refers to a reaction in which the olefin stream obtained by dehydrogenation in step 1) oligomerizes and aromatizes to form aromatic hydrocarbons. It should be noted that the raw materials for the oligomerization/aromatization reaction in step 2) can all come from step 1), or can be obtained by adjusting based on the product of step 1) as needed, preferably so that the ethylene content is not less than 20 Volume %, preferably 20-50 volume %.
根据本发明,所述轻烃物流中的烃可以是各种能够发生脱氢反应进行低聚/芳构化反应生成芳烃的物质,例如可以是各种碳原子数不超过5的烷烃。优选地,所述轻烃物流中乙烷的含量不低于65体积%,更优选75-100体积%。According to the present invention, the hydrocarbons in the light hydrocarbon stream can be various substances that can undergo dehydrogenation reaction and oligomerization/aromatization reaction to generate aromatic hydrocarbons, for example, they can be various alkanes with a carbon number of not more than 5. Preferably, the ethane content in the light hydrocarbon stream is not less than 65% by volume, more preferably 75-100% by volume.
优选地,所述主要含烯烃的物流中乙烯含量不低于20体积%,优选20-50体积%。Preferably, the ethylene content in the stream mainly containing olefins is not less than 20% by volume, preferably 20-50% by volume.
优选地,步骤1)所述脱氢反应和步骤2)所述低聚/芳构化反应在同一个反应器的不同区中进行,或者在不同的反应器中进行。为了使反应能够连续进行,不因催化剂的失活而造成运行中止,优选地,用于步骤1)所述脱氢反应和步骤2)所述低聚/芳构化反应分别为并联设置的至少两个,由此可以使得催化剂失活后将反应切入另一个反应器中,原反应器进行失活催化剂的再生。所述反应器可以是固定床反应器,也可以是流化床反应器。Preferably, the dehydrogenation reaction in step 1) and the oligomerization/aromatization reaction in step 2) are performed in different zones of the same reactor, or in different reactors. In order to enable the reaction to proceed continuously and not cause the operation to be suspended due to deactivation of the catalyst, preferably, the dehydrogenation reaction in step 1) and the oligomerization/aromatization reaction in step 2) are respectively arranged in parallel. Two, so that after the catalyst is deactivated, the reaction can be cut into another reactor, and the original reactor can regenerate the deactivated catalyst. The reactor may be a fixed bed reactor or a fluidized bed reactor.
根据本发明的一种优选实施方式,为了获得纯度更高的液体燃料如芳烃、汽油产品和使轻烃尽可能多地被转化为目标产品,优选地,如图1所示,该方法还包括将步骤2)得到的含有液体燃料的物流进行气液分离,得到含有液体燃料的液相物流,该含有液体燃料的液相物流作为产物外排或者送入后续分离工序。According to a preferred embodiment of the present invention, in order to obtain higher purity liquid fuels such as aromatic hydrocarbons and gasoline products and convert light hydrocarbons into target products as much as possible, preferably, as shown in Figure 1, the method further includes The liquid fuel-containing stream obtained in step 2) is subjected to gas-liquid separation to obtain a liquid-phase stream containing liquid fuel. The liquid-phase stream containing liquid fuel is discharged as a product or sent to a subsequent separation process.
优选地,进一步将分离得到的气相物流进行气体分离,得到氢气流、燃料气流和轻烃流。Preferably, the separated gas phase stream is further subjected to gas separation to obtain a hydrogen gas stream, a fuel gas stream and a light hydrocarbon stream.
进一步优选地,将轻烃流(C2-C4组分)返回步骤1)作为原料进行脱氢反应。Further preferably, the light hydrocarbon stream (C2-C4 components) is returned to step 1) as raw material for dehydrogenation reaction.
以下将通过实施例对本发明进行详细描述。以下实施例中,低聚/芳构化催化剂中使用的分子筛均为Zeolyst公司的市售品。除非另有说明,活性金属组分的含量为相对于分子筛的重量百分含量。The present invention will be described in detail below through examples. In the following examples, the molecular sieves used in the oligomerization/aromatization catalyst are commercially available products from Zeolyst Company. Unless otherwise stated, the content of active metal components is the weight percentage relative to the molecular sieve.
在以下结果计算中,有基于乙烷进料量(也称乙烷进量)和乙烯进料量(也称乙烯进量)两种。所有“量”的定义均为碳摩尔量。In the following result calculations, there are two types based on the ethane feed amount (also called ethane feed amount) and the ethylene feed amount (also called ethylene feed amount). All definitions of "amount" are molar amounts of carbon.
乙烷转化率的计算公式为:乙烷转化率,%=100%×(乙烷进量-反应后乙烷出量)/乙烷进量The calculation formula for ethane conversion rate is: ethane conversion rate, % = 100% × (ethane input - ethane output after reaction) / ethane input
乙烯转化率的计算公式为:乙烯转化率,%=100%×(乙烯进量-反应后乙烯出量)/乙烯进量The calculation formula for ethylene conversion rate is: ethylene conversion rate, % = 100% × (ethylene input amount - ethylene output after reaction) / ethylene input amount
组分选择性的计算公式为:组分Y的选择性=100%×(组分Y的生成量/反应掉的乙烷或乙烯的量)The calculation formula for component selectivity is: selectivity of component Y = 100% × (amount of component Y produced/amount of reacted ethane or ethylene)
组分Y产率的计算为:乙烷或乙烯的转化率×组分Y的选择性(基于乙烷或乙烯)The yield of component Y is calculated as: conversion rate of ethane or ethylene × selectivity of component Y (based on ethane or ethylene)
为了计算乙烯转化容量和BTX生产容量,在所获得的乙烯转化率和BTX收率随时间变化的曲线中,通常以乙烯转化率或BTX收率定义若干计算下限(略为“下限”)。例如,定义基于乙烯计算的BTX收率下限为30%,在寿命实验中可以获得从反应开始至“下限”的时间,即单程催化剂寿命(略为“寿命”)并计算这一反应时间段内的平均转化率。In order to calculate the ethylene conversion capacity and BTX production capacity, in the obtained curves of ethylene conversion rate and BTX yield changing with time, several calculation lower limits (slightly "lower limits") are usually defined in terms of ethylene conversion rate or BTX yield. For example, the lower limit of the BTX yield calculated based on ethylene is defined as 30%. In the life experiment, the time from the start of the reaction to the "lower limit" can be obtained, that is, the single-pass catalyst life (simply "life") and the reaction time within this reaction period is calculated. Average conversion rate.
乙烯转化容量的计算为:达到所定义下限的寿命×在这一段反应时间内基于乙烷或乙烯计算的平均转化率×乙烷或乙烯进料的液体时空速率Ethylene conversion capacity is calculated as: lifetime to reach the defined lower limit × average conversion calculated based on ethane or ethylene during this reaction time × liquid time space velocity of the ethane or ethylene feed
BTX生成容量的计算为:达到所定义下限的寿命×在这一段反应时间内基于乙烷或乙烯计算的BTX平均收率×乙烷或乙烯进料的液体时空速率The BTX production capacity is calculated as: lifetime to reach the defined lower limit × average BTX yield calculated based on ethane or ethylene during this reaction time × liquid hourly space rate of ethane or ethylene feed
产物的组成采用气相色谱在线或离线测定。The composition of the product is determined online or offline using gas chromatography.
实施例1Example 1
采用图1所示的工艺,将体积比为1.67:1的C2H6/N2混合气体送入串联的脱氢和低聚/芳构化两个反应器,脱氢温度设定在750℃,乙烷的GHSV为1000h-1,压力为常压,反应在无催化剂条件下进行。在该条件下,乙烷的转化率约为57%,脱氢产物气流中乙烯的浓度约为22体积%。低聚/芳构化固定床反应器的设定温度分别为400℃、450℃、500℃和550℃,WHSV=2.68g-C2H6/g-cat·hr(相当于1.6g-C2H4/g-cat·hr),压力为常压(1巴),催化剂为采用饱和浸渍法制备的Ga/ZSM-5/Al2O3催化剂(Ga的含量为2.0重量%,ZSM-5的硅铝摩尔比为30,分子筛与粘结剂Al2O3的重量比为82.5/17.5)。基于乙烷计算的BTX收率和产物选择性结果如表1和图2所示。Using the process shown in Figure 1, a C 2 H 6 /N 2 mixed gas with a volume ratio of 1.67:1 is fed into two series-connected dehydrogenation and oligomerization/aromatization reactors, and the dehydrogenation temperature is set at 750 ℃, the GHSV of ethane is 1000h -1 , the pressure is normal pressure, and the reaction is carried out without a catalyst. Under these conditions, the conversion of ethane is approximately 57% and the concentration of ethylene in the dehydrogenated product gas stream is approximately 22% by volume. The set temperatures of the oligomerization/aromatization fixed bed reactor are 400°C, 450°C, 500°C and 550°C respectively, WHSV=2.68gC 2 H 6 /g-cat·hr (equivalent to 1.6gC 2 H 4 / g-cat·hr), the pressure is normal pressure (1 bar), and the catalyst is a Ga/ZSM-5/Al 2 O 3 catalyst prepared by a saturated impregnation method (Ga content is 2.0 wt%, ZSM-5 silicon aluminum The molar ratio is 30, and the weight ratio of molecular sieve to binder Al 2 O 3 is 82.5/17.5). The BTX yield and product selectivity results calculated based on ethane are shown in Table 1 and Figure 2.
图2中(a)所示的C2H4选择性代表了低聚/芳构化反应器中未转化的C2H4的量。数据显示随着温度的升高,未转换的乙烯量增加,表明高温条件下催化剂快速失活。在四个温度条件下,C2H4选择性增至20%的运行时间分别为:在400℃下5190分钟、在450℃下4291分钟、在500℃下2530分钟和在550℃下1159分钟。The C 2 H 4 selectivity shown in (a) in Figure 2 represents the amount of unconverted C 2 H 4 in the oligomerization/aromatization reactor. The data show that the amount of unconverted ethylene increases with increasing temperature, indicating rapid catalyst deactivation at high temperatures. The run times for C 2 H 4 selectivity to increase to 20% under four temperature conditions were: 5190 minutes at 400°C, 4291 minutes at 450°C, 2530 minutes at 500°C, and 1159 minutes at 550°C. .
从图2中(b)可以看出,BTX的收率也受温度影响很大。温度越高,BTX的初始产率越高,但由于焦化,降低得也更快。在这四个温度下BTX产率降至下限15%时的运行时间分别为:400℃下2705分钟、450℃下3772分钟、500℃下2747分钟和550℃下1494分钟。As can be seen from Figure 2(b), the yield of BTX is also greatly affected by temperature. The higher the temperature, the higher the initial yield of BTX, but it also decreases faster due to coking. The running times when the BTX yield dropped to the lower limit of 15% at these four temperatures were: 2705 minutes at 400°C, 3772 minutes at 450°C, 2747 minutes at 500°C and 1494 minutes at 550°C.
图2中(c)显示了在四个温度条件下的CH4选择性。在400℃下测量的CH4选择性约为8%。由于串联模式操作,该8%的CH4大部分来自于步骤1,增加的部分是在步骤2低聚/芳构化中新形成的。与BTX的生成相对应,在高温条件下,甲烷的初始选择性较高,但随着催化剂失活也迅速降低。Figure 2(c) shows the CH4 selectivity under four temperature conditions. The CH4 selectivity measured at 400°C is about 8%. Due to the tandem mode operation, most of this 8% CH4 comes from step 1, with the added portion being newly formed in step 2 oligomerization/aromatization. Corresponding to the generation of BTX, the initial selectivity of methane is high under high temperature conditions, but it also decreases rapidly as the catalyst deactivates.
在BTX产品中,苯馏分受温度影响较大,如图2中(d)所示,温度越高,B/BTX越高。关于产物中苯的价值,其取决于目标产品的定义。如果以轻质芳烃BTX作为目标产物,苯具有较高的价值。但以汽油为目标产品时,苯的含量受到严格限制,以低值为好。In BTX products, the benzene fraction is greatly affected by temperature, as shown in (d) in Figure 2. The higher the temperature, the higher the B/BTX. Regarding the value of benzene in the product, it depends on the definition of the target product. If the light aromatic hydrocarbon BTX is used as the target product, benzene has a higher value. However, when gasoline is the target product, the benzene content is strictly limited, and a low value is preferred.
根据BTX收率随时间变化的曲线(图2-b)计算的,以15%BTX收率为下限的BTX生产容量为400℃下22.5、450℃下40.3、500℃下34.0和550℃下18.4g-BTX/g-cat,参见表1。Calculated based on the curve of BTX yield changing with time (Figure 2-b), the BTX production capacity with 15% BTX yield as the lower limit is 22.5 at 400°C, 40.3 at 450°C, 34.0 at 500°C and 18.4 at 550°C. g-BTX/g-cat, see Table 1.
总之,高温条件可以促进更多的BTX生成,其代价是催化剂寿命短,以及更多的裂解产物甲烷的生成。In short, high temperature conditions can promote more BTX production at the expense of short catalyst life and the production of more methane as a cracking product.
对比例1Comparative example 1
按照实施例1的方法进行乙烷的转化,不同的是,使用Pt/ZSM-5催化剂进行一步法乙烷芳构化。具体的,以乙烷-氮气的混合气作为进料。脱氢/低聚/芳构化温度设定在630℃,WHSV=1.34g-C2H6/g-cat.hr,压力为常压,催化剂为Pt负载量为0.05重量%的Pt/ZSM-5/Al2O3(ZSM-5的硅铝摩尔比为30,分子筛与粘结剂Al2O3的重量比为70/30)。结果如表1和图3中的(a)所示。从图3中的(a)可以看出,尽管WHSV只有实施例1的一半,但BTX产率随反应时间快速下降,一个单循环运行仅能持续约400分钟,在此BTX产率已下降至下限15%。The conversion of ethane was carried out according to the method of Example 1, except that a Pt/ZSM-5 catalyst was used for one-step ethane aromatization. Specifically, a mixture of ethane and nitrogen is used as the feed. The dehydrogenation/oligomerization/aromatization temperature is set at 630°C, WHSV=1.34gC 2 H 6 /g-cat.hr, the pressure is normal pressure, and the catalyst is Pt/ZSM-5 with a Pt loading of 0.05% by weight. /Al 2 O 3 (the molar ratio of silicon to aluminum of ZSM-5 is 30, and the weight ratio of molecular sieve to binder Al 2 O 3 is 70/30). The results are shown in Table 1 and (a) in Figure 3. It can be seen from (a) in Figure 3 that although the WHSV is only half of that of Example 1, the BTX yield decreases rapidly with the reaction time. A single cycle operation can only last about 400 minutes, and the BTX yield has dropped to The lower limit is 15%.
对比例2Comparative example 2
按照对比例1的方法进行乙烷的转化,不同的是,使用Pt-Zn-Sn/ZSM-5催化剂进行一步法乙烷芳构化。具体的,以乙烷-氮气的混合气作为进料。脱氢/低聚/芳构化温度设定在630℃,WHSV=1.34g-C2H6/g-cat.hr,压力为常压,催化剂为Pt负载量为0.05重量%,Zn负载量为0.017重量%,Sn负载量为0.03重量%Pt-Zn-Sn/ZSM-5/Al2O3(ZSM-5的硅铝摩尔比为30,分子筛与粘结剂Al2O3的重量比为70/30)。结果如表1和图3中的(b)所示。从图3中的(b)可以看出,BTX产率下降较图3中的(a)缓慢,但反应也仅能运行400分钟。The conversion of ethane was carried out according to the method of Comparative Example 1, except that a Pt-Zn-Sn/ZSM-5 catalyst was used for one-step ethane aromatization. Specifically, a mixture of ethane and nitrogen is used as the feed. The dehydrogenation/oligomerization/aromatization temperature is set at 630°C, WHSV=1.34gC 2 H 6 /g-cat.hr, the pressure is normal pressure, the catalyst has a Pt loading of 0.05% by weight, and a Zn loading of 0.017 wt%, Sn loading is 0.03 wt% Pt-Zn-Sn/ZSM-5/Al 2 O 3 (the silicon-aluminum molar ratio of ZSM-5 is 30, and the weight ratio of molecular sieve to binder Al 2 O 3 is 70 /30). The results are shown in Table 1 and (b) in Figure 3. As can be seen from (b) in Figure 3, the BTX yield decreases more slowly than (a) in Figure 3, but the reaction can only run for 400 minutes.
此外,比较实施例1和对比例1,2两种类型操作的单循环BTX生产容量,发现1步法(对比例1,2)的数值不高于5g-BTX/g-cat;而通过两步法,在400-550℃温度范围内,单循环BTX生产容量为18-40g-BTX/g-cat,是一步法的数倍,参见表1。In addition, comparing the single-cycle BTX production capacity of the two types of operations in Example 1 and Comparative Examples 1 and 2, it was found that the value of the 1-step method (Comparative Examples 1 and 2) was not higher than 5g-BTX/g-cat; One-step method, in the temperature range of 400-550℃, the single-cycle BTX production capacity is 18-40g-BTX/g-cat, which is several times that of the one-step method, see Table 1.
对比例3Comparative example 3
按照实施例1的方法进行乙烷的转化,不同的是使用的乙烯芳构化催化剂为无金属添加的ZSM-5(ZSM-5同实施例1,分子筛与粘结剂Al2O3的重量比为82.5/17.5),反应仅在450℃一个温度条件下进行。BTX收率随时间变化的结果如图4所示。根据该曲线计算的,以15%BTX收率为下限的BTX生产容量为16.5g-BTX/g-cat。Carry out the conversion of ethane according to the method of Example 1, except that the ethylene aromatization catalyst used is ZSM-5 without metal addition (ZSM-5 is the same as that of Example 1, the weight of molecular sieve and binder Al 2 O 3 The ratio is 82.5/17.5), and the reaction is only carried out at a temperature of 450°C. The results of BTX yield changing with time are shown in Figure 4. Calculated based on this curve, the BTX production capacity with 15% BTX yield as the lower limit is 16.5g-BTX/g-cat.
表1Table 1
实施例2Example 2
与实施例1的方法不同,使用按照实施例1中步骤1)的产物组成简化调配的混合物气流,其组成和体积比为C2H4/H2/N2=1:1:1。催化剂与实施例1中低聚/芳构化的催化剂相同,即采用饱和浸渍法制备的Ga/ZSM-5/Al2O3催化剂(Ga的含量为2.0重量%,ZSM-5的硅铝摩尔比为30,分子筛与粘结剂Al2O3的重量比为82.5/17.5)。芳构化的条件为450℃和550℃、常压、WHSV=0.75g-C2H4/g-cat·hr,反应时间为6小时。基于乙烯计算的6小时平均的BTX产率和产物选择性的结果如表2所示。Different from the method of Example 1, a mixture gas stream prepared according to the product composition of step 1) in Example 1 is used, and its composition and volume ratio are C 2 H 4 /H 2 /N 2 =1:1:1. The catalyst is the same as the oligomerization/aromatization catalyst in Example 1, that is, the Ga/ZSM-5/Al 2 O 3 catalyst prepared by the saturation impregnation method (the content of Ga is 2.0% by weight, the silicon and aluminum moles of ZSM-5 The ratio is 30, and the weight ratio of molecular sieve to binder Al 2 O 3 is 82.5/17.5). The conditions for aromatization are 450°C and 550°C, normal pressure, WHSV=0.75gC 2 H 4 /g-cat·hr, and the reaction time is 6 hours. The results of the 6-hour average BTX yield and product selectivity calculated based on ethylene are shown in Table 2.
对比例4Comparative example 4
按照实施例2的方法进行实验,不同的是,乙烯芳构化使用的催化剂为无金属添加的ZSM-5(ZSM-5同实施例1)。450℃下反应6小时的平均结果如表2所示。The experiment was carried out according to the method of Example 2, except that the catalyst used for aromatization of ethylene was ZSM-5 without metal addition (ZSM-5 is the same as Example 1). The average results of the reaction at 450°C for 6 hours are shown in Table 2.
实施例3Example 3
按照实施例2的方法进行实验,不同的是,乙烯芳构化使用的催化剂为含有分子筛总重量1%镍的ZSM-5(ZSM-5同实施例1)。450℃下反应6小时的平均结果如表2所示。The experiment was carried out according to the method of Example 2, except that the catalyst used for aromatization of ethylene was ZSM-5 containing 1% nickel of the total weight of the molecular sieve (ZSM-5 is the same as Example 1). The average results of the reaction at 450°C for 6 hours are shown in Table 2.
实施例4Example 4
按照实施例2的方法进行实验,不同的是,乙烯芳构化使用的催化剂为含有分子筛总重量1%铁的ZSM-5(ZSM-5同实施例1)。450℃下反应6小时的平均结果如表2所示。The experiment was carried out according to the method of Example 2, except that the catalyst used for aromatization of ethylene was ZSM-5 containing 1% iron by total weight of molecular sieves (ZSM-5 is the same as Example 1). The average results of the reaction at 450°C for 6 hours are shown in Table 2.
实施例5Example 5
按照实施例2的方法进行实验,不同的是,乙烯芳构化使用的催化剂为含有分子筛总重量1%银的ZSM-5(ZSM-5同实施例1)。450℃下反应6小时的平均结果如表2所示。The experiment was carried out according to the method of Example 2, except that the catalyst used for aromatization of ethylene was ZSM-5 containing 1% silver of the total weight of molecular sieves (ZSM-5 is the same as Example 1). The average results of the reaction at 450°C for 6 hours are shown in Table 2.
表2Table 2
从上表2中实施例2的数据可以看出,在550℃下,BTX产率可高达63.5%;CH4和重质芳烃(A10+)的选择性分别为11.7%和9.0%。通过加和可以计算出C2-C5和A6-A9的集合选择性,按照前文中定义的碳利用率,即(C2-C5)+(A6-A9),则在该反应条件下,碳利用率约为80%。It can be seen from the data of Example 2 in Table 2 above that at 550°C, the BTX yield can be as high as 63.5%; the selectivities of CH 4 and heavy aromatics (A10+) are 11.7% and 9.0% respectively. The collective selectivity of C2-C5 and A6-A9 can be calculated by adding up. According to the carbon utilization rate defined previously, that is, (C2-C5) + (A6-A9), then under this reaction condition, the carbon utilization rate About 80%.
在450℃,BTX产率为55.1%,较550℃低8.4%,但CH4和A10+的选择性也较低,碳利用率为90%左右,较550℃高约10%。At 450°C, the BTX yield is 55.1%, 8.4% lower than 550°C, but the selectivity for CH 4 and A10+ is also lower, and the carbon utilization rate is about 90%, which is about 10% higher than 550°C.
由于C2-C5中的组分以轻烃乙烷,丙烷为主,这些组分可以通过图1所示的循环路径回到脱氢反应器进而产生更多的液体产品,因而高的碳利用率是在工艺条件优化中也需要考虑的因素。Since the components in C2-C5 are mainly light hydrocarbons such as ethane and propane, these components can be returned to the dehydrogenation reactor through the circulation path shown in Figure 1 to produce more liquid products, resulting in high carbon utilization. This is a factor that also needs to be considered in the optimization of process conditions.
在液体产物中,在550℃下苯馏分明显高于450℃的值,所以如果以高苯含量为目标,则反应器需要操作在高温条件下。In the liquid product, the benzene fraction at 550°C is significantly higher than the value at 450°C, so if a high benzene content is targeted, the reactor needs to be operated at high temperatures.
从表2和图4的比较结果可以看出,在450℃条件下,在无镓添加的催化反应中(对比例3,对比例4),结合图2可知其BTX收率分别低于实施例1和实施例2,而从表可以看出其在产物中,丙烷、丁烷等的选择性明显高于前者(即,实施例2),从而揭示了镓的主要功效是通过使丙烷、丁烷进行芳构化从而提高BTX产率。It can be seen from the comparison results in Table 2 and Figure 4 that under the conditions of 450°C, in the catalytic reaction without gallium addition (Comparative Example 3, Comparative Example 4), it can be seen from Figure 2 that the BTX yields are respectively lower than those in the Examples 1 and Example 2, and it can be seen from the table that the selectivity of propane, butane, etc. among the products is significantly higher than the former (i.e., Example 2), thus revealing that the main effect of gallium is to make propane, butane, etc. Aromatize alkane to increase BTX yield.
实施例6Example 6
按照实施例2的方法进行实验,不同的是,乙烯芳构化的条件为450℃,3巴,WHSV=1.5g-C2H4/g-cat·hr,体积比为0.67:1:1:1的C2H6/C2H4/H2/N2的气体混合物。该反应进行了3个月的多循环寿命试验。每个循环运行包括约100小时的反应和约24小时的催化剂再生。催化剂再生使用了体积比50:50的空气/氮气混合气体。The experiment was carried out according to the method of Example 2. The difference is that the conditions for aromatization of ethylene are 450°C, 3 bar, WHSV=1.5gC 2 H 4 /g-cat·hr, and the volume ratio is 0.67:1:1:1 Gas mixture of C 2 H 6 /C 2 H 4 /H 2 /N 2 . The reaction was subjected to a 3-month multi-cycle life test. Each cycle run includes approximately 100 hours of reaction and approximately 24 hours of catalyst regeneration. Catalyst regeneration uses an air/nitrogen gas mixture with a volume ratio of 50:50.
对于每个循环,分别计算了催化剂寿命,乙烯转化容量和BTX生产容量,其下限定义为(a)基于乙烯计算的30%的BTX收率和(b)80%的乙烯转化率。For each cycle, the catalyst life, ethylene conversion capacity and BTX production capacity were calculated separately, with the lower limits defined as (a) 30% BTX yield calculated based on ethylene and (b) 80% ethylene conversion.
在该长期稳定性试验中,完成了17个循环的试验,共转化了1990g-C2H4/g-cat(以80%乙烯转化率为下限),生成了858g的BTX产物。平均于每一个循环,乙烯转化容量为117g-C2H4/g-cat,BTX生产容量为50g-BTX/g-cat。In this long-term stability test, 17 cycles of testing were completed, a total of 1990g-C 2 H 4 /g-cat was converted (at the lower limit of 80% ethylene conversion rate), and 858g of BTX product was generated. On average per cycle, the ethylene conversion capacity is 117g-C 2 H 4 /g-cat and the BTX production capacity is 50g-BTX/g-cat.
图5揭示了在第一个催化循环中,乙烯转化率、BTX收率、甲烷选择性随时间的变化(a)以及BTX中各组分的选择性随时间的变化(b)。在所完成的近100个小时的寿命实验中,根据定义的两个下限,即30%的BTX收率(下限1)和80%的乙烯转化率(下限2),计算得到的乙烯转化容量和BTX生产容量分别为127g-C2H4/g-cat(下限1)和140g-C2H4/g-cat(下限1),62g-BTX/g-cat(下限2)和66g-BTX/g-cat(下限2)。Figure 5 reveals the changes in ethylene conversion, BTX yield, and methane selectivity over time (a) and the selectivity of each component in BTX over time (b) in the first catalytic cycle. In the completed life experiment of nearly 100 hours, the calculated ethylene conversion capacity and BTX production capacities are 127g-C 2 H 4 /g-cat (lower limit 1) and 140g-C 2 H 4 /g-cat (lower limit 1), 62g-BTX/g-cat (lower limit 2) and 66g-BTX /g-cat (lower limit 2).
图6综合了催化剂寿命,乙烯转化容量和BTX生产容量随循环次数的变化。从图6可以看出,在最初的5-6个循环中,观测到了容量数值有所下降,但之后趋于稳定。总体而言,催化剂具有较好的长期稳定性。Figure 6 combines catalyst life, ethylene conversion capacity and BTX production capacity as a function of cycle number. As can be seen from Figure 6, in the first 5-6 cycles, a decrease in capacity values was observed, but then it stabilized. Overall, the catalyst has good long-term stability.
上述实施例充分说明,由于两个反应步骤可以在各自优化的条件下操作,本发明提供的两步法具有明显的技术优势。具体的,步骤1)可以是工业上已经成熟的乙烷裂化工艺,步骤2)可以在较低温度范围,例如350-550℃下操作,并且可以根据目标产物来选择合适的工艺条件:(1)以BTX特别是苯为目标产物,步骤2)可以在500-550℃的温度范围内进行;(2)以汽油产品为目标产物,则步骤2)的最佳温度范围为350-400℃之间;(3)以BTX产率,催化剂寿命和碳利用率最高为目标,则步骤2)在约450℃下进行,可获得整体催化剂和效率的最优的表现。The above examples fully illustrate that since the two reaction steps can be operated under respective optimized conditions, the two-step method provided by the present invention has obvious technical advantages. Specifically, step 1) can be an industrially mature ethane cracking process, step 2) can be operated in a lower temperature range, such as 350-550°C, and appropriate process conditions can be selected according to the target product: (1) ) Taking BTX, especially benzene, as the target product, step 2) can be carried out in the temperature range of 500-550°C; (2) taking gasoline products as the target product, the optimal temperature range of step 2) is between 350-400°C time; (3) aiming at the highest BTX yield, catalyst life and carbon utilization, then step 2) is performed at about 450°C to obtain the optimal performance of the overall catalyst and efficiency.
此外,低温操作还具有其它益处,从工程来看,较低的温度操作和相对较长的催化剂寿命将允许使用简单容易的固定床反应器,并且对反应器材料的要求相对低。所有这些优点都将有助于降低设备成本(反应器构造和材料)和操作成本。In addition, low-temperature operation also has other benefits. From an engineering point of view, lower-temperature operation and relatively long catalyst life will allow the use of simple and easy fixed-bed reactors, and the requirements for reactor materials are relatively low. All these advantages will help reduce equipment costs (reactor construction and materials) and operating costs.
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited thereto. Within the scope of the technical concept of the present invention, many simple modifications can be made to the technical solution of the present invention, including the combination of various technical features in any other suitable manner. These simple modifications and combinations should also be regarded as the disclosed content of the present invention. All belong to the protection scope of the present invention.
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010265633.0A CN113493699B (en) | 2020-04-06 | 2020-04-06 | Method for producing aromatic hydrocarbon and/or liquid fuel from light hydrocarbon |
PCT/CN2021/074679 WO2021203816A1 (en) | 2020-04-06 | 2021-02-01 | Method for producing aromatic hydrocarbon and/or liquid fuel from light hydrocarbon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010265633.0A CN113493699B (en) | 2020-04-06 | 2020-04-06 | Method for producing aromatic hydrocarbon and/or liquid fuel from light hydrocarbon |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113493699A CN113493699A (en) | 2021-10-12 |
CN113493699B true CN113493699B (en) | 2023-09-15 |
Family
ID=77995679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010265633.0A Active CN113493699B (en) | 2020-04-06 | 2020-04-06 | Method for producing aromatic hydrocarbon and/or liquid fuel from light hydrocarbon |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113493699B (en) |
WO (1) | WO2021203816A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114073977A (en) * | 2020-08-21 | 2022-02-22 | 国家能源投资集团有限责任公司 | Noble metal supported catalyst, preparation method and application thereof, and method for improving aromatic hydrocarbon yield in process of preparing aromatic hydrocarbon from light hydrocarbon |
CN117160523A (en) * | 2023-08-25 | 2023-12-05 | 华中科技大学 | Propane aromatization reaction catalyst and preparation method and application thereof |
CN119215972B (en) * | 2024-11-28 | 2025-03-04 | 湘潭大学 | Molecular sieve composite catalyst and method for preparing low-carbon olefin and aromatic hydrocarbon by naphtha oxidative pyrolysis |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB573756A (en) * | 1942-08-06 | 1945-12-05 | Distillers Co Yeast Ltd | Improvements in or relating to the production of ethylene |
US4788364A (en) * | 1987-12-22 | 1988-11-29 | Mobil Oil Corporation | Conversion of paraffins to gasoline |
CN103086820A (en) * | 2011-10-28 | 2013-05-08 | 中国石油化工股份有限公司 | Light olefin production method |
CN103361114A (en) * | 2012-04-05 | 2013-10-23 | 中国石油天然气股份有限公司 | Process for producing high-octane gasoline from carbon-rich four-carbon five-carbon hexaalkane raw material |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1162969A (en) * | 1968-08-19 | 1969-09-04 | Shell Int Research | A Process for Converting Hydrocarbons |
CN1026316C (en) * | 1989-06-28 | 1994-10-26 | 抚顺石油学院 | Low-carbon hydrocarbon aromatization process |
FR2836150B1 (en) * | 2002-02-15 | 2004-04-09 | Inst Francais Du Petrole | PROCESS FOR IMPROVING AROMATIC AND NAPHTENO-AROMATIC GAS CUT |
CN101274874A (en) * | 2007-03-27 | 2008-10-01 | 中国科学院大连化学物理研究所 | A method for producing cyclic hydrocarbons and aromatic hydrocarbons by dehydrocyclization aromatization of chain monoolefins |
CN101759512B (en) * | 2008-10-09 | 2015-06-10 | 山东大齐化工科技有限公司 | Method for producing aromatic hydrocarbon by high-olefin light hydrocarbon |
CN101759511B (en) * | 2008-10-09 | 2015-09-16 | 山东大齐化工科技有限公司 | Low olefin-content lighter hydrocarbons are utilized to produce the method for aromatic hydrocarbons |
CN103361113B (en) * | 2012-04-05 | 2015-11-18 | 中国石油天然气股份有限公司 | Process for producing high-octane gasoline by using raw material rich in carbon, four carbon, five carbon and six alkane |
-
2020
- 2020-04-06 CN CN202010265633.0A patent/CN113493699B/en active Active
-
2021
- 2021-02-01 WO PCT/CN2021/074679 patent/WO2021203816A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB573756A (en) * | 1942-08-06 | 1945-12-05 | Distillers Co Yeast Ltd | Improvements in or relating to the production of ethylene |
US4788364A (en) * | 1987-12-22 | 1988-11-29 | Mobil Oil Corporation | Conversion of paraffins to gasoline |
CN103086820A (en) * | 2011-10-28 | 2013-05-08 | 中国石油化工股份有限公司 | Light olefin production method |
CN103361114A (en) * | 2012-04-05 | 2013-10-23 | 中国石油天然气股份有限公司 | Process for producing high-octane gasoline from carbon-rich four-carbon five-carbon hexaalkane raw material |
Non-Patent Citations (1)
Title |
---|
低碳烯烃芳构化催化剂与工艺进展;李昱等;《抚顺石油学院学报》;20020315;第22卷(第01期);23-28 * |
Also Published As
Publication number | Publication date |
---|---|
WO2021203816A1 (en) | 2021-10-14 |
CN113493699A (en) | 2021-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8841227B2 (en) | Production of aromatics from methane | |
EP2834210B1 (en) | Process for the production of xylenes and light olefins from heavy aromatics | |
US20230227735A1 (en) | Natural Gas Liquids Upgrading Process: Two-Step Catalytic Process For Alkane Dehydrogenation And Oligomerization | |
RU2462446C2 (en) | Combined production of aromatic compounds in apparatus for producing propylene from methanol | |
US9796643B2 (en) | Hydrocarbon dehydrocyclization in the presence of carbon dioxide | |
WO2021203816A1 (en) | Method for producing aromatic hydrocarbon and/or liquid fuel from light hydrocarbon | |
US9221037B2 (en) | Multimetal zeolites based catalyst for transalkylation of heavy reformate to produce xylenes and petrochemical feedstocks | |
AU2010313369A1 (en) | Process for the conversion of mixed lower alkanes to aromatic hydrocarbons | |
CN112739802B (en) | Selective hydrogenolysis in combination with cracking | |
CN112830858B (en) | Method for producing aromatic hydrocarbon by dehydrogenating and aromatizing light hydrocarbon | |
US10071938B2 (en) | Hydrocarbon dehydrocyclization | |
US20230399274A1 (en) | Process for catalytically converting naphtha to light olefins with predominant modes | |
CN120225488A (en) | Naphtha to ethane and propane unit with hydrogen slip | |
US20240124783A1 (en) | Process and plant for converting oxygenates to gasoline with improved gasoline yield and octane number as well as reduced durene levels | |
US10464864B2 (en) | Upgrading ethane-containing light paraffins streams | |
CA3044683C (en) | Upgrading ethane-containing light paraffins streams | |
CN114789062B (en) | Modified catalyst, preparation method thereof and method for producing aromatic hydrocarbon by olefin aromatization | |
US20190002367A1 (en) | Systems and Methods for Producing Naphthalenes and Methylnaphthalenes | |
CA3044680A1 (en) | Upgrading ethane-containing light paraffins streams |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |