CN113414089B - Non-focusing sound field enhanced transducer - Google Patents
Non-focusing sound field enhanced transducer Download PDFInfo
- Publication number
- CN113414089B CN113414089B CN202110711455.4A CN202110711455A CN113414089B CN 113414089 B CN113414089 B CN 113414089B CN 202110711455 A CN202110711455 A CN 202110711455A CN 113414089 B CN113414089 B CN 113414089B
- Authority
- CN
- China
- Prior art keywords
- transducer
- sound field
- transducers
- energy converter
- theta
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002560 therapeutic procedure Methods 0.000 claims abstract description 3
- 238000003384 imaging method Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 abstract description 17
- 239000010410 layer Substances 0.000 description 55
- 238000004088 simulation Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000010317 ablation therapy Methods 0.000 description 6
- 238000002604 ultrasonography Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000002679 ablation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
技术领域technical field
本发明涉及超声换能器技术领域,特别涉及一种非聚焦式声场增强换能器。The invention relates to the technical field of ultrasonic transducers, in particular to a non-focused sound field enhancement transducer.
背景技术Background technique
超声换能器是医用超声诊断治疗设备的核心器件,目前临床上利用超声机械效应、温热效应以及理化效应进行消融治疗的换能器,多为聚焦换能器,通过凹型结构设计或者增加声透镜的方法,将换能器辐射能量聚集,从而增强空间某一位置的超声能量,其优点是能量聚集点小,能量密度大,焦点和焦距可以通过结构设计改变;然而用于消融治疗的换能器通常为低频换能器,聚焦换能器设计体积较大、比较沉重,比如1MHz HIFU超声探头直径大概7cm左右,不能满足临床上要求整体尺寸在2mm甚至1mm的介入治疗领域、以及微小轻便可穿戴医疗设备的需求;另外,聚焦超声探头将能量聚焦为一个特定的小区域,很难辐射较大区域,不能满足某些特定的大面超声辐射治疗场景。单阵元高频超声换能器尺寸较小,可以通过介入导管将超声换能器送至靶向区域,直接作用于靶组织,然而高频超声较小的体积,很难辐射较强的超声能量,不能达到消融组织需要的能量阈值。Ultrasonic transducers are the core components of medical ultrasonic diagnosis and treatment equipment. At present, transducers that use ultrasonic mechanical effects, thermal effects, and physical and chemical effects for ablation therapy are mostly focusing transducers. The lens method gathers the radiated energy of the transducer to enhance the ultrasonic energy at a certain position in the space. Its advantages are small energy gathering point, high energy density, focus and focal length can be changed through structural design; however, the transducer used for ablation therapy The transducer is usually a low-frequency transducer, and the focusing transducer is designed to be bulky and heavy. For example, the diameter of a 1MHz HIFU ultrasound probe is about 7cm, which cannot meet the clinical requirements for interventional therapy with an overall size of 2mm or even 1mm, and small and light weight. The demand for wearable medical equipment; in addition, the focused ultrasound probe focuses the energy to a specific small area, it is difficult to radiate a large area, and cannot meet certain specific large-area ultrasound radiation therapy scenarios. The size of the single-array high-frequency ultrasonic transducer is small, and the ultrasonic transducer can be sent to the targeted area through the interventional catheter to directly act on the target tissue. However, the small volume of high-frequency ultrasound makes it difficult to radiate strong ultrasound. The energy cannot reach the energy threshold required for ablation tissue.
为了满足临床介入消融治疗以及体外可穿戴医疗超声设备,对于微小换能器高辐射能量的需求,本发明提出设计一种基于多个超声换能器通过一定角度形成辐射声场相互叠加增强的技术方案。In order to meet the requirements of clinical interventional ablation therapy and in vitro wearable medical ultrasound equipment, the invention proposes to design a technical scheme based on multiple ultrasonic transducers forming a radiation sound field superimposed and enhanced by a certain angle. .
发明内容Contents of the invention
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种非聚焦式声场增强换能器。The technical problem to be solved by the present invention is to provide a non-focused sound field enhancement transducer for the above-mentioned deficiencies in the prior art.
为解决上述技术问题,本发明采用的技术方案是:一种非聚焦式声场增强换能器,包括呈星形设置的3个换能器:第一换能器、第二换能器和第三换能器;In order to solve the above technical problems, the technical solution adopted by the present invention is: a non-focused sound field enhancement transducer, including three transducers arranged in a star shape: the first transducer, the second transducer and the second transducer Three transducers;
所述第一换能器和第二换能器之间的夹角为θ1,所述第二换能器和第三换能器之间的夹角为θ2,所述第一换能器和第三换能器之间的夹角为θ3,θ1、θ2和θ3均为15°-165°,且θ1+θ2+θ3=360°。The included angle between the first transducer and the second transducer is θ1, the included angle between the second transducer and the third transducer is θ2, and the first transducer and the third transducer are The included angle between the third transducers is θ3, θ1, θ2 and θ3 are all 15°-165°, and θ1+θ2+θ3=360°.
第一换能器、第二换能器和第三换能器之间呈一定角设置,两个换能器之间的辐射方向的交叉处由于声场叠加而增强(即声场增强区域),通过改变换能器之间的空间角度,则可以调节空间叠加声场(即声场增强区域)的空间位置。The first transducer, the second transducer and the third transducer are arranged at a certain angle, and the intersection of the radiation direction between the two transducers is enhanced due to the superposition of the sound field (that is, the sound field enhancement area), through By changing the spatial angle between the transducers, the spatial position of the spatially superimposed sound field (that is, the sound field enhancement area) can be adjusted.
优选的是,第一换能器、第二换能器和第三换能器均可为单面发射或双面发射的换能器。通过三个换能器进行单面发射和双面发射的组合,可以实现控制声场辐射方向的目的,以应用于特定的治疗场合。例如,第一换能器、第二换能器和第三换能器均为双面发射时,则在三个换能器两两之间的三个区域均能获得声场增强区域。此时不仅起到了增强声场的目的,同时也增大了声场的作用范围,可以获得辐射方向相互垂直的三个空间分布增强声场。Preferably, the first transducer, the second transducer and the third transducer can all be single-sided or double-sided emitting transducers. Through the combination of single-sided emission and double-sided emission by three transducers, the purpose of controlling the radiation direction of the sound field can be achieved, so as to be applied to specific treatment occasions. For example, when the first transducer, the second transducer and the third transducer all emit from two sides, the sound field enhancement region can be obtained in the three regions between any two of the three transducers. At this time, not only the purpose of enhancing the sound field is achieved, but also the scope of the sound field is increased, and three spatially distributed enhanced sound fields with radiation directions perpendicular to each other can be obtained.
优选的是,所述第一换能器包括第一工作层,所述第二换能器包括第二工作层,所述第三换能器包括第三工作层。Preferably, the first transducer includes a first working layer, the second transducer includes a second working layer, and the third transducer includes a third working layer.
优选的是,所述第一工作层的正面还设置有第一匹配层。Preferably, a first matching layer is also provided on the front side of the first working layer.
优选的是,所述第一工作层的背面还设置有第一背衬层。Preferably, the back of the first working layer is further provided with a first backing layer.
优选的是,所述第二工作层的正面还设置有第二匹配层。Preferably, a second matching layer is further provided on the front side of the second working layer.
优选的是,所述第二工作层的背面还设置有第二背衬层。Preferably, a second backing layer is further provided on the back of the second working layer.
优选的是,所述第三工作层的正面还设置有第三匹配层。Preferably, a third matching layer is further provided on the front side of the third working layer.
优选的是,所述第三工作层的背面还设置有第三背衬层。Preferably, a third backing layer is further provided on the back of the third working layer.
优选的是,所述第一换能器、第二换能器和第三换能器的中心频率分别为f1、f2、f3,f1、f2、f3均为1-30MHz之间。且f1、f2、f3可以相等也可以不相等,当f1、f2、f3不同时相等时,可以在声场叠加区域获得增强混频声场,可以应用于不同深度的混频介入消融治疗,低频可以获得更高的穿透深度,对深层组织作用效果好;高低频叠加区域可以获得更好的治疗效果。Preferably, the center frequencies of the first transducer, the second transducer and the third transducer are respectively f1, f2 and f3, and all of f1, f2 and f3 are between 1-30 MHz. And f1, f2, and f3 can be equal or not. When f1, f2, and f3 are not equal at the same time, an enhanced mixed-frequency sound field can be obtained in the sound field superimposition area, which can be applied to mixed-frequency interventional ablation therapy at different depths, and the low frequency can be obtained. The higher the penetration depth, the better the effect on deep tissue; the high and low frequency superposition area can obtain better therapeutic effect.
优选的是,θ1、θ2和θ3均为120°。Preferably, θ1, θ2 and θ3 are all 120°.
优选的是,第一、第二和第三工作层的材料均可以为压电陶瓷、压电复合材料、压电单晶或薄膜材料。Preferably, the materials of the first, second and third working layers can all be piezoelectric ceramics, piezoelectric composite materials, piezoelectric single crystals or thin film materials.
优选的是,第一、第二和第三匹配层均可以为多层匹配结构。Preferably, the first, second and third matching layers can all be multi-layer matching structures.
优选的是,第一、第二和第三背衬层均可以为波浪式或倾斜状。Preferably, the first, second and third backing layers can all be wavy or inclined.
本发明的有益效果是:本发明的非聚焦式声场增强换能器,通过三个换能器叠加获得增强声场,通过改变换能器空间角度,可以调节空间叠加声场的空间位置;通过三个换能器进行单面发射和双面发射的组合,可以实现控制声场辐射方向的目的,同时还能增大声场作用范围,以应用于特定的治疗场合;通过配置三个换能器的频率,还能获得三处空间分布增强混频声场,可以应用于不同深度的混频介入消融治疗,结合低频和高频各自的优势可以获得更好的治疗效果;三个换能器的尺寸较小,使得本发明的整体尺寸可实现小型化,相比与传统的聚焦换能器能大大缩小整体尺寸,同时又能提供能满足治疗强度的超声能量,从而可用于组织介入治疗。The beneficial effects of the present invention are: the non-focused sound field enhancement transducer of the present invention obtains the enhanced sound field through the superposition of three transducers, and the spatial position of the spatially superimposed sound field can be adjusted by changing the spatial angle of the transducers; The combination of single-sided emission and double-sided emission of the transducer can achieve the purpose of controlling the radiation direction of the sound field, and at the same time increase the range of the sound field to apply to specific treatment occasions; by configuring the frequencies of the three transducers, It can also obtain three spatially distributed enhanced mixing sound fields, which can be applied to different depths of mixed frequency interventional ablation therapy. Combining the respective advantages of low frequency and high frequency can obtain better therapeutic effects; the size of the three transducers is small, The overall size of the present invention can be miniaturized, compared with the traditional focusing transducer, the overall size can be greatly reduced, and at the same time, it can provide ultrasonic energy that can meet the treatment intensity, so that it can be used for tissue interventional treatment.
附图说明Description of drawings
图1为本发明的实施例1中的非聚焦式声场增强换能器的结构示意图(左侧为俯视图,右侧为立体图);Fig. 1 is a schematic structural view of a non-focused sound field enhancement transducer in
图2为本发明的实施例1中的非聚焦式声场增强换能器的空间绝对声压分布仿真结果图;FIG. 2 is a simulation result diagram of the spatial absolute sound pressure distribution of the non-focused sound field enhancement transducer in
图3为本发明的实施例2中的非聚焦式声场增强换能器的结构示意图(左侧为俯视图,右侧为立体图);3 is a schematic structural view of the non-focused sound field enhancement transducer in
图4为本发明的实施例2中的非聚焦式声场增强换能器的空间绝对声压分布仿真结果图;FIG. 4 is a simulation result diagram of the spatial absolute sound pressure distribution of the non-focused sound field enhancement transducer in
图5为本发明的实施例3中的非聚焦式声场增强换能器的结构示意图(左侧为俯视图,右侧为立体图);5 is a schematic structural view of the non-focused sound field enhancement transducer in
图6为本发明的实施例3中的非聚焦式声场增强换能器的空间绝对声压分布仿真结果图;FIG. 6 is a simulation result diagram of the spatial absolute sound pressure distribution of the non-focused sound field enhancement transducer in
图7为本发明的实施例4中的非聚焦式声场增强换能器的结构示意图(左侧为俯视图,右侧为立体图);7 is a schematic structural view of the non-focused sound field enhancement transducer in
图8为本发明的实施例4中的非聚焦式声场增强换能器的空间绝对声压分布仿真结果图;FIG. 8 is a simulation result diagram of the spatial absolute sound pressure distribution of the non-focused sound field enhancement transducer in
图9为本发明的实施例5中的非聚焦式声场增强换能器的结构示意图;Fig. 9 is a schematic structural diagram of a non-focused sound field enhancement transducer in
附图标记说明:Explanation of reference signs:
1—第一换能器;2—第二换能器;3—第三换能器;11—第一匹配层;12—第一工作层;13—第一背衬层;21—第二匹配层;22—第二工作层;23—第二背衬层;31—第三匹配层;32—第三工作层;33—第三背衬层。1—the first transducer; 2—the second transducer; 3—the third transducer; 11—the first matching layer; 12—the first working layer; 13—the first backing layer; 21—the second Matching layer; 22—second working layer; 23—second backing layer; 31—third matching layer; 32—third working layer; 33—third backing layer.
具体实施方式Detailed ways
下面结合实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。The present invention will be further described in detail below in conjunction with the embodiments, so that those skilled in the art can implement it with reference to the description.
应当理解,本文所使用的诸如“具有”、“包含”以及“包括”术语并不排除一个或多个其它元件或其组合的存在或添加。It should be understood that terms such as "having", "comprising" and "including" used herein do not exclude the presence or addition of one or more other elements or combinations thereof.
实施例1Example 1
如图1所示,本实施例的一种非聚焦式声场增强换能器,包括呈星形(如图1左侧的俯视图)设置的3个换能器:第一换能器1、第二换能器2和第三换能器3;As shown in Figure 1, a non-focused sound field enhancement transducer of the present embodiment includes 3 transducers arranged in a star shape (as shown in the top view on the left side of Fig. 1 ): the
第一换能器1包括第一工作层12、设置在第一工作层12的正面的第一匹配层11和设置在第一工作层12的背面的第一背衬层13;第二换能器2包括第二工作层22、设置在第二工作层22的正面的第二匹配层21和设置在第二工作层22的背面的第二背衬层23;第三换能器3包括第三工作层32、设置在第三工作层32的正面的第三匹配层31和设置在第三工作层32的背面的第三背衬层33。The
其中,第一、第二和第三工作层(12、22、32)的材料均可以为压电陶瓷、压电复合材料、压电单晶或薄膜材料。第一、第二和第三工作层(12、22、32)均可为单层工作层结构,也可为多层工作层结构。Wherein, the materials of the first, second and third working layers (12, 22, 32) can all be piezoelectric ceramics, piezoelectric composite materials, piezoelectric single crystals or film materials. The first, second and third working layers (12, 22, 32) can all be single-layer working layer structures, or multi-layer working layer structures.
其中,第一、第二和第三匹配层(11、21、31)均可以为单层匹配结构,也可以为多层匹配结构。Wherein, the first, second and third matching layers (11, 21, 31) can all be single-layer matching structures, or can be multi-layer matching structures.
其中,第一、第二和第三背衬层(13、23、33)均可以为波浪式或倾斜状。Wherein, the first, second and third backing layers (13, 23, 33) can all be wavy or inclined.
其中,第一换能器1和第二换能器2之间的夹角为θ1,第二换能器2和第三换能器3之间的夹角为θ2,第一换能器1和第三换能器3之间的夹角为θ3,θ1、θ2和θ3均为15°-165°,且θ1+θ2+θ3=360°。Wherein, the included angle between the
其中,第一换能器1、第二换能器2和第三换能器3的中心频率分别为f1、f2、f3,f1、f2、f3均为1-30MHz之间。Wherein, the center frequencies of the
本实施例中,第一换能器1、第二换能器2和第三换能器3均为单向发射背向有弱散射声场信号,空间声场在第一换能器1和第二换能器2的辐射方向的交叉处获得叠加增强,在第二换能器2背向和第三换能器3正向辐射方向的交叉处获得叠加增强,本实施例可以同时起到增强声场和增大声场作用范围的作用,可以获得辐射方向相互垂直的空间分布声场。通过改变换能器空间角度,可以调节空间叠加声场的空间位置。In this embodiment, the
在一种进一步优选的实施例中,θ1、θ2和θ3均为120°,三个换能器的频率均相同;参照图2,为本实施例中的空间绝对声压分布仿真结果图。In a further preferred embodiment, θ1, θ2 and θ3 are all 120°, and the frequencies of the three transducers are all the same; refer to FIG. 2 , which is a simulation result diagram of the spatial absolute sound pressure distribution in this embodiment.
需要理解的是,其中It should be understood that the
实施例2Example 2
本实施例与实施例1大部分相同,以下仅写明不同之处。This embodiment is mostly the same as
参照图3,本实施例中,与实施例1的不同之处主要在于:第一换能器1、第二换能器2和第三换能器3均不包括背衬层。本实施例中,第一换能器1、第二换能器2和第三换能器3均为单向发射,背向有散射声场信号,空间声场在第一换能器1和第二换能器2的辐射方向的交叉处获得叠加增强,在第二换能器2背向和第三换能器3正向辐射方向的交叉处获得叠加增强,本实施例也可同时起到增强声场和增大声场作用范围的作用,可以获得辐射方向相互垂直的空间分布声场。进一步优选的实施例中,θ=120°,第一换能器1、第二换能器2和第三换能器3的中心频率均相同;参照图4,为本实施例中的空间绝对声压分布仿真结果图。Referring to FIG. 3 , in this embodiment, the main difference from
实施例3Example 3
本实施例与实施例1大部分相同,以下仅写明不同之处。This embodiment is mostly the same as
参照图5,本实施例中,与实施例1的不同之处主要在于:第一换能器1、第二换能器2和第三换能器3均不包括背衬层和匹配层,即各自只具有工作层。本实施例中,第一换能器1、第二换能器2和第三换能器3均为双向发射声场信号,空间声场在三个换能器两两之间的辐射方向的交叉处获得叠加增强,本实施例可以同时起到三处增强声场的作用,可以获得辐射方向夹角为θ的三处空间分布增强声场。进一步优选的实施例中,θ=120°,第一换能器1、第二换能器2和第三换能器3的中心频率均相同;参照图6,为本实施例中的空间绝对声压分布仿真结果图。Referring to Fig. 5, in this embodiment, the main difference from
实施例4Example 4
本实施例与实施例3大部分相同,以下仅写明不同之处。This embodiment is mostly the same as
参照图7,本实施例中,与实施例1的不同之处主要在于:第一、第二和第三换能器3的中心频率分别为为f1、f2、f3,且f1、f2、f3不同时相同。本实施例中,第一换能器1、第二换能器2和第三换能器3均为双向发射声场信号,空间声场在第一换能器1、第二换能器2和第三换能器3的辐射方向的交叉处获得叠加增强,本实施例可以同时起到三处增强混频声场的作用,可以获得辐射方向夹角为θ的三处空间分布增强混频声场,可以应用于不同深度的混频介入消融治疗,低频可以获得更高的穿透深度,对深层组织作用,高低频叠加区域可以获得更好的治疗效果。进一步优选的实施例中,θ=120°;参照图8,为本实施例中的空间绝对声压分布仿真结果图。Referring to Fig. 7, in this embodiment, the difference from
实施例5Example 5
在本实施例中,3个换能器中的1个还具备成像功能,参照图9,第一换能器1、第二换能器2在下方辐射方向的交叉处获得叠加增强声场,第三换能器3具备成像功能,使用时,通过第一换能器1、第二换能器2得到的增强声场进行治疗,然后通过旋转180°,利用第三换能器3结合必要的外部超声成像设备对治疗部位进行成像,从而能实时观察治疗部位的治疗效果。In this embodiment, one of the three transducers also has an imaging function. Referring to FIG. 9, the
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。Although the embodiment of the present invention has been disclosed as above, it is not limited to the use listed in the specification and implementation, it can be applied to various fields suitable for the present invention, and it can be easily understood by those skilled in the art Therefore, the invention is not limited to the specific details without departing from the general concept defined by the claims and their equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110711455.4A CN113414089B (en) | 2021-06-25 | 2021-06-25 | Non-focusing sound field enhanced transducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110711455.4A CN113414089B (en) | 2021-06-25 | 2021-06-25 | Non-focusing sound field enhanced transducer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113414089A CN113414089A (en) | 2021-09-21 |
CN113414089B true CN113414089B (en) | 2023-07-07 |
Family
ID=77716729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110711455.4A Active CN113414089B (en) | 2021-06-25 | 2021-06-25 | Non-focusing sound field enhanced transducer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113414089B (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI418782B (en) * | 2010-12-14 | 2013-12-11 | Ind Tech Res Inst | Ultrasonic transducer detector |
WO2017144288A1 (en) * | 2016-02-23 | 2017-08-31 | Koninklijke Philips N.V. | Ultrasound ablation device |
CN105944947B (en) * | 2016-06-29 | 2018-07-03 | 北京工业大学 | A coaxial double-arc non-penetrating gas baseline focusing air-coupled sensor |
WO2018007868A1 (en) * | 2016-07-08 | 2018-01-11 | Insightec, Ltd. | Systems and methods for ensuring coherence between multiple ultrasound transducer arrays |
CN107755230A (en) * | 2017-11-16 | 2018-03-06 | 中国计量大学 | The controllable high power altrasonic transducer of sound field |
CN109925615B (en) * | 2017-12-18 | 2021-11-19 | 深圳先进技术研究院 | Magnetic compatible brain ultrasonic stimulation device and manufacturing method thereof |
-
2021
- 2021-06-25 CN CN202110711455.4A patent/CN113414089B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113414089A (en) | 2021-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5906580A (en) | Ultrasound system and method of administering ultrasound including a plurality of multi-layer transducer elements | |
US8574174B2 (en) | Combination ultrasound-phototherapy transducer | |
CA2786197C (en) | Ultrasonic transducer | |
US20060184072A1 (en) | Ultrasonic medical treatment device with variable focal zone | |
CN102416225B (en) | Ultrasonic transducer | |
CN110314834A (en) | A kind of ultrasonic transducer and preparation method thereof | |
JP2011526808A (en) | How to use composite and pseudo 3D imaging with HIFU transducers | |
CN107661853A (en) | Annular self-focusing ultrasonic phased array transducers | |
US20110034808A1 (en) | Dual-Curvature Phased Array High-Intensity Focused Ultrasound Transducer for Tumor Therapy | |
Woodacre et al. | A low-cost miniature histotripsy transducer for precision tissue ablation | |
Sun et al. | Multi-frequency ultrasound transducers for medical applications: a survey | |
CN107802969A (en) | A kind of sphere self-focusing ultrasonic phased array transducers | |
Cochard et al. | Adaptive projection method applied to three-dimensional ultrasonic focusing and steering through the ribs | |
Bai et al. | Design and micromanufacturing technologies of focused piezoelectric ultrasound transducers for biomedical applications | |
CN1942218A (en) | Quasi-self-focusing high-intensity high-power ultrasonic transducer | |
JP2013509935A (en) | Curved ultrasonic HIFU transducer formed by tiled segments | |
JP2014519348A5 (en) | ||
CN113414089B (en) | Non-focusing sound field enhanced transducer | |
WO2019140927A1 (en) | Ultrasonic transducer and focused ultrasound treatment device | |
Woodacre et al. | Fabrication and characterization of a flat aperture Fresnel lens based histotripsy transducer | |
CN100446827C (en) | Self-focusing Array Ultrasound Transducer | |
CN216258774U (en) | Unfocused sound field enhancement transducer | |
Kotopoulis et al. | Lithium niobate transducers for MRI-guided ultrasonic microsurgery | |
Hoang et al. | Passive Cavitation Enhancement Mapping via an Ultrasound Dual-Mode phased array to monitor blood-brain barrier opening | |
CN204522037U (en) | A kind of matrix probe for ultrasonic physiotherapy table |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |