CN113487019A - Circuit fault diagnosis method and device, computer equipment and storage medium - Google Patents
Circuit fault diagnosis method and device, computer equipment and storage medium Download PDFInfo
- Publication number
- CN113487019A CN113487019A CN202110763336.3A CN202110763336A CN113487019A CN 113487019 A CN113487019 A CN 113487019A CN 202110763336 A CN202110763336 A CN 202110763336A CN 113487019 A CN113487019 A CN 113487019A
- Authority
- CN
- China
- Prior art keywords
- circuit
- sample
- fault
- fault diagnosis
- pigeon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003745 diagnosis Methods 0.000 title claims abstract description 139
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000012360 testing method Methods 0.000 claims abstract description 94
- 241000272201 Columbiformes Species 0.000 claims abstract description 62
- 238000012549 training Methods 0.000 claims abstract description 52
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 19
- 239000013598 vector Substances 0.000 claims description 30
- 210000002569 neuron Anatomy 0.000 claims description 23
- 238000004590 computer program Methods 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 17
- 230000009467 reduction Effects 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 5
- 230000003044 adaptive effect Effects 0.000 claims 2
- 244000144992 flock Species 0.000 abstract description 15
- 230000006870 function Effects 0.000 description 15
- 230000008569 process Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000000513 principal component analysis Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000013145 classification model Methods 0.000 description 2
- 230000009191 jumping Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/061—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using biological neurons, e.g. biological neurons connected to an integrated circuit
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Neurology (AREA)
- Evolutionary Computation (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Pure & Applied Mathematics (AREA)
- Computational Linguistics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Tests Of Electronic Circuits (AREA)
Abstract
本申请涉及一种电路故障诊断方法、装置、计算机设备和存储介质。所述方法包括:获取对待诊断电路进行测试获得的目标测试数据;采用预先训练获得的电路故障诊断模型,对所述目标测试数据进行电路故障诊断,获得所述待诊断电路的电路故障诊断结果;其中,训练获得所述电路故障诊断模型的方式包括:获取故障电路样本集,所述故障电路样本集中包括各故障电路样本信息,所述电路故障样本信息包括对故障样本电路进行测试获得的样本测试数据以及各所述故障样本电路对应的样本标签;基于所述故障电路样本集,基于鸽群算法对待训练电路故障诊断模型进行训练,获得所述电路故障诊断模型。采用本方法能够提高了电路故障诊断的正确性和诊断效率。
The present application relates to a circuit fault diagnosis method, device, computer equipment and storage medium. The method includes: acquiring target test data obtained by testing a circuit to be diagnosed; using a circuit fault diagnosis model obtained by pre-training, performing circuit fault diagnosis on the target test data, and obtaining a circuit fault diagnosis result of the circuit to be diagnosed; The method of obtaining the circuit fault diagnosis model by training includes: acquiring a fault circuit sample set, where the fault circuit sample set includes sample information of each fault circuit, and the circuit fault sample information includes a sample test obtained by testing the fault sample circuit data and sample labels corresponding to each faulty sample circuit; based on the faulty circuit sample set, the fault diagnosis model of the circuit to be trained is trained based on the pigeon flock algorithm to obtain the circuit fault diagnosis model. By adopting the method, the correctness and efficiency of circuit fault diagnosis can be improved.
Description
技术领域technical field
本申请涉及电子技术领域,特别是涉及一种电路故障诊断方法、装置、计算机设备和存储介质。The present application relates to the field of electronic technology, and in particular, to a circuit fault diagnosis method, device, computer equipment and storage medium.
背景技术Background technique
随着电子技术的不断进步和工业的不断发展,电子设备的集成度与复杂度也变得越来越高,尤其是含有模拟器件的电器设备。对这种设备进行的故障诊断、维修和保养是一件非常困难的事情,耗尽精力财力,但却是保证系统正常运行不可缺少的重要部分。根据调查表明,对这类设备的诊断、维修和保养所投入的经费已超过设备的成本。因此,在主要工业领域,如军事工业领域和航空航天领域,对这种复杂设备的故障诊断和维修已提出了十分迫切的要求。With the continuous advancement of electronic technology and the continuous development of the industry, the integration and complexity of electronic equipment have become higher and higher, especially the electrical equipment containing analog devices. Troubleshooting, repairing and maintaining such equipment is very difficult, exhausting energy and financial resources, but it is an indispensable and important part of ensuring the normal operation of the system. According to the survey, the cost of diagnosis, repair and maintenance of such equipment has exceeded the cost of the equipment. Therefore, in major industrial fields, such as military industry and aerospace, the fault diagnosis and maintenance of such complex equipment has put forward very urgent requirements.
传统的电路故障诊断方式,通常是在电路的使用过程中,通过监测电路的相关电学参数,并将监测到的电学参数与相关阈值进行比较,以此判定是否发生电路故障。然而,这种电路故障诊断方式,准确性不佳。The traditional way of diagnosing circuit faults is to determine whether a circuit fault occurs by monitoring the relevant electrical parameters of the circuit and comparing the monitored electrical parameters with relevant thresholds during the use of the circuit. However, this method of circuit fault diagnosis has poor accuracy.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对上述技术问题,提供一种电路故障诊断方法、装置、计算机设备和存储介质。Based on this, it is necessary to provide a circuit fault diagnosis method, device, computer equipment and storage medium for the above technical problems.
一种电路故障诊断方法,所述方法包括:A circuit fault diagnosis method, the method comprising:
获取对待诊断电路进行测试获得的目标测试数据;Obtain the target test data obtained by testing the circuit to be diagnosed;
采用预先训练获得的电路故障诊断模型,对所述目标测试数据进行电路故障诊断,获得所述待诊断电路的电路故障诊断结果;Using the circuit fault diagnosis model obtained by pre-training, perform circuit fault diagnosis on the target test data, and obtain the circuit fault diagnosis result of the circuit to be diagnosed;
其中,训练获得所述电路故障诊断模型的方式包括:Wherein, the way of obtaining the circuit fault diagnosis model by training includes:
获取故障电路样本集,所述故障电路样本集中包括各故障电路样本信息,所述电路故障样本信息包括对故障样本电路进行测试获得的样本测试数据以及各所述故障样本电路对应的样本标签;Obtaining a sample set of faulty circuits, the sample set of faulty circuits includes sample information of each faulty circuit, and the sample information of circuit faults includes sample test data obtained by testing the faulty sample circuits and sample labels corresponding to each of the faulty sample circuits;
基于所述故障电路样本集,基于鸽群算法对待训练电路故障诊断模型进行训练,获得所述电路故障诊断模型。Based on the faulty circuit sample set, the fault diagnosis model of the circuit to be trained is trained based on the pigeon flock algorithm, and the circuit fault diagnosis model is obtained.
一种电路故障诊断装置,所述装置包括:A circuit fault diagnosis device, the device includes:
模型获取模块,用于获取预先训练获得的电路故障诊断模型,其中,所述电路故障诊断模型,是通过获取故障电路样本集,所述故障电路样本集中包括各故障电路样本信息,所述电路故障样本信息包括对故障样本电路进行测试获得的样本测试数据以及各所述故障样本电路对应的样本标签;基于所述故障电路样本集,基于鸽群算法对待训练电路故障诊断模型进行训练得到的;A model acquisition module, configured to acquire a circuit fault diagnosis model obtained by pre-training, wherein the circuit fault diagnosis model is obtained by acquiring a faulty circuit sample set, the faulty circuit sample set includes sample information of each faulty circuit, and the circuit fault The sample information includes sample test data obtained by testing the faulty sample circuit and sample labels corresponding to each of the faulty sample circuits; based on the faulty circuit sample set, obtained by training the fault diagnosis model of the circuit to be trained based on the pigeon flock algorithm;
数据获取模块,用于获取对待诊断电路进行测试获得的目标测试数据;a data acquisition module for acquiring target test data obtained by testing the circuit to be diagnosed;
诊断模块,用于采用预先训练获得的电路故障诊断模型,对所述目标测试数据进行电路故障诊断,获得所述待诊断电路的电路故障诊断结果。The diagnosis module is configured to use a circuit fault diagnosis model obtained by pre-training to perform circuit fault diagnosis on the target test data, and obtain a circuit fault diagnosis result of the circuit to be diagnosed.
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现如上所述的电路故障诊断方法的步骤。A computer device includes a memory and a processor, the memory stores a computer program, and when the processor executes the computer program, the steps of the above-mentioned circuit fault diagnosis method are implemented.
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的电路故障诊断方法的步骤。A computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the above-mentioned circuit fault diagnosis method.
上述电路故障诊断方法、装置、计算机设备和存储介质,针对待诊断电路,通过获得对待诊断电路进行测试获得的目标测试数据,并采用电路故障诊断模型对其进行电路故障诊断,而且该电路故障诊断模型时基于鸽群算法进行训练得到的,从而大大提高了电路故障诊断的正确性和诊断效率。The above circuit fault diagnosis method, device, computer equipment and storage medium, for the circuit to be diagnosed, obtain the target test data obtained by testing the circuit to be diagnosed, and use the circuit fault diagnosis model to carry out circuit fault diagnosis, and the circuit fault diagnosis The model is trained based on the pigeon flock algorithm, which greatly improves the correctness and efficiency of circuit fault diagnosis.
附图说明Description of drawings
图1为一个实施例中电路故障诊断方法的应用环境图;1 is an application environment diagram of a circuit fault diagnosis method in one embodiment;
图2为一个实施例中电路故障诊断方法的流程示意图;2 is a schematic flowchart of a circuit fault diagnosis method in one embodiment;
图3为一个实施例中训练获得电路故障诊断模型的流程示意图;3 is a schematic flowchart of training to obtain a circuit fault diagnosis model in one embodiment;
图4为另一个实施例中训练获得电路故障诊断模型的流程示意图;4 is a schematic flowchart of a circuit fault diagnosis model obtained by training in another embodiment;
图5为一个示例中随机共振的模型原理示意图;Fig. 5 is the model principle schematic diagram of stochastic resonance in an example;
图6为一个具体示例中的训练过程示意图;6 is a schematic diagram of a training process in a specific example;
图7为一个具体示例中的电路故障诊断的原理示意图;7 is a schematic diagram of a circuit fault diagnosis in a specific example;
图8为一个具体示例中训练获得电路故障诊断模型的流程示意图;FIG. 8 is a schematic flowchart of training to obtain a circuit fault diagnosis model in a specific example;
图9为一个实施例中电路故障诊断装置的结构框图;9 is a structural block diagram of an apparatus for diagnosing circuit faults in one embodiment;
图10为一个实施例中计算机设备的内部结构图;Figure 10 is an internal structure diagram of a computer device in one embodiment;
图11为一个实施例中计算机设备的内部结构图。Figure 11 is a diagram of the internal structure of a computer device in one embodiment.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clearly understood, the present application will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
本申请提供的电路故障诊断方法,可以应用于如图1所示的应用环境中。其中,待诊断电路10是要用以对其诊断,诊断其是否存在故障的目标电路。设备20是可以用以对待诊断电路10进行测试,以获得对应的目标测试数据的测试设备。获得的目标测试数据可以通过有线、无线或者其他方式(例如通过第三方转发等)传输至计算机设备30。计算机设备基于获得的目标测试数据,采用预先训练获得的电路故障诊断模型进行电路故障诊断,以获得待诊断电路的电路故障诊断结果。其中,获得的电路故障诊断结果,可以是待诊断电路是否存在故障,也可以是该待诊断电路是否存在故障,以及在有故障的情况下,具体的故障类型。上述电路故障诊断模型,可以由计算机设备30自己训练获得,也可以是由其他设备(例如服务器或者其他训练设备)训练获得,计算机设备30可以从这这些设备获得已经训练好的电路故障诊断模型。其中,计算机设备30可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备。The circuit fault diagnosis method provided by the present application can be applied to the application environment shown in FIG. 1 . The
在一个实施例中,如图2所示,提供了一种电路故障诊断方法,以该方法应用于图1中的计算机设备30为例进行说明,包括以下步骤S201至步骤S202。In one embodiment, as shown in FIG. 2 , a method for diagnosing circuit faults is provided, which is illustrated by taking the method applied to the
步骤S201:获取对待诊断电路进行测试获得的目标测试数据。Step S201: Acquire target test data obtained by testing the circuit to be diagnosed.
待诊断电路是要对其进行诊断,判断其是否存在故障,或者判断其是否存在故障以及再有故障的情况下存在的故障类型的目标电路。一些具体示例中,该待诊断电路具体可以是模拟电路。具体可以是在该待诊断电路实际测量前对其进行模拟诊断。The circuit to be diagnosed is a target circuit for diagnosing it, judging whether it has a fault, or judging whether it has a fault and the type of fault that exists in the case of another fault. In some specific examples, the circuit to be diagnosed may specifically be an analog circuit. Specifically, an analog diagnosis may be performed on the circuit to be diagnosed before it is actually measured.
在获取对待诊断电路进行测试获得的目标测试数据时,在一些实施例中,可以是实时对待诊断电路进行测试获得目标测试数据,也可以是事先已经完成对该待诊断电路的测试,获得了目标测试数据,在需要进行电路故障诊断时,直接获取该已经获得的目标测试数据即可。When acquiring the target test data obtained by testing the circuit to be diagnosed, in some embodiments, the target test data may be obtained by testing the circuit to be diagnosed in real time, or the test of the circuit to be diagnosed has been completed in advance to obtain the target test data. For test data, when circuit fault diagnosis is required, the obtained target test data can be directly obtained.
步骤S202:采用预先训练获得的电路故障诊断模型,对所述目标测试数据进行电路故障诊断,获得所述待诊断电路的电路故障诊断结果。Step S202: Using a circuit fault diagnosis model obtained by pre-training, perform circuit fault diagnosis on the target test data, and obtain a circuit fault diagnosis result of the circuit to be diagnosed.
其中,具体可以将目标测试数据输入该预先训练获得的电路故障诊断模型,获得该目标测试数据对应的待诊断电路的电路故障诊断结果。其中,获得的电路故障诊断结果,可以是待诊断电路是否存在故障,也可以是该待诊断电路是否存在故障,以及在有故障的情况下,具体的故障类型。具体的电路故障诊断结果的类型,与训练的电路故障诊断模型相关。Specifically, the target test data can be input into the circuit fault diagnosis model obtained by the pre-training, and the circuit fault diagnosis result of the circuit to be diagnosed corresponding to the target test data can be obtained. The obtained circuit fault diagnosis result may be whether there is a fault in the circuit to be diagnosed, or whether the circuit to be diagnosed is faulty, and if there is a fault, the specific fault type. The specific type of circuit fault diagnosis result is related to the trained circuit fault diagnosis model.
其中,上述电路故障诊断模型,可以由计算机设备30自己训练获得,也可以是由其他设备(例如服务器或者其他训练设备)训练获得,计算机设备30可以从这这些设备获得已经训练好的电路故障诊断模型。The above-mentioned circuit fault diagnosis model can be obtained by training the
参考图3所示,一个实施例中,训练获得所述电路故障诊断模型的方式包括如下步骤S301和步骤S302。Referring to FIG. 3 , in one embodiment, the method for obtaining the circuit fault diagnosis model by training includes the following steps S301 and S302.
步骤S301:获取故障电路样本集,所述故障电路样本集中包括各故障电路样本信息,所述电路故障样本信息包括对故障样本电路进行测试获得的样本测试数据以及各所述故障样本电路对应的样本标签。Step S301: Obtain a sample set of faulty circuits, where the sample set of faulty circuits includes sample information of each faulty circuit, and the sample information of circuit faults includes sample test data obtained by testing the faulty sample circuits and samples corresponding to each of the faulty sample circuits Label.
在一些实施例中,故障电路样本集可以包括一个以上的样本子集,其中,一个样本子集对应一种故障类型,一个样本子集中的各故障电路样本信息对应的故障类型,为该样本子集对应的故障类型。In some embodiments, the faulty circuit sample set may include more than one sample subset, wherein one sample subset corresponds to one fault type, and the fault type corresponding to each faulty circuit sample information in one sample subset is the sample subset Set the corresponding fault type.
一个实施例中,可以采用如下方式获取故障电路样本集:In one embodiment, the sample set of faulty circuits can be obtained in the following manner:
对各样本电路分别设置对应的电路故障,获得各故障样本电路以及各故障样本电路对应的故障类型,所述样本标签包括所述故障样本电路对应的故障类型;Corresponding circuit faults are respectively set for each sample circuit, and each fault sample circuit and the fault type corresponding to each fault sample circuit are obtained, and the sample label includes the fault type corresponding to the fault sample circuit;
分别对各所述故障样本电路进行测试,获得各所述故障样本电路的样本测试数据;respectively test each of the faulty sample circuits to obtain sample test data of each of the faulty sample circuits;
基于各所述故障样本电路的对应的故障类型和样本测试数据,获得故障电路样本集。Based on the corresponding fault type and sample test data of each of the faulty sample circuits, a sample set of faulty circuits is obtained.
从而,针对样本电路分别设置相应的故障,从而可以直接地获得相应故障类型的故障样本电路,并在此基础上对各所述故障样本电路进行测试,即可直接获得各故障样本电路的样本测试数据。Therefore, the corresponding faults are respectively set for the sample circuits, so that the fault sample circuits of the corresponding fault types can be directly obtained, and on this basis, each fault sample circuit can be tested, and the sample test of each fault sample circuit can be directly obtained. data.
在另一个实施例中,也可以是直接在已经发生故障的电路的基础上,获得故障电路样本集,具体可以包括:In another embodiment, the faulty circuit sample set may also be obtained directly on the basis of the faulty circuit, which may specifically include:
对历史发生故障的各电路(即故障样本电路)进行测试,获得各所述故障样本电路的样本测试数据;Test each circuit (ie, faulty sample circuit) that has failed historically, and obtain sample test data of each of the faulty sample circuits;
基于各所述故障样本电路的对应的故障类型和样本测试数据,获得故障电路样本集。Based on the corresponding fault type and sample test data of each of the faulty sample circuits, a sample set of faulty circuits is obtained.
一些实施例中,针对历史发生故障的故障样本电路,由于在电路发生故障之后可能已经通过测试手段获得了该电路的测试数据,因而可以直接获取历史发生故障的各电路(即故障样本电路)的测试数据,作为该故障样本电路的样本测试数据。然后在基于各样本测试数据,以及各样本测试数据对应的各电路对应的故障类型,获得故障电路样本集。In some embodiments, for a faulty sample circuit that has historically failed, since the test data of the circuit may have been obtained by means of testing after the circuit has failed, the data of each circuit (ie, faulty sample circuit) that has historically failed can be directly obtained. Test data, as sample test data for the faulty sample circuit. Then, based on each sample test data and the fault type corresponding to each circuit corresponding to each sample test data, a sample set of faulty circuits is obtained.
其中,在上述对电路进行测试的过程中,可以采用任何可能的方式进行,对电路进行测试的结果,可以包含任何与电路相关的测试数据。Wherein, in the above-mentioned process of testing the circuit, any possible manner may be used, and the result of testing the circuit may include any test data related to the circuit.
一个实施例中,参考图4所示,在获取故障电路样本集之后,还可以包括如下步骤S3011至步骤S3013。In one embodiment, referring to FIG. 4 , after acquiring the faulty circuit sample set, the following steps S3011 to S3013 may be further included.
步骤S3011:对各所述故障样本进行归一化处理。Step S3011: Perform normalization processing on each of the fault samples.
其中,可以采用各种可能方式进行归一化处理。假设故障电路样本集为X={x1,x2,…xi,…,xn},其中n为样本集个数,则通过进行归一化处理,其中,xie为第i个样本集的第e中样本,e=1,2,…,d,xemax和xemin分别为第i个样本集中的数据的最大和最小值,为归一化值。Among them, the normalization processing can be performed in various possible ways. Assuming that the fault circuit sample set is X={x 1 , x 2 ,...x i ,...,x n }, where n is the number of sample sets, then pass Perform normalization processing, where x ie is the e-th sample in the ith sample set, e=1, 2,...,d, x emax and x emin are the maximum and minimum data in the ith sample set, respectively value, is the normalized value.
步骤2:对归一化处理后的各所述故障样本进行随机共振处理。Step 2: Perform stochastic resonance processing on each of the normalized fault samples.
随机共振的目的,是用以提高各所述样本测试数据的信噪比,以降低噪声的影响。The purpose of stochastic resonance is to improve the signal-to-noise ratio of the test data of each sample, so as to reduce the influence of noise.
一个实施例中的随机共振的处理模型如图5所示,在随机共振中,若非线性系统的目标输入信号为s(t),在传输过程中,噪声信号为噪声强度为D,那么随机共振系统的数学模型可以表示为The processing model of stochastic resonance in one embodiment is shown in Figure 5. In stochastic resonance, if the target input signal of the nonlinear system is s(t), during the transmission process, the noise signal is The noise intensity is D, then the mathematical model of the stochastic resonance system can be expressed as
其中,τ为延迟时间;δ(t)为冲激函数;U(x)为系统势函数,且其表达式为:Among them, τ is the delay time; δ(t) is the impulse function; U(x) is the system potential function, and its expression is:
其中α和β均为系统内部参数。where α and β are both internal parameters of the system.
将上两式结合后,可以得到After combining the above two equations, we can get
对其进行离散化处理,可得: By discretizing it, we can get:
从而可以结合式对归一化处理后的各所述故障样本进行随机共振处理。so that the combined Stochastic resonance processing is performed on each of the normalized fault samples.
为了方便表示,可以将随机共振后得到的样本改写成Y={y1,y2,…yi,…,yn},其中 For convenience of expression, the sample obtained after stochastic resonance can be rewritten as Y={y 1 ,y 2 ,...y i ,...,y n }, where
步骤3:对随机共振处理后的各所述故障样本进行数据降维处理。Step 3: Perform data dimension reduction processing on each of the fault samples after stochastic resonance processing.
本申请的一个实施例中,可以基于KPCA数据降维进行数据降维处理。具体地,可以选用式所示的高斯核函数作为核函数,在特征空间中通过式和式确定非线性主成分个数,进而提取出非线性主成分。其中K(yi,yj)为核函数矩阵;yi,yj为样本点;σ为高斯核函数的宽度,fr(yj)为在第r个特征向量方向上的投影,即求得的非线性主成分分量,vr为样本数据由高维空间向低维空间的投影向量;αr为核函数矩阵的第r个特征向量。In an embodiment of the present application, data dimensionality reduction processing may be performed based on KPCA data dimensionality reduction. Specifically, the optional The Gaussian kernel function shown is used as the kernel function in the feature space by the formula Japanese Determine the number of nonlinear principal components, and then extract nonlinear principal components. where K(y i , y j ) is the kernel function matrix; y i , y j are the sample points; σ is the width of the Gaussian kernel function, and f r (y j ) is The projection in the direction of the rth eigenvector, namely the obtained nonlinear principal component, v r is the projection vector of the sample data from the high-dimensional space to the low-dimensional space; α r is the rth eigenvector of the kernel function matrix .
步骤S302:基于所述故障电路样本集,基于鸽群算法对待训练电路故障诊断模型进行训练,获得所述电路故障诊断模型。Step S302: Based on the faulty circuit sample set, train the fault diagnosis model of the circuit to be trained based on the pigeon flock algorithm to obtain the circuit fault diagnosis model.
其中,待训练电路故障诊断模型包括输入层、隐含层和输出层。鸽群算法是模拟鸽子归巢行为而设计出来的群智能优化算法,其具有原理简明的特点、需要调整参数极少、易于被实现的特点,具有计算相对简单,鲁棒性较强等明显的优点。一个实施例中,参考图6所示,基于所述故障电路样本集,基于鸽群算法对待训练电路故障诊断模型进行训练,获得所述电路故障诊断模型,包括如下步骤S601至步骤S609。The circuit fault diagnosis model to be trained includes an input layer, a hidden layer and an output layer. The pigeon swarm algorithm is a swarm intelligent optimization algorithm designed to simulate the homing behavior of pigeons. It has the characteristics of simple principle, few parameters to be adjusted, and easy to be implemented. advantage. In one embodiment, referring to FIG. 6 , based on the faulty circuit sample set, the circuit fault diagnosis model to be trained is trained based on the pigeon flock algorithm, and the circuit fault diagnosis model is obtained, including the following steps S601 to S609 .
步骤S601:初始化鸽群数量,设置最大迭代次数。Step S601: Initialize the number of pigeon flocks, and set the maximum number of iterations.
可以随机产生鸽群数量,也可以通过指定的方式产生初始化的鸽群数量。一个实施例中,电路故障诊断模型的诊断目标仅仅是诊断出是否有故障的情况下,初始化的鸽群数量可以是1,在电路故障诊断模型的诊断目标是电路故障的具体故障类型的情况下,初始化的鸽群数量可以是与可诊断的故障类型的数目相同。一个具体示例中,初始化的鸽群数量,可以与故障电路样本集中的样本子集的数量相同。The number of pigeon groups can be randomly generated, or the initial number of pigeon groups can be generated by a specified method. In one embodiment, if the diagnosis target of the circuit fault diagnosis model is only to diagnose whether there is a fault, the number of pigeons to be initialized may be 1. In the case that the diagnosis target of the circuit fault diagnosis model is a specific fault type of the circuit fault , the number of initialized pigeon flocks can be the same as the number of diagnosable fault types. In a specific example, the number of initialized pigeon flocks may be the same as the number of sample subsets in the faulty circuit sample set.
最大迭代次数,是在鸽群算法的训练过程中,最多的迭代次数,可以基于训练效率以及训练精度的需求,综合考虑设定该最大迭代次数。The maximum number of iterations is the maximum number of iterations in the training process of the pigeon flock algorithm. The maximum number of iterations can be set based on the requirements of training efficiency and training accuracy.
步骤S602:初始化所述隐含层的隐含层神经元数目,并设置鸽子的搜索区间。Step S602: Initialize the number of neurons in the hidden layer of the hidden layer, and set the search interval of the pigeon.
其中,每个鸽子对应所述待训练电路故障诊断模型的一组模型参数,可以采用可能的方式初始化的隐含层神经元数目。Wherein, each pigeon corresponds to a set of model parameters of the circuit fault diagnosis model to be trained, and the number of hidden layer neurons that can be initialized in a possible manner.
步骤S603:基于所述输入层的输入层神经元数目以及所述隐含层神经元数目,计算鸽群的空间向量维度。Step S603: Calculate the space vector dimension of the pigeon group based on the number of input layer neurons in the input layer and the number of neurons in the hidden layer.
一个具体示例中,鸽群的向量空间维度,可以是输入层神经元数目与隐含层神经元数目之积与所述隐含层神经元数目的和值。将鸽群的空间向量维度记为SizePop,输入层神经元数目记为ni,隐含层神经元数目记为L,则可以通过下式计算出鸽群的空间向量维度:In a specific example, the vector space dimension of the pigeon group may be the sum of the product of the number of neurons in the input layer and the number of neurons in the hidden layer and the number of neurons in the hidden layer. Denote the space vector dimension of the pigeon group as SizePop, the number of neurons in the input layer as n i , and the number of neurons in the hidden layer as L, the space vector dimension of the pigeon group can be calculated by the following formula:
SizePop=L×ni+LSizePop=L×n i +L
步骤S604:根据鸽群的空间向量维度,产生各鸽子的空间向量,其中,每个鸽子对应所述待训练电路故障诊断模型的一组模型参数。Step S604: Generate a space vector of each pigeon according to the space vector dimension of the pigeon group, wherein each pigeon corresponds to a set of model parameters of the circuit fault diagnosis model to be trained.
步骤S605:将故障电路样本集中的各样本测试数据输入所述待训练电路故障诊断模型,获得各样本测试数据对应的样本训练结果,并基于所述样本训练结果以及对应的样本标签,计算各鸽子的适应值。Step S605: Input each sample test data in the faulty circuit sample set into the fault diagnosis model of the circuit to be trained, obtain a sample training result corresponding to each sample test data, and calculate each pigeon based on the sample training result and the corresponding sample label. fitness value.
步骤S606:根据各鸽子的适应值,计算训练误差。Step S606: Calculate the training error according to the fitness value of each pigeon.
步骤S607:根据所述训练误差,更新各所述鸽子的空间向量中的全局最优空间向量,并更新各鸽子的向量空间,更新迭代次数,并返回所述产生各鸽子的空间向量的步骤,直至达到最大迭代次数。Step S607: According to the training error, update the global optimal space vector in the space vector of each pigeon, and update the vector space of each pigeon, update the number of iterations, and return to the step of generating the space vector of each pigeon, until the maximum number of iterations is reached.
步骤S608:在达到最大迭代次数后,更新搜索范围值,若搜索范围值未达到最大搜索范围值,初始化迭代次数,并返回初始化所述隐含层的隐含层神经元数目,并设置鸽子的搜索区间的步骤,直至达到最大搜索范围值。Step S608: After reaching the maximum number of iterations, update the search range value, if the search range value does not reach the maximum search range value, initialize the number of iterations, and return to initialize the number of hidden layer neurons of the hidden layer, and set the pigeon's Steps to search the range until the maximum search range value is reached.
一个具体示例中,最大搜索范围值与所述隐含层神经元数目相同。In a specific example, the maximum search range value is the same as the number of neurons in the hidden layer.
步骤S609:在达到最大搜索范围值时,基于全局最优空间向量确定所述电路故障诊断模型。Step S609: When the maximum search range value is reached, determine the circuit fault diagnosis model based on the global optimal space vector.
基于如上所述的实施例,以下结合一个具体示例进行详细举例说明。Based on the above-mentioned embodiments, the following detailed description is given in conjunction with a specific example.
在模拟电路中,按照电路的仿真在实际测量的先或后顺序划分,有测前模拟诊断和测后模拟诊断。为了保证模拟电路的稳定运行,相对于测后模拟诊断,测前模拟诊断显得更重要。本申请实施例涉及的是测前模拟诊断,即针对模拟电路,在模拟电路实际测量之前,对该模拟电路进行故障诊断。In the analog circuit, according to the order of the circuit simulation in the actual measurement, there are pre-test simulation diagnosis and post-test simulation diagnosis. In order to ensure the stable operation of the analog circuit, the analog diagnosis before the test is more important than the analog diagnosis after the test. The embodiment of the present application relates to the pre-test simulation diagnosis, that is, for the simulation circuit, the fault diagnosis of the simulation circuit is performed before the simulation circuit is actually measured.
参考图7所述,本申请实施例提出的模拟电路故障诊断算法,首先针对故障电路样本,利用随机共振和核主成分分析(KPCA)对故障电路样本进行处理,然后利用鸽群算法(PIO)优化极限学习机(ELM)的输入权重和隐层的偏置的参数,得到电路故障诊断模型。然后利用该电路故障诊断模型作为分类算法,对待测模拟电路(即待诊断电路)进行故障分类。Referring to FIG. 7 , the analog circuit fault diagnosis algorithm proposed in the embodiment of the present application firstly uses stochastic resonance and nuclear principal component analysis (KPCA) to process the faulty circuit samples for the faulty circuit samples, and then uses the pigeon colony algorithm (PIO) to process the faulty circuit samples. The parameters of input weights and hidden layer biases of extreme learning machine (ELM) are optimized to obtain a circuit fault diagnosis model. Then, the circuit fault diagnosis model is used as a classification algorithm to classify the faults of the analog circuit to be tested (ie the circuit to be diagnosed).
其中,本申请实施例提出的得到电路故障诊断模型的过程主要包括两部分:数据采集处理部分和优化训练分类模型部分。在数据采集处理部分,其首先获得故障电路样本,具体可以是对已发生故障的故障电路进行测试,获得样本测试数据,或者是人工主动对目标模拟电路设置相应类型的故障,并对设置了故障的目标模拟电路(即故障样本电路)进行测试,获得样本测试数据。在优化训练分类模型部分,针对获得的样本测试数据,进行数据采样,并经过随机共振、核主成分分析(KPCA Kernel Principal Component Analysis)提取故障特征,并将它们分为训练数据和测试数据。利用训练数据对PIO-ELM进行训练,最终得到最优的电路故障诊断模型,然后用测试数据对获得的电路故障诊断模型进行测试,若测试通过,则获得最终的电路故障诊断模型。The process of obtaining the circuit fault diagnosis model proposed in the embodiment of the present application mainly includes two parts: a data acquisition and processing part and an optimized training classification model part. In the data acquisition and processing part, it first obtains a sample of the faulty circuit. Specifically, it can test the faulty circuit that has failed to obtain sample test data, or manually set the corresponding type of fault on the target analog circuit, and set the fault The target analog circuit (ie the faulty sample circuit) is tested to obtain sample test data. In the part of optimizing the training classification model, for the obtained sample test data, data sampling is performed, and fault features are extracted through stochastic resonance and KPCA Kernel Principal Component Analysis (KPCA Kernel Principal Component Analysis), and they are divided into training data and test data. The PIO-ELM is trained with the training data, and the optimal circuit fault diagnosis model is finally obtained. Then, the obtained circuit fault diagnosis model is tested with the test data. If the test passes, the final circuit fault diagnosis model is obtained.
参考图8所示,一个实施例中的得到电路故障诊断模型的过程可以是如下所述。Referring to FIG. 8 , the process of obtaining a circuit fault diagnosis model in one embodiment may be as follows.
首先,针对故障电路样本集X={x1,x2,…xi,…,xn},通过进行归一化处理,获得归一化处理后的故障电路样本集,其中n为样本集个数,xie为第i个样本集的第e中样本,e=1,2,…,d,xemax和xemin分别为第i个样本集的样本数据的最大值和最小值,为对第i个样本集的第e中样本的归一化值。First, for the faulty circuit sample set X={x 1 , x 2 ,...x i ,...,x n }, by Perform normalization processing to obtain the normalized fault circuit sample set, where n is the number of sample sets, x ie is the e-th sample in the i-th sample set, e=1,2,...,d, x emax and x emin are the maximum and minimum values of the sample data of the ith sample set, respectively, is the normalized value for the e-th sample in the i-th sample set.
然后,针对归一化后的故障电路样本集,进行随机共振处理,以实现有用输入信号的增强,提高系统输出信噪比,Then, for the normalized fault circuit sample set, stochastic resonance processing is performed to enhance the useful input signal and improve the system output signal-to-noise ratio,
一个示例中,可以采用来进行随机共振处理。在随机共振中,若随机共振系统的目标输入信号为s(t),在传输过程中,噪声信号为噪声强度为D,那么随机共振系统的数学模型可以表示为In an example, one can use for stochastic resonance processing. In stochastic resonance, if the target input signal of the stochastic resonance system is s(t), during the transmission process, the noise signal is The noise intensity is D, then the mathematical model of the stochastic resonance system can be expressed as
式⑴中,τ为延迟时间;δ(t)为冲激函数;U(x)为系统势函数,且其表达式为:In formula (1), τ is the delay time; δ(t) is the impulse function; U(x) is the system potential function, and its expression is:
其中α和β均为系统内部参数,可以结合实际技术需要设定。Among them, α and β are internal parameters of the system, which can be set according to actual technical needs.
将上两式结合后,可以得到After combining the above two equations, we can get
离散化可得: Discretization gives:
为了方便表示,将随机共振后得到的样本改写成Y={y1,y2,…yi,…,yn},其中 For convenience of expression, the sample obtained after stochastic resonance is rewritten as Y={y 1 , y 2 ,...y i ,...,y n }, where
针对随机共振后得到的样本,可以选用式所示的高斯核函数作为核函数,在特征空间中通过式和式确定非线性主成分个数,进而提取出非线性主成分,从而据此进行数据降维处理,获得数据降维后的样本,以减少后续的计算量。其中K(yi,yj)为核函数矩阵;yi,yj为样本点;σ为高斯核函数的宽度,fr(yj)为在第r个特征向量方向上的投影,即求得的非线性主成分分量,vr为样本数据由高维空间向低维空间的投影向量;αr为核函数矩阵的第r个特征向量。For the samples obtained after stochastic resonance, the formula can be selected The Gaussian kernel function shown is used as the kernel function in the feature space by the formula Japanese Determine the number of nonlinear principal components, and then extract the nonlinear principal components, so as to perform data dimensionality reduction processing accordingly, and obtain samples after data dimensionality reduction, so as to reduce the subsequent calculation amount. where K(y i , y j ) is the kernel function matrix; y i , y j are the sample points; σ is the width of the Gaussian kernel function, and f r (y j ) is The projection in the direction of the rth eigenvector, namely the obtained nonlinear principal component, v r is the projection vector of the sample data from the high-dimensional space to the low-dimensional space; α r is the rth eigenvector of the kernel function matrix .
设置鸽群算法的初始参数,包括:鸽群数量N、最大迭代次数kmax。Set the initial parameters of the pigeon flock algorithm, including: the number of pigeon flocks N, the maximum number of iterations kmax.
启用地图罗盘因子,并搭建极限学习机网络架构。在搭建极限学习机网络架构时,可以初始化隐含层中神经元的数目L并设置搜索区间。Enable the map compass factor and build an extreme learning machine network architecture. When building the extreme learning machine network architecture, the number L of neurons in the hidden layer can be initialized and the search interval can be set.
为了得到输入层和隐含层之间最优的权重W,可以先计算鸽群的空间向量维度SizePop:In order to get the optimal weight W between the input layer and the hidden layer, the space vector dimension SizePop of the pigeon flock can be calculated first:
SizePop=L×ni+LSizePop=L×n i +L
其中,ni为输入层神经元数目,L为隐含层神经元数目;Among them, n i is the number of neurons in the input layer, and L is the number of neurons in the hidden layer;
然后,根据鸽群的空间向量维度,产生各鸽子的空间向量,其中,每个鸽子对应所述待训练电路故障诊断模型的一组模型参数,并根据更新所有鸽群搜索个体的空间向量:Then, according to the space vector dimension of the pigeon group, the space vector of each pigeon is generated, wherein each pigeon corresponds to a set of model parameters of the fault diagnosis model of the circuit to be trained, and the individual space vector is searched according to the update of all the pigeon groups:
Vi(k)=Vi(k-1)·e-Rk+rand·(Ybest-Yi(k-1))V i (k)=V i (k-1)·e -Rk +rand·(Y best -Y i (k-1))
Yi(k)=Yi(k-1)+Vi(k) Yi (k)=Y i ( k-1)+V i (k)
每只鸽子的位置和速度分别由Y和V表示,其中,经过k次迭代后第i只鸽子新的速度为Vi(k)、位置为Yi(k),R是介于0到1之间的地图罗盘因子;k是当前迭代次数;rand是随机数;Ybest是k-1次迭代后全局最优位置。The position and velocity of each pigeon are represented by Y and V, respectively, where the new velocity of the ith pigeon after k iterations is V i (k), the position is Y i (k), and R is between 0 and 1 The map compass factor between; k is the current number of iterations; rand is a random number; Y best is the global optimal position after k-1 iterations.
按照公式计算权重矩阵δ;其中,H是隐藏层节点的输出。T为极限学习机输出层的期望输出矩阵。According to the formula Calculate the weight matrix δ; where H is the output of the hidden layer node. T is the expected output matrix of the output layer of the extreme learning machine.
g(x)为激活函数。Wi=[wi,1,wi,2,...,wi,n]T为输入层与隐含层之间的权重系数,δi为隐含层与输出层之间的权重系数。bi是隐含层中第i个神经元的偏置系数。Wi·Xj表示Wi和Xj的内积,H是隐层节点的输出。T为极限学习机输出层的期望输出矩阵。g(x) is the activation function. Wi =[ wi ,1 ,wi ,2 ,...,wi ,n ] T is the weight coefficient between the input layer and the hidden layer, δ i is the weight between the hidden layer and the output layer coefficient. b i is the bias coefficient of the ith neuron in the hidden layer. Wi · X j represents the inner product of Wi and X j , and H is the output of the hidden layer node. T is the expected output matrix of the output layer of the extreme learning machine.
将故障电路样本集中的各样本测试数据输入所述待训练电路故障诊断模型,通过W、b和δ计算训练数据的输出即获得各样本测试数据对应的样本训练结果。Input each sample test data in the faulty circuit sample set into the fault diagnosis model of the circuit to be trained, and calculate the output of the training data through W, b and δ That is, the sample training results corresponding to each sample test data are obtained.
利用与T计算训练误差。一个具体示例中,可以用均方差作为训练误差。用公式可表示为:use Calculate the training error with T. In a specific example, the mean squared error can be used as the training error. The formula can be expressed as:
更新全局最优空间向量。Update the global optimal space vector.
更新迭代次数,并判断是否达到跳出迭代的条件,若未达到,例如未达到最大迭代次数,则更新各所述鸽子的空间向量中的全局最优空间向量,并更新各鸽子的向量空间,返回将故障电路样本集中的各样本测试数据输入所述待训练电路故障诊断模型的过程。Update the number of iterations, and determine whether the conditions for jumping out of the iteration are reached. If not, for example, the maximum number of iterations is not reached, update the global optimal space vector in the space vector of each pigeon, and update the vector space of each pigeon, and return The process of inputting each sample test data in the faulty circuit sample set into the fault diagnosis model of the circuit to be trained.
若达到跳出迭代的条件,则更新搜索范围值,若搜索范围值未达到搜索范围值,则初始化迭代次数,并返回初始化所述隐含层的隐含层神经元数目,并设置鸽子的搜索区间的步骤,直至达到最大搜索范围值。If the condition for jumping out of the iteration is reached, the search range value is updated. If the search range value does not reach the search range value, the number of iterations is initialized, and the number of hidden layer neurons that initialize the hidden layer is returned, and the search range of the pigeon is set. steps until the maximum search range value is reached.
若达到最大搜索范围值,则跳出鸽群算法迭代,并输出Wbest和bbest。If the maximum search range value is reached, jump out of the pigeon flock algorithm iteration and output W best and b best .
然后,通过公式Hδ=T和计算δbest。并通过Wbest、bbest和δbest搭建最优极限学习机分类网络模型,搭建的最优极限学习机分类网络模型,记为最终获得的电路故障诊断模型。Then, by the formula Hδ=T and Calculate delta best . And build the optimal extreme learning machine classification network model through W best , b best and δ best , and the built optimal extreme learning machine classification network model is recorded as the final obtained circuit fault diagnosis model.
在获得上述电路故障诊断模型后,即可将该电路故障诊断模型应用到实际的电路故障诊断过程中,采用该电路故障诊断模型对模拟电路进行故障分类。After the above circuit fault diagnosis model is obtained, the circuit fault diagnosis model can be applied to the actual circuit fault diagnosis process, and the circuit fault diagnosis model is used to classify the faults of the analog circuit.
应该理解的是,虽然如上所述的各实施例涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,这些流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the steps in the flowcharts involved in the above-mentioned embodiments are sequentially displayed according to the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in these flowcharts may include multiple steps or multiple stages. These steps or stages are not necessarily executed at the same time, but may be executed at different times. The execution sequence of these steps or stages It is also not necessarily performed sequentially, but may be performed alternately or alternately with other steps or at least a portion of a step or phase within the other steps.
在一个实施例中,如图9所示,提供了一种电路故障诊断装置,包括:In one embodiment, as shown in FIG. 9, a circuit fault diagnosis device is provided, including:
模型获取模块901,用于获取预先训练获得的电路故障诊断模型,其中,所述电路故障诊断模型,是通过获取故障电路样本集,所述故障电路样本集中包括各故障电路样本信息,所述电路故障样本信息包括对故障样本电路进行测试获得的样本测试数据以及各所述故障样本电路对应的样本标签;基于所述故障电路样本集,基于鸽群算法对待训练电路故障诊断模型进行训练得到的;The
数据获取模块902,用于获取对待诊断电路进行测试获得的目标测试数据;a
诊断模块903,用于采用预先训练获得的电路故障诊断模型,对所述目标测试数据进行电路故障诊断,获得所述待诊断电路的电路故障诊断结果。The
关于电路故障诊断装置的具体限定可以参见上文中对于电路故障诊断方法的实施例的说明,在此不再赘述。上述电路故障诊断装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。For the specific limitations of the circuit fault diagnosis apparatus, reference may be made to the above description of the embodiments of the circuit fault diagnosis method, which will not be repeated here. Each module in the above-mentioned circuit fault diagnosis apparatus may be implemented in whole or in part by software, hardware and combinations thereof. The above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图10所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储故障电路样本集。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种电路故障诊断方法。In one embodiment, a computer device is provided, and the computer device may be a server, and its internal structure diagram may be as shown in FIG. 10 . The computer device includes a processor, memory, and a network interface connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium, an internal memory. The nonvolatile storage medium stores an operating system, a computer program, and a database. The internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium. The database of the computer equipment is used to store a sample set of faulty circuits. The network interface of the computer device is used to communicate with an external terminal through a network connection. The computer program implements a circuit fault diagnosis method when executed by the processor.
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图11所示。该计算机设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种电路故障诊断方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。In one embodiment, a computer device is provided, and the computer device may be a terminal, and its internal structure diagram may be as shown in FIG. 11 . The computer equipment includes a processor, memory, a communication interface, a display screen, and an input device connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium, an internal memory. The nonvolatile storage medium stores an operating system and a computer program. The internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium. The communication interface of the computer device is used for wired or wireless communication with an external terminal, and the wireless communication can be realized by WIFI, operator network, NFC (Near Field Communication) or other technologies. The computer program implements a circuit fault diagnosis method when executed by the processor. The display screen of the computer equipment may be a liquid crystal display screen or an electronic ink display screen, and the input device of the computer equipment may be a touch layer covered on the display screen, or a button, a trackball or a touchpad set on the shell of the computer equipment , or an external keyboard, trackpad, or mouse.
本领域技术人员可以理解,图10、11中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art can understand that the structures shown in FIGS. 10 and 11 are only block diagrams of partial structures related to the solution of the present application, and do not constitute a limitation on the computer equipment to which the solution of the present application is applied. A device may include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现如上所述的电路故障诊断方法中的任一实施例中的步骤。In one embodiment, a computer device is provided, including a memory and a processor, where a computer program is stored in the memory, and when the processor executes the computer program, the processor implements any of the foregoing circuit fault diagnosis methods in any of the embodiments. step.
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上所述的电路故障诊断方法中的任一实施例中的步骤:In one embodiment, a computer-readable storage medium is provided, on which a computer program is stored, and when the computer program is executed by a processor, implements the steps in any one of the foregoing circuit fault diagnosis methods:
在一个实施例中,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述各方法实施例中的步骤。In one embodiment, there is provided a computer program product or computer program comprising computer instructions stored in a computer readable storage medium. The processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the steps in the foregoing method embodiments.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by instructing relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer-readable storage In the medium, when the computer program is executed, it may include the processes of the above-mentioned method embodiments. Wherein, any reference to memory, storage, database or other media used in the various embodiments provided in this application may include at least one of non-volatile and volatile memory. The non-volatile memory may include Read-Only Memory (ROM), magnetic tape, floppy disk, flash memory or optical memory, and the like. Volatile memory may include random access memory (RAM) or external cache memory. By way of illustration and not limitation, the RAM may be in various forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM).
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, all It is considered to be the range described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present application, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those skilled in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the patent of the present application shall be subject to the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110763336.3A CN113487019A (en) | 2021-07-06 | 2021-07-06 | Circuit fault diagnosis method and device, computer equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110763336.3A CN113487019A (en) | 2021-07-06 | 2021-07-06 | Circuit fault diagnosis method and device, computer equipment and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113487019A true CN113487019A (en) | 2021-10-08 |
Family
ID=77940582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110763336.3A Pending CN113487019A (en) | 2021-07-06 | 2021-07-06 | Circuit fault diagnosis method and device, computer equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113487019A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113985196A (en) * | 2021-10-15 | 2022-01-28 | 国网宁夏电力有限公司电力科学研究院 | A method, device, recording medium and system for locating distributed faults in power grid |
CN114383648A (en) * | 2021-12-10 | 2022-04-22 | 国家能源集团岳阳发电有限公司 | Temperature instrument fault diagnosis method and device |
CN114511026A (en) * | 2022-01-28 | 2022-05-17 | 国网山东省电力公司泰安供电公司 | Fault diagnosis method and device, terminal equipment and storage medium |
CN116413587A (en) * | 2023-06-06 | 2023-07-11 | 中科鉴芯(北京)科技有限责任公司 | Method and device for selecting rollback path |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105866664A (en) * | 2016-06-20 | 2016-08-17 | 金陵科技学院 | Intelligent fault diagnosis method for analog circuit based on amplitude frequency features |
US20180336076A1 (en) * | 2017-05-16 | 2018-11-22 | Electronics And Telecommunications Research Institute | Parameter-sharing apparatus and method |
CN109188244A (en) * | 2018-09-03 | 2019-01-11 | 长沙学院 | Based on the diagnostic method for failure of switch current circuit for improving FastICA |
CN109933881A (en) * | 2019-03-06 | 2019-06-25 | 武汉大学 | A Fault Diagnosis Method for Power Electronic Circuits Based on Optimal Deep Belief Network |
US20200271720A1 (en) * | 2020-05-09 | 2020-08-27 | Hefei University Of Technology | Method for diagnosing analog circuit fault based on vector-valued regularized kernel function approximation |
CN113052303A (en) * | 2019-12-27 | 2021-06-29 | 三星电子株式会社 | Apparatus for controlling data input and output of neural network circuit |
-
2021
- 2021-07-06 CN CN202110763336.3A patent/CN113487019A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105866664A (en) * | 2016-06-20 | 2016-08-17 | 金陵科技学院 | Intelligent fault diagnosis method for analog circuit based on amplitude frequency features |
US20180336076A1 (en) * | 2017-05-16 | 2018-11-22 | Electronics And Telecommunications Research Institute | Parameter-sharing apparatus and method |
CN109188244A (en) * | 2018-09-03 | 2019-01-11 | 长沙学院 | Based on the diagnostic method for failure of switch current circuit for improving FastICA |
CN109933881A (en) * | 2019-03-06 | 2019-06-25 | 武汉大学 | A Fault Diagnosis Method for Power Electronic Circuits Based on Optimal Deep Belief Network |
CN113052303A (en) * | 2019-12-27 | 2021-06-29 | 三星电子株式会社 | Apparatus for controlling data input and output of neural network circuit |
US20200271720A1 (en) * | 2020-05-09 | 2020-08-27 | Hefei University Of Technology | Method for diagnosing analog circuit fault based on vector-valued regularized kernel function approximation |
Non-Patent Citations (9)
Title |
---|
DAWEI HE ET AL.: "Aero-Engine Bearing Fault Diagnosis Model Based on Optimizing Cost-Sensitive Support Vector Machine", 《2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN)》 * |
YANHUI ZHANG ET AL.: "A Novel Pigeon-Inspired Optimized RBF Model for Parallel Battery Branch Forecasting", 《HINDAWI》 * |
唐宋元 等 北京:北京理工大学出版社: "《微弱信号处理理论》", 31 October 2018 * |
孙振源: "基于随机共振的毫米波辐射计信号检测方法研究" * |
张雷: "随机共振在信号处理中应用研究的回顾与展望" * |
简春菲 等: "基于ALO-SVM的模拟电路故障诊断研究", 《电气传动》 * |
陆思良: "基于随机共振的微弱信号检测模型及应用研究" * |
高坤 等: "主成分分析和超限学习机的模拟电路故障诊断", 《计算机工程与应用》 * |
高运广 西安:西安电子科技大学出版社: "《组合导航智能容错与故障检测方法》", 31 July 2019 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113985196A (en) * | 2021-10-15 | 2022-01-28 | 国网宁夏电力有限公司电力科学研究院 | A method, device, recording medium and system for locating distributed faults in power grid |
CN114383648A (en) * | 2021-12-10 | 2022-04-22 | 国家能源集团岳阳发电有限公司 | Temperature instrument fault diagnosis method and device |
CN114511026A (en) * | 2022-01-28 | 2022-05-17 | 国网山东省电力公司泰安供电公司 | Fault diagnosis method and device, terminal equipment and storage medium |
CN116413587A (en) * | 2023-06-06 | 2023-07-11 | 中科鉴芯(北京)科技有限责任公司 | Method and device for selecting rollback path |
CN116413587B (en) * | 2023-06-06 | 2023-10-27 | 中科鉴芯(北京)科技有限责任公司 | Method and device for selecting rollback path |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113487019A (en) | Circuit fault diagnosis method and device, computer equipment and storage medium | |
CN102445902B (en) | For the system and method for the condition multi-output regression that machine condition monitors | |
Zhang et al. | CNN-FL: An effective approach for localizing faults using convolutional neural networks | |
Cui et al. | Data‐driven model reduction for the Bayesian solution of inverse problems | |
Gong et al. | Evolutionary generation of test data for many paths coverage based on grouping | |
CN111130839A (en) | A traffic demand matrix forecasting method and system | |
US11137318B2 (en) | Model-based diagnosis in frequency domain | |
Beyersmann et al. | Weak convergence of the wild bootstrap for the Aalen–Johansen estimator of the cumulative incidence function of a competing risk | |
US12073158B2 (en) | Quantum noise process analysis method, system, storage medium, and electronic device | |
JP7535979B2 (en) | A method for training a student neural network to mimic a teacher neural network using inputs that maximize the student-teacher discrepancy | |
JP2025036440A (en) | System and method for simulating a quantum processor | |
CN110990135A (en) | Spark job time prediction method and device based on deep transfer learning | |
Cai et al. | TEA-DNN: the quest for time-energy-accuracy co-optimized deep neural networks | |
Kapoor et al. | Transfer learning for improved generalizability in causal physics-informed neural networks for beam simulations | |
US11182525B1 (en) | Fault aware analog model (FAAM) | |
EP3913547A1 (en) | Modelling input-output relation of computer-controlled entity | |
Dong et al. | Prognostics 102: efficient Bayesian-based prognostics algorithm in Matlab | |
CN114997036A (en) | Network topology reconstruction method, device and equipment based on deep learning | |
Gräfe et al. | Large-scale application of fault injection into pytorch models-an extension to pytorchfi for validation efficiency | |
Celen et al. | Calendar ageing modelling using machine learning: an experimental investigation on lithium ion battery chemistries | |
Lakra et al. | Improving software maintainability prediction using hyperparameter tuning of baseline machine learning algorithms | |
CN115186486A (en) | Independent Fusion Modeling and Response Prediction Method of Missile Low-Precision Performance Data | |
CN116306952A (en) | Molecular property prediction method and device, storage medium and electronic device | |
Karakuzu | Performance Comparison of a Neural Network and a Fuzzy Network Trained by ELM for Dynamic System Identification Problems | |
Shahamiri et al. | A single-network ANN-based oracle to verify logical software modules |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20211008 |
|
RJ01 | Rejection of invention patent application after publication |