CN113406751B - A fiber-waveguide coupling mode-spot converter in 850nm band - Google Patents
A fiber-waveguide coupling mode-spot converter in 850nm band Download PDFInfo
- Publication number
- CN113406751B CN113406751B CN202110602242.8A CN202110602242A CN113406751B CN 113406751 B CN113406751 B CN 113406751B CN 202110602242 A CN202110602242 A CN 202110602242A CN 113406751 B CN113406751 B CN 113406751B
- Authority
- CN
- China
- Prior art keywords
- waveguide
- port
- lower cladding
- spot size
- branch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 34
- 238000010168 coupling process Methods 0.000 title claims abstract description 34
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 34
- 238000005253 cladding Methods 0.000 claims abstract description 55
- 239000013307 optical fiber Substances 0.000 claims abstract description 38
- 238000006243 chemical reaction Methods 0.000 claims abstract description 24
- 230000003287 optical effect Effects 0.000 claims abstract description 24
- 230000006835 compression Effects 0.000 claims abstract description 4
- 238000007906 compression Methods 0.000 claims abstract description 4
- 230000007704 transition Effects 0.000 claims abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 20
- 230000010287 polarization Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000004891 communication Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012792 core layer Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
- G02B6/305—Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12004—Combinations of two or more optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/14—Mode converters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
- G02B2006/12147—Coupler
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
- G02B2006/12152—Mode converter
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
技术领域technical field
本发明属于光通信技术领域,具体涉及一种850nm波段的光纤与波导耦合模斑转换器。The invention belongs to the technical field of optical communication, and in particular relates to an optical fiber and waveguide coupling mode spot converter with a wavelength of 850 nm.
背景技术Background technique
在多媒体、大数据时代背景下的通信技术发展迅速,传统的电-电互连已经难以满足高速率、大容量通信的发展需求。近年来,采用光子集成技术研发的光通信系统以其低能耗、大带宽、低延迟等优势成为研究的热点。利用不同类型材料的电光特性、波导芯层和包层的高折射率差,实现高集成度的片上光-光互联、电光调制、光/电或电/光转换等成为研究的关键问题。光纤与波导芯片之间的高效耦合是光集成的关键技术之一,是所有光集成模块面临的共性问题。氮化硅材料在近红外和可见光波长范围内具有较低的吸收损耗,在光波导器件中应用较广泛,而氮化硅波导器件模斑一般在微纳米尺寸,光纤的模斑一般在微米尺寸,波导与光纤直接对准耦合会产生较大的模场失配损耗。850nm(纳米)波段作为光通信的常用波段之一,如何实现光纤与波导芯片的高效耦合也是我们需要解决的问题。光栅耦合(垂直耦合)和端面耦合(水平耦合)是光子集成芯片模斑转换器常用的两种方式,光栅耦合器通常具有有限的带宽和较高的偏振相关性。与光栅耦合器相比,端面耦合器拥有更大的带宽和更低的偏振相关性。With the rapid development of communication technology in the context of multimedia and big data era, traditional electrical-electrical interconnection has been difficult to meet the development needs of high-speed and large-capacity communications. In recent years, optical communication systems developed using photonic integration technology have become a research hotspot due to their advantages of low energy consumption, large bandwidth, and low delay. Utilizing the electro-optical properties of different types of materials and the high refractive index difference between the waveguide core and cladding, the realization of highly integrated on-chip optical-optical interconnection, electro-optical modulation, and optical/electrical or electrical/optical conversion has become a key research issue. Efficient coupling between optical fibers and waveguide chips is one of the key technologies of optical integration and a common problem faced by all optical integrated modules. Silicon nitride material has low absorption loss in the near-infrared and visible wavelength range, and is widely used in optical waveguide devices, while the mode spot of silicon nitride waveguide device is generally in micro-nano size, and the mode spot of optical fiber is generally in micron size , the direct alignment coupling between the waveguide and the fiber will cause a large mode field mismatch loss. The 850nm (nanometer) band is one of the commonly used bands for optical communication. How to realize the efficient coupling between optical fibers and waveguide chips is also a problem that we need to solve. Grating coupling (vertical coupling) and end-face coupling (horizontal coupling) are two commonly used modes of mode-spot converters for photonic integrated chips. Grating couplers usually have limited bandwidth and high polarization dependence. Compared to grating couplers, end-face couplers have larger bandwidths and lower polarization dependence.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种850nm波段的光纤与波导耦合模斑转换器,解决了现有技术中在850nm波段存在的光纤与波导耦合效率较低的问题。The purpose of the present invention is to provide an optical fiber and waveguide coupling mode spot converter in the 850 nm band, which solves the problem of low coupling efficiency between the optical fiber and the waveguide in the 850 nm band in the prior art.
本发明所采用的技术方案是,The technical scheme adopted in the present invention is,
一种850nm波段的光纤与波导耦合模斑转换器,包括下包层,下包层的上端面依次覆有三端口Y分支下包层和SU-8锥形结构,三端口Y分支下包层的上端面覆有波导组件,波导组件的一侧连接SU-8锥形结构、另一侧连接波导组,波导组件的上端面对应三端口Y分支下包层覆有三端口Y分支上包层;An 850nm waveband optical fiber and waveguide coupling mode spot converter, comprising a lower cladding, the upper end face of the lower cladding is sequentially covered with a three-port Y-branch lower cladding and a SU-8 tapered structure, and a three-port Y-branch lower cladding The upper end face is covered with a waveguide assembly, one side of the waveguide assembly is connected to the SU-8 tapered structure, and the other side is connected to the waveguide group, and the upper end face of the waveguide assembly is covered with a three-port Y-branch upper cladding corresponding to the three-port Y-branch lower cladding;
其中,沿下包层的长度方向:下包层和SU-8锥形结构形成第一级模斑转换模块,下包层、三端口Y分支下包层以及三端口Y分支上包层、通过与波导组件和波导组分别依次形成第二级模斑转换模块和第三级模斑转换模块,光纤与波导耦合模斑转换器的整体结构一体成型;Among them, along the length direction of the lower cladding layer: the lower cladding layer and the SU-8 tapered structure form the first-stage mode spot conversion module, the lower cladding layer, the three-port Y branch lower cladding layer and the three-port Y branch upper cladding layer, pass through A second-stage mode spot conversion module and a third-stage mode spot conversion module are formed in sequence with the waveguide assembly and the waveguide group respectively, and the overall structure of the optical fiber and the waveguide coupling mode spot converter is integrally formed;
在光纤传输的光场进入光纤与波导耦合模斑转换器的情形下,第一级模斑转换模块、第二级模斑转换模块以及第三级模斑转换模块对光场进行过渡压缩,转换为单模后输出。When the optical field transmitted by the optical fiber enters the optical fiber and waveguide coupling mode spot converter, the first-stage mode-spot conversion module, the second-stage mode-spot conversion module and the third-stage mode-spot conversion module compress the light field transitionally and convert the It is output after single mode.
本发明的特点还在于,The present invention is also characterized in that,
波导组件包括第一弯曲波导、直波导以及第二弯曲波导,第一弯曲波导和第二弯曲波导对应直波导排布为Y型,Y型的开口端与SU-8锥形结构连接,Y型的聚拢端连接波导组。The waveguide assembly includes a first curved waveguide, a straight waveguide, and a second curved waveguide. The first curved waveguide and the second curved waveguide are arranged in a Y-shape corresponding to the straight waveguide. The open end of the Y-shape is connected to the SU-8 tapered structure. The Y-shape The convergent end connects the waveguide group.
第一弯曲波导、直波导、第二弯曲波导以及波导组的材料均采用氮化硅。The materials of the first curved waveguide, the straight waveguide, the second curved waveguide and the waveguide group are all made of silicon nitride.
波导组包括连接Y型的聚拢端依次设置的第一波导和第二波导,第一波导设置为梯形结构,梯形结构的下底连接Y型的聚拢端,梯形结构的上底连接第二波导,第二波导设置为矩形结构。The waveguide group includes a first waveguide and a second waveguide which are connected to the gathering end of the Y-shaped structure in sequence, the first waveguide is set in a trapezoidal structure, the lower base of the trapezoidal structure is connected to the gathering end of the Y-shaped structure, and the upper base of the trapezoidal structure is connected to the second waveguide. The second waveguide is arranged in a rectangular structure.
SU-8锥形结构为棱台结构,棱台结构的上底与Y型的开口端连接。The SU-8 conical structure is a prismatic structure, and the upper bottom of the prismatic structure is connected with the open end of the Y-shape.
下包层、三端口Y分支下包层以及三端口Y分支上包层的材料均采用二氧化硅。The lower cladding layer, the three-port Y-branch lower cladding layer, and the three-port Y-branch upper cladding layer are all made of silicon dioxide.
三端口Y分支上包层的厚度尺寸大于三端口Y分支下包层的厚度尺寸。The thickness dimension of the upper cladding layer of the three-port Y-branch is greater than the thickness dimension of the lower cladding layer of the three-port Y-branch.
本发明的有益效果是:本发明提供了一种850nm波段的光纤与波导耦合模斑转换器,输入波导为SU-8绝热锥形结构,厚度和宽度在光信号传输方向上逐渐减小,以实现与氮化硅作为波导芯层的三端口Y分支结构模场匹配,最后光信号经过三端口Y分支单模输出,完成模斑的转换。通过对SU-8锥形结构进行简单的物理切割可实现与不同模斑尺寸的光纤匹配,有效提高了光纤与波导的耦合效率,且灵活性较强。The beneficial effects of the present invention are as follows: the present invention provides an optical fiber and waveguide coupling mode spot converter with a wavelength of 850 nm. The mode field matching of the three-port Y-branch structure with silicon nitride as the waveguide core layer is realized, and finally the optical signal is outputted through the three-port Y-branch single-mode to complete the mode spot conversion. By simply physically cutting the SU-8 tapered structure, it can be matched with optical fibers of different mode spot sizes, which effectively improves the coupling efficiency between the optical fiber and the waveguide, and has strong flexibility.
附图说明Description of drawings
图1是本发明一种850nm波段的光纤与波导耦合模斑转换器的结构示意图;Fig. 1 is the structure schematic diagram of a kind of 850nm waveband optical fiber and waveguide coupling mode spot converter of the present invention;
图2是本发明一种850nm波段的光纤与波导耦合模斑转换器中的细节示意图;FIG. 2 is a detailed schematic diagram of an optical fiber and waveguide coupling mode spot converter in an 850 nm waveband of the present invention;
图3是本发明一种850nm波段的光纤与波导耦合模斑转换器的俯视示意图;3 is a schematic plan view of an optical fiber and waveguide coupling mode spot converter in an 850nm waveband of the present invention;
图4是本发明一种850nm波段的光纤与波导耦合模斑转换器中光纤与模斑转换器横向对准容差曲线图;Fig. 4 is a kind of 850nm wave band optical fiber and waveguide coupling mode spot converter in the optical fiber and the mode spot converter lateral alignment tolerance curve diagram;
图5是本发明一种850nm波段的光纤与波导耦合模斑转换器中光纤与模斑转换器纵向对准容差曲线图。FIG. 5 is a graph showing the longitudinal alignment tolerance of the optical fiber and the mode spot converter in an optical fiber and waveguide coupling mode spot converter in an 850 nm wavelength band according to the present invention.
图中,1.下包层、2.三端口Y分支下包层、3.SU-8锥形结构、4.第一弯曲波导、5.直波导、6.第二弯曲波导、7.第一波导、8.第二波导、9.三端口Y分支上包层。In the figure, 1. Lower cladding, 2. Three-port Y-branch lower cladding, 3. SU-8 tapered structure, 4. First curved waveguide, 5. Straight waveguide, 6. Second curved waveguide, 7. No. One waveguide, 8. Second waveguide, 9. Three-port Y-branch upper cladding.
具体实施方式Detailed ways
下面结合附图和具体实施方式对本发明一种850nm波段的光纤与波导耦合模斑转换器进行详细说明。A fiber-waveguide coupling mode spot converter in the 850 nm wavelength band of the present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
如图1图2和图3所示,一种850nm波段的光纤与波导耦合模斑转换器,包括下包层1、SU-8锥形结构3,三端口Y分支下包层2、三端口Y的分支波导以及三端口Y分支上包层9;其中,三端口Y分支波导分别由第一弯曲波导4、直波导5、第二弯曲波导6、梯型的第一波导7以及矩形的第二波导8组成。SU-8锥形结构3上包层为空气,设置为棱台,通过对此棱台在传输方向上进行垂直和水平方向上尺寸的绝热压缩,实现与三端口Y分支波导端面光场的匹配,经过三端口Y分支波导中的第一弯曲波导4、直波导5、第二弯曲波导6以及梯形的第一波导7进行光场的传输和压缩,最后经过矩形的第二波导8单模输出。As shown in Fig. 1, Fig. 2 and Fig. 3, an optical fiber and waveguide coupling mode spot converter in 850nm wavelength band, including
本发明一种850nm波段的光纤与波导耦合模斑转换器的结构构造以及工作原理为:在二氧化硅下包层上采用SU-8材料加工锥形结构,SU-8锥形结构3为第一级模斑转换模块,将光纤传输的光场高效耦合到SU-8锥形结构3中,通过对SU-8锥形结构3在光场传输方向上垂直和水平方向尺寸的逐渐减小,完成模斑的尺寸从大到小的转换;The structure and working principle of an optical fiber and waveguide coupling mode spot converter in the 850nm wavelength band of the present invention are as follows: the SU-8 material is used on the silicon dioxide lower cladding to process the tapered structure, and the SU-8
采用二氧化硅的下包层1上再覆一层作为三端口Y分支的薄二氧化硅层的下包层2,第二级模斑转换模块的第一弯曲波导4、直波导5、第二弯曲波导6采用氮化硅材料制作、以及三端口Y分支上包层对应在其上设置的三端口Y分支上包层9,首先对SU-8锥形结构3输出的光场能量进行匹配,再通过将第一弯曲波导4、直波导5、第二弯曲波导6在光场传输方向逐渐合并,完成光场能量的过渡和光斑尺寸的压缩;The
第一波导7和第二波导8采用氮化硅材料,将波导沿光场传输方向上水平方向的尺寸绝热地减小到单模尺寸,完成对第二级模斑转换模块输出的光场从多模到单模的转换,最后通过氮化硅矩形的第二波导8单模输出。The
下面通过具体的实施例对本发明一种850nm波段的光纤与波导耦合模斑转换器进行进一步详细说明。The optical fiber and waveguide coupling mode spot converter in the 850 nm wavelength band of the present invention will be further described in detail below through specific embodiments.
实施例Example
采用850nm波长下直径为2.5μm(微米)的高斯透镜光束代替锥形透镜光纤出射的光场,下包层1、三端口Y分支下包层2以及三端口Y分支上包层9材料为二氧化硅,折射率为1.453;输入波导为SU-8锥形结构3,折射率为1.577,三端口Y分支波导材料为氮化硅,折射率为1.993;A Gaussian lens beam with a diameter of 2.5μm (microns) at a wavelength of 850nm is used to replace the light field emitted by the tapered lens fiber. Silicon oxide, the refractive index is 1.453; the input waveguide is SU-8
下包层1厚度为3μm,三端口Y分支下包层2厚度为0.15μm,三端口Y分支上包层9厚度为2μm。SU-8锥形结构3长度为160μm,与光纤对接端面厚度和宽度均为3.4μm,与三端口Y分支波导连接端面厚度和宽度分别为0.8μm和2.1μm。第一弯曲波导4、直波导5、以及第二弯曲波导6的厚度均为0.3μm,宽度均为0.18μm,三端口Y分支输入端面处分支波导间隔均为0.57μm,长度均为27μm。第一波导7与第一弯曲波导4、直波导5、以及第二弯曲波导6连接端面宽度为0.54μm,与第二波导8连接端面宽度为0.45μm,第二波导8宽度为0.45μm。光纤与波导在850nm波长的TE偏振态和TM偏振态横向和纵向对准容差曲线图如图4和图5所示;可以看到在水平方向上TE偏振态和TM偏振态1dB横向对准容差范围约为±300nm,在垂直方向TE偏振态1dB纵向对准容差范围约为-400nm~+300nm,TM偏振态1dB纵向对准容差范围约为-400~+200nm。The thickness of the
本发明一种850nm波段的光纤与波导耦合模斑转换器,针对目前850nm波段存在的光纤与波导耦合效率较低的问题,设计了一种850nm波段模斑的转换器,提高了光纤与波导芯片的耦合效率,且本转换器的灵活性较和适应性较强,适合推广使用。The present invention is an optical fiber and waveguide coupling mode spot converter in the 850 nm band, aiming at the problem of low coupling efficiency between the optical fiber and the waveguide in the 850 nm band, a mode spot converter in the 850 nm band is designed, which improves the optical fiber and the waveguide chip. The coupling efficiency of the converter is relatively high, and the flexibility and adaptability of the converter are relatively strong, which is suitable for popularization and use.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110602242.8A CN113406751B (en) | 2021-05-31 | 2021-05-31 | A fiber-waveguide coupling mode-spot converter in 850nm band |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110602242.8A CN113406751B (en) | 2021-05-31 | 2021-05-31 | A fiber-waveguide coupling mode-spot converter in 850nm band |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113406751A CN113406751A (en) | 2021-09-17 |
CN113406751B true CN113406751B (en) | 2022-08-05 |
Family
ID=77675469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110602242.8A Active CN113406751B (en) | 2021-05-31 | 2021-05-31 | A fiber-waveguide coupling mode-spot converter in 850nm band |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113406751B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117492134B (en) * | 2023-11-21 | 2024-04-23 | 中国科学院半导体研究所 | Polarization independent coupler |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002042808A2 (en) * | 2000-11-24 | 2002-05-30 | Applied Wdm, Inc. | Optical waveguide multimode to single mode transformer |
GB0216319D0 (en) * | 2002-07-13 | 2002-08-21 | Alcatel Optronics Uk Ltd | Improved optical splitter |
JP2006323210A (en) * | 2005-05-19 | 2006-11-30 | Nippon Telegr & Teleph Corp <Ntt> | Spot size converter |
CN201177670Y (en) * | 2007-05-25 | 2009-01-07 | 江苏大学 | Three-branch optical splitter with laser mode waveguide structure |
CN102216822A (en) * | 2011-05-09 | 2011-10-12 | 华为技术有限公司 | Passive optical splitter and passive optical network system |
CN203241564U (en) * | 2013-05-30 | 2013-10-16 | 青岛海信宽带多媒体技术有限公司 | Optical fiber waveguide spot size converter and optical coupler |
CN103424805A (en) * | 2012-12-20 | 2013-12-04 | 上海信电通通信建设服务有限公司 | Y-bifurcation-structured 1 * 2 optical power splitter |
CN205067786U (en) * | 2015-10-09 | 2016-03-02 | 烟台市皓辰光电科技有限公司 | Low -loss waveguide optical divider |
CN106199831A (en) * | 2016-06-29 | 2016-12-07 | 东南大学 | A kind of silica-based close-coupled mode step number converter and conversion method |
-
2021
- 2021-05-31 CN CN202110602242.8A patent/CN113406751B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002042808A2 (en) * | 2000-11-24 | 2002-05-30 | Applied Wdm, Inc. | Optical waveguide multimode to single mode transformer |
GB0216319D0 (en) * | 2002-07-13 | 2002-08-21 | Alcatel Optronics Uk Ltd | Improved optical splitter |
JP2006323210A (en) * | 2005-05-19 | 2006-11-30 | Nippon Telegr & Teleph Corp <Ntt> | Spot size converter |
CN201177670Y (en) * | 2007-05-25 | 2009-01-07 | 江苏大学 | Three-branch optical splitter with laser mode waveguide structure |
CN102216822A (en) * | 2011-05-09 | 2011-10-12 | 华为技术有限公司 | Passive optical splitter and passive optical network system |
CN103424805A (en) * | 2012-12-20 | 2013-12-04 | 上海信电通通信建设服务有限公司 | Y-bifurcation-structured 1 * 2 optical power splitter |
CN203241564U (en) * | 2013-05-30 | 2013-10-16 | 青岛海信宽带多媒体技术有限公司 | Optical fiber waveguide spot size converter and optical coupler |
CN205067786U (en) * | 2015-10-09 | 2016-03-02 | 烟台市皓辰光电科技有限公司 | Low -loss waveguide optical divider |
CN106199831A (en) * | 2016-06-29 | 2016-12-07 | 东南大学 | A kind of silica-based close-coupled mode step number converter and conversion method |
Non-Patent Citations (2)
Title |
---|
Crosstalk-, Loss-, and Length-Reduced Digital Optical Y-Branch Switches Using a Double-Etch Waveguide Structure;M. N. Khan et al.;《IEEE PHOTONICS TECHNOLOGY LETTERS》;19991031;第11卷(第10期);全文 * |
一种带有锥形多模过渡区的Y分支光波导;武继江等;《激光与红外》;20080229;第38卷(第2期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113406751A (en) | 2021-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112596161B (en) | Multi-layer structured spot-size converter and implementation method thereof | |
CN102844695B (en) | Multimode optical coupler interfaces | |
CN114460682B (en) | End Coupler | |
CN111367014B (en) | On-chip edge coupler with spot-size conversion function for optical interconnection | |
CN114384632B (en) | Array waveguide grating and waveguide type detector-based spot size converter | |
CN111487715A (en) | L NOI-based optical waveguide end face coupling structure and application thereof | |
CN101881861A (en) | Non-linear taper inverted cone coupler structure | |
CN109324372A (en) | A silicon optical waveguide end-face coupler | |
CN217181270U (en) | Planar optical waveguide-optical fiber array device for silicon optical coupling | |
CN117826323B (en) | Double-layer heat insulation mode converter | |
CN112596155B (en) | Low insertion loss end face coupler based on LNOI material | |
CN117192686A (en) | High-efficiency thin-film lithium niobate conical sub-wavelength grating end surface coupler and preparation method thereof | |
CN104391354A (en) | Coupled structure between optical fiber and high refractive index waveguide | |
CN113406751B (en) | A fiber-waveguide coupling mode-spot converter in 850nm band | |
CN115113328A (en) | Low-loss single-mode mode-spot converter based on polymer waveguide and preparation method thereof | |
CN113311537A (en) | Polymer three-mode multiplexer based on cascade conical coupler | |
CN112987183A (en) | Interlayer coupler | |
CN211698499U (en) | Integrated electro-optic modulator | |
CN115373159A (en) | Silicon-lithium niobate hybrid integrated polarization beam splitter rotator | |
CN116661060B (en) | End face coupler and optical module | |
CN111025474B (en) | A Silicon Waveguide Mode Coupler Covered with SU-8 Cladding Based on Refractive Index Control | |
CN114910997B (en) | Cantilever Beam Face Coupler | |
CN115576054A (en) | Mode spot converter based on integration of graded-index waveguide and two-dimensional inverted tapered waveguide | |
CN115494589B (en) | An SMF-28 fiber-to-chip ultra-low loss end coupler based on silicon nitride platform | |
CN114675372B (en) | Double-step structure end face coupler based on cascade waveguide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |