[go: up one dir, main page]

CN113430215B - Acetyl CoA synthetase gene RKACS1 and application thereof - Google Patents

Acetyl CoA synthetase gene RKACS1 and application thereof Download PDF

Info

Publication number
CN113430215B
CN113430215B CN202110619574.7A CN202110619574A CN113430215B CN 113430215 B CN113430215 B CN 113430215B CN 202110619574 A CN202110619574 A CN 202110619574A CN 113430215 B CN113430215 B CN 113430215B
Authority
CN
China
Prior art keywords
rkacs1
gene
ala
val
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110619574.7A
Other languages
Chinese (zh)
Other versions
CN113430215A (en
Inventor
张琦
邹玲
陈波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202110619574.7A priority Critical patent/CN113430215B/en
Publication of CN113430215A publication Critical patent/CN113430215A/en
Application granted granted Critical
Publication of CN113430215B publication Critical patent/CN113430215B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6463Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/01001Acetate-CoA ligase (6.2.1.1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses an acetyl CoA synthetase geneRKACS1The nucleotide sequence is shown as SEQ ID NO. 1, and the amino acid sequence coded by the gene is shown as SEQ ID NO. 2; the gene is red winter cell yeast (Rhodosporidium kratochvilovae) YM25235 (fraction)The obtained acetyl CoA synthetase gene is separated and transformed into rhodosporidium toruloides YM25235, and the experimental result shows that the acetyl CoA synthetase geneRKACS1The overexpression of the gene can cause the increase of the content of the total carotenoid and the oil in the rhodosporidium toruloides YM25235 strain, the invention improves the yield of the carotenoid and the oil in the microorganism by modifying the microorganism by a gene engineering means, and lays a foundation for the large-scale commercial production of the carotenoid and the oil.

Description

乙酰CoA合成酶基因 RKACS1及其应用 acetyl-CoA synthetase gene RKACS1 and its application

技术领域technical field

本发明属于生物和遗传工程技术领域,涉及一种乙酰CoA合成酶基因 RKACS1,具体涉及从红冬孢酵母( Rhodosporidium kratochvilovae)YM25235中克隆的乙酰CoA合成酶基因 RKACS1以及将该基因与载体连接,转入酵母细胞中提高该基因的表达水平并促进类胡萝卜素和油脂的合成。 The invention belongs to the technical field of biology and genetic engineering, and relates to an acetyl-CoA synthetase gene RKACS1 , in particular to the acetyl-CoA synthetase gene RKACS1 cloned from Rhodosporidium kratochvilovae YM25235 and connecting the gene with a carrier, transfecting Into yeast cells to increase the expression level of the gene and promote the synthesis of carotenoids and oils.

背景技术Background technique

类胡萝卜素(carotenoids)是自然界中广泛存在的一类天然色素,一般呈现黄色、红色或橙红色,目前在高等植物、动物、真菌等生物体中已发现的天然类胡萝卜素有800多种,常见的蔬菜水果中均存在丰富的类胡萝卜素,如柑橘、芒果、南瓜等。大部分类胡萝卜素是一类由8个首尾相连的类异戊二烯组成的C40类萜化合物及其衍生物,有些类胡萝卜素含C45或C50骨架,被称为高类胡萝卜素,也有少部分碳骨架少于C40的类胡萝卜素,被称为脱辅基类胡萝卜素;所有的类胡萝卜素均含有聚异戊二烯结构。Carotenoids (carotenoids) are a class of natural pigments that widely exist in nature. They generally appear yellow, red or orange-red. Currently, there are more than 800 natural carotenoids found in higher plants, animals, fungi and other organisms. Common vegetables and fruits are rich in carotenoids, such as citrus, mango, pumpkin and so on. Most carotenoids are a class of C 40 terpenoids and their derivatives composed of 8 end-to-end isoprenoids, and some carotenoids contain C 45 or C 50 skeletons, which are called high carotenoids , there are also a small number of carotenoids with a carbon skeleton less than C 40 , which are called apocarotenoids; all carotenoids contain polyisoprene structures.

依据类胡萝卜素化学结构的组成可将类胡萝卜素分为胡萝卜素(carotene)和叶黄素(xanthophyll)两大类,其中,胡萝卜素是只含C、H两种元素的α-胡萝卜素、β-胡萝卜素、γ-胡萝卜素和番茄红素等;叶黄素是一类氧化后的胡萝卜素,含有C、H、O三大元素,可形成羟基、酮基、羧基、甲氧基等含氧官能团,如叶黄素、玉米黄质、虾青素等;含氧基团使类胡萝卜素分子结构发生复杂多样的变化,极性的改变使类胡萝卜素易于与机体脂肪酸、糖和蛋白等结合,形成多种功能不同的活性分子。类胡萝卜素具有较强的吸光性,通常在波长430~570nm之间有吸收峰,目前普遍采用反相高效液相色谱法,配合紫外可见光检测器、质谱、核磁共振或二极管阵列检测器对样品中的类胡萝卜素进行定性定量分析。According to the chemical structure of carotenoids, carotenoids can be divided into two categories: carotene and xanthophyll. Among them, carotene is α-carotene containing only C and H. β-carotene, γ-carotene, and lycopene, etc.; lutein is a kind of oxidized carotene, which contains three elements of C, H, and O, and can form hydroxyl, ketone, carboxyl, methoxy, etc. Oxygen-containing functional groups, such as lutein, zeaxanthin, astaxanthin, etc.; oxygen-containing groups cause complex and diverse changes in the molecular structure of carotenoids, and changes in polarity make carotenoids easy to interact with fatty acids, sugars and proteins in the body and other combinations to form a variety of active molecules with different functions. Carotenoids have strong light absorption, and usually have absorption peaks between 430 and 570 nm in wavelength. At present, reversed-phase high-performance liquid chromatography is generally used to detect samples with ultraviolet-visible light detectors, mass spectrometers, nuclear magnetic resonance or diode array detectors. Carotenoids in the qualitative and quantitative analysis.

类胡萝卜素在人类的营养与健康领域起着十分重要的作用,α-胡萝卜素、β-胡萝卜素、γ-胡萝卜素和β-隐黄素等可以在双加氧酶的作用下形成维生素A,它们因此被称为维生素A原活性物质,是维生素A的主要来源。作为人体必需的微量营养素,类胡萝卜素具有多种功能,如抗氧化、抑制并消除体内的自由基、减慢衰老等。医学研究表明,除以上功能外,类胡萝卜素还具有抗癌、预防眼底黄斑病变和白内障、预防心血管疾病、预防非酒精性脂肪肝、加强机体免疫力等功能。此外,类胡萝卜素还能与动物蛋白相结合,使生物体呈现出体色,具有一定的保护作用。目前类胡萝卜素已被联合国粮食与农业组织(FAO)和世界卫生组织(WHO)等国际组织定为A类营养素,已在50多个国家获批为营养、色素双重功用的食品添加剂,被广泛应用于医药、食品、保健、美容等行业。迄今为止,已见报道的类胡萝卜素的生产工艺包括天然提取法、化学合成法和微生物发酵法,其中微生物发酵生产类胡萝卜素具有生物活性高、生产过程易于处理、产品安全和生产周期短等优点,近年来受到广泛关注。尽管已经有很多策略用来促进微生物中类胡萝卜素的合成,但是由于成本效益、色素产量和分离提取等方面的技术问题的限制,应用传统微生物发酵技术来生产各种不同类胡萝卜素在工业生产方面仍缺乏相应的策略。因此我们希望可以从生物工程角度着手,利用基因技术、物种发现、杂交培育等技术,得到高含量的原料,从而缓解目前天然类胡萝卜素的生产发展局限。近年来,结合经典遗传学和现代分子生物学方法来优化菌株原有的代谢途径和调节网络或者组装异源代谢途径使微生物高效益、低成本生产类胡萝卜素的代谢工程提供了一种潜在的替代途径。Carotenoids play a very important role in the field of human nutrition and health. α-carotene, β-carotene, γ-carotene and β-cryptoxanthin can form vitamin A under the action of dioxygenase , They are therefore called provitamin A active substances and are the main source of vitamin A. As an essential micronutrient for the human body, carotenoids have multiple functions, such as anti-oxidation, inhibiting and eliminating free radicals in the body, and slowing down aging. Medical research shows that, in addition to the above functions, carotenoids also have functions such as anti-cancer, prevention of macular degeneration and cataracts, prevention of cardiovascular diseases, prevention of non-alcoholic fatty liver, and strengthening of the body's immunity. In addition, carotenoids can also be combined with animal protein to make organisms present body color and have a certain protective effect. At present, carotenoids have been designated as A-type nutrients by international organizations such as the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO), and have been approved as food additives with dual functions of nutrition and pigments in more than 50 countries. Used in medicine, food, health care, beauty and other industries. So far, the production processes of carotenoids that have been reported include natural extraction, chemical synthesis and microbial fermentation, among which the production of carotenoids by microbial fermentation has high biological activity, easy production process, product safety and short production cycle, etc. advantages, has received extensive attention in recent years. Although many strategies have been used to promote the synthesis of carotenoids in microorganisms, due to the limitations of technical issues such as cost-effectiveness, pigment yield and separation and extraction, the application of traditional microbial fermentation technology to produce various carotenoids in industrial production A corresponding strategy is still lacking. Therefore, we hope that from the perspective of bioengineering, we can use genetic technology, species discovery, hybridization and other technologies to obtain high-content raw materials, so as to alleviate the current limitations of the production and development of natural carotenoids. In recent years, metabolic engineering that combines classical genetics and modern molecular biology methods to optimize the original metabolic pathways and regulatory networks of strains or assemble heterologous metabolic pathways to enable microorganisms to produce carotenoids with high efficiency and low cost provides a potential alternative pathway.

油脂(lipids)是生物体进行多项生命活动的关键物质,常见的油脂包括亚油酸(LA)、α-亚麻酸(ALA)、γ-亚麻酸(GLA)、花生四烯酸(ARA)、二十碳五烯酸(EPA)以及二十二碳六烯酸(DHA)等功能性油脂。研究表明,ALA、DHA、EPA等ω-3脂肪酸作为人体重要的生命活性物质能有效促进人体生长发育,具有预防糖尿病、心脑血管疾病、抗癌、抗炎、降血脂、增强机体免疫力等生理功能,长期缺乏ω-3脂肪酸与ω-6脂肪酸易导致遗传性肥胖、机体代谢紊乱,进而影响人体健康;此外,LA、ARA、DHA等可作为药物添加剂,起到降低血糖血压、阻止妊娠、缓解呼吸道疫病、预防动脉硬化及消化系统溃疡的作用。功能性油脂大多是人体必需而又无法自身合成的,ALA可从部分植物油中获得,DHA和EPA主要来源于鱼油和微生物油脂。但鱼油成本高、易受污染、品质不稳定、产量难以满足全球需求。Lipids are key substances for organisms to carry out many life activities. Common lipids include linoleic acid (LA), α-linolenic acid (ALA), γ-linolenic acid (GLA), arachidonic acid (ARA) , eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and other functional oils. Studies have shown that omega-3 fatty acids such as ALA, DHA, and EPA, as important life active substances in the human body, can effectively promote human growth and development. Physiological functions, long-term lack of omega-3 fatty acids and omega-6 fatty acids can easily lead to hereditary obesity, metabolic disorders, and then affect human health; in addition, LA, ARA, DHA, etc. can be used as drug additives to lower blood sugar and blood pressure and prevent pregnancy , Relieve respiratory diseases, prevent arteriosclerosis and digestive system ulcers. Most functional oils are necessary for the human body but cannot be synthesized by themselves. ALA can be obtained from some vegetable oils, and DHA and EPA are mainly derived from fish oil and microbial oils. However, the cost of fish oil is high, it is easily polluted, the quality is unstable, and the output cannot meet the global demand.

产油微生物的油脂含量高,其脂肪酸组成与植物油脂相似。与植物油脂相比,产油脂微生物具有不与粮争地、不受气候和环境影响、生长周期短、容易实现大规模生产等优势,因此利用微生物发酵生产油脂越来越受到关注。目前,已有30多种酵母被鉴定为产油酵母,这些产油酵母大多能通过在特定条件下培养或基因改造来提高细胞内油脂的积累量。因此我们希望可以从生物工程角度着手,利用基因技术、合成生物学等技术,有目的的改造菌株,提高现有菌株的油脂转化率,从而缓解目前油脂资源紧张的压力。近年来,结合经典遗传学和现代分子生物学方法来优化菌株原有的代谢途径和调节网络或者组装异源代谢途径为微生物高效益、低成本生产油脂的代谢工程提供了一种潜在的替代途径。Oleaginous microorganisms have a high oil content and a fatty acid composition similar to that of vegetable oils. Compared with vegetable oil, oil-producing microorganisms have the advantages of not competing with food for land, not affected by climate and environment, short growth cycle, and easy to achieve large-scale production. Therefore, the use of microbial fermentation to produce oil has attracted more and more attention. At present, more than 30 kinds of yeasts have been identified as oleaginous yeasts, and most of these oleaginous yeasts can increase the accumulation of intracellular oil by culturing under specific conditions or genetic modification. Therefore, we hope that from the perspective of bioengineering, we can use genetic technology, synthetic biology and other technologies to purposefully transform strains and improve the oil conversion rate of existing strains, thereby alleviating the current pressure on oil resources. In recent years, the combination of classical genetics and modern molecular biology methods to optimize the original metabolic pathways and regulatory networks of strains or to assemble heterologous metabolic pathways provides a potential alternative for the metabolic engineering of microbial high-efficiency and low-cost oil production. .

发明内容Contents of the invention

本发明目的是提供一种乙酰CoA合成酶基因 RKACS1,该基因从红冬孢酵母( Rhodosporidium kratochvilovae)YM25235中分离得到,其核苷酸序列如SEQ ID NO:1所示或为该核苷酸序列的片段,或与SEQ ID NO:1互补的核苷酸序列,该基因序列长为1977bp(碱基),编码的氨基酸序列如SEQ ID NO:2所示的多肽或片段。 The object of the present invention is to provide an acetyl-CoA synthetase gene RKACS1 , which is isolated from Rhodosporidium kratochvilovae YM25235, and its nucleotide sequence is as shown in SEQ ID NO: 1 or is the nucleotide sequence A fragment, or a nucleotide sequence complementary to SEQ ID NO:1, the gene sequence is 1977bp (base), and the encoded amino acid sequence is the polypeptide or fragment shown in SEQ ID NO:2.

本发明另一目的是提供乙酰CoA合成酶基因 RKACS1的重组表达载体,是将SEQ IDNO:1所示基因直接与不同表达载体(质粒、病毒或运载体)连接所构建的重组载体。可用本领域技术人员熟知的方法来构建乙酰CoA合成酶基因 RKACS1的核苷酸序列和合适的转录/翻译调控元件的表达载体;这些方法包括体外重组DNA技术、DNA合成技术、体内重组技术等;所述乙酰CoA合成酶基因 RKACS1的核苷酸序列可有效连接到表达载体的恰当启动子上,以指导mRNA合成。这些启动子的代表性例子有:大肠杆菌的lac或trp启动子;λ噬菌体的PL启动子;真核启动子包括CMV早期启动子、HSV胸苷激酶启动子、早期和晚期SV40启动子、反转录病毒的LTRs和其它一些已知的可控制基因在原核细胞或真核细胞或其病毒中表达的启动子;表达载体还包括翻译起始用的核糖体结合位点和转录终止子等;在载体中插入增强子序列将会使其在高等真核细胞中的转录得到增强;增强子是DNA表达的顺式作用因子,通常大约有10-300bp,作用于启动子以增强基因的转录,如腺病毒增强子。 Another object of the present invention is to provide a recombinant expression vector of the acetyl CoA synthetase gene RKACS1 , which is a recombinant vector constructed by directly linking the gene shown in SEQ ID NO: 1 with different expression vectors (plasmids, viruses or carriers). Methods well known to those skilled in the art can be used to construct the expression vector of the nucleotide sequence of the acetyl CoA synthetase gene RKACS1 and suitable transcription/translation regulatory elements; these methods include in vitro recombinant DNA technology, DNA synthesis technology, in vivo recombination technology, etc.; The nucleotide sequence of the acetyl CoA synthetase gene RKACS1 can be effectively connected to the appropriate promoter of the expression vector to guide mRNA synthesis. Representative examples of these promoters are: E. coli lac or trp promoter; lambda phage PL promoter; eukaryotic promoters include CMV early promoter, HSV thymidine kinase promoter, early and late SV40 Transcription virus LTRs and other known promoters that can control the expression of genes in prokaryotic cells or eukaryotic cells or their viruses; expression vectors also include ribosome binding sites for translation initiation and transcription terminators; Inserting an enhancer sequence in the vector will enhance its transcription in higher eukaryotic cells; the enhancer is a cis-acting factor of DNA expression, usually about 10-300bp, acting on the promoter to enhance the transcription of the gene, Such as adenovirus enhancer.

本发明另一目的是提供含有乙酰CoA合成酶基因 RKACS1或上述重组表达载体的宿主细胞。 Another object of the present invention is to provide a host cell containing the acetyl-CoA synthetase gene RKACS1 or the above-mentioned recombinant expression vector.

用本发明所述的核苷酸序列或含有核苷酸序列的重组载体优化宿主细胞可用本领域的技术人员熟知的方法进行。Optimizing host cells with the nucleotide sequence of the present invention or the recombinant vector containing the nucleotide sequence can be carried out by methods well known to those skilled in the art.

本发明另一目的是将上述乙酰CoA合成酶基因 RKACS1应用在产类胡萝卜素中。 Another object of the present invention is to apply the above-mentioned acetyl CoA synthetase gene RKACS1 in carotenoid production.

本发明另一目的是将上述乙酰CoA合成酶基因 RKACS1应用在产油脂中。 Another object of the present invention is to apply the above-mentioned acetyl-CoA synthetase gene RKACS1 to oil production.

本发明从红冬孢酵母( Rhodosporidium kratochvilovae)YM25235的总RNA中分离得到乙酰CoA合成酶基因 RKACS1,该基因全长1977bp;红冬孢酵母YM25235中 RKACS1基因的过表达会引起细胞内这个基因的转录水平在一定程度上有一定的提高,说明外源基因在菌体内发生转录,继而翻译成相应蛋白,引起细胞内与类胡萝卜素或油脂合成相关的酶的表达量的提高,本研究结果有助于阐明红冬孢酵母YM25235中产类胡萝卜素及油脂机制,为揭示微生物提高类胡萝卜素及油脂产量机制提供参考,将有助于通过基因工程手段对其进行改造来提高类胡萝卜素及油脂含量,对类胡萝卜素及油脂的工业化生产提供良好的应用前景和经济效益,为大规模商业化生产类胡萝卜素及油脂奠定基础。 The present invention isolates the acetyl CoA synthetase gene RKACS1 from the total RNA of Rhodosporidium kratochvilovae YM25235, and the full length of the gene is 1977bp; the overexpression of the RKACS1 gene in Rhodosporidium kratochvilovae will cause the transcription of this gene in the cell The level has increased to a certain extent, indicating that the exogenous gene is transcribed in the bacteria, and then translated into the corresponding protein, resulting in an increase in the expression of enzymes related to carotenoid or lipid synthesis in the cell. The results of this study will help To clarify the mechanism of carotenoid and oil production in Rhodosporidium yeast YM25235, to provide a reference for revealing the mechanism of microorganisms to increase the production of carotenoids and oil, and to improve the content of carotenoids and oil through genetic engineering. It provides good application prospects and economic benefits for the industrial production of carotenoids and oils, and lays the foundation for large-scale commercial production of carotenoids and oils.

附图说明Description of drawings

图1为本发明的红冬孢酵母YM25235的 RKACS1基因的PCR扩增图;1.DNA分子量标记DL2000;2.阴性对照;3. RKACS1的cDNA片段; Fig. 1 is the PCR amplification figure of the RKACS1 gene of Rhodosporidium yeast YM25235 of the present invention; 1. DNA molecular weight marker DL2000; 2. Negative control; 3. The cDNA fragment of RKACS1 ;

图2为重组质粒pRHRKACS1的质粒图谱;Fig. 2 is the plasmid map of recombinant plasmid pRHRKACS1;

图3为菌落PCR验证电泳图;1.DNA分子量标记DL2000;2.  RKACS1的cDNA片段;3-7为转化子; Figure 3 is the electrophoresis diagram of colony PCR verification; 1. DNA molecular weight marker DL2000; 2. cDNA fragment of RKACS1 ; 3-7 are transformants;

图4重组质粒pRHRKACS1转化红冬孢酵母YM25235阳性克隆验证;1.DNA分子量标记DL2000;2.野生型菌株特异性基因条带;3. RKACS1的cDNA片段;4.转化子验证; Figure 4 Verification of recombinant plasmid pRHRKACS1 transformed into Rhodosporidium YM25235 positive clone; 1. DNA molecular weight marker DL2000; 2. Wild-type strain-specific gene band; 3. cDNA fragment of RKACS 1; 4. Transformant verification;

图5过表达菌株YM25235/pRHRKACS1与对照菌株YM25235的类胡萝卜素含量比较结果;The carotenoid content comparison result of Fig. 5 overexpression strain YM25235/pRHRKACS1 and control strain YM25235;

图6过表达菌株YM25235/pRHRKACS1与对照菌株YM25235的油脂含量比较结果。Fig. 6 Comparison results of oil content between the overexpression strain YM25235/pRRKACS1 and the control strain YM25235.

具体实施方式Detailed ways

下面结合附图和实施例对本发明作进一步详细说明,但本发明保护范围不局限于所述内容,实施例中使用的试剂和方法,如无特殊说明,均采用常规试剂,使用常规方法。Below in conjunction with accompanying drawing and embodiment the present invention is described in further detail, but protection scope of the present invention is not limited to described content, reagent and method used in the embodiment, if no special instructions, all adopt conventional reagent, use conventional method.

实施例1:从红冬孢酵母( Rhodosporidium kratochvilovae)YM25235中分离乙酰CoA合成酶基因 RKACS1的核苷酸序列 Example 1: Isolation of the nucleotide sequence of the acetyl-CoA synthetase gene RKACS1 from Rhodosporidium kratochvilovae YM25235

采用生工生物工程(上海)股份有限公司的UNlQ-10柱式Trizol总RNA抽提试剂盒(产品编号:SK1321)提取红冬孢酵母YM25235的总RNA,然后按照TaKaRa公司试剂盒PrimeScript ® RT reagent KitWith gDNA Eraser(Perfect Real Time)进行反转录合成cDNA,取1μL cDNA为模板进行聚合酶链式反应,根据转录组测序中发现的 RKACS1序列,设计特异性引物RKACS1-F和RKACS1-R(引物1和引物2),以上述得到的cDNA模板在PCR仪(BIOER公司)上进行PCR扩增,反应所用引物、组份和扩增条件如下: The total RNA of Rhodosporidium YM25235 was extracted using the UNlQ-10 Column Trizol Total RNA Extraction Kit (Product No.: SK1321) of Sangon Bioengineering (Shanghai) Co., Ltd., and then followed the TaKaRa company kit PrimeScript ® RT reagent KitWith gDNA Eraser (Perfect Real Time) was used to synthesize cDNA by reverse transcription, and 1 μL of cDNA was used as a template for polymerase chain reaction. According to the sequence of RKACS1 found in transcriptome sequencing, specific primers RKACS1-F and RKACS1-R (primer 1 and primer 2), the cDNA template obtained above was used for PCR amplification on a PCR instrument (BIOER company), and the primers, components and amplification conditions used in the reaction were as follows:

引物1:RKACS1-F:5’-GATCACTCACCATGGTGACCGAACACACCTACGAC -3’(SEQ ID NO:3)(下划线为上游载体末端同源序列)Primer 1: RKACS1-F: 5'- GATCACTCACCATGG TGACCGAACACACCTACGAC -3' (SEQ ID NO: 3) (underlined is the homologous sequence at the end of the upstream vector)

引物2:RKACS1-R:5’-CCGGTCGGCATCTACCTACGCCTTGGCGAACTT -3’(SEQ ID NO:4)(下划线为下游载体末端同源序列);Primer 2: RKACS1-R: 5'- CCGGTCGGCATCTAC CTACGCCTTGGCGAACTT -3' (SEQ ID NO: 4) (the underline is the homologous sequence at the end of the downstream vector);

PCR扩增体系如下(50μL):The PCR amplification system is as follows (50 μL):

Template cDNATemplate cDNA 1µL1µL Foward   Primer (RKACS1-F)Foward Primer (RKACS1-F) 2µL2µL Reverse Primer (RKACS1-R)Reverse Primer (RKACS1-R) 2µL2µL dNTPs Mix   (10 mM)dNTPs Mix (10 mM) 1µL1µL 2×phanta Max Buffer2×phanta Max Buffer 25µL25µL Phanta Max   Super-Fidelity PolymerasePhanta Max Super-Fidelity Polymerase 1µL1µL <![CDATA[ddH<sub>2</sub>O]]><![CDATA[ddH<sub>2</sub>O]]> 加至 50µLAdd to 50µL

扩增条件:94℃预变性5min,再用94℃变性30s,60℃退火30s,72℃延伸2min,共30个循环,最后72℃彻底延伸10min;反应后取产物2μL,在浓度为1%的琼脂糖凝胶中进行电泳分析,结果如图1所示;扩增得到大小约为2000bp的片段,命名为 RKACS1;将pRH2034经 BamHⅠ、 EcoRⅤ两个限制性内切酶进行双酶切;将以上两个片段用琼脂糖凝胶DNA回收试剂盒(北京索莱宝科技有限公司)回收,将回收后的两个片段进行连接,获得重组质粒pRHRKACS1(图2),连接方式采用ClonExpress II One Step Cloning Kit试剂盒进行,连接体系如下(20µL): Amplification conditions: pre-denaturation at 94°C for 5 minutes, followed by denaturation at 94°C for 30 seconds, annealing at 60°C for 30 seconds, extension at 72°C for 2 minutes, a total of 30 cycles, and a final extension at 72°C for 10 minutes. Electrophoresis analysis was carried out in the agarose gel, the results are shown in Figure 1; the amplified fragment with a size of about 2000bp was named RKACS1 ; pRH2034 was double-digested with BamH Ⅰ and EcoR Ⅴ restriction enzymes ; The above two fragments were recovered with an agarose gel DNA recovery kit (Beijing Suo Laibao Technology Co., Ltd.), and the recovered two fragments were connected to obtain the recombinant plasmid pRHRKACS1 (Figure 2). The connection method was ClonExpress II One Step Cloning Kit kit, the connection system is as follows (20µL):

Exnase ™ IIExnase™ II 2µL2µL 片段fragment 79ng79ng 线性化pRH2034Linearized pRH2034 200ng200ng 5×CEIIBuffer5×CEIIBuffer 4µL4µL <![CDATA[ddH<sub>2</sub>O]]><![CDATA[ddH<sub>2</sub>O]]> 加至 20µLAdd to 20µL

使用移液器轻轻吹打混匀,短暂离心将反应液收集至管底,然后37℃反应30min;降至4℃或立即置于冰上冷却。Gently blow and mix with a pipette, centrifuge briefly to collect the reaction solution to the bottom of the tube, then react at 37°C for 30min; cool down to 4°C or place on ice immediately.

将上面获得的连接产物转入大肠杆菌DH5α中扩增,在含壮观霉素(100µg/mL)的LB固体平板上培养12~16h,挑取平板上生长的白色菌落,通过菌落PCR验证阳性克隆(如图3所示),将验证阳性的克隆子接入LB液体培养基(含100µg/mL壮观霉素)中培养12~16h,用高纯质粒小量制备试剂盒(离心柱型)(北京百泰克生物技术有限公司)提取质粒,经测序(昆明硕擎生物科技有限公司),测序结果显示所扩增得到的片段大小为1977bp,与转录组序列一致,核苷酸序列如SEQ ID NO:1所示。Transfer the ligation product obtained above into Escherichia coli DH5α for amplification, culture on LB solid plate containing spectinomycin (100µg/mL) for 12~16h, pick the white colonies growing on the plate, and verify positive clones by colony PCR (As shown in Figure 3), put the verified positive clones into LB liquid medium (containing 100µg/mL spectinomycin) and culture for 12~16h, and use the high-purity plasmid miniprep kit (spin column type) ( Beijing Biotech Biotechnology Co., Ltd.) extracted the plasmid and sequenced (Kunming Shuoqing Biotechnology Co., Ltd.). The sequencing results showed that the size of the amplified fragment was 1977bp, which was consistent with the sequence of the transcriptome. The nucleotide sequence is as follows: SEQ ID NO :1 shown.

实施例2: RKACS1基因过表达对红冬孢酵母YM25235中类胡萝卜素合成的影响 Example 2: Effect of RKACS1 Gene Overexpression on Carotenoid Synthesis in Rhodosporidium YM25235

1、农杆菌介导转化红冬孢酵母YM252351. Agrobacterium-mediated transformation of Rhodosporidium YM25235

利用农杆菌介导法将重组质粒pRHRKACS1转化至红冬孢酵母YM25235中,以含潮霉素B(HygromycinB)终浓度为150µg/mL的YPD培养基筛选转化子,然后按照上海生工生物工程股份有限公司DNA提取试剂盒说明书中步骤提取酵母转化子的基因组DNA,然后进行PCR验证,结果见图4所示;The recombinant plasmid pRHRKACS1 was transformed into Rhodosporidium YM25235 by the Agrobacterium-mediated method, and the transformants were selected with the YPD medium containing the final concentration of Hygromycin B (HygromycinB) at a final concentration of 150 µg/mL. The steps in the instructions of the DNA extraction kit of Co., Ltd. extract the genomic DNA of the yeast transformant, and then perform PCR verification. The results are shown in Figure 4;

2、 RKACS1基因过表达的红冬孢酵母YM25235中类胡萝卜素含量分析 2. Analysis of carotenoid content in Rhodosporidium YM25235 overexpressed with RKACS1 gene

 将含pRHRKACS1的过表达菌株在28℃条件下培养,提取类胡萝卜素,以野生型红冬孢酵母YM25235菌株为对照,利用紫外-可见分光光度计在445nm下测定总类胡萝卜素的含量(mg/g干菌体),含量如图5所示;由图可知,过表达菌株YM25235/pRHRKACS1的总类胡萝卜素合成量较野生型红冬孢酵母YM25235菌株明显提高,野生型红冬孢酵母YM25235菌株的类胡萝卜素合成量为5.23±0.25mg/g,而过表达菌株YM25235/pRHRKACS1类胡萝卜素合成量为9.57±0.57mg/g,即过表达菌株YM25235/pRHRKACS1类胡萝卜素合成量是对照菌的1.83倍;结果显示乙酰CoA合成酶基因 RKACS1的过表达能引起红冬孢酵母YM25235菌株中总类胡萝卜素含量的增加, RKACS1基因能够促进总类胡萝卜素的合成。 The overexpressed strain containing pRHRKACS1 was cultured at 28°C to extract carotenoids, and the wild-type Rhodosporidium YM25235 strain was used as a control, and the content of total carotenoids (mg /g dry thallus), the content is shown in Figure 5; as can be seen from the figure, the total carotenoid synthesis of the overexpressed strain YM25235/pRHRKACS1 was significantly higher than that of the wild-type Rhodosporidium YM25235 strain, and the wild-type Rhodosporidium YM25235 The carotenoid synthesis amount of the strain was 5.23±0.25mg/g, while the carotenoid synthesis amount of the overexpression strain YM25235/pRHRKACS1 was 9.57±0.57mg/g, that is, the carotenoid synthesis amount of the overexpression strain YM25235/pRHRKACS1 was the same as that of the control strain The results showed that the overexpression of the acetyl CoA synthetase gene RKACS1 can cause the increase of the total carotenoid content in the Rhodosporidium YM25235 strain, and the RKACS1 gene can promote the synthesis of the total carotenoid.

3、 RKACS1基因过表达的红冬孢酵母YM25235中油脂含量分析 3. Analysis of oil content in Rhodosporidium YM25235 overexpressed with RKACS1 gene

将含pRHRKACS1的过表达菌株在28℃条件下培养,提取油脂,以野生型红冬孢酵母YM25235菌株为对照,测定油脂的含量(%干菌体),含量如图6所示;由图可知,过表达菌株YM25235/pRHRKACS1的油脂合成量较野生型红冬孢酵母YM25235菌株明显提高,野生型红冬孢酵母YM25235菌株的油脂合成量为4.27±0.51%,而过表达菌株YM25235/pRHRKACS1油脂合成量为5.73±0.24%,即过表达菌株YM25235/pRHRKACS1油脂合成量相较于对照菌株提高了34.19%;结果显示乙酰CoA合成酶基因 RKACS1的过表达能引起红冬孢酵母YM25235菌株中油脂含量的增加, RKACS1基因能够促进油脂的合成; The overexpressed strain containing pRHRKACS1 was cultured at 28°C to extract oil, and the wild-type Rhodosporidium YM25235 strain was used as a control to measure the oil content (% dry cells), and the content is shown in Figure 6; it can be seen from the figure , the lipid synthesis of the overexpression strain YM25235/pRHRKACS1 was significantly higher than that of the wild-type Rhodosporidium YM25235 strain, and the lipid synthesis of the wild-type Rhodosporidium YM25235 strain was 4.27±0.51%, while the lipid synthesis of the overexpression strain The amount of acetyl CoA synthase gene RKACS1 was 5.73±0.24%, that is, the amount of oil synthesis in the overexpressed strain YM25235/pRHRKACS1 was increased by 34.19% compared with the control strain; Increase, RKACS1 gene can promote oil synthesis;

总之,乙酰CoA合成酶基因 RKACS1与红冬孢酵母中类胡萝卜素和油脂合成有关。 In conclusion, the acetyl-CoA synthetase gene RKACS1 is associated with carotenoid and lipid synthesis in Rhodosporidium sp.

序列表sequence listing

<110> 昆明理工大学<110> Kunming University of Science and Technology

<120> 乙酰CoA合成酶基因RKACS1及其应用<120> Acetyl CoA synthetase gene RKACS1 and its application

<160> 4<160> 4

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 1977<211> 1977

<212> DNA<212> DNA

<213> 红冬胞酵母YM25235(Rhodosporidium kratochvilovaeYM25235)<213> Rhodosporidium kratochvilovae YM25235 (Rhodosporidium kratochvilovaeYM25235)

<400> 1<400> 1

atgaccgaac acacctacga cacgccgtcg caccccatca gcaagcgcaa cgatggcacg 60atgaccgaac acacctacga cacgccgtcg caccccatca gcaagcgcaa cgatggcacg 60

ggccaccctg tccacgccaa cacggacgag tacgtcgagc tgtacaagga gtcgatcgac 120ggccaccctg tccacgccaa cacggacgag tacgtcgagc tgtacaagga gtcgatcgac 120

tcgcccaagc agttctggga ccgcatggcc aaggagcacc tctactggca ccgcccgtac 180tcgcccaagc agttctggga ccgcatggcc aaggagcacc tctactggca ccgcccgtac 180

tcgaccgtca ccgccggctc tttcgaggca ggagacgtac agtggttccc cgagggcggc 240tcgaccgtca ccgccggctc tttcgaggca ggagacgtac agtggttccc cgagggcggc 240

ctgaacgtcg cgtacaactg cgtcgaccgc tgggcgtaca agcacccgaa caagacggcc 300ctgaacgtcg cgtacaactg cgtcgaccgc tgggcgtaca agcacccgaa caagacggcc 300

atcatctggg aggcggacga gcccggcgag catgtcgagc tcacgtacga gcagctgttc 360atcatctggg aggcggacga gcccggcgag catgtcgagc tcacgtacga gcagctgttc 360

caggaggtct gcaagactgc caacatcctc aagagctacg gcgtcaagaa gggcgacacc 420caggaggtct gcaagactgc caacatcctc aagagctacg gcgtcaagaa gggcgacacc 420

gtcgccatct acctccccat ggtccccgag gcggcaatcg ccttcctcgc gtgcgcccgc 480gtcgccatct acctccccat ggtccccgag gcggcaatcg ccttcctcgc gtgcgcccgc 480

ctcggcgcga tccactcggt cgtcttcgcc ggcttctccg ccgagtcgct ccgcgaccgc 540ctcggcgcga tccactcggt cgtcttcgcc ggcttctccg ccgagtcgct ccgcgaccgc 540

gtcaacgacg cccagtcgcg cgtcgtcatc accaccgacg agggcaagcg cggcggcaag 600gtcaacgacg cccagtcgcg cgtcgtcatc accaccgacg agggcaagcg cggcggcaag 600

acgatcgcga ccaagtcgat cgtcgacgcg gcgctctccg agtgccccgt cgtcgagcat 660acgatcgcga ccaagtcgat cgtcgacgcg gcgctctccg agtgccccgt cgtcgagcat 660

gtcctcgtcc tcaagcgcac tggcggcgac gtcaagtgga ccgagggccg cgaccactgg 720gtcctcgtcc tcaagcgcac tggcggcgac gtcaagtgga ccgagggccg cgaccactgg 720

tggcacgagg agaaggagaa ggtccagccg tactgccccg tcgagatcgt ctcggccgag 780tggcacgagg agaaggagaa ggtccagccg tactgccccg tcgagatcgt ctcggccgag 780

gacccgctct tcatcctcta cacctcgggc tcgaccggca agcccaaggg tgtcgtccac 840gacccgctct tcatcctcta cacctcgggc tcgaccggca agcccaaggg tgtcgtccac 840

tcgtccgccg gctacctcct cggcgcgttc atgacgctca agtacgtctt cgacgtgcac 900tcgtccgccg gctacctcct cggcgcgttc atgacgctca agtacgtctt cgacgtgcac 900

cccgaggacc gctacgcgtg catggcagac gtcggctgga tcaccggcca cacctacatc 960cccgaggacc gctacgcgtg catggcagac gtcggctgga tcaccggcca cacctacatc 960

gtttacggcc cgcttgcgaa cggcgtcacc accaccatct tcgagtcgac gccggtctac 1020gtttacggcc cgcttgcgaa cggcgtcacc accaccatct tcgagtcgac gccggtctac 1020

ccgaccccgt cgcgcttctg ggagacggtc gcgaagcaca agctcacgca gttctacacc 1080ccgaccccgt cgcgcttctg ggagacggtc gcgaagcaca agctcacgca gttctacacc 1080

gcgccgaccg ccatccgtct cctccgccgc ctcggcgagg agcacaccaa gggccacgac 1140gcgccgaccg ccatccgtct cctccgccgc ctcggcgagg agcacaccaa gggccacgac 1140

ctgtcgacgc tccgcaccat cggctcggtc ggcgagccga tcaaccccga ggcttgggag 1200ctgtcgacgc tccgcaccat cggctcggtc ggcgagccga tcaaccccga ggcttggggag 1200

tggtactggg agcacgtcgg caagaaggag tgcgccgtcg tcgacacgta ctggcagacc 1260tggtactggg agcacgtcgg caagaaggag tgcgccgtcg tcgacacgta ctggcagacc 1260

gagaccggct ccatcatcat cacccccctt cccggcgcga ccaagaccaa gcccggcgcg 1320gagaccggct ccatcatcat cacccccctt cccggcgcga ccaagaccaa gcccggcgcg 1320

gcgacgctgc cgttcttcgg catcgacccg gtcctcctcg acccgacgac gggcgaggag 1380gcgacgctgc cgttcttcgg catcgacccg gtcctcctcg acccgacgac gggcgaggag 1380

atcaagggca acgaggtcga gggcgtgctc tgcgtgcgca agccgtggcc gtcgatcgcg 1440atcaagggca acgaggtcga gggcgtgctc tgcgtgcgca agccgtggcc gtcgatcgcg 1440

cgcaccgtct acggcgacca caagcggttc ctcgacacgt acatgaaccc gtacccgggc 1500cgcaccgtct acggcgacca caagcggttc ctcgacacgt acatgaaccc gtacccgggc 1500

tactacttca ccggcgacgg cgccgggcgc gaccacgacg ggtactactg gatccgcggc 1560tactacttca ccggcgacgg cgccgggcgc gaccacgacg ggtactactg gatccgcggc 1560

cgcgtcgacg acgtgatcaa cgtctcgggc caccgcctct cgaccgccga aatcgagagc 1620cgcgtcgacg acgtgatcaa cgtctcgggc caccgcctct cgaccgccga aatcgagagc 1620

gccctcatcc accacaacgg cgtagccgag acggccgtcg tcggcatccc cgacgagctc 1680gccctcatcc accacaacgg cgtagccgag acggccgtcg tcggcatccc cgacgagctc 1680

accggccagg ccgtcgtcgc ctacgtcgcc ctcaagcccg agtttgcggc cgagaacccc 1740accggccagg ccgtcgtcgc ctacgtcgcc ctcaagcccg agtttgcggc cgagaaccccc 1740

gacgagccgg cgctgctgaa ggaattggtg ttgcaggtcc gcaagaccat cggtccgttc 1800gacgagccgg cgctgctgaa ggaattggtg ttgcaggtcc gcaagaccat cggtccgttc 1800

gcggccccga agaaactcgt gcttgtgggt gatctgccga agacccggag cggcaagatc 1860gcggccccga agaaactcgt gcttgtgggt gatctgccga agaccggag cggcaagatc 1860

gtccggcggg cactgcgcaa gatcgcgagc ggcgagggcg accagctcgg cgatctttcg 1920gtccggcggg cactgcgcaa gatcgcgagc ggcgagggcg accagctcgg cgatctttcg 1920

acactggcgg agcctgccat catcgacgag atcaaggaga agttcgccaa ggcgtag 1977acactggcgg agcctgccat catcgacgag atcaaggaga agttcgccaa ggcgtag 1977

<210> 2<210> 2

<211> 658<211> 658

<212> PRT<212> PRT

<213> 红冬孢酵母YM25235(Rhodosporidium kratochvilovae YM25235)<213> Rhodosporidium kratochvilovae YM25235

<400> 2<400> 2

Met Thr Glu His Thr Tyr Asp Thr Pro Ser His Pro Ile Ser Lys ArgMet Thr Glu His Thr Tyr Asp Thr Pro Ser His Pro Ile Ser Lys Arg

1               5                   10                  151 5 10 15

Asn Asp Gly Thr Gly His Pro Val His Ala Asn Thr Asp Glu Tyr ValAsn Asp Gly Thr Gly His Pro Val His Ala Asn Thr Asp Glu Tyr Val

            20                  25                  3020 25 30

Glu Leu Tyr Lys Glu Ser Ile Asp Ser Pro Lys Gln Phe Trp Asp ArgGlu Leu Tyr Lys Glu Ser Ile Asp Ser Pro Lys Gln Phe Trp Asp Arg

        35                  40                  4535 40 45

Met Ala Lys Glu His Leu Tyr Trp His Arg Pro Tyr Ser Thr Val ThrMet Ala Lys Glu His Leu Tyr Trp His Arg Pro Tyr Ser Thr Val Thr

    50                  55                  6050 55 60

Ala Gly Ser Phe Glu Ala Gly Asp Val Gln Trp Phe Pro Glu Gly GlyAla Gly Ser Phe Glu Ala Gly Asp Val Gln Trp Phe Pro Glu Gly Gly

65                  70                  75                  8065 70 75 80

Leu Asn Val Ala Tyr Asn Cys Val Asp Arg Trp Ala Tyr Lys His ProLeu Asn Val Ala Tyr Asn Cys Val Asp Arg Trp Ala Tyr Lys His Pro

                85                  90                  9585 90 95

Asn Lys Thr Ala Ile Ile Trp Glu Ala Asp Glu Pro Gly Glu His ValAsn Lys Thr Ala Ile Ile Trp Glu Ala Asp Glu Pro Gly Glu His Val

            100                 105                 110100 105 110

Glu Leu Thr Tyr Glu Gln Leu Phe Gln Glu Val Cys Lys Thr Ala AsnGlu Leu Thr Tyr Glu Gln Leu Phe Gln Glu Val Cys Lys Thr Ala Asn

        115                 120                 125115 120 125

Ile Leu Lys Ser Tyr Gly Val Lys Lys Gly Asp Thr Val Ala Ile TyrIle Leu Lys Ser Tyr Gly Val Lys Lys Gly Asp Thr Val Ala Ile Tyr

    130                 135                 140130 135 140

Leu Pro Met Val Pro Glu Ala Ala Ile Ala Phe Leu Ala Cys Ala ArgLeu Pro Met Val Pro Glu Ala Ala Ile Ala Phe Leu Ala Cys Ala Arg

145                 150                 155                 160145 150 155 160

Leu Gly Ala Ile His Ser Val Val Phe Ala Gly Phe Ser Ala Glu SerLeu Gly Ala Ile His Ser Val Val Phe Ala Gly Phe Ser Ala Glu Ser

                165                 170                 175165 170 175

Leu Arg Asp Arg Val Asn Asp Ala Gln Ser Arg Val Val Ile Thr ThrLeu Arg Asp Arg Val Asn Asp Ala Gln Ser Arg Val Val Ile Thr Thr

            180                 185                 190180 185 190

Asp Glu Gly Lys Arg Gly Gly Lys Thr Ile Ala Thr Lys Ser Ile ValAsp Glu Gly Lys Arg Gly Gly Lys Thr Ile Ala Thr Lys Ser Ile Val

        195                 200                 205195 200 205

Asp Ala Ala Leu Ser Glu Cys Pro Val Val Glu His Val Leu Val LeuAsp Ala Ala Leu Ser Glu Cys Pro Val Val Glu His Val Leu Val Leu

    210                 215                 220210 215 220

Lys Arg Thr Gly Gly Asp Val Lys Trp Thr Glu Gly Arg Asp His TrpLys Arg Thr Gly Gly Asp Val Lys Trp Thr Glu Gly Arg Asp His Trp

225                 230                 235                 240225 230 235 240

Trp His Glu Glu Lys Glu Lys Val Gln Pro Tyr Cys Pro Val Glu IleTrp His Glu Glu Lys Glu Lys Val Gln Pro Tyr Cys Pro Val Glu Ile

                245                 250                 255245 250 255

Val Ser Ala Glu Asp Pro Leu Phe Ile Leu Tyr Thr Ser Gly Ser ThrVal Ser Ala Glu Asp Pro Leu Phe Ile Leu Tyr Thr Ser Gly Ser Thr

            260                 265                 270260 265 270

Gly Lys Pro Lys Gly Val Val His Ser Ser Ala Gly Tyr Leu Leu GlyGly Lys Pro Lys Gly Val Val His Ser Ser Ala Gly Tyr Leu Leu Gly

        275                 280                 285275 280 285

Ala Phe Met Thr Leu Lys Tyr Val Phe Asp Val His Pro Glu Asp ArgAla Phe Met Thr Leu Lys Tyr Val Phe Asp Val His Pro Glu Asp Arg

    290                 295                 300290 295 300

Tyr Ala Cys Met Ala Asp Val Gly Trp Ile Thr Gly His Thr Tyr IleTyr Ala Cys Met Ala Asp Val Gly Trp Ile Thr Gly His Thr Tyr Ile

305                 310                 315                 320305 310 315 320

Val Tyr Gly Pro Leu Ala Asn Gly Val Thr Thr Thr Ile Phe Glu SerVal Tyr Gly Pro Leu Ala Asn Gly Val Thr Thr Thr Ile Phe Glu Ser

                325                 330                 335325 330 335

Thr Pro Val Tyr Pro Thr Pro Ser Arg Phe Trp Glu Thr Val Ala LysThr Pro Val Tyr Pro Thr Pro Ser Arg Phe Trp Glu Thr Val Ala Lys

            340                 345                 350340 345 350

His Lys Leu Thr Gln Phe Tyr Thr Ala Pro Thr Ala Ile Arg Leu LeuHis Lys Leu Thr Gln Phe Tyr Thr Ala Pro Thr Ala Ile Arg Leu Leu

        355                 360                 365355 360 365

Arg Arg Leu Gly Glu Glu His Thr Lys Gly His Asp Leu Ser Thr LeuArg Arg Leu Gly Glu Glu His Thr Lys Gly His Asp Leu Ser Thr Leu

    370                 375                 380370 375 380

Arg Thr Ile Gly Ser Val Gly Glu Pro Ile Asn Pro Glu Ala Trp GluArg Thr Ile Gly Ser Val Gly Glu Pro Ile Asn Pro Glu Ala Trp Glu

385                 390                 395                 400385 390 395 400

Trp Tyr Trp Glu His Val Gly Lys Lys Glu Cys Ala Val Val Asp ThrTrp Tyr Trp Glu His Val Gly Lys Lys Glu Cys Ala Val Val Asp Thr

                405                 410                 415405 410 415

Tyr Trp Gln Thr Glu Thr Gly Ser Ile Ile Ile Thr Pro Leu Pro GlyTyr Trp Gln Thr Glu Thr Gly Ser Ile Ile Ile Thr Pro Leu Pro Gly

            420                 425                 430420 425 430

Ala Thr Lys Thr Lys Pro Gly Ala Ala Thr Leu Pro Phe Phe Gly IleAla Thr Lys Thr Lys Pro Gly Ala Ala Thr Leu Pro Phe Phe Gly Ile

        435                 440                 445435 440 445

Asp Pro Val Leu Leu Asp Pro Thr Thr Gly Glu Glu Ile Lys Gly AsnAsp Pro Val Leu Leu Asp Pro Thr Thr Gly Glu Glu Ile Lys Gly Asn

    450                 455                 460450 455 460

Glu Val Glu Gly Val Leu Cys Val Arg Lys Pro Trp Pro Ser Ile AlaGlu Val Glu Gly Val Leu Cys Val Arg Lys Pro Trp Pro Ser Ile Ala

465                 470                 475                 480465 470 475 480

Arg Thr Val Tyr Gly Asp His Lys Arg Phe Leu Asp Thr Tyr Met AsnArg Thr Val Tyr Gly Asp His Lys Arg Phe Leu Asp Thr Tyr Met Asn

                485                 490                 495485 490 495

Pro Tyr Pro Gly Tyr Tyr Phe Thr Gly Asp Gly Ala Gly Arg Asp HisPro Tyr Pro Gly Tyr Tyr Phe Thr Gly Asp Gly Ala Gly Arg Asp His

            500                 505                 510500 505 510

Asp Gly Tyr Tyr Trp Ile Arg Gly Arg Val Asp Asp Val Ile Asn ValAsp Gly Tyr Tyr Trp Ile Arg Gly Arg Val Asp Asp Val Ile Asn Val

        515                 520                 525515 520 525

Ser Gly His Arg Leu Ser Thr Ala Glu Ile Glu Ser Ala Leu Ile HisSer Gly His Arg Leu Ser Thr Ala Glu Ile Glu Ser Ala Leu Ile His

    530                 535                 540530 535 540

His Asn Gly Val Ala Glu Thr Ala Val Val Gly Ile Pro Asp Glu LeuHis Asn Gly Val Ala Glu Thr Ala Val Val Gly Ile Pro Asp Glu Leu

545                 550                 555                 560545 550 555 560

Thr Gly Gln Ala Val Val Ala Tyr Val Ala Leu Lys Pro Glu Phe AlaThr Gly Gln Ala Val Val Ala Tyr Val Ala Leu Lys Pro Glu Phe Ala

                565                 570                 575565 570 575

Ala Glu Asn Pro Asp Glu Pro Ala Leu Leu Lys Glu Leu Val Leu GlnAla Glu Asn Pro Asp Glu Pro Ala Leu Leu Lys Glu Leu Val Leu Gln

            580                 585                 590580 585 590

Val Arg Lys Thr Ile Gly Pro Phe Ala Ala Pro Lys Lys Leu Val LeuVal Arg Lys Thr Ile Gly Pro Phe Ala Ala Pro Lys Lys Leu Val Leu

        595                 600                 605595 600 605

Val Gly Asp Leu Pro Lys Thr Arg Ser Gly Lys Ile Val Arg Arg AlaVal Gly Asp Leu Pro Lys Thr Arg Ser Gly Lys Ile Val Arg Arg Ala

    610                 615                 620610 615 620

Leu Arg Lys Ile Ala Ser Gly Glu Gly Asp Gln Leu Gly Asp Leu SerLeu Arg Lys Ile Ala Ser Gly Glu Gly Asp Gln Leu Gly Asp Leu Ser

625                 630                 635                 640625 630 635 640

Thr Leu Ala Glu Pro Ala Ile Ile Asp Glu Ile Lys Glu Lys Phe AlaThr Leu Ala Glu Pro Ala Ile Ile Asp Glu Ile Lys Glu Lys Phe Ala

                645                 650                 655645 650 655

Lys AlaLys Ala

<210> 3<210> 3

<211> 35<211> 35

<212> DNA<212> DNA

<213> 人工序列(Artificial)<213> Artificial sequence (Artificial)

<400> 3<400> 3

gatcactcac catggtgacc gaacacacct acgac 35gatcactcac catggtgacc gaacacacct acgac 35

<210> 4<210> 4

<211> 33<211> 33

<212> DNA<212> DNA

<213> 人工序列(Artificial)<213> Artificial sequence (Artificial)

<400> 4<400> 4

ccggtcggca tctacctacg ccttggcgaa ctt 33ccggtcggca tctacctacg ccttggcgaa ctt 33

Claims (3)

1.一种乙酰CoA合成酶基因RKACS1,其核苷酸序列如SEQ ID NO:1所示。1. An acetyl-CoA synthetase gene RKACS1 , the nucleotide sequence of which is shown in SEQ ID NO:1. 2.权利要求1所述的乙酰CoA合成酶基因RKACS1在促进红冬胞酵母(Rhodosporidium  kratochvilovae)产类胡萝卜素中的应用。2. The application of the acetyl-CoA synthetase gene RKACS1 according to claim 1 in promoting carotenoid production by Rhodosporidium kratochvilovae . 3.权利要求1所述的乙酰CoA合成酶基因RKACS1在促进红冬胞酵母(Rhodosporidium  kratochvilovae)产油脂中的应用。3. The application of the acetyl-CoA synthetase gene RKACS1 according to claim 1 in promoting the oil production of Rhodosporidium kratochvilovae .
CN202110619574.7A 2021-06-03 2021-06-03 Acetyl CoA synthetase gene RKACS1 and application thereof Active CN113430215B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110619574.7A CN113430215B (en) 2021-06-03 2021-06-03 Acetyl CoA synthetase gene RKACS1 and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110619574.7A CN113430215B (en) 2021-06-03 2021-06-03 Acetyl CoA synthetase gene RKACS1 and application thereof

Publications (2)

Publication Number Publication Date
CN113430215A CN113430215A (en) 2021-09-24
CN113430215B true CN113430215B (en) 2023-04-18

Family

ID=77803463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110619574.7A Active CN113430215B (en) 2021-06-03 2021-06-03 Acetyl CoA synthetase gene RKACS1 and application thereof

Country Status (1)

Country Link
CN (1) CN113430215B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110747206B (en) * 2019-11-05 2021-11-23 昆明理工大学 3-hydroxy-3-methylglutaryl coenzyme A reductase gene RKHMGR and application thereof
CN112410355B (en) * 2020-11-23 2022-03-25 昆明理工大学 Acyl-coenzyme A oxidase 2 gene RKACOX2 and application thereof
CN113621630B (en) * 2021-08-05 2023-03-24 昆明理工大学 3-ketoacyl-CoA thiolase gene RkACAA1-1 and application thereof
CN113652440B (en) * 2021-08-05 2023-04-21 昆明理工大学 3-ketoacyl coenzyme A thiolase gene RKACAA1-2 and application thereof
CN116606868B (en) * 2023-05-12 2024-04-16 昆明理工大学 Acetyl CoA synthetase gene RkACS2 and its application

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011199A1 (en) * 1998-08-20 2000-03-02 Pioneer Hi-Bred International, Inc. COMPOSITIONS AND METHODS FOR ALTERING AN ACETYL-CoA METABOLIC PATHWAY OF A PLANT
CN102131921A (en) * 2008-08-05 2011-07-20 帝斯曼知识产权资产管理有限公司 Adipoyl-7-adca producing strains
CN104039974A (en) * 2011-11-09 2014-09-10 阿迈瑞斯公司 Production Of Acetyl-coenzyme A Derived Isoprenoids
CN105189772A (en) * 2013-03-15 2015-12-23 阿迈瑞斯公司 Use of phosphoketolase and phosphotransacetylase for production of acetyl-coenzyme a derived compounds
CN106916837A (en) * 2017-03-31 2017-07-04 昆明理工大学 Hyperosmosis glycerine protein kinase gene RkHog1 and its recombinant expression carrier
JP2017192342A (en) * 2016-04-20 2017-10-26 花王株式会社 Method for producing lipid
CN108064268A (en) * 2014-05-29 2018-05-22 诺沃吉公司 Increase lipid and generate and optimize lipid composition
CN108624600A (en) * 2018-05-22 2018-10-09 昆明理工大学 Use of zinc finger transcription factor gene RkMsn4
CN109666683A (en) * 2019-02-27 2019-04-23 昆明理工大学 Acetyl coenzyme A acetyl transferase gene RKAcaT2 and its application
CN110366595A (en) * 2017-01-25 2019-10-22 阿迈瑞斯生物制品葡萄牙个人有限公司 The common generation of sequiterpene and carotenoid
KR20190139727A (en) * 2018-06-08 2019-12-18 한국과학기술원 Novel Enzyme-coupled Malonyl-CoA Biosensor based on Type III Polyketide Synthase and Use of the same
WO2020167834A1 (en) * 2019-02-11 2020-08-20 Arch Innotek, Llc Compositions and methods of biosynthesizing carotenoids and their derivatives
CN113621630A (en) * 2021-08-05 2021-11-09 昆明理工大学 3-ketoacyl-CoA thiolase gene RkACAA1-1 and its application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016154314A1 (en) * 2015-03-23 2016-09-29 Arch Innotek, Llc Compositions and methods of biosynthesizing carotenoids and their derivatives

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000011199A1 (en) * 1998-08-20 2000-03-02 Pioneer Hi-Bred International, Inc. COMPOSITIONS AND METHODS FOR ALTERING AN ACETYL-CoA METABOLIC PATHWAY OF A PLANT
CN102131921A (en) * 2008-08-05 2011-07-20 帝斯曼知识产权资产管理有限公司 Adipoyl-7-adca producing strains
CN104039974A (en) * 2011-11-09 2014-09-10 阿迈瑞斯公司 Production Of Acetyl-coenzyme A Derived Isoprenoids
CN105189772A (en) * 2013-03-15 2015-12-23 阿迈瑞斯公司 Use of phosphoketolase and phosphotransacetylase for production of acetyl-coenzyme a derived compounds
CN108064268A (en) * 2014-05-29 2018-05-22 诺沃吉公司 Increase lipid and generate and optimize lipid composition
JP2017192342A (en) * 2016-04-20 2017-10-26 花王株式会社 Method for producing lipid
CN110366595A (en) * 2017-01-25 2019-10-22 阿迈瑞斯生物制品葡萄牙个人有限公司 The common generation of sequiterpene and carotenoid
CN106916837A (en) * 2017-03-31 2017-07-04 昆明理工大学 Hyperosmosis glycerine protein kinase gene RkHog1 and its recombinant expression carrier
CN108624600A (en) * 2018-05-22 2018-10-09 昆明理工大学 Use of zinc finger transcription factor gene RkMsn4
KR20190139727A (en) * 2018-06-08 2019-12-18 한국과학기술원 Novel Enzyme-coupled Malonyl-CoA Biosensor based on Type III Polyketide Synthase and Use of the same
WO2020167834A1 (en) * 2019-02-11 2020-08-20 Arch Innotek, Llc Compositions and methods of biosynthesizing carotenoids and their derivatives
CN109666683A (en) * 2019-02-27 2019-04-23 昆明理工大学 Acetyl coenzyme A acetyl transferase gene RKAcaT2 and its application
CN113621630A (en) * 2021-08-05 2021-11-09 昆明理工大学 3-ketoacyl-CoA thiolase gene RkACAA1-1 and its application

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Firrincieli,A.等.Rhodotorula graminis WP1 uncharacterized protein (RHOBADRAFT_54829), mRNA.Genbank Database.2020,Accession No:XM_018417523.1. *
Jaslyn J.L Lee等.Engineering Rhodosporidium toruloides with a membrane transporter facilitates production and separation of carotenoids and lipids in a bi-phasic culture.Appl Microbiol Biotechnol.2015,第1-9页. *
Marcisauskas,S.等.acetyl-CoA synthetase [Rhodotorula mucilaginosa].Genbank Database.2021,Accession No:KAG0663673.1. *
张超蕾 ; 张素芳 ; 刘冰南 ; 王际辉 ; .圆红冬孢酵母类胡萝卜素合成突变菌株的筛选.大连工业大学学报.2017,(第05期),第318-322页. *
胡红等.乙酰辅酶A合成酶的酶学性质及其 在甲羟戊酸合成中的应用.应用于环境生物学报.2016,第22卷(第3期),第357-362页. *
郭锐等.过表达乙酰辅酶A 乙酰基转移酶2 基因(RKAcat2)对红冬孢 酵母产类胡萝卜素的影响.微生物学通报.2021,第48卷(第12期),第4496-4506页. *
黄庶识 ; 卢明倩 ; 李冰 ; 周冰 ; 陈丽梅 ; .重组大肠杆菌表达可溶性蛋白和包涵体过程的拉曼光谱实时分析.中国激光.2014,(第12期),第257-265页. *

Also Published As

Publication number Publication date
CN113430215A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
CN113430215B (en) Acetyl CoA synthetase gene RKACS1 and application thereof
CN109777815B (en) HMG-CoA synthase gene RKHMGCS and its application
CN112410355B (en) Acyl-coenzyme A oxidase 2 gene RKACOX2 and application thereof
CN110747206B (en) 3-hydroxy-3-methylglutaryl coenzyme A reductase gene RKHMGR and application thereof
CN109666683A (en) Acetyl coenzyme A acetyl transferase gene RKAcaT2 and its application
CN111100849B (en) Tea tree carotenoid cleavage dioxygenase CsCCD4 and its application in catalytic synthesis of β-ionone
CN105316357B (en) Utilize the method for Transgenic Microalgae production astaxanthin
CN113652440A (en) 3-ketoacyl-CoA thiolase gene RKACAA1-2 and its application
KR102282663B1 (en) Recombinant microorganism with retinoid production ability and method for preparing retinoid using the same
CN105087604A (en) Application of sll0147 gene in synthesizing synechocystis carotenoids
CN113265344A (en) Genetic engineering bacterium for selectively producing retinol and construction method and application thereof
WO2022245988A2 (en) Production of carotenoids
Araya-Garay et al. cDNA cloning of a novel gene codifying for the enzyme lycopene β-cyclase from Ficus carica and its expression in Escherichia coli
CN118240865A (en) A method for engineering Nannochloropsis algae to co-produce canthaxanthin and EPA and its application
CN108624600B (en) Use of zinc finger transcription factor gene RkMsn4
CN116286880B (en) A peroxisome proliferation factor gene RkPEX11 and its use
CN112029782B (en) A kind of beta-carotene hydroxylase and its gene and application
Araya-Garay et al. Cloning and functional expression of zeta-carotene desaturase, a novel carotenoid biosynthesis gene from Ficus carica
Kim et al. Enhanced production of lutein by indigenous freshwater microalga, Mychonastes pushpae using various abiotic stresses
CN105087627B (en) A kind of application of sll0659 gene in synthesis cytoalgae carotenoid
CN105950635A (en) Marigold phytoene desaturase gene and application
KR20220147361A (en) IbFAD8 gene from sweetpotato for improving cold storage stability and increasing omega-3 fatty acid content in tuberous root of sweetpotato and uses thereof
KR101164923B1 (en) Delta-6 desaturase gene from Sparus aurata and uses thereof
Chen et al. Regulation pattern of carotenoid biosynthesis induced by low light stress in Dunaliella
CN105969781A (en) Carotenoid synthetic route Tagetes erecta violaxanthin de-epoxidase (TeVDE1) gene and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant