CN113433681B - Structured light illumination microscopic imaging system and method - Google Patents
Structured light illumination microscopic imaging system and method Download PDFInfo
- Publication number
- CN113433681B CN113433681B CN202110713853.XA CN202110713853A CN113433681B CN 113433681 B CN113433681 B CN 113433681B CN 202110713853 A CN202110713853 A CN 202110713853A CN 113433681 B CN113433681 B CN 113433681B
- Authority
- CN
- China
- Prior art keywords
- illumination
- light
- imaging system
- target sample
- structured light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0032—Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0036—Scanning details, e.g. scanning stages
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/06—Means for illuminating specimens
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
- G02B21/365—Control or image processing arrangements for digital or video microscopes
- G02B21/367—Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
Landscapes
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及结构光照明显微成像技术领域,特别是涉及一种结构光照明显微成像系统、方法。The present application relates to the technical field of structured light illumination microscopic imaging, and in particular to a structured light illumination microscopic imaging system and method.
背景技术Background Art
结构光照明显微镜(英文:Structured Illumination Microscopy,简称:SIM)是一种采用周期性结构光图案照明样品以提升成像分辨率的超分辨技术。Structured illumination microscopy (SIM) is a super-resolution technology that uses periodic structured light patterns to illuminate samples to improve imaging resolution.
当前SIM系统通常需要通过干涉或者投影的方法产生周期性结构光照明样品,且其工作过程包括对光场的周期性调制、空间滤波、偏振控制以及与显微镜光路耦合等众多环节,而每个环节都需要基于特定的设备来完成,例如空间光调制器(英文:Spatial Lightmodulator,简称:SLM)、数字微镜装置(英文:Digital Micromirror Device,简称:DMD)等。Current SIM systems usually need to generate periodic structured light to illuminate samples through interference or projection methods, and their working process includes many links such as periodic modulation of the light field, spatial filtering, polarization control, and coupling with the microscope optical path. Each link needs to be completed based on specific equipment, such as spatial light modulator (SLM), digital micromirror device (DMD), etc.
由于SIM系统的结构复杂,导致其体积庞大,目前商用的Nikon显微镜SIM系统的尺寸为:550mm×300mm×350mm,无法适用于即时检测(英文:Point-of-care testing,简称:POCT),导致SIM系统不能得到较好的推广应用。Due to the complex structure of the SIM system, it is bulky. The current commercial Nikon microscope SIM system has a size of 550mm×300mm×350mm, which is not suitable for point-of-care testing (POCT). As a result, the SIM system cannot be widely promoted and applied.
发明内容Summary of the invention
基于此,有必要针对上述技术问题,提供一种结构光照明显微成像系统、方法。Based on this, it is necessary to provide a structured light illumination microscopic imaging system and method to address the above technical issues.
本申请提供一种结构光照明显微成像系统,包括:The present application provides a structured light illumination microscopic imaging system, comprising:
照明系统,用于出射光波信号到衍射光学系统上;An illumination system, used for emitting a light wave signal to a diffraction optical system;
衍射光学系统,用于对接收到的光波信号进行调制,产生二维正弦周期性点阵光斑,并利用二维正弦周期性点阵光斑对目标样品进行扫描;A diffraction optical system is used to modulate the received light wave signal to generate a two-dimensional sinusoidal periodic lattice light spot, and use the two-dimensional sinusoidal periodic lattice light spot to scan the target sample;
位移台,用于移动目标样品,以使二维正弦周期性点阵光斑对目标样品进行移相扫描;A translation stage is used to move the target sample so that the two-dimensional sinusoidal periodic dot matrix light spot performs phase shift scanning on the target sample;
显微成像系统,用于在位移台每次移动目标样品之后获取目标样品的扫描图像,并基于得到的多张扫描图像进行超分辨重构。The microscopic imaging system is used to obtain a scanned image of the target sample after the translation stage moves the target sample each time, and perform super-resolution reconstruction based on the obtained multiple scanned images.
在其中一个实施例中,照明系统包括:In one embodiment, the lighting system comprises:
照明组件,用于出射光波信号;An illumination component, used for emitting a light wave signal;
准直扩束组件,用于对光波信号进行准直和扩束,以使光波信号的光斑尺寸适应衍射光学系统的接收面尺寸。The collimating and beam expanding component is used to collimate and expand the light wave signal so that the spot size of the light wave signal adapts to the receiving surface size of the diffractive optical system.
在其中一个实施例中,照明组件为激光器或者LED发光器,也可以是其他非相干光源。In one embodiment, the lighting component is a laser or LED light emitter, or other incoherent light sources.
在其中一个实施例中,衍射光学系统包括衍射光学元件和照明物镜,其中:In one embodiment, a diffractive optical system comprises a diffractive optical element and an illumination objective, wherein:
衍射光学元件贴于照明物镜的入瞳位置或者位于照明物镜的入瞳位置的前方预设位置,且衍射光学元件的口径尺寸与照明物镜的入瞳尺寸适配,目标样品位于照明物镜的后焦面上;The diffractive optical element is attached to the entrance pupil position of the illumination objective lens or is located at a preset position in front of the entrance pupil position of the illumination objective lens, and the aperture size of the diffractive optical element is adapted to the entrance pupil size of the illumination objective lens, and the target sample is located on the back focal plane of the illumination objective lens;
衍射光学元件,用于对接收到的光波信号的光场分布进行调制;A diffractive optical element, used for modulating the light field distribution of the received light wave signal;
照明物镜,用于配合衍射光学元件在照明物镜的后焦面上产生二维正弦周期性点阵光斑。The illumination objective lens is used to cooperate with the diffractive optical element to generate a two-dimensional sinusoidal periodic dot-matrix light spot on the back focal plane of the illumination objective lens.
在其中一个实施例中,衍射光学元件为二元光学元件、全息光学元件、微纳光学元件、超构表面和空间光调制器中的任意一个或者任意组合。In one of the embodiments, the diffractive optical element is any one or any combination of a binary optical element, a holographic optical element, a micro-nano optical element, a metasurface and a spatial light modulator.
在其中一个实施例中,系统还包括控制系统,In one embodiment, the system further comprises a control system,
控制系统,用于控制位移台移动,以及控制显微成像系统获取目标样品的扫描图像。The control system is used to control the movement of the translation stage and control the microscopic imaging system to obtain a scanning image of the target sample.
在其中一个实施例中,显微成像系统包括:In one embodiment, the microscopic imaging system comprises:
成像物镜,用于对二维正弦周期性点阵光斑扫描的目标样品进行成像,得到初始图像;An imaging objective lens is used to image a target sample scanned by a two-dimensional sinusoidal periodic dot-matrix light spot to obtain an initial image;
荧光滤色片,用于对初始图像进行滤波处理;A fluorescent color filter, used for filtering the initial image;
镜筒透镜,用于对初始图像进行像差校正和放大率匹配;a tube lens for aberration correction and magnification matching of the initial image;
图像传感器,用于获取目标样品的扫描图像,以及根据多张扫描图像进行超分辨重构。The image sensor is used to obtain a scanned image of a target sample and perform super-resolution reconstruction based on multiple scanned images.
在其中一个实施例中,二维正弦周期性点阵光斑为由一个平面内两个或多个不同方向的一维正弦分布图案通过相加或相乘所产生的点阵光斑。In one embodiment, the two-dimensional sinusoidal periodic lattice light spot is a lattice light spot generated by adding or multiplying two or more one-dimensional sinusoidal distribution patterns in different directions in a plane.
在其中一个实施例中,二维正弦周期性点阵光斑的数学模型为:In one embodiment, the mathematical model of the two-dimensional sinusoidal periodic dot-matrix light spot is:
或者, or,
其中,为二维结构光图案光强分布,n为结构光照明图案的序号,在两种不同的图案下,n通常为[1,5]与[1,9]区间的整数,为空域内的位置矢量,分别为二维结构光图案在x、y方向周期所对应的空间频率,φxn、φyn分别为第n帧原始图像在x、y方向的相位参数。in, is the light intensity distribution of the two-dimensional structured light pattern, n is the serial number of the structured light illumination pattern, and in two different patterns, n is usually an integer between [1,5] and [1,9]. is the position vector in the airspace, are the spatial frequencies corresponding to the periods of the two-dimensional structured light pattern in the x and y directions, respectively; φ xn and φ yn are the phase parameters of the original image of the nth frame in the x and y directions, respectively.
第二方面:Second aspect:
本申请提供一种结构光照明显微成像方法,包括:The present application provides a structured light illumination microscopic imaging method, comprising:
利用衍射光学元件生成二维正弦周期性点阵光斑,二维正弦周期性点阵光斑成像于结构光照明显微镜成像系统的目标样品上;A two-dimensional sinusoidal periodic lattice light spot is generated by using a diffractive optical element, and the two-dimensional sinusoidal periodic lattice light spot is imaged on a target sample of a structured light illumination microscope imaging system;
利用二维正弦周期性点阵光斑对目标样品进行移相扫描,得到多张扫描图像,根据多张扫描图像进行超分辨重构。The target sample is phase-shifted scanned using a two-dimensional sinusoidal periodic dot-matrix light spot to obtain multiple scanned images, and super-resolution reconstruction is performed based on the multiple scanned images.
本申请实施例提供的结构光照明显微成像系统、方法,具有结构简单、体积小、速度快、成像质量佳等优点。该结构光照明显微成像系统中,照明系统用于出射光波信号到衍射光学系统上,衍射光学系统用于对接收到的光波信号进行调制,产生二维正弦周期性点阵光斑,并利用二维正弦周期性点阵光斑对目标样品进行扫描。位移台用于移动目标样品,以使二维正弦周期性点阵光斑对目标样品进行移相扫描。显微成像系统用于在位移台每次移动目标样品之后获取目标样品的扫描图像,并基于得到的多张扫描图像进行超分辨重构。本申请实施例提供的结构光照明显微成像系统的照明光路相对简单,只需在照明光路中加入衍射光学元件,或者通过成像系统将衍射光学元件成像在照明物镜入瞳或附近就可实现;简化了结构光照明显微成像系统的结构复杂度,降低了结构光照明显微成像系统的成本。The structured light illumination microscopic imaging system and method provided in the embodiments of the present application have the advantages of simple structure, small size, fast speed, and good imaging quality. In the structured light illumination microscopic imaging system, the illumination system is used to emit a light wave signal to the diffraction optical system, and the diffraction optical system is used to modulate the received light wave signal to generate a two-dimensional sinusoidal periodic lattice spot, and use the two-dimensional sinusoidal periodic lattice spot to scan the target sample. The displacement stage is used to move the target sample so that the two-dimensional sinusoidal periodic lattice spot performs phase shift scanning on the target sample. The microscopic imaging system is used to obtain a scanned image of the target sample after the displacement stage moves the target sample each time, and perform super-resolution reconstruction based on the obtained multiple scanned images. The illumination optical path of the structured light illumination microscopic imaging system provided in the embodiments of the present application is relatively simple, and it can be achieved by simply adding a diffraction optical element to the illumination optical path, or by imaging the diffraction optical element at or near the entrance pupil of the illumination objective through the imaging system; the structural complexity of the structured light illumination microscopic imaging system is simplified, and the cost of the structured light illumination microscopic imaging system is reduced.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本申请实施例提供的一种结构光照明显微成像系统的结构示意图;FIG1 is a schematic diagram of the structure of a structured light illumination microscopic imaging system provided in an embodiment of the present application;
图2为本申请实施例提供的一种照明系统的示意图;FIG2 is a schematic diagram of a lighting system provided in an embodiment of the present application;
图3为本申请实施例提供的一种衍射光学系统的示意图;FIG3 is a schematic diagram of a diffractive optical system provided in an embodiment of the present application;
图4为本申请实施例提供的一种显微成像系统的示意图;FIG4 is a schematic diagram of a microscopic imaging system provided in an embodiment of the present application;
图5为本申请实施例提供的一种控制系统的示意图;FIG5 is a schematic diagram of a control system provided in an embodiment of the present application;
图6为本申请实施例提供的一种衍射光学元件设计的基本流程图;FIG6 is a basic flow chart of a diffractive optical element design provided in an embodiment of the present application;
图7为本申请实施例提供的二维正弦周期性点阵光斑的分布示意图;FIG7 is a schematic diagram of the distribution of a two-dimensional sinusoidal periodic lattice light spot provided in an embodiment of the present application;
图8为二维正弦周期性点阵光斑照射至目标样品上的原始图像;FIG8 is an original image of a two-dimensional sinusoidal periodic dot-matrix light spot irradiated onto a target sample;
图9为本申请实施例提供的结构光照明显微成像系统对微球成像的实验结果的示意图;FIG9 is a schematic diagram of experimental results of imaging microspheres using a structured light illumination microscopic imaging system provided in an embodiment of the present application;
图10为本申请实施例提供的结构光照明显微成像系统对细胞微管成像结果的示意图。FIG. 10 is a schematic diagram of the imaging results of cell microtubules by the structured light illumination microscopy imaging system provided in an embodiment of the present application.
具体实施方式DETAILED DESCRIPTION
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and easy to understand, the specific embodiments of the present invention are described in detail below in conjunction with the accompanying drawings. In the following description, many specific details are set forth to facilitate a full understanding of the present invention. However, the present invention can be implemented in many other ways different from those described herein, and those skilled in the art can make similar improvements without violating the connotation of the present invention, so the present invention is not limited by the specific implementation disclosed below.
结构光照明显微镜(英文:Structured Illumination Microscopy,简称:SIM)是一种采用周期性结构光图案照明样品以提升成像分辨率的超分辨技术。Structured illumination microscopy (SIM) is a super-resolution technology that uses periodic structured light patterns to illuminate samples to improve imaging resolution.
通常显微镜成像可以视为对样品空间频谱的低通滤波过程,而代表样品细节的高频频谱在滤波过程中会丢失,因此会造成样品图像分辨率受到限制。Generally, microscope imaging can be regarded as a low-pass filtering process of the sample's spatial spectrum. The high-frequency spectrum representing the sample details will be lost in the filtering process, thus limiting the sample image resolution.
现有技术中,结构光照明显微镜SIM则通过在空域内使用周期性结构光图案照明样品,将原本光学成像系统无法传递的超分辨频谱信息频移进入系统可探测区域,混叠在原始图像的空间频谱中进行探测。后续只需要计算分离这些超分辨频谱,即可扩展样品空间频谱的范围,从而提升对应空域图像的分辨率。In the prior art, structured light illumination microscopy (SIM) uses periodic structured light patterns in the spatial domain to illuminate the sample, shifting the super-resolution spectrum information that the original optical imaging system cannot transmit into the detectable area of the system, and aliasing it in the spatial spectrum of the original image for detection. Subsequently, it is only necessary to calculate and separate these super-resolution spectra to expand the range of the sample's spatial spectrum, thereby improving the resolution of the corresponding spatial domain image.
在实际应用中,由于结构光图案需要通过物镜生成,其空间频率同样受到衍射极限限制,因此通常最高能将空间频谱范围(直径)扩展1倍,即提升1倍成像分辨率,可见光波段的结构光照明显微镜的成像分辨率一般在100nm左右。由于SIM超分辨成像所需采集原始图像很少,相比其他技术具备显著的成像速度优势,即便分辨率不如单分子定位超分辨显微技术(Single Molecule Localization Microscopy,SMLM)与受激发射耗散(StimulatedEmission Depletion,STED)显微镜,但SIM依旧成为当今广泛应用的几种超分辨技术之一。In practical applications, since structured light patterns need to be generated through an objective lens, their spatial frequency is also limited by the diffraction limit, so the spatial spectrum range (diameter) can usually be expanded by 1 times, that is, the imaging resolution is increased by 1 times. The imaging resolution of structured light illumination microscopes in the visible light band is generally around 100nm. Since SIM super-resolution imaging requires very few original images to be collected, it has a significant imaging speed advantage over other technologies. Even though its resolution is not as good as that of single molecule localization super-resolution microscopy (SMLM) and stimulated emission dissipation (STED) microscopy, SIM has still become one of the several super-resolution technologies widely used today.
目前,一种名为即时检测(英文:Point-of-care testing,简称;POCT)的应用需求在现代医学研究领域迅速增长。过去患者通常需要亲自前往大型医疗机构进行精密的医疗检测或是对患者采样之后送往大型医疗机构进行精密的医疗检测,而POCT的出现使得病人能够在社区或自己家中就近进行采样与检测,显著缩短了从采样到样品测试的间隔时间,避免长时间运输或环境变化带来的样本改变,影响检测结果。即时检测本身随时随地、广泛使用的特点,决定了使用的检测设备必须体积紧凑、便携、使用简单灵活、成本低廉。At present, the demand for an application called Point-of-care testing (POCT) is growing rapidly in the field of modern medical research. In the past, patients usually had to go to large medical institutions in person for precise medical tests or take samples from patients and then send them to large medical institutions for precise medical tests. The emergence of POCT allows patients to take samples and test them in the community or at home, significantly shortening the interval from sampling to sample testing, avoiding sample changes caused by long-term transportation or environmental changes, and affecting the test results. The characteristics of point-of-care testing itself, which can be used anytime, anywhere and widely, determine that the testing equipment used must be compact, portable, simple and flexible to use, and low-cost.
SIM作为超分辨技术中最适合活体成像的技术之一,要想满足未来POCT的应用需求,势必开展小型化研究。然而当前的SIM是一套体积庞大、价格昂贵的显微系统,还远远无法满足POCT应用对设备便携、成本降低的需求。其中根本原因在于,当前SIM通常需要通过干涉或者投影的方法产生周期性结构光照明样品,系统中对光场的周期性调制、空间滤波、偏振控制以及与显微镜光路耦合等众多环节,使得SIM系统体积庞大(目前商用的Nikon显微镜SIM系统的尺寸为:550mm×300mm×350mm),其中用到的空间光调制器(英文:SpatialLight modulator,简称:SLM)、数字微镜装置(英文:Digital Micromirror Device,简称:DMD)等也都价格昂贵,给SIM的进一步推广应用带来很多阻碍。As one of the most suitable technologies for in vivo imaging in super-resolution technology, SIM must be miniaturized to meet the application needs of future POCT. However, the current SIM is a bulky and expensive microscopy system, which is far from meeting the requirements of POCT applications for equipment portability and cost reduction. The fundamental reason is that the current SIM usually needs to generate periodic structured light to illuminate the sample by interference or projection. The periodic modulation of the light field, spatial filtering, polarization control, and coupling with the microscope optical path in the system make the SIM system bulky (the size of the current commercial Nikon microscope SIM system is: 550mm×300mm×350mm). The spatial light modulator (SLM) and digital micromirror device (DMD) used are also expensive, which brings many obstacles to the further promotion and application of SIM.
本申请实施例提供一种基于衍射光学元件1021的结构光照明超分辨显微成像系统,可以缩小SIM的体积,降低SIM成本。The embodiment of the present application provides a structured light illumination super-resolution microscopic imaging system based on a diffractive
请参见图1,图1为本申请实施例提供的一种结构光照明显微成像系统的结构示意图,该结构光照明显微成像系统包括照明系统101、衍射光学系统102、位移台(图中未示出)和显微成像系统103。Please refer to Figure 1, which is a structural schematic diagram of a structured light illumination microscopic imaging system provided in an embodiment of the present application. The structured light illumination microscopic imaging system includes an
其中,照明系统101用于出射光波信号到衍射光学系统102上。可选的,本申请实施例中,光波信号可以是准直波,可以是球面波,可以是高斯光束,或者是任意分布的照明光波。The
衍射光学系统102用于对接收到的光波信号进行调制,产生二维正弦周期性点阵光斑,并利用二维正弦周期性点阵光斑对目标样品进行扫描。The diffraction
位移台用于移动目标样品,以使二维正弦周期性点阵光斑对目标样品进行移相扫描。The translation stage is used to move the target sample so that the two-dimensional sinusoidal periodic dot matrix light spot performs phase shift scanning on the target sample.
显微成像系统103用于在位移台每次移动目标样品之后获取目标样品的扫描图像,并基于得到的多张扫描图像进行超分辨重构。The
可选的,本申请提供的结构光照明显微成像系统中,由于位移台本身存在的反馈控制,在进行每一步移相扫描之后,需等待位移台一定的稳定时间,一般每次位移结束需要等待位移台稳定后再开始拍摄。实际使用中,为了简化控制流程,可以使用位移台的触发信号直接控制图像传感器拍摄,在位移台运动完成后立即开始样品图像的拍摄。Optionally, in the structured illumination microscopy imaging system provided by the present application, due to the feedback control of the displacement stage itself, after each phase shift scan, it is necessary to wait for a certain stabilization time of the displacement stage. Generally, it is necessary to wait for the displacement stage to stabilize before starting to shoot after each displacement. In actual use, in order to simplify the control process, the trigger signal of the displacement stage can be used to directly control the image sensor to shoot, and the sample image can be shot immediately after the displacement stage moves.
可以理解的是,本发明的实施例中,使用照明系统101出射光波信号到衍射光学系统102,衍射光学系统102对光波信号进行调制,在空域产生二维正弦周期性点阵光斑作为结构光,并用该结构光(二维正弦周期性点阵光斑)照明目标样品,通过位移台对目标样品进行移动,实现移相探测并重构超分辨信息。显微成像系统103用于记录不同位置处的目标样品的样品信息,并进行超分辨重构。该方法的特点是利用衍射光学系统102生成二维正弦周期性点阵(阵列)光斑作为结构光照明,并且配合一台普通计算机进行数据处理即可实现,具有结构简单、体积小、速度快、成像质量佳等优点,适合用于即时检测的医学和生物的应用需求。It can be understood that in the embodiment of the present invention, the
本申请实施例提供的结构光照明显微成像系统结合了结构光照明显微镜超分辨率的优点和衍射光学元件小型化的优势,具有结构简单、体积小、速度快、成像质量好等优点,为即时检测等应用需求提供了可能性;进一步的,基于衍射光学系统使用衍射的方法实现二维正弦周期性点阵光斑对目标样品的照明,提高了成像效率和能量利用率;本申请实施例提供的结构光照明显微成像系统的照明光路相对简单,只需在照明光路中加入衍射光学元件,或者通过成像系统将衍射光学元件成像在照明物镜入瞳或附近就可实现;简化了结构光照明显微成像系统的结构复杂度,降低了结构光照明显微成像系统的成本。The structured light illumination microscopic imaging system provided in the embodiment of the present application combines the advantages of super-resolution of structured light illumination microscopes and the advantages of miniaturization of diffractive optical elements, and has the advantages of simple structure, small size, fast speed, good imaging quality, etc., which provides possibilities for application needs such as instant detection; further, based on the diffractive optical system, a diffraction method is used to realize the illumination of the target sample by a two-dimensional sinusoidal periodic lattice light spot, thereby improving the imaging efficiency and energy utilization; the illumination optical path of the structured light illumination microscopic imaging system provided in the embodiment of the present application is relatively simple, and it only needs to add a diffractive optical element to the illumination optical path, or to image the diffractive optical element at or near the entrance pupil of the illumination objective through an imaging system; the structural complexity of the structured light illumination microscopic imaging system is simplified, and the cost of the structured light illumination microscopic imaging system is reduced.
在一个实施例中,本申请实施例还提供一种结构光照明显微成像方法,该方法应用于本申请实施例提供的结构光照明显微成像系统,该方法包括利用衍射光学元件生成二维正弦周期性点阵光斑,二维正弦周期性点阵光斑成像于结构光照明显微镜成像系统的目标样品上;利用二维正弦周期性点阵光斑对目标样品进行移相扫描,得到多张扫描图像,根据多张扫描图像进行超分辨重构。In one embodiment, the embodiment of the present application also provides a structured light illumination microscopy imaging method, which is applied to the structured light illumination microscopy imaging system provided in the embodiment of the present application. The method includes using a diffraction optical element to generate a two-dimensional sinusoidal periodic lattice light spot, and imaging the two-dimensional sinusoidal periodic lattice light spot on a target sample of the structured light illumination microscope imaging system; using the two-dimensional sinusoidal periodic lattice light spot to perform phase shifting scanning on the target sample to obtain multiple scanned images, and performing super-resolution reconstruction based on the multiple scanned images.
其中,光波信号依次经过照明系统、衍射光学系统,在衍射光学系统的照明物镜的后焦面上生成二维正弦周期性点阵光斑,即样品面生成二维正弦周期性点阵光斑照明目标样品。利用位移台对目标样品进行多步移相探测;目标样品的信息依次通过成像物镜、荧光滤色片、镜筒透镜和图像传感器后,经图像传感器处理不同位置处目标样品的扫描图像,重构出超分辨图像。The light wave signal passes through the illumination system and the diffractive optical system in sequence, and generates a two-dimensional sinusoidal periodic lattice light spot on the back focal plane of the illumination objective lens of the diffractive optical system, that is, a two-dimensional sinusoidal periodic lattice light spot is generated on the sample surface to illuminate the target sample. The target sample is detected by multi-step phase shifting using a translation stage; the information of the target sample passes through the imaging objective lens, fluorescent filter, tube lens and image sensor in sequence, and the image sensor processes the scanned images of the target sample at different positions to reconstruct a super-resolution image.
在其中一个实施例中,如图2所示,照明系统101包括照明组件1011和准直扩束组件1012。In one embodiment, as shown in FIG. 2 , the
其中,照明组件1011用于出射所述光波信号。本申请实施例中,光波信号可以是单色激光信号、LED光信号和非相干光信号,光源可以为激光器、LED发光器或者其他非相干光源。The
准直扩束组件1012用于对光波信号进行准直和扩束,以使光波信号的光斑尺寸适应衍射光学系统102的接收面尺寸。The collimating and
其中,准直扩束组件1012包括准直器和扩束器,其中,准直器用于将光源出射的光波变为准直光束,扩束器用于对光波信号进行扩束,扩大光源的口径。通过准直和扩束后可以得到预设尺寸的均匀光波。其中,预设尺寸为衍射光学系统102的接受面尺寸。The collimation and
准直和扩束之后的光波信号的光斑尺寸适应衍射光学系统102的接受面尺寸可以是指准直和扩束之后的光波信号的光斑尺寸与衍射光学系统102的接受面尺寸相等。也可以是指准直和扩束之后的光波信号的光斑能够全部照射到衍射光学系统102的接受面上。The spot size of the light wave signal after collimation and beam expansion adapts to the size of the receiving surface of the diffractive
通过使光波信号的光斑尺寸适应衍射光学系统102的接收面尺寸可以最大化地将光波信号入射到衍射光学系统102中,可以提高显微成像系统的分辨率。By making the spot size of the light wave signal adapt to the size of the receiving surface of the diffractive
在其中一个实施例中,如图3所示,衍射光学系统102包括衍射光学元件1021(英文:Diffractive Optical Element,简称:DOE)和照明物镜1022,其中:衍射光学元件1021可以贴于照明物镜1022的入瞳位置,也可以位于照明物镜1022的入瞳位置的前方预设位置,其中,前方预设位置是指到照明物镜1022的入瞳面的距离为预设距离的位置。且衍射光学元件1021的口径尺寸与照明物镜1022的入瞳尺寸适配,目标样品位于照明物镜1022的后焦面上。In one embodiment, as shown in FIG3 , the diffractive
在实际应用中,若衍射光学元件1021的口径尺寸比照明物镜1022的入瞳尺寸大,就会导致形成的二维正弦周期性点阵光斑发生变形,影响超分辨重构效果。若衍射光学元件1021的口径尺寸比照明物镜1022的入瞳尺寸小,会导致显微成像系统的分辨率下降。而衍射光学元件1021的口径尺寸与照明物镜1022的入瞳尺寸相等,可以达到最佳分辨率效果。In practical applications, if the aperture size of the diffractive
衍射光学元件1021用于对接收到的光波信号的光场分布进行调制。The diffractive
照明物镜1022用于配合衍射光学元件1021在照明物镜1022的后焦面上产生二维正弦周期性点阵光斑。The
可选的,衍射光学元件1021可以是二元光学元件,也可以是全息光学元件、微纳光学元件、超构表面(英文:Metasurface)和空间光调制器等实现光场相位调制和/或振幅调制的各类元件之一或组合。Optionally, the diffractive
可选的,本申请实施例中,衍射光学元件1021可用于调节照明物镜1022后焦面的二维正弦周期性点阵光斑的周期、数目等要素。Optionally, in the embodiment of the present application, the diffractive
可选的,二维正弦周期性点阵光斑可以是一个平面内两个或多个不同方向的一维正弦分布图案通过相加或相乘所产生的点阵光斑。Optionally, the two-dimensional sinusoidal periodic lattice light spot may be a lattice light spot generated by adding or multiplying two or more one-dimensional sinusoidal distribution patterns in different directions in a plane.
需要说明的是,准直扩束组件用于对光波信号进行准直和扩束,以使光波信号的光斑尺寸适应衍射光学系统102的接收面尺寸,其实质是使光波信号的光斑尺寸适应衍射光学元件1021的接收面尺寸。It should be noted that the collimation and expansion assembly is used to collimate and expand the light wave signal so that the spot size of the light wave signal adapts to the receiving surface size of the diffractive
可以理解的是,衍射光学元件1021可以对准直和扩束后的光波信号的光场分布进行调制,从而使得调制后在空域内形成特定的光斑图形,即二维正弦周期性点阵光斑。其中,照明物镜1022用于配合衍射光学元件1021在照明物镜1022的后焦面上呈现该二维正弦周期性点阵光斑。其中,目标样品位于照明物镜1022的后焦面上,这样二维正弦周期性点阵光斑恰好可以照射到目标样品上,从而实现对目标样品进行扫描的目的。It is understandable that the diffractive
本申请实施例中,通过衍射光学系统102产生二维正弦周期性点阵光斑,并用二维正弦周期性点阵光斑扫描目标样品,从而能够获取到目标样品上的更多信息。In the embodiment of the present application, a two-dimensional sinusoidal periodic lattice light spot is generated by the diffraction
在其中一个实施例中,如图4所示,显微成像系统103包括成像物镜1031、荧光滤色片1032、镜筒透镜1033和图像传感器1034,其中:In one embodiment, as shown in FIG. 4 , the
成像物镜1031用于对二维正弦周期性点阵光斑扫描的目标样品进行成像,得到初始图像。荧光滤色片1032用于对初始图像进行滤波处理。镜筒透镜1033用于对初始图像进行像差校正和放大率匹配。图像传感器1034用于获取目标样品的扫描图像,以及根据多张扫描图像进行超分辨重构。The
可选的,本申请实施例中,图像传感器1034包括数据处理模块,数据处理模块可以对处于不同位置处的目标样品的扫描图像进行处理,重构出超分辨图像。Optionally, in an embodiment of the present application, the
可以理解的是,成像物镜1031对二维正弦周期性点阵光斑照明的目标样品进行成像;荧光滤色片1032可以提高显微成像系统的信噪比,使激发波段荧光信号增强,同时使不必要的辐射最小;镜筒透镜1033用于匹配和校正显微成像系统的放大率和像差;图像传感器1034用于获取二维正弦周期性点阵光斑照明下目标样品的信息。It can be understood that the
可选的,图像传感器可以是CMOS(英文:Complementary Metal OxideSemiconductor,中文:互补金属氧化物半导体晶体管)、sCMOS(英文:ScienceComplementary Metal Oxide Semiconductor,中文:科研型互补金属氧化物半导体晶体管)、CCD(英文:Charge-coupled Device,中文:电荷耦合器件)和EMCCD(英文:Electron-Multiplying Charge-coupled Device,中文:电子倍增电荷耦合器件)等实现图像信息采集的各类器件。Optionally, the image sensor can be various devices for acquiring image information, such as CMOS (Complementary Metal Oxide Semiconductor), sCMOS (Science Complementary Metal Oxide Semiconductor), CCD (Charge-coupled Device), and EMCCD (Electron-Multiplying Charge-coupled Device).
在其中一个实施例中,如图5所示,本申请实施例提供的结构光照明显微成像系统还包括控制系统105,控制系统105用于控制位移台104移动,以及控制显微成像系统103获取目标样品的扫描图像。In one embodiment, as shown in FIG. 5 , the structured light illumination microscopic imaging system provided in the embodiment of the present application further includes a
可选的,控制系统还可以与照明系统101和衍射光学系统102连接,控制照明系统101和衍射光学系统102启动,其中,照明系统101和衍射光学系统102启动之后,照明系统101出射光波信号到衍射光学元件上,衍射光学元件对光波信号进行调制后在照明物镜的后焦面上形成二维正弦周期性点阵光斑,于此同时,控制系统控制位移台104移动,在每次移动之后,控制显微成像系统103获取目标样品的扫描图像,从而获取到多张扫描图像,然后基于多张扫描图像进行超分辨重构。Optionally, the control system can also be connected to the
可以理解的是,从结构光照明显微成像的原理可知,二维结构光照明条纹的空间频率是决定结构光照明显微成像系统分辨率提升的主要因素。只要采用符合要求的二维结构光图案进行样品照明,结构光照明显微镜就能实现相应的线性/非线性超分辨成像。因此准确生成所需的二维结构光照明图案对于超分辨显微成像至关重要。It is understandable that from the principle of structured light microscopy, the spatial frequency of the two-dimensional structured light illumination stripes is the main factor that determines the resolution improvement of the structured light microscopy system. As long as the sample is illuminated with a two-dimensional structured light pattern that meets the requirements, the structured light microscope can achieve the corresponding linear/nonlinear super-resolution imaging. Therefore, accurately generating the required two-dimensional structured light illumination pattern is crucial for super-resolution microscopy.
本申请实施例提供的结构光照明显微成像系统中,二维结构光照明图案即为二维正弦周期性点阵光斑。下面对本申请设计二维正弦周期性点阵光斑的过程进行说明:In the structured light illumination microscopic imaging system provided in the embodiment of the present application, the two-dimensional structured light illumination pattern is a two-dimensional sinusoidal periodic dot matrix light spot. The process of designing the two-dimensional sinusoidal periodic dot matrix light spot in the present application is described below:
本申请实施例中,二维正弦周期性点阵光斑的数学模型包括以下两种类型,分别为:In the embodiment of the present application, the mathematical model of the two-dimensional sinusoidal periodic dot-matrix light spot includes the following two types:
和, and,
其中,为二维正弦周期性点阵光斑的光强分布,n为二维正弦周期性点阵光斑的序号,在两种不同的图案下,n通常为[1,5]与[1,9]区间的整数,为空域内的位置矢量,分别为二维正弦周期性点阵光斑在x、y方向周期所对应的空间频率,φxn、φyn分别为第n帧原始图像在x、y方向的相位参数。in, is the light intensity distribution of the two-dimensional sinusoidal periodic lattice light spot, n is the serial number of the two-dimensional sinusoidal periodic lattice light spot, and in two different patterns, n is usually an integer between [1,5] and [1,9]. is the position vector in the airspace, are the spatial frequencies corresponding to the periods of the two-dimensional sinusoidal periodic dot matrix light spots in the x and y directions, respectively; φ xn and φ yn are the phase parameters of the original image of the nth frame in the x and y directions, respectively.
其中,分别为二维正弦周期性点阵光斑的空间频谱,为空间频域内的频率矢量,δ为狄拉克脉冲函数。in, They are The spatial spectrum of a two-dimensional sinusoidal periodic dot-matrix light spot. is the frequency vector in the spatial frequency domain, and δ is the Dirac pulse function.
在平面波入射下,衍射光学元件DOE的透过率函数与物镜焦平面(即样品平面)的夫琅禾费衍射场呈傅里叶变换的关系。此时,如何设计DOE的相位分布,使衍射场的光强分布呈一定空间频率的二维正弦周期性点阵光斑是核心问题。对于给定的目标衍射场分布,DOE的相位可以使用迭代傅里叶变换算法(英文:Iterative Fourier TransformAlgorithm,简称:IFTA)进行设计。如图6所示,主要步骤包括:Under plane wave incidence, the transmittance function of the diffractive optical element DOE is in a Fourier transform relationship with the Fraunhofer diffraction field of the objective focal plane (i.e., the sample plane). At this time, how to design the phase distribution of the DOE so that the intensity distribution of the diffraction field is a two-dimensional sinusoidal periodic lattice spot with a certain spatial frequency is the core issue. For a given target diffraction field distribution, the phase of the DOE can be designed using an iterative Fourier transform algorithm (IFTA). As shown in Figure 6, the main steps include:
1、将初始等振幅相位场赋予DOE平面:1. Assign the initial equal-amplitude phase field to the DOE plane:
其中i为迭代次数,为DOE平面内光场的振幅分布,为DOE平面内光场的相位分布。Where i is the number of iterations, is the amplitude distribution of the light field in the DOE plane, is the phase distribution of the light field in the DOE plane.
2、经傅里叶变换,计算样品平面衍射场分布:2. Calculate the diffraction field distribution of the sample plane through Fourier transform:
其中τ(i)(x)为物镜后焦面(即样品平面)的振幅分布,ψ(i)(x)为相位分布。Where τ (i) (x) is the amplitude distribution at the rear focal plane of the objective (i.e., the sample plane), and ψ (i) (x) is the phase distribution.
3、在样品平面内,使用目标衍射场(二维结构光照明图案)的振幅分布替换样品平面的振幅分布,相位分布保持不变,获得新的光场:3. In the sample plane, the amplitude distribution of the target diffraction field (two-dimensional structured light illumination pattern) is used to replace the amplitude distribution of the sample plane, and the phase distribution remains unchanged to obtain a new light field:
4、经傅里叶逆变换,计算DOE平面光场分布:4. Calculate the DOE plane light field distribution through inverse Fourier transform:
5、将DOE平面的光场振幅分布重新置为均匀振幅分布。5. Distribute the light field amplitude on the DOE plane Reset to uniform amplitude distribution.
迭代重复步骤2-5。DOE平面处的光场振幅分布将收敛为近似的均匀分布,而样品平面光场的振幅分布τ(i)(x)则收敛到目标衍射场(二维结构光照明图案)的振幅分布。此时DOE平面的相位分布即为所需设计的DOE相位,通过衍射可生成所需的二维正弦周期性点阵光斑。Repeat steps 2-5 iteratively. Light field amplitude distribution at the DOE plane The phase distribution of the DOE plane is : That is the desired designed DOE phase, and the desired two-dimensional sinusoidal periodic lattice spot can be generated by diffraction.
下面结合实例来对本申请提供的结构光照明显微成像系统的性能进行说明。The performance of the structured light illumination microscopic imaging system provided in the present application is described below with reference to examples.
本申请实施例中,可以采用488nm激光通过准直扩束组件生成宽口径的准直光,经安装在照明物镜入瞳或附近的衍射光学元件DOE调制,入射照明物镜,在照明物镜后焦面上生成设计的二维结构光照明图案,即二维正弦周期性点阵光斑。In an embodiment of the present application, a 488nm laser can be used to generate wide-aperture collimated light through a collimating and expanding assembly, which is modulated by a diffractive optical element DOE installed at or near the entrance pupil of the illumination objective lens, and incident on the illumination objective lens to generate a designed two-dimensional structured light illumination pattern on the rear focal plane of the illumination objective lens, that is, a two-dimensional sinusoidal periodic dot matrix spot.
其中,衍射光学元件DOE及其衍射生成的二维正弦周期性点阵光斑如图7所示。图7中,(a)表示衍射光学元件的相位分布,(b)表示二维正弦周期性点阵光斑的光强分布,(c)和(b)表示水平划线位置光强曲线,(d)和(b)表示竖直划线位置光强曲线。Among them, the diffractive optical element DOE and the two-dimensional sinusoidal periodic lattice light spot generated by its diffraction are shown in Figure 7. In Figure 7, (a) represents the phase distribution of the diffractive optical element, (b) represents the light intensity distribution of the two-dimensional sinusoidal periodic lattice light spot, (c) and (b) represent the light intensity curves at the horizontal line position, and (d) and (b) represent the light intensity curves at the vertical line position.
目标样品经过二维正弦周期性点阵光斑照明之后,相应图像被成像物镜成像并被图像传感器采集,如图8所示。使用位移台对目标样品进行移相扫描,拍摄不同位置目标样品的原始图像。通过这样的方式,本申请实施例提供的结构光照明显微成像系统具备SIM满足超分辨成像必须的两大要素:对目标样品的二维正弦周期性点阵光斑照明以及二维正弦周期性点阵光斑的移相探测。After the target sample is illuminated by the two-dimensional sinusoidal periodic lattice light spot, the corresponding image is imaged by the imaging objective lens and collected by the image sensor, as shown in Figure 8. The target sample is phase-shifted and scanned using a translation stage to capture original images of the target sample at different positions. In this way, the structured light illumination microscopy imaging system provided in the embodiment of the present application has two major elements that SIM must meet for super-resolution imaging: two-dimensional sinusoidal periodic lattice light spot illumination of the target sample and phase-shift detection of the two-dimensional sinusoidal periodic lattice light spot.
本申请实施例中,根据照明物镜的不同以及衍射光学元件的设计,产生的二维正弦周期性点阵光斑相应发生变化,最大空间频率约为照明物镜1022决定的衍射极限分辨率对应的空间频率的2倍。将位移台移相扫描步距设置为照明图案周期约三分之一的大小,使得移相扫描能在二维照明图案两个或多个方向的一个周期内实现相对均匀的采样,以保证重构结果在整个视场获得均匀的分辨率提升效果。进一步进行迭代重构可提高样品超分辨显微成像质量。In the embodiment of the present application, according to the different illumination objective lenses and the design of the diffractive optical element, the generated two-dimensional sinusoidal periodic lattice spot changes accordingly, and the maximum spatial frequency is about twice the spatial frequency corresponding to the diffraction limit resolution determined by the
如图9所示,其为基于衍射光学元件的结构光照明超分辨显微成像系统对荧光微球成像结果。图9中(a)表示宽场照明下微球的成像结果。(b)表示衍射光学元件调制生成的二维正弦周期性点阵光斑照明下的超分辨结果。(c)表示在划线选定的位置,宽场图像与超分辨图像的光强曲线。通过图9可以直观地看到超分辨图像相比宽场图像分辨率具有显著的提升。其中,(a)和(b)的局部放大图像显示,原本宽场图像中无法分辨的相邻微球在结构光照明超分辨显微成像系统图像中已经能够分辨开来。取划线位置光强曲线进行分析如(c)所示,经拟合,两微球的中心间距为567nm,已经超越理论的衍射极限分辨率990nm。As shown in Figure 9, it is the imaging result of fluorescent microspheres by the structured light illumination super-resolution microscopy system based on diffractive optical elements. Figure 9 (a) shows the imaging result of the microspheres under wide-field illumination. (b) shows the super-resolution result under illumination of a two-dimensional sinusoidal periodic dot-matrix light spot generated by modulation of the diffractive optical element. (c) shows the light intensity curves of the wide-field image and the super-resolution image at the position selected by the line. It can be seen intuitively from Figure 9 that the resolution of the super-resolution image is significantly improved compared to the wide-field image. Among them, the local enlarged images of (a) and (b) show that the adjacent microspheres that were originally indistinguishable in the wide-field image can be distinguished in the image of the structured light illumination super-resolution microscopy system. The light intensity curve at the line position is taken for analysis as shown in (c). After fitting, the center distance between the two microspheres is 567nm, which has exceeded the theoretical diffraction limit resolution of 990nm.
进一步的,为验证本申请实施例提供的结构光照明显微成像系统的生物成像能力,对A549细胞的固定细胞样片进行了成像实验,其中,A549细胞腺癌人类肺泡基底上皮细胞,是研究II型肺上皮细胞模型在药物代谢中常用的样品。其中,对细胞微管使用染料进行标记,实验结果如图10所示。其中,图10中(a)表示细胞微管的宽场结果、局部放大结果(右下)和宽场成像的空间频谱(右上)。(b)表示衍射光学元件1021调制生成的二维正弦周期性点阵照明下细胞微管的超分辨结果、局部放大结果(右下)和超分辨成像的空间频谱(右上)。(c)表示在划线选定的位置,宽场图像与超分辨图像的光强曲线。细胞微管宽场图像与超分辨图像的对比同样展示了显著的分辨率提升效果,视场内能找到大量分辨率提升的证据,如(a)和(b)所示,局部放大的区域中,宽场图像观察到的细胞微管模糊一片,无法分辨微管结构,而超分辨图像展示出了清晰的微管结构。此外,超分辨图像的空间频谱相比宽场图像也获得了明显的扩展,这同样能证明系统成像分辨率已经超越衍射极限。选取划线位置对比宽场图像与超分辨图像的光强曲线,如(c)所示,在宽场图像中,两条接近的细胞微管无法分辨,而超分辨图像中则能够成功分辨。经数据拟合,两微管中心相距约419nm,小于荧光波长对应的衍射极限625nm,实现了超分辨成像。Further, in order to verify the biological imaging capability of the structured light illumination microscopic imaging system provided in the embodiment of the present application, an imaging experiment was performed on a fixed cell sample of A549 cells, wherein A549 cell adenocarcinoma human alveolar basal epithelial cells are samples commonly used to study the type II lung epithelial cell model in drug metabolism. Among them, the cell microtubules are labeled with dyes, and the experimental results are shown in Figure 10. Among them, Figure 10 (a) shows the wide-field results, local magnification results (lower right) and spatial spectrum of wide-field imaging (upper right) of cell microtubules. (b) shows the super-resolution results, local magnification results (lower right) and spatial spectrum of super-resolution imaging (upper right) of cell microtubules under two-dimensional sinusoidal periodic dot matrix illumination modulated and generated by the diffractive
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments may be arbitrarily combined. To make the description concise, not all possible combinations of the technical features in the above embodiments are described. However, as long as there is no contradiction in the combination of these technical features, they should be considered to be within the scope of this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation methods of the present application, and the descriptions thereof are relatively specific and detailed, but they cannot be understood as limiting the scope of the invention patent. It should be pointed out that, for a person of ordinary skill in the art, several variations and improvements can be made without departing from the concept of the present application, and these all belong to the protection scope of the present application. Therefore, the protection scope of the patent of the present application shall be subject to the attached claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110713853.XA CN113433681B (en) | 2021-06-25 | 2021-06-25 | Structured light illumination microscopic imaging system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110713853.XA CN113433681B (en) | 2021-06-25 | 2021-06-25 | Structured light illumination microscopic imaging system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113433681A CN113433681A (en) | 2021-09-24 |
CN113433681B true CN113433681B (en) | 2023-03-24 |
Family
ID=77754772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110713853.XA Active CN113433681B (en) | 2021-06-25 | 2021-06-25 | Structured light illumination microscopic imaging system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113433681B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115236043A (en) * | 2022-07-01 | 2022-10-25 | 浙江大学 | A visible light dual-comb high-resolution ultrafast microscope imaging device and method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008049878A1 (en) * | 2008-09-30 | 2010-04-01 | Carl Zeiss Microlmaging Gmbh | Improved methods and devices for microscopy with structured illumination |
CN102735617B (en) * | 2012-06-29 | 2014-06-04 | 浙江大学 | Super-resolution microscopic method and super-resolution microscopic device |
TWI792150B (en) * | 2018-06-29 | 2023-02-11 | 美商伊路米納有限公司 | Method, system, and non-transitory computer-readable medium for predicting structured illumination parameters |
-
2021
- 2021-06-25 CN CN202110713853.XA patent/CN113433681B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113433681A (en) | 2021-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110262026B (en) | Aperture scanning Fourier ptychographic imaging | |
CN109712072B (en) | Fourier-domain iterative update super-resolution microscopy imaging method based on total internal reflection in fringe illumination | |
CN110082900B (en) | Variable Illumination Fourier Overlay Correlation Imaging Apparatus, System, and Method | |
JP5738765B2 (en) | Improved method and apparatus for microscopy with structured illumination | |
CN114813673A (en) | Multi-channel super-resolution gene detector and detection method thereof | |
CN109477954A (en) | SCAPE microscopy and image reconstruction with phase modulating elements | |
CN110487762B (en) | Super-resolution Bessel microscopic imaging device and method based on multi-focus light illumination | |
CN105784653A (en) | Wide-field super resolution fluorescence microscopic imaging device | |
CN114594588B (en) | Structured light illumination microscopic device and method based on grating projection and SLM phase shift | |
CN105466895B (en) | A kind of fluorescence super-resolution microscope equipment and method based on the modulation of virtual wave vector | |
NL2023860B1 (en) | Pattern activated structured illumination localization microscopy | |
CN112368625B (en) | Multi-point illuminator, confocal filter, confocal microscope, and method of operating same | |
CN113433681B (en) | Structured light illumination microscopic imaging system and method | |
CN112485230B (en) | Super-resolution microscopic imaging method and device based on active time modulation frequency mixing excitation irradiation | |
CN112444506B (en) | Microscopic imaging method and device | |
CN116183568A (en) | High-fidelity reconstruction method and device for three-dimensional structured light illumination super-resolution microscopic imaging | |
Wei et al. | Accurate and stable two-step LED position calibration method for Fourier ptychographic microscopy | |
CN111512205A (en) | Method and apparatus for optical confocal imaging using a programmable array microscope | |
Fanous et al. | Neural network-based processing and reconstruction of compromised biophotonic image data | |
WO2025118939A1 (en) | Imaging system, imaging method and gene sequencer | |
CN118010692A (en) | Single-molecule positioning microscopic imaging device based on lattice light illumination | |
US20080174783A1 (en) | System and method of interferometric imaging using a digital micromirror device | |
CN116047739A (en) | A super-resolution microscopic imaging method and system based on structured light illumination | |
CN120195857B (en) | Dual confocal image scanning microscope based on turntable and imaging method | |
CN117555197B (en) | A scanning panoramic correlation imaging system based on low-light detection and its noise suppression method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |