CN113409335B - Image segmentation method based on strong and weak joint semi-supervised intuitive fuzzy clustering - Google Patents
Image segmentation method based on strong and weak joint semi-supervised intuitive fuzzy clustering Download PDFInfo
- Publication number
- CN113409335B CN113409335B CN202110693319.7A CN202110693319A CN113409335B CN 113409335 B CN113409335 B CN 113409335B CN 202110693319 A CN202110693319 A CN 202110693319A CN 113409335 B CN113409335 B CN 113409335B
- Authority
- CN
- China
- Prior art keywords
- membership
- strong
- weak
- degree
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 66
- 238000003709 image segmentation Methods 0.000 title claims abstract description 19
- 230000011218 segmentation Effects 0.000 claims abstract description 29
- 238000012545 processing Methods 0.000 claims abstract description 10
- 238000004422 calculation algorithm Methods 0.000 claims description 20
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000010606 normalization Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 claims 2
- 238000011156 evaluation Methods 0.000 claims 2
- 238000000844 transformation Methods 0.000 claims 2
- 230000009466 transformation Effects 0.000 claims 2
- JXASPPWQHFOWPL-UHFFFAOYSA-N Tamarixin Natural products C1=C(O)C(OC)=CC=C1C1=C(OC2C(C(O)C(O)C(CO)O2)O)C(=O)C2=C(O)C=C(O)C=C2O1 JXASPPWQHFOWPL-UHFFFAOYSA-N 0.000 claims 1
- 238000005457 optimization Methods 0.000 abstract description 2
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 24
- 238000004088 simulation Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000010380 label transfer Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 244000203593 Piper nigrum Species 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
- G06F18/2155—Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the incorporation of unlabelled data, e.g. multiple instance learning [MIL], semi-supervised techniques using expectation-maximisation [EM] or naïve labelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域Technical Field
本发明属于数字图像处理领域,具体涉及一种图像分割方法,可用于自然图像的识别和计算机视觉的预处理。The invention belongs to the field of digital image processing, and in particular relates to an image segmentation method, which can be used for natural image recognition and computer vision preprocessing.
背景技术Background Art
图像分割作为图像处理与后续图像理解之间的一个枢纽环节,一直是学者们研究的热点问题,其占有着越来越重要的地位。图像分割的目的是根据图像的自身特性,将其划分成若干个具有不同属性且无交集的子区域,每个子区域内的各个像素都具有不同程度的相似特性,不同子区域之间的像素特征也具有显著的差异性。近年来,图像分割技术已在卫星遥感、智能安防、无人驾驶、医学图像处理和生物特征识别等领域提供了可靠且有效的帮助。在实际应用过程中,随着分割场景的日趋复杂化,人们对图像分割技术的性能要求也越来越严格,相继出现了基于阈值、区域、聚类、边缘和人工神经网络的分割算法。其中,基于聚类的图像分割算法具有计算复杂度低、算法稳定性好、运行速度快等优点,受到了学者们的普遍关注。常用的聚类方法主要包括硬聚类算法、模糊聚类算法、层次聚类算法、密度峰值聚类算法以及谱聚类算法等。模糊聚类算法立足于模糊集理论的基本思想,对各个样本点数据给出了它们对于不同类别的隶属度,能够贴切地表示客观世界中事物亦此亦彼的特点,受到了学者们的广泛关注。Image segmentation, as a key link between image processing and subsequent image understanding, has always been a hot topic for scholars to study, and it occupies an increasingly important position. The purpose of image segmentation is to divide the image into several sub-regions with different attributes and no intersection according to its own characteristics. Each pixel in each sub-region has different degrees of similarity, and the pixel features between different sub-regions also have significant differences. In recent years, image segmentation technology has provided reliable and effective help in the fields of satellite remote sensing, intelligent security, unmanned driving, medical image processing and biometric recognition. In the process of practical application, with the increasing complexity of segmentation scenes, people have more and more stringent requirements on the performance of image segmentation technology, and segmentation algorithms based on thresholds, regions, clustering, edges and artificial neural networks have emerged one after another. Among them, the image segmentation algorithm based on clustering has the advantages of low computational complexity, good algorithm stability and fast running speed, and has attracted widespread attention from scholars. Commonly used clustering methods mainly include hard clustering algorithm, fuzzy clustering algorithm, hierarchical clustering algorithm, density peak clustering algorithm and spectral clustering algorithm. The fuzzy clustering algorithm is based on the basic idea of fuzzy set theory. It gives the degree of membership of each sample point data to different categories. It can accurately represent the characteristics of both things in the objective world and has attracted widespread attention from scholars.
刘健庄于1992年提出了基于二维直方图的图像模糊聚类分割方法,该方法是一种基于局部搜索的无监督聚类方法,其除了考虑像素点的灰度信息外还考虑了像素点与其邻域的空间相关信息,利用经典的欧氏距离构造了模糊C-均值聚类目标函数,迭代计算得到像素点的隶属度,并由各像素点的隶属度实现图像分割。该方法在实现图像分割时存在两个方面的问题:一是未利用人工可以获得的少量先验信息,导致其对于最优解的搜索具有盲目性,容易陷入局部最优,从而造成对背景分布不均的图像分割性能不理想;二是未考虑图像中更多的模糊性和不确定性,使得对于某些模糊像素的分割并不准确。针对第一个问题,Yasunori等人在2009年提出了将监督隶属度引入到模糊C-均值聚类算法中,构建了半监督模糊C-均值聚类算法,其利用少量监督信息对聚类过程进行指导,提高了聚类分割精度。针对第二个问题,Chaira等人发现引入直觉模糊集理论可以考虑数据更多的模糊性,使得对模糊数据的分类更加精确,提出了基于直觉模糊集的直觉模糊聚类方法。In 1992, Liu Jianzhuang proposed a fuzzy clustering segmentation method for images based on two-dimensional histograms. This method is an unsupervised clustering method based on local search. In addition to considering the grayscale information of pixels, it also considers the spatial correlation information between pixels and their neighborhoods. The fuzzy C-means clustering objective function is constructed using the classic Euclidean distance. The membership of pixels is iteratively calculated, and image segmentation is achieved based on the membership of each pixel. This method has two problems when implementing image segmentation: first, it does not use a small amount of prior information that can be obtained manually, resulting in blindness in the search for the optimal solution, which is easy to fall into the local optimum, resulting in unsatisfactory performance for image segmentation with uneven background distribution; second, it does not consider more fuzziness and uncertainty in the image, making the segmentation of some fuzzy pixels inaccurate. In response to the first problem, Yasunori et al. proposed in 2009 to introduce supervised membership into the fuzzy C-means clustering algorithm and constructed a semi-supervised fuzzy C-means clustering algorithm, which uses a small amount of supervised information to guide the clustering process and improves the accuracy of clustering segmentation. In response to the second question, Chaira et al. found that introducing intuitionistic fuzzy set theory can take into account more fuzziness of data, making the classification of fuzzy data more accurate, and proposed an intuitionistic fuzzy clustering method based on intuitionistic fuzzy sets.
但是以上两种方法均使用经典的欧氏距离来构造模糊聚类目标函数,仅考虑了线性可分数据的情况,而实际上在绝大多数图像分割问题中,要处理的数据往往是线性不可分的,所以使用经典的欧氏距离来构造模糊聚类目标函数是不合理的。为了能够处理图像分割中线性不可分的情况,学者们又提出引入核函数的方法,将原始空间中线性不可分数据变换到一个更高维度的特征空间中,在高维度的特征空间内找到一个线性函数实现数据的划分。2012年,Li等人提出了基于邻近度的半监督核模糊C-均值数据聚类算法,该方法将半监督和KFCM算法有效结合不仅可以使线性不可分的数据得以划分,而且可以利用用户输入数据之间的邻近性来对聚类进行指导,最后通过在合成数据上的仿真实验验证了该方法的可行性和优越性。但是该方法由于依然未考虑数据更多的模糊性、未对人工先验信息进行充分地利用,因而存在对初始值比较敏感,容易陷入局部最优解,对于背景分布不均的图像分割性能不理想的问题。However, both of the above methods use the classic Euclidean distance to construct the fuzzy clustering objective function, and only consider the case of linearly separable data. In fact, in most image segmentation problems, the data to be processed is often linearly inseparable, so it is unreasonable to use the classic Euclidean distance to construct the fuzzy clustering objective function. In order to deal with the linearly inseparable situation in image segmentation, scholars have proposed the method of introducing kernel functions to transform the linearly inseparable data in the original space into a higher-dimensional feature space, and find a linear function in the high-dimensional feature space to achieve data division. In 2012, Li et al. proposed a semi-supervised kernel fuzzy C-means data clustering algorithm based on proximity. This method effectively combines semi-supervision and KFCM algorithms to not only divide linearly inseparable data, but also use the proximity between user input data to guide clustering. Finally, the feasibility and superiority of this method were verified through simulation experiments on synthetic data. However, since this method still does not consider more fuzziness of the data and does not make full use of artificial prior information, it is sensitive to the initial value, easily falls into the local optimal solution, and has unsatisfactory performance for image segmentation with uneven background distribution.
发明内容Summary of the invention
本发明的目的在于针对上有技术存在的不足,提供一种基于强弱联合半监督直觉模糊聚类的图像分割方法,以降低对初始值的敏感性,避免陷入局部最优,实现对低维线性不可分数据的分割,提高对背景分布不均的图像分割准确率。The purpose of the present invention is to address the shortcomings of the existing technologies and provide an image segmentation method based on strong and weak joint semi-supervised intuitive fuzzy clustering to reduce the sensitivity to initial values, avoid falling into local optimality, achieve the segmentation of low-dimensional linear inseparable data, and improve the accuracy of image segmentation with uneven background distribution.
为实现上述目的,本发明的技术包括:To achieve the above objectives, the technology of the present invention includes:
(1)输入待分割的图像X,并设置初始参数值:聚类数目k,最大迭代次数T=100,终止阈值ε=10-5;(1) Input the image to be segmented X and set the initial parameter values: number of clusters k, maximum number of iterations T = 100, termination threshold ε = 10 -5 ;
(2)在待分割图像X上进行人工划线标记,获取人工先验信息;(2) Manually mark the image X to be segmented to obtain artificial prior information;
(3)对待分割的图像X进行直觉模糊化处理,求出图像各个像素点xj对应的隶属度μ(xj)、非隶属度v(xj)、犹豫度π(xj);(3) Perform intuitive fuzzy processing on the image X to be segmented, and calculate the membership degree μ(x j ), non-membership degree v(x j ), and hesitation degree π(x j ) corresponding to each pixel point x j in the image;
(4)利用SLIC算法将待分割图像X划分成Q个不同的子区域R={R1,R2,…,Ri,…,RQ},其中Ri表示第i个子区域,每个子区域内像素都具有不同程度的相似性;(4) Using the SLIC algorithm, the image to be segmented X is divided into Q different sub-regions R = {R 1 , R 2 , …, R i , …, R Q }, where R i represents the i-th sub-region, and the pixels in each sub-region have different degrees of similarity;
(5)设计类标签传递的强弱联合半监督策略,利用人工标记的先验信息求出图像的强监督隶属度弱监督隶属度及初始直觉模糊聚类中心 (5) Design a strong and weak joint semi-supervised strategy for class label transfer, and use the artificially labeled prior information to calculate the strong supervised membership of the image Weakly supervised membership and initial intuitionistic fuzzy cluster centers
(5a)将人工标记的像素作为强标签YS,对强标签所在的超像素区域内的所有像素赋予与强标签相同的类别标签,作为区域标签传播后的弱标签YW,再将强标签YS和弱标签YW分别转化成强先验隶属度和弱先验隶属度 (5a) The manually labeled pixels are taken as strong labels YS, and all pixels in the superpixel region where the strong labels are located are assigned the same category labels as the strong labels as the weak labels YW after regional label propagation. Then, the strong labels YS and the weak labels YW are respectively converted into strong prior membership and weak prior membership
(5b)使用强先验隶属度和弱先验隶属度对无标记像素进行隶属度的估计,计算得到强估计隶属度和弱估计隶属度 (5b) Using strong prior membership and weak prior membership Estimate the membership of unlabeled pixels and calculate the strong estimated membership and weakly estimated membership
(5c)分别将强估计隶属度和弱估计隶属度与其各自对应的强先验隶属度和弱先验隶属度合并,作为类标签传递后的强监督隶属度和弱监督隶属度 (5c) respectively and weakly estimated membership Their corresponding strong prior membership and weak prior membership Merge as strong supervision membership after class label transfer and weakly supervised membership
(5d)将弱监督隶属度带入计算初始聚类中心ci(1),再对其做直觉模糊化处理得到初始直觉模糊聚类中心 (5d) The weak supervision membership Bring in Calculate the initial cluster center c i (1), and then perform intuitionistic fuzzy processing on it to obtain the initial intuitionistic fuzzy cluster center
(6)将核函数、强监督隶属度、弱监督隶属度引入到直觉模糊聚类目标函数中,设计强弱联合半监督直觉模糊聚类目标函数JLP-SKIFCM:(6) The kernel function, strong supervision membership and weak supervision membership are introduced into the intuitionistic fuzzy clustering objective function, and the strong and weak joint semi-supervised intuitionistic fuzzy clustering objective function J LP-SKIFCM is designed:
其中,表示一个具有N个像素点的彩色图像的直觉模糊集表示,为第j个像素xj的直觉模糊集表示,k是聚类数目,uij表示像素xj对于第i类的隶属度,满足 表示第i类的直觉模糊聚类中心,μ(ci)表示聚类中心ci对应的隶属度、v(ci)表示聚类中心ci对应的非隶属度、π(ci)表示聚类中心ci对应的犹豫度,η1是强监督项的权重指数,η2是弱监督项的权重指数,表示第j个像素点对于第i类的强监督隶属度,表示像素xj对于第i类的弱监督隶属度,表示引入核函数的直觉模糊距离度量;in, Represents the intuitionistic fuzzy set representation of a color image with N pixels. is the intuitive fuzzy set representation of the j-th pixel xj , k is the number of clusters, uij represents the membership of pixel xj to the i-th class, satisfying represents the intuitionistic fuzzy cluster center of the i-th category, μ( ci ) represents the membership corresponding to the cluster center ci , v( ci ) represents the non-membership corresponding to the cluster center ci , π( ci ) represents the hesitation corresponding to the cluster center ci , η1 is the weight index of the strong supervision item, η2 is the weight index of the weak supervision item, represents the strong supervision membership of the j-th pixel to the i-th category, represents the weakly supervised membership of pixel xj to the i-th category, Intuitionistic fuzzy distance metric that introduces kernel function;
(7)利用拉格朗日乘子法最小化目标函数JLP-SKIFCM,求出隶属度uij和直觉模糊聚类中心的更新式,并根据更新式迭代计算隶属度uij和直觉模糊聚类中心 (7) Use the Lagrange multiplier method to minimize the objective function J LP-SKIFCM and find the membership degree u ij and the intuitionistic fuzzy clustering center The update formula is used to iteratively calculate the membership degree u ij and the intuitionistic fuzzy clustering center according to the update formula
(8)判断迭代终止条件:若或迭代次数t>T,则获得隶属度矩阵U和直觉模糊聚类中心执行(9);否则,令t=t+1,返回迭代再次根据更新式计算隶属度uij和直觉模糊聚类中心 (8) Determine the iteration termination condition: If Or the number of iterations t>T, then the membership matrix U and the intuitionistic fuzzy clustering center are obtained Execute (9); otherwise, set t = t + 1, return to the iteration and calculate the membership degree u ij and the intuitionistic fuzzy cluster center again according to the updated formula
(9)利用获得的隶属度矩阵U根据最大隶属度原则对各个像素点进行分类,得到图像像素的聚类标签,输出图像X的分割结果。(9) Using the obtained membership matrix U, classify each pixel according to the maximum membership principle, obtain the clustering label of the image pixel, and output the segmentation result of the image X.
本发明与现有技术相比,具有以下有益的技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:
第一,本发明设计了类标签传递的强弱联合半监督策略,将人工可以获得的先验信息进行充分地利用,使其对聚类过程进行有效指导,解决了直觉模糊聚类算法对初始值敏感且容易陷入局部最优的问题。First, the present invention designs a strong and weak joint semi-supervised strategy for class label transfer, which makes full use of the artificially obtainable prior information to effectively guide the clustering process, solving the problem that the intuitive fuzzy clustering algorithm is sensitive to initial values and easily falls into local optimality.
第二,本发明将核函数引入到直觉模糊聚类算法中,有效处理了直觉模糊聚类算法应用于图像分割时线性不可分的情况。Secondly, the present invention introduces the kernel function into the intuitionistic fuzzy clustering algorithm, which effectively handles the situation where the intuitionistic fuzzy clustering algorithm is linearly inseparable when applied to image segmentation.
第三,本发明利用核函数,强监督隶属度和弱监督隶属度构造了基于强弱联合半监督直觉模糊聚类目标函数,提高了搜索性和寻优性,使得分割效果更为理想。Third, the present invention uses kernel functions, strong supervised membership and weak supervised membership to construct a strong and weak joint semi-supervised intuitive fuzzy clustering objective function, which improves the search and optimization properties and makes the segmentation effect more ideal.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的实现流程图;Fig. 1 is a flow chart of the implementation of the present invention;
图2为用本发明和现有方法对Berkeley图像数据库中的编号为124084的图像进行仿真分割的结果对比图;FIG2 is a comparison diagram of the results of simulating segmentation of the image No. 124084 in the Berkeley image database using the present invention and the prior art method;
图3为用本发明与现有方法对Weizmann图像数据库中的编号为nopeeking的图像进行仿真分割的结果对比图。FIG. 3 is a comparison diagram of the results of simulating segmentation of an image numbered “nopeeking” in the Weizmann image database using the present invention and the prior art method.
具体实施方式DETAILED DESCRIPTION
以下结合附图对发明的实施和效果作进一步详细描述:The implementation and effects of the invention are further described in detail below with reference to the accompanying drawings:
参见图1,本发明的实现步骤包括如下:Referring to FIG. 1 , the implementation steps of the present invention include the following:
步骤1:输入待分割图像X并设置初始参数值和人工划线标记。Step 1: Input the image to be segmented X and set the initial parameter values and manual markings.
1.1)输入待分割的图像X,设置聚类数目k,最大迭代次数T=100,终止阈值ε=10-5;1.1) Input the image to be segmented X, set the number of clusters k, the maximum number of iterations T = 100, and the termination threshold ε = 10 -5 ;
1.2)在待分割图像上根据要分割的类别数k,对各个类进行人工划线标记,获取人工先验信息。1.2) On the image to be segmented, manually mark each class according to the number of classes k to be segmented to obtain artificial prior information.
步骤2:对待分割的图像X进行直觉模糊化处理,求出图像各个像素点xj对应的隶属度μ(xj)、非隶属度v(xj)、犹豫度π(xj)。Step 2: Perform intuitive fuzzy processing on the image X to be segmented, and calculate the membership μ(x j ), non-membership v(x j ), and hesitation π(x j ) corresponding to each pixel point x j in the image.
2.1)求图像各个像素点xj对应的隶属度μ(xj),公式如下:2.1) Find the membership degree μ(x j ) corresponding to each pixel x j in the image. The formula is as follows:
μ(xj)=(μR(xj),μG(xj),μB(xj)),μ(x j )=(μ R (x j ),μ G (x j ),μ B (x j )),
其中,μR(xj)为彩色图像中像素点xj在R通道下的隶属度,其利用最大最小值归一化方法求出, 和分别代表图像X在R分量下的最大值和最小值;Wherein, μ R (x j ) is the membership degree of pixel x j in the color image under the R channel, which is obtained by the maximum and minimum value normalization method. and Represent the maximum and minimum values of image X under R component respectively;
μG(xj)为彩色图像中像素点xj在G通道下的隶属度,其利用计算,和分别代表图像X在G分量下的最大值和最小值;μ G (x j ) is the membership degree of pixel x j in the color image under the G channel. calculate, and Represent the maximum and minimum values of image X under G component respectively;
μB(xj)为彩色图像中像素点xj在B通道下的隶属度,其利用计算,和分别代表图像X在B分量下的最大值和最小值;μ B (x j ) is the membership degree of pixel x j in the color image under the B channel. calculate, and Represent the maximum and minimum values of image X under B component respectively;
2.2)利用Segno直觉模糊生成算子求出图像各个像素点xj对应的非隶属度v(xj)和犹豫度π(xj):2.2) Use Segno intuitionistic fuzzy generation operator to find the non-membership v(x j ) and hesitation π(x j ) corresponding to each pixel x j in the image:
π(xj)=1-μ(xj)-v(xj),π(x j )=1-μ(x j )-v(x j ),
其中,δ为可变参数,其取值范围为(-1,∞)。Among them, δ is a variable parameter, and its value range is (-1,∞).
步骤3:利用SLIC算法对待分割图像X进行区域的划分。Step 3: Use the SLIC algorithm to divide the image X into regions.
利用SLIC算法将待分割图像X划分成Q个不同的子区域R={R1,R2,…,Ri,…,RQ},其中Ri表示第i个子区域,每个子区域内像素都具有不同程度的相似性。The SLIC algorithm is used to divide the image X to be segmented into Q different sub-regions R = {R 1 , R 2 , …, R i , …, R Q }, where R i represents the i-th sub-region, and the pixels in each sub-region have different degrees of similarity.
步骤4:设计类标签传递的强弱联合半监督策略,利用人工标记的先验信息求出图像的强监督隶属度弱监督隶属度及初始直觉模糊聚类中心 Step 4: Design a strong and weak joint semi-supervised strategy for class label transfer, and use the artificially labeled prior information to find the strong supervised membership of the image Weakly supervised membership and initial intuitionistic fuzzy cluster centers
4.1)将人工标记的像素作为强标签YS,对强标签YS所在的超像素区域内的所有像素赋予与强标签相同的类别标签,作为区域标签传播后的弱标签YW,再将强标签YS和弱标签YW分别转化成强先验隶属度和弱先验隶属度 4.1) The manually labeled pixels are taken as strong labels Y S , and all pixels in the superpixel region where the strong label Y S is located are assigned the same category label as the strong label as the weak label Y W after regional label propagation. Then, the strong label Y S and the weak label Y W are respectively converted into strong prior membership and weak prior membership
4.1.1)将强标签YS按两种不同像素转化成强先验隶属度 4.1.1) Convert the strong label Y S into strong prior membership according to two different pixels
对于没有强标签的像素xu,其对应的隶属度为0,即其中,为无强标签的像素xu对于第i类的强先验隶属度,i∈{1,2,…,k};For pixels xu without strong labels, the corresponding membership is 0, that is, in, is the strong prior membership of the pixel x u without strong label to the i-th category, i∈{1,2,…,k};
对于有强标签的像素xl且属于第i类,则否则,其中,为有强标签的像素xl对于第i类的强先验隶属度,为有强标签的像素xl对于第t类的强先验隶属度,t∈{1,2,…,k,t≠i};For a pixel xl with a strong label and belonging to the i-th class, then otherwise, in, is the strong prior membership of the strongly labeled pixel xl to the i-th class, is the strong prior membership of the strongly labeled pixel xl to the t-th class, t∈{1,2,…,k,t≠i};
4.1.2)将弱标签YW按如下两种不同像素转化成弱先验隶属度 4.1.2) Convert the weak label YW into weak prior membership according to the following two different pixels:
对于没有弱标签的像素x′u,其对应的隶属度为0,即其中,为无弱标签的像素x′u对于第i类的弱先验隶属度,i∈{1,2,…,k};For a pixel x′u without a weak label, its corresponding membership is 0, that is, in, is the weak prior membership of the pixel x′u without weak label to the i-th category, i∈{1,2,…,k};
对于有弱标签的像素x′l且属于第i类,则否则,其中,为有弱标签的像素x′l对于第i类的弱先验隶属度,为有弱标签的像素x′l对于第t类的弱先验隶属度,t∈{1,2,…,k,t≠i};For a pixel x′l with a weak label and belonging to the i-th class, then otherwise, in, is the weak prior membership of the weakly labeled pixel x′ l to the i-th class, is the weak prior membership of the weakly labeled pixel x′ l to the t-th class, t∈{1,2,…,k,t≠i};
4.2)使用强先验隶属度和弱先验隶属度对无标记像素进行隶属度的估计,计算得到强估计隶属度和弱估计隶属度 4.2) Using strong prior membership and weak prior membership Estimate the membership of unlabeled pixels and calculate the strong estimated membership and weakly estimated membership
4.2.1)使用强先验隶属度求强估计隶属度 4.2.1) Using strong prior membership Find the strong estimated membership
其中,为有强标签的像素xl对于第i类的强先验隶属度,无强标记的像素xu对于第i类的强估计隶属度,l∈SL,SL表示有强标签的像素集合,表示有强标记的像素xl与无强标记的像素xu之间的欧氏距离;in, is the strong prior membership of the strongly labeled pixel xl to the i-th class, The strong estimated membership of the pixel x u without strong label to the i-th class, l∈SL, SL represents a set of pixels with strong labels, represents the Euclidean distance between the strongly labeled pixel x l and the unlabeled pixel xu ;
4.2.2)使用弱先验隶属度求弱估计隶属度 4.2.2) Using weak prior membership Find the weak estimated membership
其中,为有弱标签的像素x′l对于第i类的弱先验隶属度,为无弱标记的像素x′u对于第i类的弱估计隶属度,l∈WL,WL表示有弱标签的像素集合,表示有弱标记的像素x′l与无弱标记的像素x′u之间的欧氏距离;in, is the weak prior membership of the weakly labeled pixel x′ l to the i-th class, is the weakly estimated membership of the pixel x′u without weak label to the i-th class, l∈WL, WL represents the set of pixels with weak labels, represents the Euclidean distance between the pixel x′ l with weak label and the pixel x′ u without weak label;
4.3)分别将强估计隶属度和弱估计隶属度与其各自对应的强先验隶属度和弱先验隶属度合并,作为类标签传递后的强监督隶属度和弱监督隶属度 4.3) The strong estimated membership and weakly estimated membership Their corresponding strong prior membership and weak prior membership Merge as strong supervision membership after class label transfer and weakly supervised membership
4.4)利用弱监督隶属度计算初始聚类中心ci(1):4.4) Using weakly supervised membership Calculate the initial cluster center c i (1):
4.5)对初始聚类中心ci(1)做直觉模糊化处理,得到初始直觉模糊聚类中心 4.5) Perform intuitive fuzzy processing on the initial cluster center c i (1) to obtain the initial intuitive fuzzy cluster center
步骤5:构造强弱联合半监督直觉模糊聚类目标函数JLP-SKIFCM。Step 5: Construct the strong and weak joint semi-supervised intuitionistic fuzzy clustering objective function J LP-SKIFCM .
5.1)定义核函数k(x,y)为高斯核,其表示为:5.1) Define the kernel function k(x,y) as a Gaussian kernel, which is expressed as:
其中,σ是尺度参数,控制径向作用范围;in, σ is a scale parameter that controls the radial range of action;
5.2)定义直觉模糊聚类目标函数JIFCM为:5.2) Define the intuitionistic fuzzy clustering objective function J IFCM as:
其中,为像素xj的直觉模糊集表示,k为聚类数目,N为数据个数,uij表示像素xj对于第i类的隶属度,m为模糊指数,表示第i类的聚类中心ci的直觉模in, is the intuitive fuzzy set representation of pixel xj , k is the number of clusters, N is the number of data, uij represents the membership of pixel xj to the i-th class, m is the fuzzy index, The intuitive model representing the cluster center ci of the i-th class
糊集表示,是和之间的直觉欧式距离,表示为:Fuzzy said, yes and The intuitive Euclidean distance between is expressed as:
5.3)将核函数k(x,y)、强监督隶属度弱监督隶属度引入到直觉模糊聚类目标函数JIFCM中,得到强弱联合半监督直觉模糊聚类目标函数JLP-SKIFCM:5.3) The kernel function k(x,y) and the strong supervision membership Weakly supervised membership Introduced into the intuitive fuzzy clustering objective function J IFCM , the strong and weak joint semi-supervised intuitive fuzzy clustering objective function J LP-SKIFCM is obtained:
其中,表示一个具有N个像素点的彩色图像的直觉模糊集表示,为第j个像素xj的直觉模糊集表示,k是聚类数目,uij表示像素xj对于第i类的隶属度,满足 表示第i类的直觉模糊聚类中心,μ(ci)表示聚类中心ci对应的隶属度、v(ci)表示聚类中心ci对应的非隶属度、π(ci)表示聚类中心ci对应的犹豫度,η1是强监督项的权重指数,η2是弱监督项的权重指数,表示第j个像素点对于第i类的强监督隶属度,表示第j个像素点对于第i类的弱监督隶属度,表示引入核函数的直觉模糊距离度量,定义如下:是高斯径向基函数,表示核函数的尺度参数。in, Represents the intuitionistic fuzzy set representation of a color image with N pixels. is the intuitive fuzzy set representation of the j-th pixel xj , k is the number of clusters, uij represents the membership of pixel xj to the i-th class, satisfying represents the intuitionistic fuzzy cluster center of the i-th category, μ( ci ) represents the membership corresponding to the cluster center ci , v( ci ) represents the non-membership corresponding to the cluster center ci , π( ci ) represents the hesitation corresponding to the cluster center ci , η1 is the weight index of the strong supervision item, η2 is the weight index of the weak supervision item, represents the strong supervision membership of the j-th pixel to the i-th category, represents the weakly supervised membership of the j-th pixel to the i-th category, It represents the intuitionistic fuzzy distance metric with the kernel function, which is defined as follows: is the Gaussian radial basis function, Represents the scale parameter of the kernel function.
步骤6:利用拉格朗日乘子法最小化目标函数JLP-SKIFCM,求出隶属度uij和直觉模糊聚类中心的更新式。Step 6: Use the Lagrange multiplier method to minimize the objective function J LP-SKIFCM and find the membership u ij and the intuitionistic fuzzy cluster center. The update style.
6.1)对目标函数JLP-SKIFCM求关于隶属度uij的偏导数,得到隶属度的更新公式,其表示如下:6.1) The partial derivative of the objective function J LP-SKIFCM with respect to the membership u ij is obtained to obtain the update formula of the membership, which is expressed as follows:
6.2)对目标函数JLP-SKIFCM求关于聚类中心的偏导数,得到直觉模糊聚类中心的更新公式,其表示如下:6.2) Find the cluster center of the objective function J LP-SKIFCM The partial derivative of , we get the intuitionistic fuzzy cluster center The update formula is as follows:
其中,为像素xj对聚类中心ci隶属度下的核度量,in, is the kernel measure of the membership of pixel xj to cluster center ci ,
为像素xj对聚类中心ci非隶属度下的核度量, is the kernel measure of pixel xj under non-membership of cluster center ci ,
为像素xj对聚类中心ci犹豫度下的核度量。 is the kernel measure of the hesitation of pixel xj to cluster center ci .
步骤7:迭代计算隶属度uij和直觉模糊聚类中心获得隶属度矩阵U和直觉模糊聚类中心 Step 7: Iteratively calculate the membership degree u ij and the intuitionistic fuzzy cluster center Obtain membership matrix U and intuitionistic fuzzy clustering centers
7.1)初始化迭代次数t=17.1) Initialize the number of iterations t = 1
7.2)根据6.2)隶属度uij和直觉模糊聚类中心的更新公式,迭代计算每次迭代下的隶属度uij和直觉模糊聚类中心 7.2) According to 6.2) membership u ij and intuitionistic fuzzy clustering center The update formula is used to iteratively calculate the membership degree u ij and the intuitionistic fuzzy clustering center at each iteration.
7.3)计算与的差值:其中表示第t次迭代下的直觉模糊聚类中心,表示第t-1次迭代下的直觉模糊聚类中心;7.3) Calculation and The difference: in represents the intuitive fuzzy cluster center at the t-th iteration, represents the intuitive fuzzy cluster center at the t-1th iteration;
7.4)将7.3)的差值Z与终止阈值ε比较,或者将迭代次数t与最大迭代次数T进行比较,判断终止条件:7.4) Compare the difference Z in 7.3) with the termination threshold ε, or compare the number of iterations t with the maximum number of iterations T to determine the termination condition:
若满足Z<ε或t>T,则获得隶属度矩阵U和直觉模糊聚类中心执行步骤8;If Z < ε or t > T is satisfied, the membership matrix U and the intuitionistic fuzzy clustering center are obtained. Go to step 8.
否则,令t=t+1,返回7.2)。Otherwise, set t=t+1 and return to 7.2).
步骤8:输出图像X分割后的结果。Step 8: Output the result of image X segmentation.
对获得的隶属度矩阵U根据最大隶属度原则对各个像素点进行分类,即将隶属度矩阵U中,每一列隶属度最大值对应的类别标签作为该位置像素的类别,得到整幅图像的聚类标签,输出图像X的分割结果。The obtained membership matrix U is classified according to the maximum membership principle for each pixel point, that is, the category label corresponding to the maximum membership value in each column of the membership matrix U is used as the category of the pixel at that position, the clustering label of the entire image is obtained, and the segmentation result of the image X is output.
以下结合仿真实验,对本发明的技术效果作进一步说明:The following is a further description of the technical effects of the present invention in combination with simulation experiments:
1.仿真条件:1. Simulation conditions:
仿真实验在计算机Intel(R)Core(TM)i5-4258U CPU@2.40GHz 2.10GHz,8G内存,MATLAB R2019a软件环境下进行。The simulation experiments were carried out on a computer with Intel(R) Core(TM) i5-4258U CPU@2.40GHz 2.10GHz, 8G memory, and MATLAB R2019a software environment.
2.仿真内容:2. Simulation content:
仿真1,用本发明与现有KFCM方法、IFCM方法、sSFCM方法、SSFC-SC方法、eSFCM方法分别对Berkeley图像数据库中编号为124084的图像进行分割,结果如图2所示,其中:Simulation 1, using the present invention and the existing KFCM method, IFCM method, sSFCM method, SSFC-SC method, and eSFCM method to segment the image numbered 124084 in the Berkeley image database, the results are shown in FIG2, where:
2(a)是124084图像的原图;2(a) is the original image of 124084 image;
2(b)是124084图像的人工标记图;2(b) is the manually labeled image of 124084 images;
2(c)是124084图像的区域标签扩展图;2(c) is the region label expansion diagram of 124084 images;
2(d)是124084图像的标准分割图;2(d) is the standard segmentation map of the 124084 image;
2(e)是用现有KFCM方法对124084图像的分割结果;2(e) is the segmentation result of 124084 images using the existing KFCM method;
2(f)是用现有sSFCM方法对124084图像的分割结果;2(f) is the segmentation result of 124084 images using the existing sSFCM method;
2(g)是用现有SSFC-SC方法对124084图像的分割结果;2(g) is the segmentation result of 124084 images using the existing SSFC-SC method;
2(h)是用现有eSFCM方法对124084图像的分割结果;2(h) is the segmentation result of 124084 images using the existing eSFCM method;
2(i)是用本发明方法对124084图像的分割结果。2(i) is the segmentation result of the 124084 image using the method of the present invention.
从图2可以看出,本发明对于背景分布不均的图像可以将目标和背景完整地分离开,且对初始聚类中心不敏感,其分割效果明显优于现有KFCM方法、IFCM方法、sSFCM方法、SSFC-SC方法和eSFCM方法。As can be seen from Figure 2, the present invention can completely separate the target and the background for images with uneven background distribution, and is insensitive to the initial clustering center. Its segmentation effect is significantly better than the existing KFCM method, IFCM method, sSFCM method, SSFC-SC method and eSFCM method.
仿真2,用本发明和现有KFCM方法、IFCM方法、sSFCM方法、SSFC-SC方法、eSFCM方法,分别对Weizmann图像数据库中编号为nopeeking的图像进行分割,结果如图3所示,其中:Simulation 2, using the present invention and the existing KFCM method, IFCM method, sSFCM method, SSFC-SC method, and eSFCM method, the image numbered nopeeking in the Weizmann image database is segmented respectively, and the results are shown in FIG3, where:
3(a)是nopeeking图像的原图;3(a) is the original image of the nopeeking image;
3(b)是nopeeking图像的标准分割图;3(b) is the standard segmentation map of the nopeeking image;
3(c)是nopeeking图像的椒盐含噪图像,噪声强度为0.05;3(c) is the salt and pepper noisy image of the nopeeking image, with a noise intensity of 0.05;
3(d)是用现有KFCM方法对nopeeking图像的分割结果;3(d) is the segmentation result of the nopeeking image using the existing KFCM method;
3(e)是用现有IFCM方法对nopeeking图像的分割结果;3(e) is the segmentation result of the nopeeking image using the existing IFCM method;
3(f)是用现有sSFCM方法对nopeeking图像的分割结果;3(f) is the segmentation result of the nopeeking image using the existing sSFCM method;
3(g)是用现有SSFC-SC方法对nopeeking图像的分割结果;3(g) is the segmentation result of the nopeeking image using the existing SSFC-SC method;
3(h)是用现有eSFCM方法对nopeeking图像的分割结果;3(h) is the segmentation result of the nopeeking image using the existing eSFCM method;
3(i)是用本发明方法对nopeeking图像的分割结果。3(i) is the segmentation result of the nopeeking image using the method of the present invention.
从图3可以看出,本发明对于背景分布不均的图像可以将目标和背景完整地分离开,且对初始聚类中心不敏感,其分割效果明显优于现有KFCM方法、IFCM方法、sSFCM方法、SSFC-SC方法和eSFCM方法。As can be seen from Figure 3, the present invention can completely separate the target and the background for images with uneven background distribution and is insensitive to the initial clustering center. Its segmentation effect is significantly better than the existing KFCM method, IFCM method, sSFCM method, SSFC-SC method and eSFCM method.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110693319.7A CN113409335B (en) | 2021-06-22 | 2021-06-22 | Image segmentation method based on strong and weak joint semi-supervised intuitive fuzzy clustering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110693319.7A CN113409335B (en) | 2021-06-22 | 2021-06-22 | Image segmentation method based on strong and weak joint semi-supervised intuitive fuzzy clustering |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113409335A CN113409335A (en) | 2021-09-17 |
CN113409335B true CN113409335B (en) | 2023-04-07 |
Family
ID=77682370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110693319.7A Active CN113409335B (en) | 2021-06-22 | 2021-06-22 | Image segmentation method based on strong and weak joint semi-supervised intuitive fuzzy clustering |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113409335B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114266321A (en) * | 2021-12-31 | 2022-04-01 | 广东泰迪智能科技股份有限公司 | Weak supervision fuzzy clustering algorithm based on unconstrained prior information mode |
CN115439688B (en) * | 2022-09-01 | 2023-06-16 | 哈尔滨工业大学 | Weak supervision object detection method based on surrounding area sensing and association |
CN118397389B (en) * | 2024-04-16 | 2024-10-29 | 常熟市第一人民医院 | Semi-supervised clustering method for brain obstruction focus image |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107301644A (en) * | 2017-06-09 | 2017-10-27 | 西安电子科技大学 | Natural image non-formaldehyde finishing method based on average drifting and fuzzy clustering |
CN108062757A (en) * | 2018-01-05 | 2018-05-22 | 北京航空航天大学 | It is a kind of to utilize the method for improving Intuitionistic Fuzzy Clustering algorithm extraction infrared target |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9519868B2 (en) * | 2012-06-21 | 2016-12-13 | Microsoft Technology Licensing, Llc | Semi-supervised random decision forests for machine learning using mahalanobis distance to identify geodesic paths |
CN103456017B (en) * | 2013-09-08 | 2016-07-06 | 西安电子科技大学 | Image partition method based on the semi-supervised weight Kernel fuzzy clustering of subset |
US11205103B2 (en) * | 2016-12-09 | 2021-12-21 | The Research Foundation for the State University | Semisupervised autoencoder for sentiment analysis |
CN109070040B (en) * | 2016-12-16 | 2023-07-28 | 布里格姆及妇女医院股份有限公司 | Systems and methods of protein corona sensor arrays for early detection of disease |
US11042814B2 (en) * | 2017-03-17 | 2021-06-22 | Visa International Service Association | Mixed-initiative machine learning systems and methods for determining segmentations |
CN109145921B (en) * | 2018-08-29 | 2021-04-09 | 江南大学 | An Image Segmentation Method Based on Improved Intuitive Fuzzy C-Means Clustering |
CN109949314B (en) * | 2019-02-23 | 2022-10-14 | 西安邮电大学 | Multi-target fast fuzzy clustering color image segmentation method based on semi-supervised learning and histogram statistics |
CN110211126B (en) * | 2019-06-12 | 2022-06-03 | 西安邮电大学 | Image segmentation method based on intuitive fuzzy C-means clustering |
CN110473204A (en) * | 2019-06-18 | 2019-11-19 | 常熟理工学院 | A kind of interactive image segmentation method based on weak link constraint |
US11416772B2 (en) * | 2019-12-02 | 2022-08-16 | International Business Machines Corporation | Integrated bottom-up segmentation for semi-supervised image segmentation |
CN112966779A (en) * | 2021-03-29 | 2021-06-15 | 安徽大学 | PolSAR image semi-supervised classification method |
-
2021
- 2021-06-22 CN CN202110693319.7A patent/CN113409335B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107301644A (en) * | 2017-06-09 | 2017-10-27 | 西安电子科技大学 | Natural image non-formaldehyde finishing method based on average drifting and fuzzy clustering |
CN108062757A (en) * | 2018-01-05 | 2018-05-22 | 北京航空航天大学 | It is a kind of to utilize the method for improving Intuitionistic Fuzzy Clustering algorithm extraction infrared target |
Also Published As
Publication number | Publication date |
---|---|
CN113409335A (en) | 2021-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107679250B (en) | A Multi-task Hierarchical Image Retrieval Method Based on Deep Autoencoder Convolutional Neural Networks | |
CN113409335B (en) | Image segmentation method based on strong and weak joint semi-supervised intuitive fuzzy clustering | |
CN102073748B (en) | Visual keyword based remote sensing image semantic searching method | |
CN105809672B (en) | A Multi-object Collaborative Image Segmentation Method Based on Superpixels and Structural Constraints | |
CN107563444A (en) | A kind of zero sample image sorting technique and system | |
CN112784869B (en) | A fine-grained image recognition method based on attention perception and adversarial learning | |
CN108595636A (en) | The image search method of cartographical sketching based on depth cross-module state correlation study | |
CN110728694B (en) | Long-time visual target tracking method based on continuous learning | |
CN113592894A (en) | Image segmentation method based on bounding box and co-occurrence feature prediction | |
CN106682598A (en) | Multi-pose facial feature point detection method based on cascade regression | |
CN110443257B (en) | A saliency detection method based on active learning | |
CN110633708A (en) | Deep network significance detection method based on global model and local optimization | |
CN106446933A (en) | Multi-target detection method based on context information | |
CN102542302A (en) | Automatic complicated target identification method based on hierarchical object semantic graph | |
CN105740915B (en) | A kind of collaboration dividing method merging perception information | |
CN104636755A (en) | Face beauty evaluation method based on deep learning | |
Li et al. | Statistical thresholding method for infrared images | |
CN108427919A (en) | A kind of unsupervised oil tank object detection method guiding conspicuousness model based on shape | |
Wang et al. | Pedestrian detection in infrared image based on depth transfer learning | |
CN107680099A (en) | A kind of fusion IFOA and F ISODATA image partition method | |
CN118537600A (en) | Data acquisition and reading method based on computer vision image | |
Zhang et al. | Adaptive image segmentation based on color clustering for person re-identification | |
Wang et al. | Unsupervised segmentation of greenhouse plant images based on modified latent dirichlet allocation | |
CN117876878A (en) | Intelligent classification method for artificial building scenes in high-resolution remote sensing images | |
CN118072015A (en) | Medical image segmentation method based on small sample learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |