[go: up one dir, main page]

CN113473135B - A nonlinear texture-oriented intra prediction method, device and medium - Google Patents

A nonlinear texture-oriented intra prediction method, device and medium Download PDF

Info

Publication number
CN113473135B
CN113473135B CN202110577503.5A CN202110577503A CN113473135B CN 113473135 B CN113473135 B CN 113473135B CN 202110577503 A CN202110577503 A CN 202110577503A CN 113473135 B CN113473135 B CN 113473135B
Authority
CN
China
Prior art keywords
prediction
intra
intra prediction
angle
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110577503.5A
Other languages
Chinese (zh)
Other versions
CN113473135A (en
Inventor
马思伟
林凯
张嘉琪
贾川民
李俊儒
王苫社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202110577503.5A priority Critical patent/CN113473135B/en
Publication of CN113473135A publication Critical patent/CN113473135A/en
Application granted granted Critical
Publication of CN113473135B publication Critical patent/CN113473135B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

The present disclosure relates to a nonlinear texture-oriented intra prediction method, device and medium, the method is used in an intra prediction module in the field of image and video coding, and the method includes: determining a current intra prediction mode; predicting a non-linear texture in the intra prediction module using predictive modeling comprising a quadratic function; the position of the reference pixel is derived from the result of predicting the nonlinear texture and the predicted pixel value is generated from the interpolation of the reference pixel. The method solves the problem of high-efficiency prediction modeling of the image and video coding and decoding standard intra-frame prediction module facing nonlinear texture content. The method and the device can generate the high-fidelity prediction signal close to the original signal, reduce the prediction residual error and improve the coding efficiency.

Description

一种面向非线性纹理的帧内预测方法、设备及介质A nonlinear texture-oriented intra prediction method, device and medium

技术领域technical field

本公开涉及帧内预测技术领域,更为具体来说,本公开涉及一种面向非线性纹理的帧内预测方法、设备及介质。The present disclosure relates to the technical field of intra-frame prediction, and more specifically, the present disclosure relates to an intra-frame prediction method, device and medium for nonlinear texture.

背景技术Background technique

图像、视频编码中主要通过帧内预测来降低信号的空域冗余性。主流视频编解码标准(例如VVC,AVS3等)在帧内预测模块中定义了一系列帧内预测角度模式来生成预测内容。然而现在的角度预测模式只能生成线性纹理,对非线性纹理无法准确高效地建模。因此,本发明提出了一种面向非线性纹理的帧内预测算法,提升帧内预测的效率,提高编码效率。In image and video coding, intra-frame prediction is mainly used to reduce the spatial redundancy of signals. Mainstream video codec standards (such as VVC, AVS3, etc.) define a series of intra prediction angle modes in the intra prediction module to generate prediction content. However, the current angle prediction mode can only generate linear textures, and cannot accurately and efficiently model nonlinear textures. Therefore, the present invention proposes a non-linear texture-oriented intra-frame prediction algorithm to improve the efficiency of intra-frame prediction and improve the coding efficiency.

VVC的帧内预测模式共有67种模式,其中包括DC模式,Planar模式和其他65种角度预测模式。帧内预测角度模式定义了帧内预测的方向,即参考像素通过该方向投影到预测块的对应位置上以形成预测块。以图1为例,角度α对应某帧内预测方向的切线角度,其经过的位置像素强度相同。因此,对于预测像素p[x0][y0]来说,其对应的参考像素位置c可以由下式导出,其像素强度可以由多抽头滤波器插值生成。There are 67 types of intra prediction modes in VVC, including DC mode, Planar mode and other 65 angle prediction modes. The intra prediction angle mode defines the direction of the intra prediction, that is, the reference pixel is projected to the corresponding position of the prediction block through this direction to form the prediction block. Taking FIG. 1 as an example, the angle α corresponds to the tangent angle of a certain intra-frame prediction direction, and the intensity of pixels at positions passed by it is the same. Therefore, for the prediction pixel p[x0][y0], its corresponding reference pixel position c can be derived by the following formula, and its pixel intensity can be generated by multi-tap filter interpolation.

c=x0-tanα*y0 (1)c=x 0 -tanα*y 0 (1)

p[x0][y0]=f[0]*p[c][0]+f[1]*p[c][1]+f[2]*p[c][2]+f[3]*p[c][3] (2)。p[x 0 ][y 0 ]=f[0]*p[c][0]+f[1]*p[c][1]+f[2]*p[c][2]+f [3]*p[c][3] (2).

发明内容Contents of the invention

为解决现有技术的图像、视频编码标准不能在帧内预测模块中生成与原始信号接近的非线性纹理内容的技术问题。In order to solve the technical problem that the image and video coding standards in the prior art cannot generate non-linear texture content close to the original signal in the intra prediction module.

为实现上述技术目的,本公开提供了一种面向非线性纹理的帧内预测方法,包括:In order to achieve the above technical purpose, the present disclosure provides an intra prediction method oriented to nonlinear texture, including:

确定当前的帧内预测模式;Determine the current intra prediction mode;

在所述帧内预测模块中使用包含二次函数的预测建模预测非线性纹理;predicting non-linear textures using predictive modeling involving quadratic functions in said intra prediction module;

根据预测非线性纹理的结果导出参考像素的位置,并根据参考像素插值产生预测像素值。The position of the reference pixel is derived according to the result of predicting the nonlinear texture, and the predicted pixel value is generated according to the interpolation of the reference pixel.

进一步,所述帧内预测模式具体包括:Further, the intra prediction mode specifically includes:

靠近参考像素的常规预测模式以及远离参考像素的扩展预测模式。Normal prediction mode close to reference pixels and extended prediction mode far away from reference pixels.

进一步,所述预测建模为使用二次函数的模型或使用一次函数和二次函数的线性组合的模型。Further, the predictive modeling is a model using a quadratic function or a model using a linear combination of a linear function and a quadratic function.

进一步,所述在所述帧内预测模块中使用包含二次函数的预测建模预测非线性纹理具体包括:Further, the prediction of nonlinear texture using predictive modeling including quadratic function in the intra prediction module specifically includes:

使用两个角度预测模式表示所述包含二次函数的预测建模以预测非线性纹理。The predictive modeling involving quadratic functions to predict non-linear textures is expressed using two angular prediction modes.

进一步,所述两个角度预测模式同属于垂直预测模式集合或者同属于水平预测模式集合。Further, the two angle prediction modes belong to the vertical prediction mode set or the horizontal prediction mode set.

进一步,所述根据预测非线性纹理的结果导出参考像素具体包括:Further, the deriving the reference pixel according to the result of predicting the nonlinear texture specifically includes:

当所述两个角度预测模式同属于垂直预测模式集合时,When the two angle prediction modes belong to the vertical prediction mode set,

使用公式use formula

确定参考像素位置c;Determine the reference pixel position c;

其中,角度α对应为该二次函数进入预测块时的切线方向,角度β对应为该二次函数离开预测块时的切线方向;Wherein, angle α corresponds to the tangent direction when the quadratic function enters the prediction block, and angle β corresponds to the tangent direction when the quadratic function leaves the prediction block;

x0表示横坐标,y0表示纵坐标,h表示帧内预测块的高度;x 0 represents the abscissa, y 0 represents the ordinate, and h represents the height of the intra prediction block;

使用公式use formula

p[x0][y0]=f[0]*p[c][0]+f[1]*p[c][1]+f[2]*p[c][2]+f[3]*p[c][3]p[x 0 ][y 0 ]=f[0]*p[c][0]+f[1]*p[c][1]+f[2]*p[c][2]+f [3]*p[c][3]

确定帧内预测像素的位置;determining the position of the intra-prediction pixel;

其中,p[x0][y0]表示帧内预测像素;Among them, p[x0][y0] represents the intra prediction pixel;

当所述两个角度预测模式同属于水平预测模式集合时,When the two angle prediction modes belong to the horizontal prediction mode set,

使用公式use formula

确定参考像素位置c;Determine the reference pixel position c;

其中,角度α对应为该二次函数进入预测块时的切线方向,角度β对应为该二次函数离开预测块时的切线方向;Wherein, angle α corresponds to the tangent direction when the quadratic function enters the prediction block, and angle β corresponds to the tangent direction when the quadratic function leaves the prediction block;

x0表示横坐标,y0表示纵坐标,w表示帧内预测块的宽度;x 0 represents the abscissa, y 0 represents the ordinate, and w represents the width of the intra prediction block;

使用公式use formula

p[x0][y0]=f[0]*p[0][c]+f[1]*p[0][c+1]+f[2]*p[0][c+2]+f[3]*p[0][c+3]p[x 0 ][y 0 ]=f[0]*p[0][c]+f[1]*p[0][c+1]+f[2]*p[0][c+ 2]+f[3]*p[0][c+3]

确定帧内预测像素的位置;determining the position of the intra-prediction pixel;

其中,p[x0][y0]表示帧内预测像素。Among them, p[x0][y0] represents an intra prediction pixel.

进一步,所述根据参考像素的位置产生预测像素值具体采用高斯插值或三次样条插值方法根据参考像素的位置产生预测像素值。Further, the generating the predicted pixel value according to the position of the reference pixel specifically adopts Gaussian interpolation or cubic spline interpolation method to generate the predicted pixel value according to the position of the reference pixel.

进一步,所述角度预测模式的组合方法基于统计规律的模型,还基于深度学习或机器学习的基于数据驱动的方法。Further, the combination method of the angle prediction mode is based on a model of statistical laws, and also based on a data-driven method based on deep learning or machine learning.

为实现上述技术目的,本公开还能够提供一种计算机存储介质,其上存储有计算机程序,计算机程序被处理器执行时用于实现上述的面向非线性纹理的帧内预测方法的步骤。To achieve the above technical purpose, the present disclosure can also provide a computer storage medium on which a computer program is stored, and when the computer program is executed by a processor, it is used to realize the steps of the above nonlinear texture-oriented intra prediction method.

为实现上述技术目的,本公开还提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序实时现上述的面向非线性纹理的帧内预测方法的步骤。In order to achieve the above-mentioned technical purpose, the present disclosure also provides an electronic device, including a memory, a processor, and a computer program stored on the memory and operable on the processor. The processor executes the computer program to realize the above-mentioned non-linear texture-oriented The steps of the intra prediction method.

本公开的有益效果为:The beneficial effects of the disclosure are:

本公开解决了图像、视频编解码标准帧内预测模块面向非线性纹理内容的高效预测建模问题。本公开可以生成与原始信号接近的高保真的预测信号,减少预测残差,提升编码效率。The disclosure solves the problem of high-efficiency predictive modeling for non-linear texture content of standard intra-frame predictive modules of image and video codecs. The disclosure can generate a high-fidelity prediction signal close to the original signal, reduce prediction residuals, and improve coding efficiency.

附图说明Description of drawings

图1示出了现有技术的帧内预测方法的示意图;FIG. 1 shows a schematic diagram of an intra prediction method in the prior art;

图2示出了本公开的实施例1的流程示意图;FIG. 2 shows a schematic flow diagram of Embodiment 1 of the present disclosure;

图3示出了本公开的实施例1的帧内预测方法的示意图;FIG. 3 shows a schematic diagram of an intra prediction method according to Embodiment 1 of the present disclosure;

图4示出了本公开的实施例3的结构示意图。FIG. 4 shows a schematic structural diagram of Embodiment 3 of the present disclosure.

具体实施方式Detailed ways

以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be understood, however, that these descriptions are exemplary only, and are not intended to limit the scope of the present disclosure. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concept of the present disclosure.

在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。Various structural schematic diagrams according to embodiments of the present disclosure are shown in the accompanying drawings. The figures are not drawn to scale, with certain details exaggerated and possibly omitted for clarity of presentation. The shapes of the various regions and layers shown in the figure, as well as their relative sizes and positional relationships are only exemplary, and may deviate due to manufacturing tolerances or technical limitations in practice, and those skilled in the art will Regions/layers with different shapes, sizes, and relative positions can be additionally designed as needed.

实施例一:Embodiment one:

如图2所示:as shown in picture 2:

本公开提供了一种面向非线性纹理的帧内预测方法,包括:The present disclosure provides an intra prediction method oriented to nonlinear texture, including:

确定当前的帧内预测模式;Determine the current intra prediction mode;

在所述帧内预测模块中使用包含二次函数的预测建模预测非线性纹理;predicting non-linear textures using predictive modeling involving quadratic functions in said intra prediction module;

根据预测非线性纹理的结果导出参考像素,并根据参考像素的位置产生预测像素值。The reference pixel is derived according to the result of predicting the nonlinear texture, and the predicted pixel value is generated according to the position of the reference pixel.

进一步,所述帧内预测模式具体包括:Further, the intra prediction mode specifically includes:

靠近参考像素的常规预测模式以及远离参考像素的扩展预测模式。Normal prediction mode close to reference pixels and extended prediction mode far away from reference pixels.

进一步,所述预测建模为使用二次函数的模型或使用一次函数和二次函数的线性组合的模型。Further, the predictive modeling is a model using a quadratic function or a model using a linear combination of a linear function and a quadratic function.

进一步,所述在所述帧内预测模块中使用包含二次函数的预测建模预测非线性纹理具体包括:Further, the prediction of nonlinear texture using predictive modeling including quadratic function in the intra prediction module specifically includes:

使用两个角度预测模式表示所述包含二次函数的预测建模以预测非线性纹理。The predictive modeling involving quadratic functions to predict non-linear textures is expressed using two angular prediction modes.

进一步,所述两个角度预测模式同属于垂直预测模式集合或者同属于水平预测模式集合。Further, the two angle prediction modes belong to the vertical prediction mode set or the horizontal prediction mode set.

进一步,所述根据预测非线性纹理的结果导出参考像素具体包括:Further, the deriving the reference pixel according to the result of predicting the nonlinear texture specifically includes:

当所述两个角度预测模式同属于垂直预测模式集合时,When the two angle prediction modes belong to the vertical prediction mode set,

使用公式use formula

确定参考像素位置c;Determine the reference pixel position c;

其中,角度α对应为该二次函数进入预测块时的切线方向,角度β对应为该二次函数离开预测块时的切线方向;Wherein, angle α corresponds to the tangent direction when the quadratic function enters the prediction block, and angle β corresponds to the tangent direction when the quadratic function leaves the prediction block;

x0表示横坐标,y0表示纵坐标,h表示帧内预测块的高度;x 0 represents the abscissa, y 0 represents the ordinate, and h represents the height of the intra prediction block;

使用公式use formula

p[x0][y0]=f[0]*p[c][0]+f[1]*p[c][1]+f[2]*p[c][2]+f[3]*p[c][3]p[x 0 ][y 0 ]=f[0]*p[c][0]+f[1]*p[c][1]+f[2]*p[c][2]+f [3]*p[c][3]

确定帧内预测像素的位置;determining the position of the intra-prediction pixel;

其中,p[x0][y0]表示帧内预测像素;Among them, p[x0][y0] represents the intra prediction pixel;

当所述两个角度预测模式同属于水平预测模式集合时,When the two angle prediction modes belong to the horizontal prediction mode set,

使用公式use formula

确定参考像素位置c;Determine the reference pixel position c;

其中,角度α对应为该二次函数进入预测块时的切线方向,角度β对应为该二次函数离开预测块时的切线方向;Wherein, angle α corresponds to the tangent direction when the quadratic function enters the prediction block, and angle β corresponds to the tangent direction when the quadratic function leaves the prediction block;

x0表示横坐标,y0表示纵坐标,w表示帧内预测块的宽度;x 0 represents the abscissa, y 0 represents the ordinate, and w represents the width of the intra prediction block;

使用公式use formula

p[x0][y0]=f[0]*p[0][c]+f[1]*p[0][c+1]+f[2]*p[0][c+2]+f[3]*p[0][c+3]p[x 0 ][y 0 ]=f[0]*p[0][c]+f[1]*p[0][c+1]+f[2]*p[0][c+ 2]+f[3]*p[0][c+3]

确定帧内预测像素的位置;determining the position of the intra-prediction pixel;

其中,p[x0][y0]表示帧内预测像素。Among them, p[x0][y0] represents an intra prediction pixel.

进一步,所述根据参考像素的位置产生预测像素值具体采用高斯插值或三次样条插值方法根据参考像素的位置产生预测像素值。Further, the generating the predicted pixel value according to the position of the reference pixel specifically adopts Gaussian interpolation or cubic spline interpolation method to generate the predicted pixel value according to the position of the reference pixel.

进一步,所述角度预测模式的组合方法基于统计规律的模型,还基于深度学习或机器学习的基于数据驱动的方法。Further, the combination method of the angle prediction mode is based on a model of statistical laws, and also based on a data-driven method based on deep learning or machine learning.

本发明提出的面向非线性纹理的帧内预测方法如图3所示。借助于二次函数的形式,本发明使用两个角度预测模式表示该非线性纹理。图3中,两个角度预测模式均属于垂直模式集合。具体地,靠近参考像素的预测模式称为常规预测模式,其角度α对应为该二次函数进入预测块时的切线方向;远离参考像素的预测模式称为扩展预测模式,其角度β对应为该二次函数离开预测块时的切线方向。在同一个二次函数上的点,像素强度相同。因此,对于预测像素p[x0][y0]来说,其对应的参考像素位置c可以由下式导出,其像素强度可以由多抽头滤波器插值生成。The nonlinear texture-oriented intra-frame prediction method proposed by the present invention is shown in FIG. 3 . By virtue of the form of a quadratic function, the present invention represents this non-linear texture using two angular prediction modes. In Fig. 3, both angle prediction modes belong to the vertical mode set. Specifically, the prediction mode close to the reference pixel is called the normal prediction mode, and its angle α corresponds to the tangent direction when the quadratic function enters the prediction block; the prediction mode far away from the reference pixel is called the extended prediction mode, and its angle β corresponds to the The tangent direction of the quadratic function as it leaves the prediction block. Points on the same quadratic function have the same pixel intensity. Therefore, for the prediction pixel p[x0][y0], its corresponding reference pixel position c can be derived by the following formula, and its pixel intensity can be generated by multi-tap filter interpolation.

当两个角度预测模式均属于垂直模式集合时,参考像素的位置以及像素强度导出过程如下式所示。When the two angle prediction modes belong to the vertical mode set, the position of the reference pixel and the derivation process of the pixel intensity are shown in the following formula.

p[x0][y0]=f[0]*p[c][0]+f[1]*p[c][1]+f[2]*p[c][2]+f[3]*p[c][3] (2)p[x 0 ][y 0 ]=f[0]*p[c][0]+f[1]*p[c][1]+f[2]*p[c][2]+f [3]*p[c][3] (2)

其中,角度α对应为该二次函数进入预测块时的切线方向,角度β对应为该二次函数离开预测块时的切线方向;Wherein, angle α corresponds to the tangent direction when the quadratic function enters the prediction block, and angle β corresponds to the tangent direction when the quadratic function leaves the prediction block;

x0表示横坐标,y0表示纵坐标,h表示帧内预测块的高度;x 0 represents the abscissa, y 0 represents the ordinate, and h represents the height of the intra prediction block;

相应地,当两个角度预测模式均属于水平模式集合时,参考像素的位置以及像素强度导出过程如下式所示。Correspondingly, when the two angle prediction modes belong to the horizontal mode set, the position of the reference pixel and the derivation process of the pixel intensity are shown in the following formula.

p[x0][y0]=f[0]*p[0][c]+f[1]*p[0][c+1]+f[2]*p[0][c+2]+f[3]*p[0][c+3] (4)p[x 0 ][y 0 ]=f[0]*p[0][c]+f[1]*p[0][c+1]+f[2]*p[0][c+ 2]+f[3]*p[0][c+3] (4)

在本公开中,两个角度预测模式应当同属于垂直模式集合或者同属于水平模式集合。为了减少搜索次数,常规预测模式只能从最大概率模式集合(Most Probable Modes,MPM)中选取。进一步地,对于每种常规预测模式,只搜索基于统计规律出现频率最高的4种扩展预测模式。本发明在VTM10.0帧内编码模式(All Intra,AI)下可以取得平均0.1%的编码性能增益。In the present disclosure, the two angle prediction modes should both belong to the vertical mode set or both belong to the horizontal mode set. In order to reduce the number of searches, conventional prediction modes can only be selected from the set of most probable modes (Most Probable Modes, MPM). Further, for each conventional prediction mode, only the four extended prediction modes with the highest occurrence frequency based on statistical laws are searched. The present invention can achieve an average coding performance gain of 0.1% in the VTM10.0 intra-frame coding mode (All Intra, AI).

表1本公开基于VTM10.0的编码性能Table 1 This disclosure is based on the coding performance of VTM10.0

实施例二:Embodiment two:

本公开还能够提供一种计算机存储介质,其上存储有计算机程序,计算机程序被处理器执行时用于实现上述的面向非线性纹理的帧内预测方法的步骤。The present disclosure can also provide a computer storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is used to implement the steps of the above-mentioned intra prediction method oriented to nonlinear texture.

本公开的计算机存储介质可以采用半导体存储器、磁芯存储器、磁鼓存储器或磁盘存储器实现。The computer storage medium of the present disclosure may be implemented using semiconductor memory, magnetic core memory, magnetic drum memory, or magnetic disk memory.

半导体存储器,主要用于计算机的半导体存储元件主要有Mos和双极型两种。Mos元件集成度高、工艺简单但速度较慢。双极型元件工艺复杂、功耗大、集成度低但速度快。NMos和CMos问世后,使Mos存储器在半导体存储器中开始占主要地位。NMos速度快,如英特尔公司的1K位静态随机存储器的存取时间为45ns。而CMos耗电省,4K位的CMos静态存储器存取时间为300ns。上述半导体存储器都是随机存取存储器(RAM),即在工作过程中可随机进行读出和写入新内容。而半导体只读存储器(ROM)在工作过程中可随机读出但不能写入,它用来存放已固化好的程序和数据。ROM又分为不可改写的熔断丝式只读存储器──PROM和可改写的只读存储器EPROM两种。Semiconductor memory, mainly used in computers, mainly has two types of semiconductor memory elements: Mos and bipolar. Mos components are highly integrated, the process is simple but the speed is slow. Bipolar components are complex in process, high in power consumption, low in integration but fast in speed. After the advent of NMos and CMos, Mos memory began to play a major role in semiconductor memory. NMos is fast, for example, the access time of Intel's 1K-bit SRAM is 45ns. CMos consumes less power, and the 4K-bit CMos static memory access time is 300ns. The above-mentioned semiconductor memories are all random access memories (RAM), that is, they can be read and written into new content randomly during the working process. The semiconductor read-only memory (ROM) can be read randomly but cannot be written in during the working process, and it is used to store solidified programs and data. ROM is divided into non-rewritable fuse-type read-only memory ─ ─ PROM and rewritable read-only memory EPROM two.

磁芯存储器,具有成本低,可靠性高的特点,且有20多年的实际使用经验。70年代中期以前广泛使用磁芯存储器作为主存储器。其存储容量可达10位以上,存取时间最快为300ns。国际上典型的磁芯存储器容量为4MS~8MB,存取周期为1.0~1.5μs。在半导体存储快速发展取代磁芯存储器作为主存储器的位置之后,磁芯存储器仍然可以作为大容量扩充存储器而得到应用。Magnetic core memory has the characteristics of low cost and high reliability, and has more than 20 years of actual use experience. Before the mid-1970s, magnetic core memory was widely used as the main memory. Its storage capacity can reach more than 10 bits, and the fastest access time is 300ns. The typical magnetic core memory capacity in the world is 4MS ~ 8MB, and the access cycle is 1.0 ~ 1.5μs. After the rapid development of semiconductor storage replaced the magnetic core memory as the main memory, the magnetic core memory can still be used as a large-capacity expansion memory.

磁鼓存储器,一种磁记录的外存储器。由于其信息存取速度快,工作稳定可靠,虽然其容量较小,正逐渐被磁盘存储器所取代,但仍被用作实时过程控制计算机和中、大型计算机的外存储器。为了适应小型和微型计算机的需要,出现了超小型磁鼓,其体积小、重量轻、可靠性高、使用方便。Drum memory, a magnetically recorded external memory. Due to its fast information access speed and stable and reliable work, although its capacity is small, it is gradually being replaced by disk storage, but it is still used as an external memory for real-time process control computers and medium and large computers. In order to meet the needs of small and microcomputers, ultra-small magnetic drums have appeared, which are small in size, light in weight, high in reliability, and easy to use.

磁盘存储器,一种磁记录的外存储器。它兼有磁鼓和磁带存储器的优点,即其存储容量较磁鼓容量大,而存取速度则较磁带存储器快,又可脱机贮存,因此在各种计算机系统中磁盘被广泛用作大容量的外存储器。磁盘一般分为硬磁盘和软磁盘存储器两大类。Disk storage, a type of magnetically recorded external storage. It has the advantages of magnetic drum and magnetic tape storage, that is, its storage capacity is larger than that of magnetic drum, and its access speed is faster than that of magnetic tape storage, and it can be stored offline. Therefore, disks are widely used as large storage devices in various computer systems. capacity of external memory. Disks are generally divided into two categories: hard disks and floppy disks.

硬磁盘存储器的品种很多。从结构上,分可换式和固定式两种。可换式磁盘盘片可调换,固定式磁盘盘片是固定的。可换式和固定式磁盘都有多片组合和单片结构两种,又都可分为固定磁头型和活动磁头型。固定磁头型磁盘的容量较小,记录密度低存取速度高,但造价高。活动磁头型磁盘记录密度高(可达1000~6250位/英寸),因而容量大,但存取速度相对固定磁头磁盘低。磁盘产品的存储容量可达几百兆字节,位密度为每英寸6 250位,道密度为每英寸475道。其中多片可换磁盘存储器由于盘组可以更换,具有很大的脱体容量,而且容量大,速度高,可存储大容量情报资料,在联机情报检索系统、数据库管理系统中得到广泛应用。There are many types of hard disk storage. Structurally, it can be divided into interchangeable type and fixed type. Interchangeable disk platters can be exchanged, and fixed disk platters are fixed. There are two kinds of replaceable and fixed disks: multi-chip combination and single-chip structure, and both can be divided into fixed head type and movable head type. The capacity of the fixed head type disk is small, the recording density is low and the access speed is high, but the cost is high. The moving head type disk has a high recording density (up to 1000-6250 bits/inch), so it has a large capacity, but its access speed is lower than that of a fixed head disk. The storage capacity of disk products can reach hundreds of megabytes, the bit density is 6 250 bits per inch, and the track density is 475 tracks per inch. Among them, the multi-chip interchangeable disk storage has a large off-body capacity because the disk group can be replaced, and has a large capacity and high speed, and can store large-capacity intelligence data. It is widely used in online information retrieval systems and database management systems.

实施例三:Embodiment three:

本公开还提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的面向非线性纹理的帧内预测方法的步骤。The present disclosure also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and operable on the processor. When the processor executes the computer program, the above-mentioned intra prediction method oriented to nonlinear texture is realized. step.

图4为一个实施例中电子设备的内部结构示意图。如图4所示,该电子设备包括通过系统总线连接的处理器、存储介质、存储器和网络接口。其中,该计算机设备的存储介质存储有操作系统、数据库和计算机可读指令,数据库中可存储有控件信息序列,该计算机可读指令被处理器执行时,可使得处理器实现一种面向非线性纹理的帧内预测方法。该电设备的处理器用于提供计算和控制能力,支撑整个计算机设备的运行。该计算机设备的存储器中可存储有计算机可读指令,该计算机可读指令被处理器执行时,可使得处理器执行一种面向非线性纹理的帧内预测方法。该计算机设备的网络接口用于与终端连接通信。本领域技术人员可以理解,图4中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Fig. 4 is a schematic diagram of the internal structure of an electronic device in one embodiment. As shown in FIG. 4, the electronic device includes a processor, a storage medium, a memory and a network interface connected through a system bus. Wherein, the storage medium of the computer device stores an operating system, a database, and computer-readable instructions, and the database can store control information sequences. When the computer-readable instructions are executed by the processor, the processor can implement a non-linear Intra prediction method for textures. The processor of the electrical device is used to provide computing and control capabilities, and supports the operation of the entire computer device. Computer-readable instructions may be stored in the memory of the computer device, and when the computer-readable instructions are executed by the processor, the processor may execute an intra-frame prediction method oriented to nonlinear texture. The network interface of the computer device is used for connecting and communicating with the terminal. Those skilled in the art can understand that the structure shown in Figure 4 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation to the computer equipment on which the solution of the application is applied. The specific computer equipment can be More or fewer components than shown in the figures may be included, or some components may be combined, or have a different arrangement of components.

该电子设备包括但不限于智能电话、计算机、平板电脑、可穿戴智能设备、人工智能设备、移动电源等。The electronic devices include, but are not limited to, smart phones, computers, tablet computers, wearable smart devices, artificial intelligence devices, mobile power supplies, and the like.

所述处理器在一些实施例中可以由集成电路组成,例如可以由单个封装的集成电路所组成,也可以是由多个相同功能或不同功能封装的集成电路所组成,包括一个或者多个中央处理器(Central Processing unit,CPU)、微处理器、数字处理芯片、图形处理器及各种控制芯片的组合等。所述处理器是所述电子设备的控制核心(Control Unit),利用各种接口和线路连接整个电子设备的各个部件,通过运行或执行存储在所述存储器内的程序或者模块(例如执行远端数据读写程序等),以及调用存储在所述存储器内的数据,以执行电子设备的各种功能和处理数据。In some embodiments, the processor can be composed of integrated circuits, for example, it can be composed of a single packaged integrated circuit, or it can be composed of multiple integrated circuits with the same function or different functions, including one or more central Processor (Central Processing unit, CPU), microprocessor, digital processing chip, graphics processor and a combination of various control chips, etc. The processor is the control core (Control Unit) of the electronic equipment, and uses various interfaces and lines to connect the various components of the entire electronic equipment, by running or executing programs or modules stored in the memory (such as executing remote data read and write programs, etc.), and call the data stored in the memory to execute various functions of the electronic device and process data.

所述总线可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。所述总线被设置为实现所述存储器以及至少一个处理器等之间的连接通信。The bus may be a peripheral component interconnect (PCI for short) bus or an extended industry standard architecture (EISA for short) bus or the like. The bus can be divided into address bus, data bus, control bus and so on. The bus is configured to implement communication between the memory and at least one processor.

图4仅示出了具有部件的电子设备,本领域技术人员可以理解的是,图4示出的结构并不构成对所述电子设备的限定,可以包括比图示更少或者更多的部件,或者组合某些部件,或者不同的部件布置。Figure 4 only shows an electronic device with components, and those skilled in the art can understand that the structure shown in Figure 4 does not constitute a limitation to the electronic device, and may include fewer or more components than shown in the figure , or combinations of certain components, or different arrangements of components.

例如,尽管未示出,所述电子设备还可以包括给各个部件供电的电源(比如电池),优选地,电源可以通过电源管理装置与所述至少一个处理器逻辑相连,从而通过电源管理装置实现充电管理、放电管理、以及功耗管理等功能。电源还可以包括一个或一个以上的直流或交流电源、再充电装置、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。所述电子设备还可以包括多种传感器、蓝牙模块、Wi-Fi模块等,在此不再赘述。For example, although not shown, the electronic device may also include a power supply (such as a battery) for supplying power to each component. Preferably, the power supply may be logically connected to the at least one processor through a power management device, thereby realizing Charge management, discharge management, and power management functions. The power supply may also include one or more DC or AC power supplies, recharging devices, power failure detection circuits, power converters or inverters, power status indicators and other arbitrary components. The electronic device may also include various sensors, a Bluetooth module, a Wi-Fi module, etc., which will not be repeated here.

进一步地,所述电子设备还可以包括网络接口,可选地,所述网络接口可以包括有线接口和/或无线接口(如WI-FI接口、蓝牙接口等),通常用于在该电子设备与其他电子设备之间建立通信连接。Further, the electronic device may also include a network interface. Optionally, the network interface may include a wired interface and/or a wireless interface (such as a WI-FI interface, a Bluetooth interface, etc.), which are usually used to communicate between the electronic device and A communication link is established between other electronic devices.

可选地,该电子设备还可以包括用户接口,用户接口可以是显示器(Display)、输入单元(比如键盘(Keyboard)),可选地,用户接口还可以是标准的有线接口、无线接口。可选地,在一些实施例中,显示器可以是LED显示器、液晶显示器、触控式液晶显示器以及OLED(Organic Light-Emitting Diode,有机发光二极管)触摸器等。其中,显示器也可以适当的称为显示屏或显示单元,用于显示在电子设备中处理的信息以及用于显示可视化的用户界面。Optionally, the electronic device may further include a user interface. The user interface may be a display (Display) or an input unit (such as a keyboard (Keyboard)). Optionally, the user interface may also be a standard wired interface or a wireless interface. Optionally, in some embodiments, the display may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an OLED (Organic Light-Emitting Diode, Organic Light-Emitting Diode) touch device, and the like. Wherein, the display may also be properly referred to as a display screen or a display unit, and is used for displaying information processed in the electronic device and for displaying a visualized user interface.

进一步地,所述计算机可用存储介质可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据区块链节点的使用所创建的数据等。Further, the computer-usable storage medium may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system, an application program required by at least one function, etc.; use of the created data, etc.

在本发明所提供的几个实施例中,应该理解到,所揭露的设备,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。In the several embodiments provided by the present invention, it should be understood that the disclosed devices, devices and methods can be implemented in other ways. For example, the device embodiments described above are only illustrative. For example, the division of the modules is only a logical function division, and there may be other division methods in actual implementation.

所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。The modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

另外,在本发明各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。In addition, each functional module in each embodiment of the present invention may be integrated into one processing unit, or each unit may physically exist separately, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware, or in the form of hardware plus software function modules.

以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。The embodiments of the present disclosure have been described above. However, these examples are for illustrative purposes only and are not intended to limit the scope of the present disclosure. The scope of the present disclosure is defined by the appended claims and their equivalents. Various substitutions and modifications can be made by those skilled in the art without departing from the scope of the present disclosure, and these substitutions and modifications should all fall within the scope of the present disclosure.

Claims (6)

1.一种面向非线性纹理的帧内预测方法,用于图像、视频编码领域的帧内预测模块中,其特征在于,包括:1. A non-linear texture-oriented intra-frame prediction method, used in an intra-frame prediction module in the field of image and video coding, is characterized in that, comprising: 确定当前的帧内预测模式;Determine the current intra prediction mode; 在所述帧内预测模块中使用包含二次函数的预测建模预测非线性纹理;predicting non-linear textures using predictive modeling involving quadratic functions in said intra prediction module; 根据预测非线性纹理的结果导出参考像素的位置,并根据参考像素插值产生预测像素值;The position of the reference pixel is derived according to the result of predicting the nonlinear texture, and the predicted pixel value is generated according to the reference pixel interpolation; 所述根据预测非线性纹理的结果导出参考像素具体包括:The derivation of reference pixels according to the result of predicting nonlinear texture specifically includes: 当两个角度预测模式同属于垂直预测模式集合时,When two angle prediction modes belong to the vertical prediction mode set, 使用公式use formula 确定参考像素位置c;Determine the reference pixel position c; 其中,角度α对应为该二次函数进入预测块时的切线方向,角度β对应为该二次函数离开预测块时的切线方向;Wherein, angle α corresponds to the tangent direction when the quadratic function enters the prediction block, and angle β corresponds to the tangent direction when the quadratic function leaves the prediction block; x0表示横坐标,y0表示纵坐标,h表示帧内预测块的高度;x 0 represents the abscissa, y 0 represents the ordinate, and h represents the height of the intra prediction block; 使用公式use formula p[x0][y0]=[0]*[c][0]+[1]*[c][1]+[2]*[c][2]+[3]*p[][3]确定帧内预测像素的位置;p[x 0 ][y 0 ]=[0]*[c][0]+[1]*[c][1]+[2]*[c][2]+[3]*p[] [3] Determine the position of the intra prediction pixel; 其中,p[x0][0]表示帧内预测像素;Among them, p[x0][0] represents the intra prediction pixel; 当所述两个角度预测模式同属于水平预测模式集合时,When the two angle prediction modes belong to the horizontal prediction mode set, 使用公式use formula 确定参考像素位置c;Determine the reference pixel position c; 其中,角度α对应为该二次函数进入预测块时的切线方向,角度β对应为该二次函数离开预测块时的切线方向;Wherein, angle α corresponds to the tangent direction when the quadratic function enters the prediction block, and angle β corresponds to the tangent direction when the quadratic function leaves the prediction block; x0表示横坐标,y0表示纵坐标,w表示帧内预测块的宽度;x 0 represents the abscissa, y 0 represents the ordinate, and w represents the width of the intra prediction block; 使用公式use formula p[x0][y0]=[0]*[0][c]+[1]*[0][c+1]+[2]*[0][c+2]+[3]p[x 0 ][y 0 ]=[0]*[0][c]+[1]*[0][c+1]+[2]*[0][c+2]+[3] *p[0][+3]*p[0][+3] 确定帧内预测像素的位置;determining the position of the intra-prediction pixel; 其中,p[x0][0]表示帧内预测像素。Among them, p[x0][0] represents an intra prediction pixel. 2.根据权利要求1所述的方法,其特征在于,所述帧内预测模式具体包括:2. The method according to claim 1, wherein the intra-frame prediction mode specifically comprises: 靠近参考像素的常规预测模式以及远离参考像素的扩展预测模式。Normal prediction mode close to reference pixels and extended prediction mode far away from reference pixels. 3.根据权利要求1所述的方法,其特征在于,所述根据参考像素的位置产生预测像素值具体采用高斯插值或三次样条插值方法根据参考像素的位置产生预测像素值。3. The method according to claim 1, wherein the generating the predicted pixel value according to the position of the reference pixel specifically adopts Gaussian interpolation or cubic spline interpolation method to generate the predicted pixel value according to the position of the reference pixel. 4.根据权利要求3所述的方法,其特征在于,所述角度预测模式的组合方法基于统计规律的模型,还基于深度学习或机器学习的基于数据驱动的方法。4. The method according to claim 3, characterized in that, the combination method of the angle prediction mode is based on a model of statistical laws, and is also based on a data-driven method based on deep learning or machine learning. 5.一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,处理器执行计算机程序时实现权利要求1~4任一项中所述的面向非线性纹理的帧内预测方法对应的步骤。5. An electronic device, comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, characterized in that, when the processor executes the computer program, the computer program described in any one of claims 1 to 4 is implemented. The steps corresponding to the nonlinear texture-oriented intra prediction method. 6.一种计算机存储介质,其上存储有计算机程序指令,其特征在于,所述程序指令被处理器执行时用于实现权利要求1~4任一项中所述的面向非线性纹理的帧内预测方法对应的步骤。6. A computer storage medium on which computer program instructions are stored, wherein the program instructions are used to implement the non-linear texture-oriented frame described in any one of claims 1 to 4 when executed by a processor The steps corresponding to the intra-prediction method.
CN202110577503.5A 2021-05-26 2021-05-26 A nonlinear texture-oriented intra prediction method, device and medium Active CN113473135B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110577503.5A CN113473135B (en) 2021-05-26 2021-05-26 A nonlinear texture-oriented intra prediction method, device and medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110577503.5A CN113473135B (en) 2021-05-26 2021-05-26 A nonlinear texture-oriented intra prediction method, device and medium

Publications (2)

Publication Number Publication Date
CN113473135A CN113473135A (en) 2021-10-01
CN113473135B true CN113473135B (en) 2023-09-01

Family

ID=77871681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110577503.5A Active CN113473135B (en) 2021-05-26 2021-05-26 A nonlinear texture-oriented intra prediction method, device and medium

Country Status (1)

Country Link
CN (1) CN113473135B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119254973A (en) * 2023-07-03 2025-01-03 中兴通讯股份有限公司 Intra-frame prediction encoding method, decoding method, communication device and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102984523A (en) * 2012-12-14 2013-03-20 北京大学 Multi-directional intra-frame forecast encoding and decoding method and device
JP2013090015A (en) * 2011-10-13 2013-05-13 Nippon Hoso Kyokai <Nhk> Intra prediction apparatus, encoder, decoder and program
JP2018107692A (en) * 2016-12-27 2018-07-05 Kddi株式会社 Moving picture decoding apparatus, moving picture decoding method, moving picture encoding apparatus, moving picture encoding method, and computer-readable recording medium
WO2019081925A1 (en) * 2017-10-27 2019-05-02 Sony Corporation Image data encoding and decoding
CN112640458A (en) * 2019-01-16 2021-04-09 Oppo广东移动通信有限公司 Information processing method and device, equipment and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3148190A1 (en) * 2015-09-25 2017-03-29 Thomson Licensing Method and apparatus for intra prediction in video encoding and decoding
US10542264B2 (en) * 2017-04-04 2020-01-21 Arris Enterprises Llc Memory reduction implementation for weighted angular prediction
US11019360B2 (en) * 2019-03-21 2021-05-25 Qualcomm Incorporated Generalized reference sample derivation methods for intra prediction in video coding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013090015A (en) * 2011-10-13 2013-05-13 Nippon Hoso Kyokai <Nhk> Intra prediction apparatus, encoder, decoder and program
CN102984523A (en) * 2012-12-14 2013-03-20 北京大学 Multi-directional intra-frame forecast encoding and decoding method and device
JP2018107692A (en) * 2016-12-27 2018-07-05 Kddi株式会社 Moving picture decoding apparatus, moving picture decoding method, moving picture encoding apparatus, moving picture encoding method, and computer-readable recording medium
WO2019081925A1 (en) * 2017-10-27 2019-05-02 Sony Corporation Image data encoding and decoding
CN112640458A (en) * 2019-01-16 2021-04-09 Oppo广东移动通信有限公司 Information processing method and device, equipment and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
wide angular intra prediction for versatile video coding;Liang Zhao等;Data Compression Conference;1-10 *

Also Published As

Publication number Publication date
CN113473135A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
CN107466418B (en) Cost optimized single level cell mode non-volatile memory for multi-level cell mode non-volatile memory
CN104541256B (en) Intelligent far memory bandwidth scaling
WO2022252565A1 (en) Target detection system, method and apparatus, and device and medium
CN113473135B (en) A nonlinear texture-oriented intra prediction method, device and medium
CN104965674B (en) A kind of low energy consumption disk-scheduling method and system based on block association
JP3955953B2 (en) Image division processing apparatus, image division processing method, and image division processing integrated circuit
CN112911285B (en) Hardware encoder intra mode decision circuit, method, apparatus, device and medium
CN205050007U (en) Storage expansion card in blade server based on fusion framework
CN106528463A (en) Four-subnode star server system capable of realizing hard disk sharing
CN112911309B (en) avs2 encoder motion vector processing system, method, apparatus, device and medium
CN114882444A (en) Image fusion processing method, device and medium
Cho Fast memory and storage architectures for the big data era
CN114882489B (en) Method, device, equipment and medium for horizontally correcting rotating license plate
CN113516368A (en) Methods, devices, equipment and media for predicting uncertainty risks in cities and communities
CN112685189B (en) Method, device, equipment and medium for realizing data processing
CN117240841A (en) Electronic whiteboard document storage method, system, medium and device based on face recognition
CN117857803A (en) End-to-end video coding code rate adjusting system, method, medium and equipment
CN115294321A (en) License plate shape correction method, device, equipment and medium
CN117237697B (en) Small sample image detection method, system, medium and device
CN103631726A (en) File processing method and device of series-connection streaming computational nodes
CN113792119A (en) Article originality evaluation system, method, device and medium
CN117633352A (en) Recommendation system oriented attack system, method, medium and equipment based on graph neural network
CN112995063B (en) Flow monitoring method, device, equipment and medium
CN115421712A (en) Software development method, device, equipment and medium based on component model
CN114943085A (en) Device, method, equipment and medium for protecting data of visual signal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant