CN113430234B - Method for producing medium-chain fatty acid by using external potential to strengthen anaerobic microorganisms - Google Patents
Method for producing medium-chain fatty acid by using external potential to strengthen anaerobic microorganisms Download PDFInfo
- Publication number
- CN113430234B CN113430234B CN202110718920.7A CN202110718920A CN113430234B CN 113430234 B CN113430234 B CN 113430234B CN 202110718920 A CN202110718920 A CN 202110718920A CN 113430234 B CN113430234 B CN 113430234B
- Authority
- CN
- China
- Prior art keywords
- anaerobic
- acid
- microorganisms
- potential
- ethanol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 244000005700 microbiome Species 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 150000004667 medium chain fatty acids Chemical class 0.000 title claims abstract description 22
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 69
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 claims abstract description 63
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 50
- 239000010802 sludge Substances 0.000 claims abstract description 35
- 238000000034 method Methods 0.000 claims abstract description 25
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000000855 fermentation Methods 0.000 claims abstract description 13
- 230000009471 action Effects 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 7
- WWZKQHOCKIZLMA-UHFFFAOYSA-N Caprylic acid Natural products CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 claims description 20
- GONOPSZTUGRENK-UHFFFAOYSA-N benzyl(trichloro)silane Chemical compound Cl[Si](Cl)(Cl)CC1=CC=CC=C1 GONOPSZTUGRENK-UHFFFAOYSA-N 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 239000001257 hydrogen Substances 0.000 claims description 11
- 230000000813 microbial effect Effects 0.000 claims description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 6
- 230000004151 fermentation Effects 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- 150000004665 fatty acids Chemical class 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 241000894006 Bacteria Species 0.000 claims description 3
- 230000002401 inhibitory effect Effects 0.000 claims description 3
- 230000000696 methanogenic effect Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims 3
- 238000009280 upflow anaerobic sludge blanket technology Methods 0.000 claims 1
- 239000002351 wastewater Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 23
- 238000011081 inoculation Methods 0.000 abstract description 2
- 238000005728 strengthening Methods 0.000 abstract description 2
- 230000002053 acidogenic effect Effects 0.000 abstract 1
- 230000001580 bacterial effect Effects 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- HNFOAHXBHLWKNF-UHFFFAOYSA-M sodium;2-bromoethanesulfonate Chemical compound [Na+].[O-]S(=O)(=O)CCBr HNFOAHXBHLWKNF-UHFFFAOYSA-M 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 241000193403 Clostridium Species 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000002572 peristaltic effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000010871 livestock manure Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- ZAOCWQZQPKGTRN-UHFFFAOYSA-N nitrous acid;sodium Chemical compound [Na].ON=O ZAOCWQZQPKGTRN-UHFFFAOYSA-N 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 150000004666 short chain fatty acids Chemical class 0.000 description 1
- 235000021391 short chain fatty acids Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/52—Propionic acid; Butyric acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/36—Adaptation or attenuation of cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N13/00—Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明属于环境微生物领域,具体涉及一种外加电势强化厌氧微生物产中链脂肪酸的方法。The invention belongs to the field of environmental microorganisms, and in particular relates to a method for enhancing the production of medium-chain fatty acids by anaerobic microorganisms by applying an electric potential.
背景技术Background technique
微生物碳链延长是一种低能耗、低运行成本的新型生物技术,该过程中产生的中链脂肪酸是一种较高经济价值的资源,能够在实现资源的回收利用的同时实现有机污染物的去除。微生物碳链延长是在功能微生物的作用下,每次循环增加两个碳原子,实现短链脂肪酸合成中链脂肪酸的过程。Microbial carbon chain extension is a new type of biotechnology with low energy consumption and low operating cost. The medium-chain fatty acid produced in this process is a resource with high economic value, which can realize the recycling of resources and the elimination of organic pollutants at the same time. remove. Microbial carbon chain elongation is a process in which short-chain fatty acids are synthesized into medium-chain fatty acids by increasing two carbon atoms per cycle under the action of functional microorganisms.
目前,已实际应用的生产丁酸的方法具有技术条件严苛、成本高、会产生二次污染物等缺点,而且往往会伴随着一定的产物损失。微生物厌氧发酵技术具有反应条件温和,处理成本低,对环境友好等优点。相比其他升级技术,微生物法具有更好的经济效益,但是受限于多种功能微生物的参与(主要为克氏梭菌属Clostridium),且碳链延长反应易受到环境因素和功能微生物活性的影响(如pH、底物浓度等)。At present, the production methods of butyric acid that have been practically used have the disadvantages of strict technical conditions, high cost, and the generation of secondary pollutants, and are often accompanied by certain product losses. Microbial anaerobic fermentation technology has the advantages of mild reaction conditions, low processing cost, and environmental friendliness. Compared with other upgrading technologies, the microbial method has better economic benefits, but is limited by the participation of a variety of functional microorganisms (mainly Clostridium genus Clostridium), and the carbon chain elongation reaction is susceptible to environmental factors and functional microbial activity. Influence (such as pH, substrate concentration, etc.).
专利CN112391292A报道了一种中链脂肪酸碳链延长功能微生物的富集方法及应用,并最终得到了3.4g/L的丁酸和2.5g/L的己酸;专利CN111909970A报道了添加外源介质通过厌氧微生物强化合成气生产中链脂肪酸,反应体系中添加铁负载铂固体介质可达到最大己酸生产量4.97g/L,反应体系中添加褐锰矿可达到最大丁酸生产量3.43g/L;专利CN110643644A和CN110643644B报道了畜禽粪便发酵液生产中链脂肪酸的方法;专利CN110656133A报道了通过氯化铵溶液预处理厌氧污泥,进行厌氧发酵生产中链脂肪酸;专利CN110734934A报道了利用亚硝酸钠溶液预处理厌氧污泥进行中链脂肪酸的生产;专利CN110734933A报道了添加零价铁粉末进行厌氧发酵生产中链脂肪酸。Patent CN112391292A reported a method and application of enrichment and application of medium-chain fatty acid carbon chain extension functional microorganisms, and finally obtained 3.4g/L butyric acid and 2.5g/L hexanoic acid; patent CN111909970A reported that adding exogenous medium through Anaerobic microorganisms strengthen syngas to produce medium-chain fatty acids. Adding iron-loaded platinum solid medium to the reaction system can achieve the maximum hexanoic acid production of 4.97g/L, and adding brown manganese to the reaction system can achieve the maximum butyric acid production of 3.43g/L; Patents CN110643644A and CN110643644B reported the method for producing medium-chain fatty acids from livestock and poultry manure fermentation liquid; patent CN110656133A reported pretreatment of anaerobic sludge by ammonium chloride solution, and carried out anaerobic fermentation to produce medium-chain fatty acids; patent CN110734934A reported the use of nitrous acid Sodium solution pretreats anaerobic sludge to produce medium-chain fatty acids; patent CN110734933A reports the addition of zero-valent iron powder for anaerobic fermentation to produce medium-chain fatty acids.
如以上公开报道的专利所描述的利用厌氧微生物生产中链脂肪酸的方法,多为添加外源介质的方法,虽促进了丁酸的生产,但丁酸的产量仍较低,且反应周期较长。As described in the patents published above, the methods for producing medium-chain fatty acids by anaerobic microorganisms are mostly methods of adding exogenous media. Although the production of butyric acid is promoted, the output of butyric acid is still low, and the reaction cycle is relatively short. long.
发明内容Contents of the invention
为了克服传统的厌氧微生物链延长底物利用率较低,丁酸、己酸产量不高等不足,本发明的目的是提供一种外加电势强化厌氧微生物产中链脂肪酸的方法,该方法能够富集链延长产酸微生物,并在短时间内提高丁酸产量。In order to overcome the shortcomings of traditional anaerobic microbial chain extension substrate utilization rate is low, butyric acid, hexanoic acid yield is not high, the purpose of the present invention is to provide a kind of method that external electric potential strengthens anaerobic microorganism to produce medium-chain fatty acid, and this method can Enrich chain-extended acid-producing microorganisms and increase butyric acid production in a short period of time.
本发明通过外加电势实现链延长功能微生物的驯化及其应用。提供电子供体和电子受体(如乙醇和乙酸),在链延长功能微生物的作用下,实现碳链的延长。本发明旨在提高丁酸、己酸的浓度,赋予更高的商业价值与经济价值。The invention realizes the acclimatization and application of chain-extending functional microorganisms through external potential. Provide electron donors and electron acceptors (such as ethanol and acetic acid), and realize the extension of carbon chains under the action of chain extension functional microorganisms. The present invention aims at increasing the concentration of butyric acid and hexanoic acid, endowing higher commercial value and economic value.
本发明提供的用于碳链延长的装置,如图1所示,以厌氧颗粒污泥为链延长功能微生物的环境来源,向体系施加工作电势,成功实现了从厌氧污泥中驯化、富集链延长功能微生物,并达到快速高效生产丁酸、己酸的目的。因此,本发明有助于我国摆脱中链脂肪酸产量较低的困境,具有重要的经济价值和研究意义。The device for carbon chain extension provided by the present invention, as shown in Figure 1, takes anaerobic granular sludge as the environmental source of chain extension functional microorganisms, applies a working potential to the system, and successfully realizes domestication, Enrich chain extension functional microorganisms, and achieve the purpose of rapid and efficient production of butyric acid and hexanoic acid. Therefore, the invention helps our country get rid of the plight of low production of medium-chain fatty acids, and has important economic value and research significance.
本发明所提供的外加电势强化厌氧微生物产中链脂肪酸的方法,为:以厌氧产酸颗粒污泥作为接种菌源,施加电势,进行链延长功能微生物的驯化与富集,在驯化完全的链延长功能微生物的作用下,外加电势,以乙酸、乙醇为底物厌氧发酵生产丁酸和己酸。The method for enhancing the production of medium-chain fatty acids by anaerobic microorganisms with an external potential provided by the present invention is as follows: using anaerobic acid-producing granular sludge as an inoculation source, applying an electric potential to carry out domestication and enrichment of microorganisms with chain extension functions, Under the action of microorganisms with the chain extension function, an external potential is applied to produce butyric acid and caproic acid by anaerobic fermentation with acetic acid and ethanol as substrates.
所述方法,包括如下步骤:Described method comprises the steps:
1)链延长功能微生物的驯化与富集1) Domestication and enrichment of microorganisms with chain elongation function
(1)采集厌氧产酸颗粒污泥,热处理,抑制产甲烷菌活性,得到预处理厌氧颗粒污泥;(1) collecting anaerobic acid-producing granular sludge, heat treatment, inhibiting the activity of methanogenic bacteria, and obtaining pretreated anaerobic granular sludge;
(2)对步骤(1)制得的厌氧颗粒污泥进行曝气,保持厌氧环境;(2) aerating the anaerobic granular sludge prepared in step (1) to maintain an anaerobic environment;
(3)将步骤(2)制得的厌氧颗粒污泥接种到微生物反应器中,施加电势,启动反应器,在高有机负荷的条件下进行链延长功能微生物的驯化与富集,待发酵液中乙醇的浓度下降和挥发性脂肪酸浓度上升至稳定时,链延长功能微生物驯化完成;(3) Inoculate the anaerobic granular sludge prepared in step (2) into the microbial reactor, apply a potential, start the reactor, and carry out the domestication and enrichment of the microorganisms with chain extension function under the condition of high organic load, and wait for fermentation When the concentration of ethanol in the liquid drops and the concentration of volatile fatty acids rises to a stable level, the acclimatization of the microorganisms with chain extension function is completed;
2)在驯化完全的链延长功能微生物的作用下,外加电势,以乙酸、乙醇为底物厌氧发酵生产丁酸和己酸。2) Under the action of fully domesticated microorganisms with chain extension function, an external potential is applied to produce butyric acid and hexanoic acid by anaerobic fermentation with acetic acid and ethanol as substrates.
上述方法步骤1)(1)中,所述厌氧产酸颗粒污泥取自北京市小红门污水处理厂剩余污泥厌氧消化装置,其平均粒径为0.6-2.5mm,厌氧污泥的挥发性悬浮物和总悬浮物的比值(VSS/TSS)为0.4-0.8,具体可为0.7;In step 1)(1) of the above method, the anaerobic acid-producing granular sludge is taken from the residual sludge anaerobic digestion device of Beijing Xiaohongmen Sewage Treatment Plant, and its average particle size is 0.6-2.5mm. The ratio of volatile suspended matter to total suspended matter (VSS/TSS) of mud is 0.4-0.8, specifically 0.7;
步骤(1)中污泥热处理的温度可为90~100℃,处理时间可为1~1.5h;The temperature of the sludge heat treatment in step (1) can be 90-100°C, and the treatment time can be 1-1.5h;
步骤(2)中厌氧颗粒污泥曝气20分钟(N2:CO2=80:20);In step (2), the anaerobic granular sludge is aerated for 20 minutes (N 2 :CO 2 =80:20);
步骤(3)中所述电势可为-0.4V—(-1)V(相对于标准氢电极),具体可为-0.7V;The potential in step (3) can be -0.4V-(-1)V (relative to the standard hydrogen electrode), specifically -0.7V;
步骤(3)中,所述高有机负荷通过如下操作实现:In step (3), described high organic load realizes by following operations:
启动反应器后,反应器以连续流的方式进水;After starting the reactor, the reactor is fed with water in a continuous flow;
进水中含有乙酸、乙醇和2-BES(2-溴乙磺酸钠:产甲烷菌抑制剂),其中,乙酸、乙醇、2-BES浓度依次可为6.8-30g/L、4.8-25ml/L、1-10g/L;Influent water contains acetic acid, ethanol and 2-BES (sodium 2-bromoethanesulfonate: inhibitor of methanogens), among which, the concentration of acetic acid, ethanol and 2-BES can be 6.8-30g/L, 4.8-25ml/ L, 1-10g/L;
驯化期间pH维持在5-6.8,具体可为5.5-6.5;温度可为28℃-37℃,培养时间可为30-40d。During the acclimatization period, the pH is maintained at 5-6.8, specifically 5.5-6.5; the temperature can be 28°C-37°C, and the culture time can be 30-40d.
步骤2)中,所述电势可为-0.4V—(-1)V(相对于标准氢电极),具体可为-0.8V。In step 2), the potential may be -0.4V-(-1)V (relative to the standard hydrogen electrode), specifically -0.8V.
外加电势在链延长功能微生物的驯化与富集中的应用也属于本发明的保护范围。The application of external potential in the domestication and enrichment of microorganisms with chain extension function also belongs to the protection scope of the present invention.
所述应用中,所述电势可为-0.4V—(-1)V(相对于标准氢电极),具体可为-0.7V。In the application, the potential may be -0.4V-(-1)V (relative to the standard hydrogen electrode), specifically -0.7V.
外加电势强化厌氧微生物产中链脂肪酸的应用也属于本发明的保护范围。The application of an external potential to strengthen the production of medium-chain fatty acids by anaerobic microorganisms also belongs to the protection scope of the present invention.
本发明的应用机理及效果是:Application mechanism and effect of the present invention are:
(1)碳刷电极(12)的加入强化了厌氧系统的稳定性及微生物的富集能力;(1) The addition of the carbon brush electrode (12) strengthens the stability of the anaerobic system and the enrichment ability of microorganisms;
(2)传递至阴极区的氢离子对乙酸的还原起积极作用;(2) The hydrogen ions delivered to the cathode region play a positive role in the reduction of acetic acid;
(3)较低的pH可以抑制产甲烷菌生长、促使丁酸盐积累;(3) Lower pH can inhibit the growth of methanogens and promote the accumulation of butyrate;
(4)乙酸和乙醇摩尔比较低,较大的有机负荷提高了丁酸生产率;(4) The molar ratio of acetic acid and ethanol is low, and the larger organic load improves the butyric acid productivity;
(5)2-BES抑制产甲烷菌生长,促进链延长反应;(5) 2-BES inhibits the growth of methanogens and promotes the chain elongation reaction;
(6)本发明从厌氧颗粒污泥中富集了链延长功能微生物,解决了链延长微生物来源受限的问题。(6) The present invention enriches chain-extending functional microorganisms from anaerobic granular sludge, and solves the problem of limited sources of chain-extending microorganisms.
本发明采用外加电势的方法生产中链脂肪酸,既缩短了反应周期,又提高了丁酸的产量。The invention adopts the method of applying electric potential to produce medium-chain fatty acid, which not only shortens the reaction cycle, but also improves the output of butyric acid.
附图说明Description of drawings
图1为本发明所使用的反应装置示意图。其中,1:进水蠕动泵;2:进水口;3:取样口;4:出水口;5:气体采集口;6:电化学工作站;7:电脑;8:气体收集袋;9:参比电极;10:阳极(石墨棒电极);11:三相分离器;12:阴极(碳刷电极);13:伴热带;14:温控探头;15:进水桶;16:出水桶。Figure 1 is a schematic diagram of the reaction device used in the present invention. Among them, 1: water inlet peristaltic pump; 2: water inlet; 3: sampling port; 4: water outlet; 5: gas collection port; 6: electrochemical workstation; 7: computer; 8: gas collection bag; 9: reference Electrode; 10: anode (graphite rod electrode); 11: three-phase separator; 12: cathode (carbon brush electrode); 13: heating cable; 14: temperature control probe; 15: water inlet bucket; 16: water outlet bucket.
具体实施方式Detailed ways
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。The experimental methods used in the following examples are conventional methods unless otherwise specified.
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The materials and reagents used in the following examples can be obtained from commercial sources unless otherwise specified.
本发明提供一种外加电势强化厌氧微生物产中链脂肪酸的方法,包括如下步骤:The invention provides a method for strengthening the production of medium-chain fatty acids by anaerobic microorganisms with an external potential, comprising the following steps:
1)链延长功能微生物的驯化与富集1) Domestication and enrichment of microorganisms with chain elongation function
(1)采集厌氧产酸颗粒污泥,热处理,抑制产甲烷菌活性,得到预处理厌氧颗粒污泥;(1) collecting anaerobic acid-producing granular sludge, heat treatment, inhibiting the activity of methanogenic bacteria, and obtaining pretreated anaerobic granular sludge;
(2)对步骤(1)制得的厌氧颗粒污泥进行曝气,保持厌氧环境;(2) aerating the anaerobic granular sludge prepared in step (1) to maintain an anaerobic environment;
(3)将步骤(2)制得的厌氧颗粒污泥接种到微生物反应器中,施加电势,启动反应器,在高有机负荷的条件下进行链延长功能微生物的驯化与富集,待发酵液中乙醇的浓度下降和挥发性脂肪酸浓度上升至稳定时,链延长功能微生物驯化完成;(3) Inoculate the anaerobic granular sludge prepared in step (2) into the microbial reactor, apply a potential, start the reactor, and carry out the domestication and enrichment of the microorganisms with chain extension function under the condition of high organic load, and wait for fermentation When the concentration of ethanol in the liquid drops and the concentration of volatile fatty acids rises to a stable level, the acclimatization of the microorganisms with chain extension function is completed;
2)在驯化完全的链延长功能微生物的作用下,外加电势,以乙酸、乙醇为底物厌氧发酵生产丁酸和己酸。2) Under the action of fully domesticated microorganisms with chain extension function, an external potential is applied to produce butyric acid and hexanoic acid by anaerobic fermentation with acetic acid and ethanol as substrates.
上述方法步骤1)(1)中,所述厌氧产酸颗粒污泥取自北京市小红门污水处理厂剩余污泥厌氧消化装置,其平均粒径为0.6-2.5mm,厌氧污泥的挥发性悬浮物和总悬浮物的比值(VSS/TSS)为0.70;In step 1)(1) of the above method, the anaerobic acid-producing granular sludge is taken from the residual sludge anaerobic digestion device of Beijing Xiaohongmen Sewage Treatment Plant, and its average particle size is 0.6-2.5mm. The ratio of volatile suspended matter to total suspended matter (VSS/TSS) of mud is 0.70;
步骤(1)中污泥热处理的温度可为90~100℃,处理时间可为1~1.5h;The temperature of the sludge heat treatment in step (1) can be 90-100°C, and the treatment time can be 1-1.5h;
步骤(2)中厌氧颗粒污泥曝气20分钟(N2:CO2=80:20);In step (2), the anaerobic granular sludge is aerated for 20 minutes (N 2 :CO 2 =80:20);
步骤(3)中所述电势可为-0.4V—(-1)V(相对于标准氢电极),具体可为-0.7V;The potential in step (3) can be -0.4V-(-1)V (relative to the standard hydrogen electrode), specifically -0.7V;
步骤(3)中,所述高有机负荷通过如下操作实现:In step (3), described high organic load realizes by following operations:
启动反应器后,反应器以连续流的方式进水;After starting the reactor, the reactor is fed with water in a continuous flow;
进水中含有乙酸、乙醇和2-BES(2-溴乙磺酸钠:产甲烷菌抑制剂),其中,乙酸、乙醇、2-BES浓度依次可为7.5g/L、20ml/L、5g/L;Influent water contains acetic acid, ethanol and 2-BES (sodium 2-bromoethanesulfonate: inhibitor of methanogens), among which the concentration of acetic acid, ethanol and 2-BES can be 7.5g/L, 20ml/L, 5g /L;
驯化期间pH维持在5-6.8;温度可为28℃-37℃,培养时间可为30-40d。During the acclimatization period, the pH is maintained at 5-6.8; the temperature can be 28°C-37°C, and the culture time can be 30-40d.
步骤2)中,所述电势可为-0.4V—(-1)V(相对于标准氢电极),具体可为-0.8V。In step 2), the potential may be -0.4V-(-1)V (relative to the standard hydrogen electrode), specifically -0.8V.
外加电势在链延长功能微生物的驯化与富集中的应用也属于本发明的保护范围。The application of external potential in the domestication and enrichment of microorganisms with chain extension function also belongs to the protection scope of the present invention.
所述应用中,所述电势可为-0.4V—(-1)V(相对于标准氢电极),具体可为-0.7V。In the application, the potential may be -0.4V-(-1)V (relative to the standard hydrogen electrode), specifically -0.7V.
外加电势强化厌氧微生物产中链脂肪酸应用也属于本发明的保护范围。The application of an external potential to strengthen the production of medium-chain fatty acids by anaerobic microorganisms also belongs to the protection scope of the present invention.
本发明采用外加电势的方法生产中链脂肪酸,既缩短了反应周期,又提高了丁酸的产量。The invention adopts the method of applying electric potential to produce medium-chain fatty acid, which not only shortens the reaction cycle, but also improves the output of butyric acid.
实施例1Example 1
链延长功能微生物通过以下方法驯化富集:Microorganisms with chain elongation function are domesticated and enriched by the following methods:
(1)采集新鲜的来源于北京市小红门污水处理厂剩余污泥厌氧消化装置,其平均粒径为0.6-2.5mm,厌氧污泥的挥发性悬浮物和总悬浮物的比值(VSS/TSS)为0.70,摇晃均匀后置于烧杯中进行水浴100℃加热处理,处理时间为1h,抑制产甲烷菌活性,得到预处理厌氧颗粒污泥;(1) Collect fresh and come from Beijing Xiaohongmen Sewage Treatment Plant excess sludge anaerobic digestion unit, its average particle size is 0.6-2.5mm, the ratio of volatile suspended matter and total suspended matter of anaerobic sludge ( VSS/TSS) is 0.70, after shaking evenly, place it in a beaker for heat treatment at 100°C in a water bath for 1 hour to inhibit the activity of methanogens and obtain pretreated anaerobic granular sludge;
(2)将步骤(1)制得的厌氧颗粒污泥用N2:CO2=80:20混合气曝气20min,保持厌氧环境;(2) aerating the anaerobic granular sludge prepared in step (1) with N 2 : CO 2 =80:20 mixed gas for 20 minutes to maintain an anaerobic environment;
(3)将处理后的活性污泥接种到体积为1L微生物反应器(图1所示)中;打开电化学工作站6,向厌氧反应器的工作电极12(阴极:碳刷电极)施加一个特定的电势-0.7V(相对于标准氢电极),通过试验室蠕动泵(保定兰格BT100-2J),以连续流的方式进水;进水中含有乙酸、乙醇和2-BES(2-溴乙磺酸钠:产甲烷菌抑制剂),具体的乙酸、乙醇、2-BES浓度分别为7.5g/L、20ml/L、5g/L;驯化期间pH维持在5.8;温度35℃;进行链延长功能微生物的驯化与富集,培养时间40天。(3) the activated sludge after the treatment is inoculated into a volume of 1L microbial reactor (shown in Figure 1); open the electrochemical workstation 6, and apply a Specific potential -0.7V (relative to the standard hydrogen electrode), through the laboratory peristaltic pump (Baoding Lange BT100-2J), inflow of water in a continuous flow; the inflow water contains acetic acid, ethanol and 2-BES (2- Sodium bromoethanesulfonate: methanogen inhibitor), the specific concentrations of acetic acid, ethanol, and 2-BES are 7.5g/L, 20ml/L, and 5g/L respectively; the pH is maintained at 5.8 during acclimation; the temperature is 35°C; Acclimatization and enrichment of microorganisms with chain elongation function, the culture time is 40 days.
(4)待发酵液中乙醇的浓度下降和挥发性脂肪酸浓度上升至稳定时,链延长功能微生物驯化完成。(4) When the concentration of ethanol in the fermentation liquid drops and the concentration of volatile fatty acids rises to a stable level, the acclimatization of the microorganisms with chain extension function is completed.
实施例2Example 2
本发明提供的用于微生物碳链延长生产中链脂肪酸的装置如图1所示。The device provided by the present invention for the production of medium-chain fatty acids by microbial carbon chain extension is shown in FIG. 1 .
将实施例1中驯化完全的功能微生物接种到如图1所示的2个厌氧反应器中;The fully domesticated functional microorganisms in Example 1 were inoculated into 2 anaerobic reactors as shown in Figure 1;
连续流方式进水,含有进水中含有乙酸、乙醇和2-BES(2-溴乙磺酸钠:产甲烷菌抑制剂),具体的乙酸、乙醇、2-BES浓度分别为6.8g/L、22ml/L、2.5g/L;温度为35℃;Continuous flow mode feed water, containing acetic acid, ethanol and 2-BES (sodium 2-bromoethanesulfonate: inhibitor of methanogens) in the feed water, the specific concentrations of acetic acid, ethanol and 2-BES are 6.8g/L respectively , 22ml/L, 2.5g/L; the temperature is 35°C;
打开电化学工作站6,向其中一个厌氧反应器的工作电极12(阴极:碳刷电极)施加一个特定的电势-0.8V(相对于标准氢电极);另一个不加电势;Open the electrochemical workstation 6, and apply a specific potential-0.8V (relative to the standard hydrogen electrode) to the working electrode 12 (cathode: carbon brush electrode) of one of the anaerobic reactors; the other does not apply potential;
通过采用上述方法,本发明可以达到如下效果:By adopting the above method, the present invention can achieve the following effects:
反应施加了-0.8V的阴极电势,体系内迅速生产丁酸,在第五天的时间内丁酸产量达到了137.5mM,己酸产量为3.3mM;在接下来的15天内,丁酸产量有所降低,维持在100mM左右,己酸的产量增加到24.5mM;乙酸转化率达到在80%-90%;乙醇转化率达到85%-90%;随着己酸的生成丁酸的产率由60%下降到45%左右;总碳效率基本保持在70%-80%左右;未施加工作电势的反应器中,丁酸在第二十天左右达到最大浓度125.1mM,己酸在第60天达到15.2mM;乙酸转化率基本保持在80%-85%,乙醇转化率在70%-80%左右。与未加电势的相比,外加-0.8V电势所产丁酸和己酸分别提高了12.4mM和9.3mM,乙酸转化率提高了5%左右,乙醇转化率提高了10%-15%。A cathodic potential of -0.8V was applied to the reaction, and butyric acid was rapidly produced in the system, and the butyric acid production reached 137.5 mM in the fifth day, and the hexanoic acid production was 3.3 mM; in the next 15 days, the butyric acid production was Reduced, maintained at about 100mM, the output of hexanoic acid increased to 24.5mM; the conversion rate of acetic acid reached 80%-90%; the conversion rate of ethanol reached 85%-90%; 60% dropped to about 45%; the total carbon efficiency basically remained at about 70%-80%; in the reactor without applied working potential, butyric acid reached the maximum concentration of 125.1mM on the 20th day, and hexanoic acid reached the maximum concentration on the 60th day It reaches 15.2mM; the conversion rate of acetic acid is basically maintained at 80%-85%, and the conversion rate of ethanol is about 70%-80%. Compared with that without potential, the butyric acid and hexanoic acid produced by applying -0.8V potential increased by 12.4mM and 9.3mM respectively, the conversion rate of acetic acid increased by about 5%, and the conversion rate of ethanol increased by 10%-15%.
反应体系施加-0.8V电势可以在短时间内生成137.5mM丁酸和24.5mM己酸,实现了乙酸和乙醇的高度利用与转化,同时,碳刷电极促进了功能微生物的富集,阴极区的电子对乙酸起着积极的还原作用,促进了丁酸和己酸的生成。Applying a -0.8V potential to the reaction system can generate 137.5mM butyric acid and 24.5mM hexanoic acid in a short time, realizing the high utilization and conversion of acetic acid and ethanol. At the same time, the carbon brush electrode promotes the enrichment of functional microorganisms, and the cathode area The electrons play an active reducing role on acetic acid, promoting the formation of butyric acid and hexanoic acid.
反应体系施加不同的工作电势对丁酸和己酸的生产存在一定的影响。反应施加-0.7V的阴极电势,丁酸产量基本维持在97mM左右,己酸最高达19.5mM;反应施加-0.6V的阴极电势,丁酸产量基本维持在116mM左右,同时,己酸产量下降至13mM左右;反应施加-0.5V的阴极电势,丁酸产量维持在100mM左右,己酸提高到19mM;反应施加-0.4V的阴极电势丁酸产量维持在120mM左右,己酸产量为5mM左右。The production of butyric acid and hexanoic acid was affected by applying different working potentials to the reaction system. The reaction applied a cathodic potential of -0.7V, the butyric acid production was basically maintained at about 97mM, and the hexanoic acid was up to 19.5mM; About 13mM; the reaction applied a cathodic potential of -0.5V, the output of butyric acid was maintained at about 100mM, and the hexanoic acid increased to 19mM; the reaction was applied with a cathodic potential of -0.4V, and the output of butyric acid was maintained at about 120mM, and the output of hexanoic acid was about 5mM.
施加上述工作电势,均可在短时间内实现丁酸和己酸的生产,但电势不同,对丁酸与己酸的产量也存在差别。Applying the above working potentials can realize the production of butyric acid and hexanoic acid in a short time, but the potentials are different, and there are differences in the production of butyric acid and hexanoic acid.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110718920.7A CN113430234B (en) | 2021-06-28 | 2021-06-28 | Method for producing medium-chain fatty acid by using external potential to strengthen anaerobic microorganisms |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110718920.7A CN113430234B (en) | 2021-06-28 | 2021-06-28 | Method for producing medium-chain fatty acid by using external potential to strengthen anaerobic microorganisms |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113430234A CN113430234A (en) | 2021-09-24 |
CN113430234B true CN113430234B (en) | 2022-11-22 |
Family
ID=77754919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110718920.7A Active CN113430234B (en) | 2021-06-28 | 2021-06-28 | Method for producing medium-chain fatty acid by using external potential to strengthen anaerobic microorganisms |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113430234B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114292884A (en) * | 2021-12-23 | 2022-04-08 | 江苏大学 | A kind of high-yield method for synthesizing caproic acid in sludge open system |
CN115418377A (en) * | 2022-11-03 | 2022-12-02 | 哈尔滨工业大学 | Method for producing caproic acid by reinforcing anaerobic microorganisms through external magnetic field |
CN118325975B (en) * | 2024-04-12 | 2024-11-29 | 南京理工大学 | Targeted acid production sludge fermentation method |
CN118530816A (en) * | 2024-06-04 | 2024-08-23 | 复旦大学 | Equipment and method for promoting anaerobic microorganisms to produce medium-chain fatty acid |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2250273A2 (en) * | 2008-02-28 | 2010-11-17 | Green Biologics Limited | Production process |
CN104651440A (en) * | 2015-01-14 | 2015-05-27 | 同济大学 | Biological extension method for electrically promoted carbon chain and biological extension device for electrically promoted carbon chain |
CN110734934A (en) * | 2019-10-30 | 2020-01-31 | 同济大学 | A kind of method of pretreatment promoting surplus sludge anaerobic fermentation to produce medium chain fatty acid |
CN111909970A (en) * | 2020-08-10 | 2020-11-10 | 北京化工大学 | A kind of method that exogenous medium strengthens anaerobic microbial fermentation to produce medium chain fatty acid |
CN112391292A (en) * | 2020-11-23 | 2021-02-23 | 江南大学 | Medium-chain fatty acid carbon chain extension functional microorganism and enrichment method and application thereof |
CN112481316A (en) * | 2020-06-23 | 2021-03-12 | 哈尔滨工业大学 | Cathode electric fermentation method for preparing butyric acid by fermenting straw through enhanced anaerobic mixed flora |
CN112795600A (en) * | 2021-03-05 | 2021-05-14 | 山东兆盛天玺环保科技有限公司 | Method for producing caproic acid by adopting electric fermentation to strengthen short-chain volatile fatty acid addition |
-
2021
- 2021-06-28 CN CN202110718920.7A patent/CN113430234B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2250273A2 (en) * | 2008-02-28 | 2010-11-17 | Green Biologics Limited | Production process |
CN104651440A (en) * | 2015-01-14 | 2015-05-27 | 同济大学 | Biological extension method for electrically promoted carbon chain and biological extension device for electrically promoted carbon chain |
CN110734934A (en) * | 2019-10-30 | 2020-01-31 | 同济大学 | A kind of method of pretreatment promoting surplus sludge anaerobic fermentation to produce medium chain fatty acid |
CN112481316A (en) * | 2020-06-23 | 2021-03-12 | 哈尔滨工业大学 | Cathode electric fermentation method for preparing butyric acid by fermenting straw through enhanced anaerobic mixed flora |
CN111909970A (en) * | 2020-08-10 | 2020-11-10 | 北京化工大学 | A kind of method that exogenous medium strengthens anaerobic microbial fermentation to produce medium chain fatty acid |
CN112391292A (en) * | 2020-11-23 | 2021-02-23 | 江南大学 | Medium-chain fatty acid carbon chain extension functional microorganism and enrichment method and application thereof |
CN112795600A (en) * | 2021-03-05 | 2021-05-14 | 山东兆盛天玺环保科技有限公司 | Method for producing caproic acid by adopting electric fermentation to strengthen short-chain volatile fatty acid addition |
Non-Patent Citations (6)
Title |
---|
Bioelectrochemical Production of Caproate and Caprylate from Acetate by Mixed Cultures;Van Eerten-Jansen M C AA,et al.;《ACS Sustainable Chemistry & Engineering》;20130301;第1卷(第5期);全文 * |
Electro-fermentation regulates mixed culture chain elongation with fresh and acclimated cathode;Yong J, et al.;《Energy Conversion and Management》;20200115;第204卷;第2.1-2.2节、第3.1、3.4节 * |
Microbial electrochemical stimulation of caproate production from ethanol and carbon dioxide;Jiang Y, et al.;《Bioresour Technol》;20191015;第295卷;全文 * |
Yong J, et al..Electro-fermentation regulates mixed culture chain elongation with fresh and acclimated cathode.《Energy Conversion and Management》.2020,第204卷 * |
基于厌氧微生物的碳链延长合成高价值化学品反应机理及研究进展:不同电子供体;刘昊鹏等;《北京化工大学学报(自然科学版)》;20200920;第47卷(第5期);全文 * |
生物电催化强化己酸合成及其碳链延伸机理研究;成双兰;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技I辑》;20220115;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113430234A (en) | 2021-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113430234B (en) | Method for producing medium-chain fatty acid by using external potential to strengthen anaerobic microorganisms | |
Cheng et al. | Nanoscale zero-valent iron improved lactic acid degradation to produce methane through anaerobic digestion | |
Qu et al. | Bio-hydrogen production by dark anaerobic fermentation of organic wastewater | |
Wagner et al. | Hydrogen and methane production from swine wastewater using microbial electrolysis cells | |
Aryal et al. | Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading | |
CN101270368A (en) | Method for biohydrogen production by cascade utilization of organic wastewater | |
CN108314184B (en) | Method for promoting start of anaerobic reactor | |
CN101831462B (en) | Anaerobic-fermentation hydrogen production method by pretreating and electrochemically strengthening sludge | |
Qin et al. | Magnetite-enhanced bioelectrochemical stimulation for biodegradation and biomethane production of waste activated sludge | |
CN103555566B (en) | An external electrolysis device for promoting anaerobic digestion to produce methane | |
Guo et al. | Microbial electrochemistry enhanced electron transfer in lactic acid anaerobic digestion for methane production | |
CN112795600B (en) | Method for producing caproic acid by adopting electric fermentation to strengthen short-chain volatile fatty acid addition | |
CN106480102A (en) | A kind of method for improving methane production using electrolysis auxiliary anaerobe | |
Wu et al. | Effect of activated carbon/graphite on enhancing anaerobic digestion of waste activated sludge | |
Zhou et al. | Electrifying anaerobic granular sludge for enhanced waste anaerobic digestion and biogas production | |
Joicy et al. | Influence of applied voltage and conductive material in DIET promotion for methane generation | |
Yang et al. | Understanding and design of two-stage fermentation: A perspective of interspecies electron transfer | |
CN104762635A (en) | Method and device for co-production of methane by electrically assisted conversion of ethanol into acetic acid | |
CN103112948A (en) | Method for rapidly culturing autotrophic nitrogen removal granule sludge under conditions of low substrate concentration and high ascending velocity | |
Lou et al. | Influence of adding strategy of biochar on medium-chain fatty acids production from sewage sludge | |
WO2023094503A1 (en) | A process to treat a carbon dioxide comprising gas | |
Guo et al. | The influencing mechanism of AD-MEC domesticated sludge to alleviates propionate accumulation and enhances methanogenesis | |
CN113003703B (en) | Device and method for treating nitrogen-containing heterocyclic compound wastewater | |
CN114291989A (en) | A method for improving methane production from sludge anaerobic digestion by utilizing iron/carbon/biological enzyme coupling technology | |
CN110183029A (en) | A kind of apparatus and method converting organic wastewater to acetic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |