CN113411136B - A quadrature modulation secure optical communication device and method - Google Patents
A quadrature modulation secure optical communication device and method Download PDFInfo
- Publication number
- CN113411136B CN113411136B CN202110667732.6A CN202110667732A CN113411136B CN 113411136 B CN113411136 B CN 113411136B CN 202110667732 A CN202110667732 A CN 202110667732A CN 113411136 B CN113411136 B CN 113411136B
- Authority
- CN
- China
- Prior art keywords
- optical
- output end
- input end
- mode
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/54—Intensity modulation
- H04B10/541—Digital intensity or amplitude modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
- H04B10/556—Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
- H04B10/5561—Digital phase modulation
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
Abstract
本发明提供一种正交调制保密光通信装置和方法,装置包括脉冲光源发生器、信号调制模块、时域相位编码模块、传输光纤、时域相位解码模块、解调模块和运算器,其中:脉冲光源发生器的输出端与信号调制模块的输入端连接,信号调制模块对脉冲光源发生器发出的光信号同时进行相位和强度调制,信号调制模块的输出端与时域相位编码模块的输入端连接,时域相位编码模块对调制后的光信号进行编码,时域相位编码模块的输出端与传输光纤的输入端连接,传输光纤的输出端与时域相位解码模块的输入端连接,时域相位解码模块的输出端分别与解调模块的输入端和运算器的输入端连接,解调模块的输出端输出解调信号,运算器的输出端输出原始的信号强度信息。
The present invention provides a quadrature modulation secure optical communication device and method. The device includes a pulse light source generator, a signal modulation module, a time-domain phase encoding module, a transmission fiber, a time-domain phase decoding module, a demodulation module and an operator, wherein: The output end of the pulse light source generator is connected with the input end of the signal modulation module. The signal modulation module modulates the phase and intensity of the optical signal sent by the pulse light source generator at the same time. The output end of the signal modulation module is connected to the input end of the time domain phase encoding module. connection, the time domain phase encoding module encodes the modulated optical signal, the output end of the time domain phase encoding module is connected with the input end of the transmission fiber, the output end of the transmission fiber is connected with the input end of the time domain phase decoding module, the time domain The output end of the phase decoding module is respectively connected with the input end of the demodulation module and the input end of the operator, the output end of the demodulation module outputs the demodulated signal, and the output end of the operator outputs the original signal strength information.
Description
技术领域technical field
本发明涉及安全光保密通信技术领域,更具体地,涉及一种正交调制保密光通信装置和方法。The present invention relates to the technical field of safe optical security communication, and more particularly, relates to an orthogonal modulation security optical communication device and method.
背景技术Background technique
随着现代通信技术的快速发展,如何提高通信系统的物理层保密传输性能受到了广泛关注。物理层保密通信的目的是为了减少信息被窃听的风险,保密通信的过程主要包括加密、传输、接收和解密。发送方对待传输信息进行加密并传输,传输后的加密信息在接收端进行接收并解密,最终恢复原始信息。信息在传输过程中不可避免会受到非法窃听者的窃取、攻击和伪造。对合法接收方来说非常不利,因此如何有效提升系统安全性能是通信双方必须考虑的问题。With the rapid development of modern communication technology, how to improve the security transmission performance of the physical layer of the communication system has received extensive attention. The purpose of secure communication at the physical layer is to reduce the risk of information being eavesdropped. The process of secure communication mainly includes encryption, transmission, reception, and decryption. The sender encrypts and transmits the information to be transmitted, and the transmitted encrypted information is received and decrypted at the receiving end, and finally restores the original information. Information will inevitably be stolen, attacked and forged by illegal eavesdroppers during transmission. It is very unfavorable to the legal receiver, so how to effectively improve the system security performance is a problem that must be considered by both parties in communication.
光码分多址(OCDMA)是一种宽带光接入网解决方案,采用超短脉冲的相干光码分多址(OCDMA)技术具有低多址干扰、抗干扰能力强、保密性能好、容量大等优势,成为保密光通信的一种备选技术。在相干OCDMA系统中,相干光学编解码基于光场的相位和振幅进行。在典型的OCDMA系统中,根据发射机上的光学编码器分配给不同用户的唯一光码,将光脉冲编码成类似噪声的信号,多个用户可以共享相同的传输媒体,如时间和频谱。为提升光学编解码系统的安全性能,大量技术方法集中在时域或频域,处理相干宽带光信号的光学相位,提出的编码/解码器包括:超结构光纤布拉格光栅、平面光波电路、微环谐振腔等。这些传统的光学编码器/解码器码字通常固定,码长有限,同时,无法提供快速可重构的能力,难以适应保密通信的需要。此外,传统的光学编解码保密通信系统仅使用振幅键控、频移键控、相移键控等基本调制格式进行数据调制,系统的频谱效率较低,且系统的安全性能与调制格式密切相关。对单一的调制格式,通过传统光学编解码器件进行光学编码并不能保证系统的安全性能。Optical Code Division Multiple Access (OCDMA) is a broadband optical access network solution, using ultra-short pulse coherent optical code division multiple access (OCDMA) technology with low multiple access interference, strong anti-interference ability, good confidentiality performance, and capacity Large and other advantages, it has become an alternative technology for secure optical communication. In a coherent OCDMA system, coherent optical encoding and decoding is based on the phase and amplitude of the light field. In a typical OCDMA system, the optical pulse is encoded into a noise-like signal according to the unique optical code assigned to different users by the optical encoder on the transmitter, and multiple users can share the same transmission medium, such as time and spectrum. In order to improve the security performance of optical coding and decoding systems, a large number of technical methods focus on the time domain or frequency domain to process the optical phase of coherent broadband optical signals. The proposed coding/decoding devices include: superstructured fiber Bragg gratings, planar lightwave circuits, microring resonator etc. These traditional optical encoders/decoders usually have fixed codewords and limited code lengths. At the same time, they cannot provide fast reconfigurable capabilities and are difficult to meet the needs of secure communication. In addition, traditional optical codec security communication systems only use basic modulation formats such as amplitude keying, frequency shift keying, and phase shift keying for data modulation. The spectral efficiency of the system is low, and the security performance of the system is closely related to the modulation format. . For a single modulation format, optical encoding through traditional optical codec devices cannot guarantee the security performance of the system.
公开日为2017年08月15日,公开号为CN107046463A的中国专利公开了一种基于微环谐振腔的混沌保密通信系统,包括激光器,激光器依次通过光滤波器滤、隔离器、偏振控制器连接分支器的第一端口,分支器将连续波分成两路,其中第一路:分支器的第二端口依次通过第一微环谐振腔、合波器、第一掺铒光纤放大器、第一PD探测器连接差分放大器的第一端口;弱信息进入合波器,与来自第一微环谐振腔的混沌信号合成一路;第二路:分支器的第三端口依次通过第二微环谐振腔、第二掺铒光纤放大器、第二PD检测器连接差分放大器的第二端口;来自第一PD检测器与第二PD检测器信号进入差分放大器,相减后恢复出信息,差分放大器第三端口与电滤波器的第一端口相连,两路进入差分放大器相减后恢复出的信息从电滤波器的第二端口输出。该专利同样无法提供快速可重构的能力,难以适应保密通信的需要。The publication date is August 15, 2017, and the Chinese patent with the publication number CN107046463A discloses a chaotic security communication system based on a microring resonator, including a laser, which is sequentially connected by an optical filter, an isolator, and a polarization controller. The first port of the splitter, the splitter divides the continuous wave into two paths, the first path: the second port of the splitter passes through the first microring resonator, the multiplexer, the first erbium-doped fiber amplifier, the first PD The detector is connected to the first port of the differential amplifier; the weak information enters the combiner and is combined with the chaotic signal from the first microring resonator; the second way: the third port of the splitter passes through the second microring resonator, The second erbium-doped fiber amplifier and the second PD detector are connected to the second port of the differential amplifier; signals from the first PD detector and the second PD detector enter the differential amplifier, and the information is restored after subtraction, and the third port of the differential amplifier is connected to the differential amplifier. The first port of the electric filter is connected, and the information recovered after subtracting the two paths into the differential amplifier is output from the second port of the electric filter. This patent also fails to provide fast reconfigurable capabilities, and is difficult to meet the needs of secure communication.
发明内容Contents of the invention
本发明的首要目的是提供一种正交调制保密光通信装置,解决传统光学编码/解码器不可快速重构,系统安全性和频谱效率低的问题,在保证安全性的同时提高系统的频谱效率。The primary purpose of the present invention is to provide a quadrature modulation secure optical communication device, which solves the problems that the traditional optical encoder/decoder cannot be reconfigured quickly, and the system security and spectrum efficiency are low, and improves the system spectrum efficiency while ensuring security .
本发明的次要目的是提供一种正交调制保密光通信方法。The secondary purpose of the present invention is to provide a quadrature modulation secure optical communication method.
为解决上述技术问题,本发明的技术方案如下:In order to solve the problems of the technologies described above, the technical solution of the present invention is as follows:
一种正交调制保密光通信装置,包括脉冲光源发生器、信号调制模块、时域相位编码模块、传输光纤、时域相位解码模块、解调模块和运算器,其中:A quadrature modulation secure optical communication device, comprising a pulse light source generator, a signal modulation module, a time-domain phase encoding module, a transmission fiber, a time-domain phase decoding module, a demodulation module and an arithmetic unit, wherein:
所述脉冲光源发生器的输出端与所述信号调制模块的输入端连接,所述信号调制模块对所述脉冲光源发生器发出的光信号同时进行相位和强度调制,所述信号调制模块的输出端与所述时域相位编码模块的输入端连接,所述时域相位编码模块对调制后的光信号进行编码,所述时域相位编码模块的输出端与传输光纤的输入端连接,所述传输光纤的输出端与所述时域相位解码模块的输入端连接,所述时域相位解码模块的输出端分别与解调模块的输入端和运算器的输入端连接,所述解调模块的输出端输出解调信号,所述运算器的输出端输出原始的信号强度信息。The output end of the pulse light source generator is connected to the input end of the signal modulation module, and the signal modulation module simultaneously performs phase and intensity modulation on the optical signal sent by the pulse light source generator, and the output of the signal modulation module connected to the input end of the time-domain phase encoding module, the time-domain phase encoding module encodes the modulated optical signal, the output end of the time-domain phase encoding module is connected to the input end of the transmission fiber, and the The output end of the transmission fiber is connected to the input end of the time domain phase decoding module, the output end of the time domain phase decoding module is respectively connected to the input end of the demodulation module and the input end of the arithmetic unit, and the input end of the demodulation module The output end outputs the demodulated signal, and the output end of the arithmetic unit outputs original signal strength information.
优选地,所述信号调制模块包括QPSK调制器和CSK调制器,其中,所述脉冲光源发生器的输出端与所述QPSK调制器的输入端连接,所述QPSK调制器对所述脉冲光源发生器发出的光信号进行QPSK调制,所述QPSK调制器的输出端与所述CSK调制器的输入端连接,所述CSK调制器对经QPSK调制后的光信号进行CSK调制,所述CSK调制器具有两个输出端,所述时域相位编码模块具有两个输入端,所述CSK调制器的两个输出端与所述时域相位编码模块的两个输入端连接。Preferably, the signal modulation module includes a QPSK modulator and a CSK modulator, wherein the output end of the pulse light source generator is connected to the input end of the QPSK modulator, and the QPSK modulator generates The optical signal sent by the QPSK modulator is QPSK modulated, the output end of the QPSK modulator is connected to the input end of the CSK modulator, and the CSK modulator performs CSK modulation on the QPSK modulated optical signal, and the CSK modulator It has two output terminals, the time-domain phase encoding module has two input terminals, and the two output terminals of the CSK modulator are connected to the two input terminals of the time-domain phase encoding module.
优选地,所述解调模块包括QPSK解调器,其中所述时域相位解码模块的输出端与QPSK解调器的输入端连接,所述QPSK解调器对光信号进行QPSK解调,所述QPSK解调器的输出端输出QPSK解调后的光信号。Preferably, the demodulation module includes a QPSK demodulator, wherein the output terminal of the time-domain phase decoding module is connected to the input terminal of the QPSK demodulator, and the QPSK demodulator performs QPSK demodulation on the optical signal, so The output terminal of the QPSK demodulator outputs the optical signal after QPSK demodulation.
优选地,所述时域相位编码模块包括第一单模光纤、第二单模光纤、第三单模光纤、第四单模光纤、第一相位调制器、第二相位调制器、第一PRBS生成器和第二PRBS生成器,其中:Preferably, the time-domain phase encoding module includes a first single-mode fiber, a second single-mode fiber, a third single-mode fiber, a fourth single-mode fiber, a first phase modulator, a second phase modulator, a first PRBS generator and a second PRBS generator, where:
所述第一单模光纤的输入端与所述CSK调制器的一个输出端连接,所述第一单模光纤的输出端与所述第一相位调制器的一个输入端连接,所述第一相位调制器的另一输入端与所述第一PRBS生成器的输出端连接,所述第一PRBS生成器生成第一驱动信号驱动第一相位调制器生成随机光相位,所述第一相位调制器的输出端与所述第二单模光纤的输入端连接,所述第二单模光纤的输出端与所述传输光纤连接;The input end of the first single-mode optical fiber is connected to an output end of the CSK modulator, the output end of the first single-mode optical fiber is connected to an input end of the first phase modulator, and the first The other input end of the phase modulator is connected to the output end of the first PRBS generator, and the first PRBS generator generates a first drive signal to drive the first phase modulator to generate a random optical phase, and the first phase modulator The output end of the device is connected to the input end of the second single-mode optical fiber, and the output end of the second single-mode optical fiber is connected to the transmission optical fiber;
所述第三单模光纤的输入端与所述CSK调制器的另一个输出端连接,所述第三单模光纤的输出端与所述第二相位调制器的一个输入端连接,所述第二相位调制器的另一输入端与所述第二PRBS生成器的输出端连接,所述第二PRBS生成器生成第二驱动信号驱动第二相位调制器生成随机光相位,所述第二相位调制器的输出端与所述第四单模光纤的输入端连接,所述第四单模光纤的输出端与所述传输光纤连接。The input end of the third single-mode optical fiber is connected to the other output end of the CSK modulator, the output end of the third single-mode optical fiber is connected to an input end of the second phase modulator, and the first The other input end of the two-phase modulator is connected to the output end of the second PRBS generator, and the second PRBS generator generates a second driving signal to drive the second phase modulator to generate a random optical phase, and the second phase The output end of the modulator is connected to the input end of the fourth single-mode optical fiber, and the output end of the fourth single-mode optical fiber is connected to the transmission optical fiber.
优选地,还包括第一光耦合器和第一分束器,所述第二单模光纤的输出端和第四单模光纤的输出端通过所述第一光耦合器耦合输入至所述传输光纤,所述时域相位解码模块具有两个输入端,所述传输光纤的输出端通过所述第一分束器分解为两束光信号,分别输入所述时域相位解码模块的两个输入端。Preferably, it also includes a first optical coupler and a first beam splitter, the output end of the second single-mode fiber and the output end of the fourth single-mode fiber are coupled to the transmission through the first optical coupler An optical fiber, the time-domain phase decoding module has two input ends, the output end of the transmission fiber is decomposed into two beams of optical signals by the first beam splitter, and respectively input to the two input ends of the time-domain phase decoding module end.
优选地,所述时域相位解码模块包括第五单模光纤、第六单模光纤、第七单模光纤、第八单模光纤、第三相位调制器、第四相位调制器、第三PRBS生成器和第四PRBS生成器,其中:Preferably, the time-domain phase decoding module includes a fifth single-mode fiber, a sixth single-mode fiber, a seventh single-mode fiber, an eighth single-mode fiber, a third phase modulator, a fourth phase modulator, a third PRBS generator and a fourth PRBS generator, wherein:
所述第五单模光纤的输入端输入经所述第一分束器分解的一束光信号,所述第五单模光纤的输出端与所述第三相位调制器的一个输入端连接,所述第三相位调制器的另一输入端与所述第三PRBS生成器的输出端连接,所述第三PRBS生成器生成第三驱动信号驱动第三相位调制器生成随机光相位,所述第三相位调制器的输出端与所述第六单模光纤的输入端连接,所述第六单模光纤的输出端分别与所述解调模块的输入端和运算器的输入端连接;The input end of the fifth single-mode optical fiber inputs a bundle of optical signals decomposed by the first beam splitter, and the output end of the fifth single-mode optical fiber is connected to an input end of the third phase modulator, The other input end of the third phase modulator is connected to the output end of the third PRBS generator, the third PRBS generator generates a third drive signal to drive the third phase modulator to generate a random optical phase, the The output end of the third phase modulator is connected to the input end of the sixth single-mode optical fiber, and the output end of the sixth single-mode optical fiber is respectively connected to the input end of the demodulation module and the input end of the arithmetic unit;
所述第七单模光纤的输入端输入经所述第一分束器分解的另一束光信号,所述第七单模光纤的输出端与所述第四相位调制器的一个输入端连接,所述第四相位调制器的另一输入端与所述第四PRBS生成器的输出端连接,所述第四PRBS生成器生成第四驱动信号驱动第四相位调制器生成随机光相位,所述第四相位调制器的输出端与所述第八单模光纤的输入端连接,所述第八单模光纤的输出端分别与所述解调模块的输入端和运算器的输入端连接。The input end of the seventh single-mode fiber inputs another beam of optical signals decomposed by the first beam splitter, and the output end of the seventh single-mode fiber is connected to an input end of the fourth phase modulator , the other input end of the fourth phase modulator is connected to the output end of the fourth PRBS generator, and the fourth PRBS generator generates a fourth drive signal to drive the fourth phase modulator to generate a random optical phase, so The output end of the fourth phase modulator is connected to the input end of the eighth single-mode optical fiber, and the output end of the eighth single-mode optical fiber is respectively connected to the input end of the demodulation module and the input end of the arithmetic unit.
优选地,还包括第二分束器、第三分束器、第二光耦合器、第一光电探测器和第二光电探测器,所述第六单模光纤的输出端通过所述第二分束器分成两束光信号,所述第八单模光纤的输出端通过所述第三分束器分成两束光信号,所述第二分束器输出的其中一束光信号与第八单模光纤输出的其中一束光信号通过所述第二光耦合器输入至所述解调模块,所述第一光电探测器的输入端输入经所述第二分束器分解的另外一束光信号,所述第一光电探测器的输出端与所述运算器的同相输入端连接,所述第二光电探测器的输入端输入经所述第三分束器分解的另外一束光信号,所述第二光电探测器的输出端与所述运算器的反相输入端连接。Preferably, it also includes a second beam splitter, a third beam splitter, a second optical coupler, a first photodetector and a second photodetector, the output end of the sixth single-mode fiber passes through the second The beam splitter is divided into two beams of optical signals, and the output end of the eighth single-mode optical fiber is divided into two beams of optical signals by the third beam splitter, and one beam of optical signals output by the second beam splitter is connected to the eighth optical signal. One of the optical signals output by the single-mode optical fiber is input to the demodulation module through the second optical coupler, and the input end of the first photodetector is input to the other optical signal split by the second beam splitter. An optical signal, the output end of the first photodetector is connected to the non-inverting input end of the operator, and the input end of the second photodetector inputs another optical signal decomposed by the third beam splitter , the output end of the second photodetector is connected to the inverting input end of the arithmetic unit.
优选地,所述第一单模光纤、第三单模光纤、第五单模光纤和第七单模光纤为正色散单模光纤,所述第二单模光纤、第四单模光纤、第六单模光纤和第八单模光纤为反色散单模光纤。Preferably, the first single-mode fiber, the third single-mode fiber, the fifth single-mode fiber and the seventh single-mode fiber are positive dispersion single-mode fibers, and the second single-mode fiber, the fourth single-mode fiber, the The six single-mode fibers and the eighth single-mode fiber are anti-dispersion single-mode fibers.
优选地,还包括光放大器,所述光放大器设置于传输光纤的传输途中,用于放大传输光纤中的光信号。Preferably, an optical amplifier is also included, and the optical amplifier is arranged on the transmission way of the transmission optical fiber, and is used for amplifying the optical signal in the transmission optical fiber.
一种正交调制保密光通信方法,所述方法应用于上述所述的正交调制保密光通信装置,包括以下步骤:A quadrature modulation secure optical communication method, the method is applied to the above-mentioned quadrature modulation secure optical communication device, comprising the following steps:
将脉冲光源发生器101产生的光脉冲输入到QPSK调制器201产生正交相移键控光信号,将光信号输入到CSK调制器301以加载强度信息,CSK调制器301的两路输出分别连接到时域相位编码模块4的两个输入端,接着经过相位编码加密的信号通过第一光耦合器501耦合进传输光纤中,传输光纤中使用到光放大器601来放大衰减的光信号,接着通过第一分束器701进入到时域相位解码模块8用于解除随机光相位,时域相位解码模块8的输出分别通过两个分束器,分束器的输出一路用于解调QPSK信号,一路经过平衡探测器探测经过运算器运算得到原始的强度信息。The optical pulse generated by the pulse
与现有技术相比,本发明技术方案的有益效果是:Compared with the prior art, the beneficial effects of the technical solution of the present invention are:
本发明利用调制模块对光信息同时进行相位和强度调制,相比于单一调制维度增加了一个调制维度,提升了系统传输能力。运用时域相位编码模块,通过在超短光脉冲的不同光谱分量上施加不同的相位偏移来实现光谱相位编码,对经调制后的信号进行加密,有效提升了系统的安全性能和可搭载的信息传输速率。The present invention utilizes the modulation module to simultaneously perform phase and intensity modulation on optical information, which increases a modulation dimension compared with a single modulation dimension and improves system transmission capability. Using the time-domain phase encoding module, the spectral phase encoding is realized by applying different phase offsets to different spectral components of the ultrashort optical pulse, and the modulated signal is encrypted, which effectively improves the security performance of the system and can be carried information transfer rate.
附图说明Description of drawings
图1为本发明的装置示意图。Figure 1 is a schematic diagram of the device of the present invention.
图中,101为脉冲光源发生器,201为QPSK调制器,301为CSK调制器,4为时域相位编码模块,401为第一单模光纤,402为第三单模光纤,403为第一相位调制器,404为第二相位调制器,405为第二单模光纤,406为第四单模光纤,407为第一PRBS生成器,408为第二PRBS生成器,501为第一光耦合器,601为光放大器,701为第一分束器,8为时域相位解码模块,801为第五单模光纤,802为第七单模光纤,803为第三相位调制器,804为第四相位调制器,805为第六单模光纤,806为第八单模光纤,807为第三PRBS生成器,808为第四PRBS生成器,901为第二分束器,1001为第三分束器,1101为第二光耦合器,1201为QPSK解调器,1301为第一光电探测器,1401为第二光电探测器,1501为运算器。In the figure, 101 is a pulse light source generator, 201 is a QPSK modulator, 301 is a CSK modulator, 4 is a time-domain phase encoding module, 401 is the first single-mode fiber, 402 is the third single-mode fiber, 403 is the first Phase modulator, 404 is the second phase modulator, 405 is the second single-mode fiber, 406 is the fourth single-mode fiber, 407 is the first PRBS generator, 408 is the second PRBS generator, 501 is the first
具体实施方式Detailed ways
附图仅用于示例性说明,不能理解为对本专利的限制;The accompanying drawings are for illustrative purposes only and cannot be construed as limiting the patent;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;In order to better illustrate this embodiment, some parts in the drawings will be omitted, enlarged or reduced, and do not represent the size of the actual product;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。For those skilled in the art, it is understandable that some well-known structures and descriptions thereof may be omitted in the drawings.
下面结合附图和实施例对本发明的技术方案做进一步的说明。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and embodiments.
实施例1Example 1
本实施例提供一种正交调制保密光通信装置,如图1所示,包括脉冲光源发生器101、信号调制模块、时域相位编码模块4、传输光纤、时域相位解码模块8、解调模块和运算器1501,其中:This embodiment provides a quadrature modulation secure optical communication device, as shown in FIG. Module and
所述脉冲光源发生器101的输出端与所述信号调制模块的输入端连接,所述信号调制模块对所述脉冲光源发生器101发出的光信号同时进行相位和强度调制,所述信号调制模块的输出端与所述时域相位编码模块4的输入端连接,所述时域相位编码模块4对调制后的光信号进行编码,所述时域相位编码模块4的输出端与传输光纤的输入端连接,所述传输光纤的输出端与所述时域相位解码模块8的输入端连接,所述时域相位解码模块8的输出端分别与解调模块的输入端和运算器1501的输入端连接,所述解调模块的输出端输出解调信号,所述运算器1501的输出端输出原始的信号强度信息。The output end of the pulse
所述信号调制模块包括QPSK调制器201和CSK调制器301,其中,所述脉冲光源发生器101的输出端与所述QPSK调制器201的输入端连接,所述QPSK调制器201对所述脉冲光源发生器101发出的光信号进行QPSK调制,所述QPSK调制器201的输出端与所述CSK调制器301的输入端连接,所述CSK调制器301对经QPSK调制后的光信号进行CSK调制,所述CSK调制器301具有两个输出端,所述时域相位编码模块4具有两个输入端,所述CSK调制器301的两个输出端与所述时域相位编码模块4的两个输入端连接。The signal modulation module includes a
所述解调模块包括QPSK解调器1201,其中所述时域相位解码模块8的输出端与QPSK解调器1201的输入端连接,所述QPSK解调器1201对光信号进行QPSK解调,所述QPSK解调器1201的输出端输出QPSK解调后的光信号。The demodulation module includes a
所述时域相位编码模块4包括第一单模光纤401、第二单模光纤405、第三单模光纤402、第四单模光纤406、第一相位调制器403、第二相位调制器404、第一PRBS生成器407和第二PRBS生成器408,其中:The time-domain
所述第一单模光纤401的输入端与所述CSK调制器301的一个输出端连接,所述第一单模光纤401的输出端与所述第一相位调制器403的一个输入端连接,所述第一相位调制器403的另一输入端与所述第一PRBS生成器407的输出端连接,所述第一PRBS生成器407生成第一驱动信号驱动第一相位调制器403生成随机光相位,所述第一相位调制器403的输出端与所述第二单模光纤405的输入端连接,所述第二单模光纤405的输出端与所述传输光纤连接;The input end of the first single-mode
所述第三单模光纤402的输入端与所述CSK调制器301的另一个输出端连接,所述第三单模光纤402的输出端与所述第二相位调制器404的一个输入端连接,所述第二相位调制器404的另一输入端与所述第二PRBS生成器408的输出端连接,所述第二PRBS生成器408生成第二驱动信号驱动第二相位调制器404生成随机光相位,所述第二相位调制器404的输出端与所述第四单模光纤406的输入端连接,所述第四单模光纤406的输出端与所述传输光纤连接。The input end of the third single-mode
还包括第一光耦合器501和第一分束器701,所述第二单模光纤405的输出端和第四单模光纤406的输出端通过所述第一光耦合器501耦合输入至所述传输光纤,所述时域相位解码模块8具有两个输入端,所述传输光纤的输出端通过所述第一分束器701分解为两束光信号,分别输入所述时域相位解码模块8的两个输入端。Also includes a first
所述时域相位解码模块8包括第五单模光纤801、第六单模光纤805、第七单模光纤802、第八单模光纤806、第三相位调制器803、第四相位调制器804、第三PRBS生成器807和第四PRBS生成器808,其中:The time-domain
所述第五单模光纤801的输入端输入经所述第一分束器701分解的一束光信号,所述第五单模光纤801的输出端与所述第三相位调制器803的一个输入端连接,所述第三相位调制器803的另一输入端与所述第三PRBS生成器807的输出端连接,所述第三PRBS生成器807生成第三驱动信号驱动第三相位调制器803生成随机光相位,所述第三相位调制器803的输出端与所述第六单模光纤805的输入端连接,所述第六单模光纤805的输出端分别与所述解调模块的输入端和运算器1501的输入端连接;The input end of the fifth single-mode
所述第七单模光纤802的输入端输入经所述第一分束器701分解的另一束光信号,所述第七单模光纤802的输出端与所述第四相位调制器804的一个输入端连接,所述第四相位调制器804的另一输入端与所述第四PRBS生成器808的输出端连接,所述第四PRBS生成器808生成第四驱动信号驱动第四相位调制器804生成随机光相位,所述第四相位调制器804的输出端与所述第八单模光纤806的输入端连接,所述第八单模光纤806的输出端分别与所述解调模块的输入端和运算器1501的输入端连接。The input end of the seventh single-mode
还包括第二分束器901、第三分束器1001、第二光耦合器1101、第一光电探测器1301和第二光电探测器1401,所述第六单模光纤805的输出端通过所述第二分束器901分成两束光信号,所述第八单模光纤806的输出端通过所述第三分束器1001分成两束光信号,所述第二分束器901输出的其中一束光信号与第八单模光纤806输出的其中一束光信号通过所述第二光耦合器1101输入至所述解调模块,所述第一光电探测器1301的输入端输入经所述第二分束器901分解的另外一束光信号,所述第一光电探测器1301的输出端与所述运算器1501的同相输入端连接,所述第二光电探测器1401的输入端输入经所述第三分束器1001分解的另外一束光信号,所述第二光电探测器1401的输出端与所述运算器1501的反相输入端连接。It also includes a
所述第一单模光纤401、第三单模光纤402、第五单模光纤801和第七单模光纤802为正色散单模光纤,正色散单模光纤用于在时域展宽脉冲,接着输入脉冲的不同频谱分量将在一个比特持续时间内扩展到不同的时间位置,所述第二单模光纤405、第四单模光纤406、第六单模光纤805和第八单模光纤806为反色散单模光纤,反色散单模光纤对展宽脉冲进行时域压缩,最终达到相位编码加密的目的。The first single-mode
还包括光放大器601,所述光放大器601设置于传输光纤的传输途中,用于放大传输光纤中的光信号。An
实施例2Example 2
本实施例提供一种正交调制保密光通信方法,所述方法应用于实施例1所述的正交调制保密光通信装置,包括以下步骤:This embodiment provides a quadrature modulation secure optical communication method, the method is applied to the quadrature modulation secure optical communication device described in Embodiment 1, including the following steps:
将脉冲光源发生器101产生的光脉冲输入到QPSK调制器201产生正交相移键控光信号,将光信号输入到CSK调制器301以加载强度信息,CSK调制器301的两路输出分别连接到时域相位编码模块4的两个输入端,接着经过相位编码加密的信号通过第一光耦合器501耦合进传输光纤中,传输光纤中使用到光放大器601来放大衰减的光信号,接着通过第一分束器701进入到时域相位解码模块8用于解除随机光相位,时域相位解码模块8的输出分别通过两个分束器,分束器的输出一路用于解调QPSK信号,一路经过平衡探测器探测经过运算器运算得到原始的强度信息。The optical pulse generated by the pulse
相同或相似的标号对应相同或相似的部件;The same or similar reference numerals correspond to the same or similar components;
附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制;The terms describing the positional relationship in the drawings are only for illustrative purposes and cannot be interpreted as limitations on this patent;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Apparently, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the implementation of the present invention. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. All modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110667732.6A CN113411136B (en) | 2021-06-16 | 2021-06-16 | A quadrature modulation secure optical communication device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110667732.6A CN113411136B (en) | 2021-06-16 | 2021-06-16 | A quadrature modulation secure optical communication device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113411136A CN113411136A (en) | 2021-09-17 |
CN113411136B true CN113411136B (en) | 2022-11-08 |
Family
ID=77684396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110667732.6A Active CN113411136B (en) | 2021-06-16 | 2021-06-16 | A quadrature modulation secure optical communication device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113411136B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114142933B (en) * | 2021-11-26 | 2023-04-25 | 深圳华中科技大学研究院 | Secret communication device based on multi-core optical fiber and communication method thereof |
CN115021826B (en) * | 2022-04-29 | 2024-04-16 | 清华大学 | Optical computing communication intelligent encoding and decoding computing system and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109478928A (en) * | 2016-07-28 | 2019-03-15 | 日本电信电话株式会社 | Optical transmitter, photoreceiver, light data conveyer system, light transmitting method and method for optical reception |
CN110535529A (en) * | 2019-08-30 | 2019-12-03 | 湖南工业大学 | A kind of two dimensional constellation auxiliary CSK Transmission system based on OCC system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7729616B2 (en) * | 2005-02-18 | 2010-06-01 | Telcordia Technologies, Inc. | Phase chip frequency-bins optical code division multiple access |
US7620328B2 (en) * | 2005-01-31 | 2009-11-17 | Telcordia Technologies, Inc. | Multi-wavelength optical CDMA with differential encoding and bipolar differential detection |
EP3078134B1 (en) * | 2014-01-10 | 2019-01-09 | Huawei Technologies Co., Ltd. | Method for dual polarization coherent optical modulation |
-
2021
- 2021-06-16 CN CN202110667732.6A patent/CN113411136B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109478928A (en) * | 2016-07-28 | 2019-03-15 | 日本电信电话株式会社 | Optical transmitter, photoreceiver, light data conveyer system, light transmitting method and method for optical reception |
CN110535529A (en) * | 2019-08-30 | 2019-12-03 | 湖南工业大学 | A kind of two dimensional constellation auxiliary CSK Transmission system based on OCC system |
Also Published As
Publication number | Publication date |
---|---|
CN113411136A (en) | 2021-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106533565B (en) | Quantum secret communication method and apparatus | |
CN113411136B (en) | A quadrature modulation secure optical communication device and method | |
CN109981174B (en) | Optical Frequency Hopping System and Transmitter Based on Optical Circulator | |
JPH0787428B2 (en) | Digital information transmission method and apparatus | |
CN113179149B (en) | A secure optical communication system based on double chaotic phase encoding encryption | |
CN108964782B (en) | A Physical Layer Security Enhancement Method for Free Space Optical Networks | |
Shao et al. | High-speed secure key distribution using local polarization modulation driven by optical chaos in reciprocal fiber channel | |
CN109088716B (en) | A Bidirectional Chaotic Communication System Based on Vertical Surface Laser | |
Qiu et al. | Secure key distribution based on the polarization reciprocity of fiber and a coherent reception architecture | |
CN116192284B (en) | Device and method for traceless encryption in physical layer of optical communication system | |
CN114142933A (en) | A kind of security communication device and communication method based on multi-core optical fiber | |
CN109004991A (en) | A kind of anti-intercepting and capturing FSO- optical fiber hybrid network | |
Singh et al. | Novel security enhancement technique against eavesdropper for OCDMA system using 2-D modulation format with code switching scheme | |
CN114793157B (en) | Quantum digital signature system and method based on orbital angular momentum | |
Ziyadi et al. | Tunable optical de-aggregation of a 40-Gbit/s 16-QAM signal into two 20-Gbit/s 4-PAM signals using a coherent frequency comb and nonlinear processing | |
CN114362914B (en) | A phase chaos laser communication system based on time-delay dual-balanced detection structure | |
CN115883089A (en) | Polarization selection phase modulation interferometer, quantum key distribution device, system and network | |
CN115996093A (en) | Physical layer encryption system and method based on optical carrier driving chaotic laser synchronization | |
CN210578570U (en) | Integrated waveguide decoding device and quantum key distribution system | |
CN114696918B (en) | Communication device and communication method thereof | |
WO2005046114A2 (en) | Coherent-states based quantum data-encryption through optically-amplified wdm communication networks | |
CN110601768B (en) | Integrated waveguide decoding device and quantum key distribution system | |
Liang et al. | Frequency‐Division Multiplexing Continuous Variable Quantum Dense Coding with Broadband Entanglement | |
Liu et al. | Optical Covert Communication Based on Microwave Photonic Filter | |
Wang et al. | Real-time stealth optical transmission via fast laser frequency dithering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |