[go: up one dir, main page]

CN113430457A - 一种1300MPa级高延伸率低延迟开裂敏感性热成形钢及其生产方法 - Google Patents

一种1300MPa级高延伸率低延迟开裂敏感性热成形钢及其生产方法 Download PDF

Info

Publication number
CN113430457A
CN113430457A CN202110598900.0A CN202110598900A CN113430457A CN 113430457 A CN113430457 A CN 113430457A CN 202110598900 A CN202110598900 A CN 202110598900A CN 113430457 A CN113430457 A CN 113430457A
Authority
CN
China
Prior art keywords
steel
less
grade high
1300mpa
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110598900.0A
Other languages
English (en)
Inventor
陈勇
赵广威
郎丰军
胡宽辉
何嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Iron and Steel Co Ltd
Original Assignee
Wuhan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Iron and Steel Co Ltd filed Critical Wuhan Iron and Steel Co Ltd
Priority to CN202110598900.0A priority Critical patent/CN113430457A/zh
Publication of CN113430457A publication Critical patent/CN113430457A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明公开了一种1300MPa级高延伸率低延迟开裂敏感性热成形钢及其生产方法,其组分及重量百分比含量为:C:0.14~0.18%,Si:1.50~2.0%,Mn:1.0~1.5%,P≤O.Ol%,S≤0.005%,A1s:0.025~0.070%,Cr:1.0~1.4%,Ni:0.20~0.50%,Ti:0.020~0.050%,Nb:0.020~0.050%,Cu:0.20~0.40%;B:0.002~0.005%,余为Fe及不可避免的杂质。本发明的热成形钢不仅抗拉强度大于1300MPa,通过添加Ni、Cu、Nb、钛等合金以及淬火过程中通过配分过程增加钢中奥氏体含量从而具有较高的延伸性和较低的氢致延迟开裂敏感性,该发明产品应用于汽车上车体和下车体上制作结构件和安全件,不仅能够减轻汽车车身重量,而且能够有效保护驾乘人员的安全。

Description

一种1300MPa级高延伸率低延迟开裂敏感性热成形钢及其生 产方法
技术领域
本发明属于冶金行业高强钢生产领域,尤其适用于热成形高强钢生产,具体属于热成形钢。
背景技术
随着汽车行业的快速发展,轻量化和安全性成为汽车产业发展的主要方向。使用热成形钢是当前提髙汽车碰撞安全性最为有效的措施,也是轻量化的重要途径。目前应用最多的是低碳Mn-B系钢板,淬火后其组织变为均匀的马氏体,强度达到1300MPa级,应用在A柱、B柱、前后保险杆、铰链加强板、车门防撞梁、中通道等部位。
然而,随着强度提高,钢的延迟开裂问题也随之出现,成为制约超高强钢应用与发展的一个重大问题。延迟开裂是材料在静止应力的作用下,经过一定时间后突然发生脆性破坏的一种现象,它是材料—环境—应力之间相互作用的结果,是材料服役环境中的氢造成的,是氢致材质劣化的一种形态,当强度级别超过1000MPa后,其开裂敏感性更为显著。延迟开裂常常在材料所承受的外加应力水平显著低于其屈服强度时突然发生,由于发生脆断,使得钢的吸能效果大大下降,往往导致较为严重的破坏和后果。
目前国内外采取的具体措施如下几种。(1)细化晶粒,通过加入Al、Ti、Nb、V等元素,生成弥散析出的碳氮化物以细化原奥氏体晶粒,在提高强度的同时还可以改善韧性。(2)减少晶界偏析,降低磷、硫等杂质元素的含量,提高晶界结合力,延缓延迟断裂裂纹的萌生,从而改善高强度钢的耐延迟断裂性能。(3)减少钢表面侵入的氢量或者在加入斥氢元素使氢不在晶界处富集。(4)使侵入的氢无害化,加入适量的微合金元素V、Ti、Nb等,形成细小的碳氮化物可以作为氢的陷阱,抑制氢的扩散,使钢中的氢均匀分布。
发明内容
基于以上现有技术的不足,本发明所解决的技术问题在于提供一种有效的生产低氢致延迟开裂敏感性热成形钢的生产方法,该1300MPa级高延伸率低延迟开裂敏感性热成形钢的生产方法能有效的解决现有1300MPa热成形钢其氢致滞后开裂敏感性较大,在使用时存在开裂风险的问题。
为了解决上述技术问题,本发明提供一种1300MPa级高延伸率低延迟开裂敏感性热成形钢,其组分及重量百分比含量为:C:0.14~0.18%,Si:1.50~2.0%,Mn:1.0~1.5%,P≤0.0l%,S≤0.005%,A1s:0.025~0.070%,Cr:1.0~1.4%,Ni:0.20~0.50%,Ti:0.020~0.050%,Nb:0.020~0.050%,Cu:0.20~0.40%;B:0.002~0.005%,余为Fe及不可避免的杂质。
作为上述技术方案的优选,本发明提供的1300MPa级高延伸率低延迟开裂敏感性热成形钢进一步包括下列技术特征的部分或全部:
作为上述技术方案的改进,所述的1300MPa级高延伸率低延迟开裂敏感性热成形钢,屈服强度Rp0.2在:850~1000MPa,抗拉强度Rm≥1300MPa,延伸率A50mm≥12%,氢脆敏感性Iε≤50%。
一种如上任意所述的1300MPa级高延伸率低延迟开裂敏感性热成形钢的生产方法,其特征在于,包含如下步骤:
铁水脱硫并进行转炉冶炼,控制冶炼终点的C:0.05~0.06%,P≤0.008%,S≤0.002%,N≤0.004%,出钢温度在1700~1780℃;
转炉冶炼并连铸成坯;铸坯缓慢冷却,排除钢中的气体,在热轧过程中先将铸坯加热到1200~1250℃,进行粗轧和精扎,控制终轧温度在840~880℃;
层流冷却后控制卷取温度在600~630℃;冷轧过程中首先进行常规酸洗并冷轧,然后进行连续退火,退火温度控制为750~810℃;
进行常规精整及剪切,将剪切料在冷冲压模具上进行落料;
将样片在氮气的保护气氛下进行加热,加热温度为880~930℃,保温180~300s进行奥氏体化,然后快速置于带有控温装置的模具内进行冲压成形,控制钢板淬火温度在340℃~360℃之间,再迅速升温到420~460℃保温2~5分钟,而后淬火至室温,从而得到板条马氏体组织和残余奥氏体组织,使用XRD衍射仪测得残余奥氏体含量约3%~4%,从而获得较好的延伸率和抗延迟开裂性能。
本发明中各元素及主要工艺的作用及机理
C:碳是强固溶强化元素,对超高强度的获得起决定作用,碳含量对最终产品的组织形态和性能有较大影响,但是含量太高,在精轧后的冷却过程中易形成大量的珠光体或贝氏体、马氏体,其含量愈高,强度愈高,从而造成塑性降低,进行成形前的落料困难。所以在保证热处理强化的前提下,碳含量不易过高。故将其含量限定在0.14~0.18%范围。
Si:硅有较强的固溶强化效果,可提高钢的强度,同时,硅能提高钢的淬透性,有减少奥氏体向马氏体转变时体积变化的作用,从而有效控制淬火裂纹的产生:在低温回火时能阻碍碳的扩散,Si可以提高C在奥氏体中的活度,在热成形过程中可以增加奥氏体稳定,获得更多的残余奥氏体,提高延伸性,硅含量过高会影响钢的表面质量。所以其含量限定在1.50~2.0%范围。
Mn:锰起固溶强化作用,显著改善钢的质量。还能与硫化物生成高熔点的MnS,在热加工时,MnS有足够的塑性,使钢不产生热脆现象,减轻硫的有害作用,提高钢的热加工性能。锰能降低相变驱动力,使C曲线右移,提高钢的淬透性,扩大奥氏体相区,它可降低钢的Ms点,故可保证在合适的冷却速度下得到马氏体,并能够增加残余奥氏体稳定性。所以,将其含量限定在1.0~1.5%范围。
P:磷是钢中的有害元素,易引起铸坯中心偏析。在随后的热连轧加热过程中易偏聚到晶界,使钢的脆性显著增大。同时基于成本考虑且不影响钢的性能,将其含量控制在0.01%以下。
S:硫是非常有害的元素。钢中的硫常以锰的硫化物形态存在,这种硫化物夹杂会恶化钢的韧性,并造成性能的各向异性,因此,需将钢中硫含量控制得越低越好。基于对制造成本的考虑,将钢中硫含量控制在0.005%以下。
Cr:铬能增加钢的淬透性并有二次硬化的作用,可提高碳钢的硬度和耐磨性而不使钢变脆,Cr能提高钢轧制状态的强度和硬度,降低伸长率和断面收缩率,Cr可以提高淬透性,使钢经淬火回火后具有较好的综合力学性能,另外,铬能提高钢的回火稳定性,Cr的碳化物有吸附氢的作用,能抑制氢的扩散,所以要求Cr含量在在1.0%~1.40%范围。
B:硼是强烈提高淬透性元素,钢中加入微量的硼元素能显著提高钢的淬透性。但是其含量低于0.002%,或者高于0.005%,对提高淬透性的作用不明显。所以,为考虑生产实际及淬透性效果,将其含量限定在0.002~0.005%范围。
Al:其在钢中起脱氧作用,应保证钢中有一定量的酸溶铝,否则不能发挥其效果,同时钢中加入适量的铝可以消除钢中氮、氧原子对性能的不利影响,添加Al也可以降低氢在钢中的扩散系数。故将Als含量限定在O.025~0.070%范围。
Ti:钛是强C、N化物形成元素,加入钢中有两个主要目的,一个是保护钢中的B,提高钢的淬透性,另一个是析出强化,提高钢的强度和韧性。钢中加入的Ti会与C结合会生成稳定的TiC,TiC微粒有阻止晶粒长大的作用,能够细化晶粒,提高强度和韧性。钛的碳、氮化物是良好的氢陷阱,能有效抑制氢在钢中的扩散,有利于提升钢的抗延迟开裂性能。本发明钢中将其含量限定在0.020~0.050%范围内。
Nb:铌也是强C、N化物形成元素,能起到细化奥氏体晶粒的作用,钢中加入少量的铌可以形成一定量的铌的碳、氮化物,从而阻碍奥氏体晶粒长大,因此,其淬火后的马氏体板条尺寸较小,大大提高钢的强度;另外铌的碳、氮化物是良好的氢陷阱,能有效抑制氢在钢中的扩散,有利于提升钢的抗延迟开裂性能,然而Nb是贵重合金,含量过高会增加生成成本。故将其含量均控制在0.020~0.050%之间。
Ni:镍可以提高钢的淬透性,提高钢的韧性,另外,镍可以提高钢的抗腐蚀能力,不仅能耐酸,而且能抗碱和大气的腐蚀从而降低环境断裂风险,同时镍能有效的钉扎氢原子,以降低氢在钢中的扩散速度,防止氢聚集,本发明钢中Ni含量控制在0.20%~0.50%。
Cu:铜在钢中的突出作用是改善低合金钢的腐蚀性能,从而抑制钢在服役过程中从环境吸收氢,同时Cu有排斥氢的作用,当铜元素在晶界中时会排斥氢,使得氢难以在晶界处富集,但是铜含量过高会产生热脆性,因此钢中的铜含量控制在0.20~0.40%。
本发明与现有技术相比,其不仅抗拉强度大于1300MPa,通过添加Ni、Cu、Nb、钛等合金以及淬火过程中通过配分过程增加钢中奥氏体含量从而具有较高的延伸性和较低的氢致延迟开裂敏感性,该发明产品应用于汽车上车体和下车体上制作结构件和安全件,不仅能够减轻汽车车身重量,而且能够有效保护驾乘人员的安全。
与现有技术相比,本发明的技术方案具有如下有益效果:本技术通过在成份和工艺优化制造一种热成形钢,具有1300MPa的抗拉强度,又极大地提高了材料的延伸性,拥有更高的强塑积,还有较好的抗延迟开裂的性能,本发明既适用于采用普通冷轧工艺生产热成形钢,有更好的应用前景和经济效益。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下结合优选实施例,详细说明如下。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍。
图1是本发明实施例1的1300MPa级高延伸率低延迟开裂敏感性热成形钢的金相结果图。
具体实施方式
下面详细说明本发明的具体实施方式,其作为本说明书的一部分,通过实施例来说明本发明的原理,本发明的其他方面、特征及其优点通过该详细说明将会变得一目了然。
实施钢板的化学成份见下表1,
表1本发明各实施例及对比例的化学成分取值列表(wt%)
Figure BDA0003092200840000051
Figure BDA0003092200840000061
表2本发明各实施例及对比例的主要工艺
Figure BDA0003092200840000062
将试验钢与对比钢进行常规力学性能对比,结果见表3;同时将试验钢和对比钢的延迟开裂性能对比,在0.1mol/L的HCl中进行SSRT慢拉伸试验,拉伸应变速率1.0×10-5/s通过计算延伸率损失(氢脆指数I)
Figure BDA0003092200840000063
来评价抗延迟开裂性能,Iε值越小代表抗延迟开裂性能越好。对比钢和本方法生产的抗氢脆热成形钢抗延迟开裂性能对比见表3。
表3本发明各实施例及对比例的性能检测结果
Figure BDA0003092200840000071
本发明与现有技术相比,其不仅抗拉强度大于1300MPa,通过添加Ni、Cu、Nb、钛等合金以及淬火过程中通过配分过程增加钢中奥氏体含量从而具有较高的延伸性和较低的氢致延迟开裂敏感性,该发明产品应用于汽车上车体和下车体上制作结构件和安全件,不仅能够减轻汽车车身重量,而且能够有效保护驾乘人员的安全。
本发明所列举的各原料,以及本发明各原料的上下限、区间取值,以及工艺参数(如温度、时间等)的上下限、区间取值都能实现本发明,在此不一一列举实施例。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (4)

1.一种1300MPa级高延伸率低延迟开裂敏感性热成形钢,其特征在于:其组分及重量百分比含量为:C:0.14~0.18%,Si:1.50~2.0%,Mn:1.0~1.5%,P≤O.Ol%,S≤0.005%,A1s:0.025~0.070%,Cr:1.0~1.4%,Ni:0.20~0.50%,Ti:0.020~0.050%,Nb:0.020~0.050%,Cu:0.20~0.40%;B:0.002~0.005%,余为Fe及不可避免的杂质。
2.如权利要求1所述的1300MPa级高延伸率低延迟开裂敏感性热成形钢,其特征在于:所述的1300MPa级高延伸率低延迟开裂敏感性热成形钢,屈服强度RpO.2在:850~1000MPa,抗拉强度Rm≥1300MPa,延伸率A50mm≥12%,氢脆敏感性Iε≤50%。
3.一种如权利要求1或2所述的1300MPa级高延伸率低延迟开裂敏感性热成形钢的生产方法,其特征在于,包含如下步骤:
铁水脱硫并进行转炉冶炼,控制冶炼终点的C:0.05~O.06%,P≤0.008%,S≤0.002%,N≤0.004%,出钢温度在1700~1780℃;
转炉冶炼并连铸成坯;铸坯缓慢冷却,排除钢中的气体,在热轧过程中先将铸坯加热到1200~1250℃,进行粗轧和精扎,控制终轧温度在840~880℃;
层流冷却后控制卷取温度在600~630℃;冷轧过程中首先进行常规酸洗并冷轧,然后进行连续退火,退火温度控制为750~810℃;
进行常规精整及剪切,将剪切料在冷冲压模具上进行落料;
将样片在氮气的保护气氛下进行加热,加热温度为880~930℃,保温180~300s进行奥氏体化,然后快速置于带有控温装置的模具内进行冲压成形,控制钢板淬火温度在340℃~360℃之间,再迅速升温到420~460℃保温2~5分钟,而后淬火至室温。
4.如权利要求3所述的1300MPa级高延伸率低延迟开裂敏感性热成形钢的生产方法,其特征在于:制备所得的所述的1300MPa级高延伸率低延迟开裂敏感性热成形钢,残余奥氏体含量约3%~4%。
CN202110598900.0A 2021-05-31 2021-05-31 一种1300MPa级高延伸率低延迟开裂敏感性热成形钢及其生产方法 Pending CN113430457A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110598900.0A CN113430457A (zh) 2021-05-31 2021-05-31 一种1300MPa级高延伸率低延迟开裂敏感性热成形钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110598900.0A CN113430457A (zh) 2021-05-31 2021-05-31 一种1300MPa级高延伸率低延迟开裂敏感性热成形钢及其生产方法

Publications (1)

Publication Number Publication Date
CN113430457A true CN113430457A (zh) 2021-09-24

Family

ID=77804209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110598900.0A Pending CN113430457A (zh) 2021-05-31 2021-05-31 一种1300MPa级高延伸率低延迟开裂敏感性热成形钢及其生产方法

Country Status (1)

Country Link
CN (1) CN113430457A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115522019A (zh) * 2022-08-31 2022-12-27 邯郸钢铁集团有限责任公司 实现马氏体钢中富铜纳米颗粒弥散分布的热处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101275200A (zh) * 2008-05-21 2008-10-01 钢铁研究总院 一种热成型马氏体钢
CN101638749A (zh) * 2009-08-12 2010-02-03 钢铁研究总院 一种低成本高强塑积汽车用钢及其制备方法
CN111748736A (zh) * 2020-06-24 2020-10-09 武汉钢铁有限公司 一种1800MPa级低氢致延迟开裂敏感性热成形钢及其生产方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101275200A (zh) * 2008-05-21 2008-10-01 钢铁研究总院 一种热成型马氏体钢
CN101638749A (zh) * 2009-08-12 2010-02-03 钢铁研究总院 一种低成本高强塑积汽车用钢及其制备方法
CN111748736A (zh) * 2020-06-24 2020-10-09 武汉钢铁有限公司 一种1800MPa级低氢致延迟开裂敏感性热成形钢及其生产方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115522019A (zh) * 2022-08-31 2022-12-27 邯郸钢铁集团有限责任公司 实现马氏体钢中富铜纳米颗粒弥散分布的热处理方法

Similar Documents

Publication Publication Date Title
US20230235435A1 (en) Steel for mining chain and manufacturing method thereof
KR102745823B1 (ko) 열간 스탬핑용 강, 열간 스탬핑 방법, 및 열간 스탬핑된 구성요소
EP3235923B1 (en) High-strength steel plate with yield strength of 800 mpa and more and production method therefor
CN110468341B (zh) 一种1400MPa级耐延迟断裂高强度螺栓及制造方法
EP3859035B1 (en) Ultrahigh strength steel q960e thick plate and manufacturing method
CN108914006B (zh) 一种厚度方向性能优良的超高强度调质钢板及其制造方法
CN110079743B (zh) 一种1500MPa级低氢致延迟开裂敏感性热成形钢及生产方法
CN111748736A (zh) 一种1800MPa级低氢致延迟开裂敏感性热成形钢及其生产方法
CN109136779B (zh) 一种马氏体基体1100MPa级稀土Q&P钢制备方法
CN111074148B (zh) 一种800MPa级热冲压桥壳钢及其制造方法
CN111304531B (zh) 一种屈服强度550MPa级热轧H型钢及其生产方法
EP4261320A1 (en) High-strength and toughness free-cutting non-quenched and tempered round steel and manufacturing method therefor
US20240218490A1 (en) Hot stamping component having tensile strength greater or equal to 1000 mpa and fabrication method therefor
KR20230024905A (ko) 가소성이 우수한 초고강도 강 및 이의 제조 방법
CN113846269B (zh) 一种具有高强塑性冷轧高耐候钢板及其制备方法
CN112226673A (zh) 一种抗拉强度650MPa级热轧钢板及其制造方法
CN113430456A (zh) 一种2000MPa级抗延迟开裂热成形钢及其生产方法
CN109161789B (zh) 一种lpg船用低温钢板及其生产方法
CN108728728A (zh) 一种具有极低屈强比的高锰钢及其制造方法
CN112048676A (zh) 一种抗应变时效低温韧性s420ml钢板及其生产方法
CN117107168B (zh) 一种超高强塑积的低密度钢板及其制备方法
CN113430457A (zh) 一种1300MPa级高延伸率低延迟开裂敏感性热成形钢及其生产方法
CN113737108A (zh) 一种耐延迟开裂的电镀锌超强双相钢及其制造方法
CN114134387B (zh) 一种抗拉强度1300MPa级厚规格超高强钢板及其制造方法
CN115679194B (zh) 一种塑料模具钢板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210924

RJ01 Rejection of invention patent application after publication