[go: up one dir, main page]

CN113402760A - 一种近红外激光诱导高分子材料局部发泡方法 - Google Patents

一种近红外激光诱导高分子材料局部发泡方法 Download PDF

Info

Publication number
CN113402760A
CN113402760A CN202110816382.5A CN202110816382A CN113402760A CN 113402760 A CN113402760 A CN 113402760A CN 202110816382 A CN202110816382 A CN 202110816382A CN 113402760 A CN113402760 A CN 113402760A
Authority
CN
China
Prior art keywords
foaming
laser
infrared laser
polymer materials
foaming method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110816382.5A
Other languages
English (en)
Inventor
田家名
杨雅雯
成骏峰
王中聿
崔玉珠
丁书成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN202110816382.5A priority Critical patent/CN113402760A/zh
Publication of CN113402760A publication Critical patent/CN113402760A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于高分子材料领域,具体涉及一种近红外激光诱导高分子材料局部发泡方法。将一维碳物质与无机化合物复配,制备成近红外激光诱导高分子材料局部发泡添加剂。该添加剂在激光辐照过程中:(1)易吸收近红外激光能量的一维碳物质在极低添加量下即可构筑成三维协同网络结构,且受到激光辐照作用发生少量的热分解,产生一氧化碳、二氧化碳等气体;(2)一维碳物质在吸收激光能量的同时,将瞬时产生大量热量,并迅速传递给周围的无机化合物,使其迅速发生热分解,产生大量气体,从而使得高分子基体在激光辐照区域内产生发泡现象;(3)通过调控激光参数、一维碳物质与无机化合物比例等条件,实现高分子材料在激光辐照区域内的局部可控发泡。

Description

一种近红外激光诱导高分子材料局部发泡方法
技术领域
本发明属于高分子材料领域,具体涉及一种近红外激光诱导高分子材料局部发泡方法。通过调控激光参数、一维碳物质与无机化合物比例等条件,从而实现高分子材料在激光辐照区域内的局部快速、可控发泡。
背景技术
轻质材料已成为新材料开发的重点领域,而发泡是实现高分子材料轻质化的最直接手段。高分子发泡材料是指以高分子为基础的微孔材料,内部含有大量气泡。随着航空航天、国防、能源、交通、包装、电器、运动器材等行业的快速发展,对具有优异力学性能、隔热、隔音、缓冲性能的高分子发泡材料的需求越来越迫切。其中,绿色可控制备优质发泡材料一直是高分子发泡领域的难点。传统的高分子材料发泡方法包括物理发泡和化学发泡。化学发泡剂往往存在化学残留、可控性低、发泡倍率低等缺点,而物理发泡剂的缺点也很明显,例如氯氟烃对环境有破坏作用,氟烃价格太贵,烷烃易燃且不安全等。此外,传统的发泡方法有一个共同的缺陷,即只能实现整体发泡,而无法实现微纳尺度上简单的局部可控发泡。
与传统的发泡方法不同,激光辐照法是利用一定波长和能量的脉冲激光束照射高分子材料表面,高分子材料会吸收激光能量并将其转化为热量,经历一系列熔化、热降解、碳化等反应,在此过程中产生的气体会部分包裹在高分子熔体中,从而引起宏观发泡现象。一般用于激光照射的激光根据波长不同可分为三类:近红外激光(1064nm)、绿光激光(532nm)和紫外激光(355nm)。其中,近红外激光成本低,易于控制,具有大规模应用的前景。
然而,目前大多数高分子材料(聚丙烯、聚乙烯等)对近红外激光的响应较差,不能在激光下发生一系列反应。目前,针对以上难题,工业上通常在其中掺入对激光敏感的激光打标粉以提高其激光响应性能,但是由于激光打标粉大多为无机氧化物,添加量较高,且自身很难分解,产生的气体量较少,无法形成明显的发泡结构。
发明内容
本发明提供了一种近红外激光诱导高分子材料局部发泡方法,可实现激光辐照下的快速、可控发泡,适合在高分子材料中的轻质材料领域应用。本发明提供的一种近红外激光诱导高分子材料局部发泡方法具备成本低、发泡迅速、发泡结构可控、发泡过程操作简单等特点。
本发明提出的近红外激光诱导高分子材料局部发泡方法,具体步骤如下:
(1)将具有光热转化效果的一维碳物质与无机化合物按比例配置于有机溶剂中,在30℃-40℃条件下超声2-3小时,制备成易发泡剂体系溶液;
(2)在40℃-50℃真空烘箱中将有机溶剂完全蒸发,得到发泡添加剂颗粒;
(3)将发泡添加剂颗粒按比例与高分子基体在密炼机中熔融共混,并压制成样品。随后用1064nm的激光打标机对制备的样品进行辐照处理,通过调控激光参数、一维碳物质与无机化合物比例等条件,实现高分子材料在激光辐照区域内的局部快速、可控发泡。
其中,原料组分按质量份数计,为:
Figure BDA0003170251460000021
本发明中,所述具有光热转化效果的碳物质包含但不仅限于碳纳米管(CNTs)、碳纤维(CF)。
本发明中,所述无机化合物为碳酸钙、碳酸锌、碳酸镁、碳酸铝。
本发明中,所述有机溶剂为乙酸乙酯、石油醚、乙醇、二甲苯。
本发明中,所述发泡添加剂为具有光热转化效果的碳物质与无机化合物的混合物,其比例根据发泡所需效果可以调节。
本发明制得的发泡添加剂用于在激光辐照条件下,对高分子产品的轻质化发泡。
本发明中,所述激光为钇铝石榴石晶体脉冲激光,激光功率设定为10-20W,脉冲激光波长为:1064nm
本发明中,高分子材料指对1064nm波长激光吸收较差的所有聚合物,包含但不仅限于聚乙烯(PE),聚丙烯(PP),聚苯乙烯(PS),聚碳酸酯(PC)。
本发明的原理是:(1)易吸收近红外激光能量的一维碳物质在极低添加量下即可构筑成三维协同网络结构,且受到激光辐照作用,首先发生少量的热分解,产生一氧化碳、二氧化碳等气体;(2)一维碳物质在吸收激光能量的同时,将瞬时产生大量热量,并迅速传递给周围的无机化合物,使其迅速发生热分解现象,产生大量气体,从而使得高分子基体在激光辐照区域内产生发泡现象;(3)通过调控激光参数、一维碳物质与无机化合物比例等条件,从而实现高分子材料在激光辐照区域内的局部可控发泡。
本发明制备的发泡添加剂工艺简单,利用新兴起来的激光辐照技术,可以实现对高分子材料的局部快速、可控发泡(原理示意图如图1所示)。
与其他传统的高分子材料发泡相比,本发明有如下几点优势:
1.本发明通过上述方法,可以实现激光辐照区域内的局部发泡,而传统高分子材料发泡技术只能实现材料的整体发泡。
2.本发明采用的激光辐照方法操作更加便捷,能耗低、无污染,且可以在材料表面任意位置进行发泡,手段更加灵活。本发明采用的一维碳物质,易构筑成三维协同网络,整体添加量低,成本低。本发明在高分子材料表面上进行了激光诱导发泡,发泡结构规整,发泡高度肉眼可见,比传统高分子材料整体发泡技术更具有优势。
3.本发明所采用的激光诱导发泡方法,能够有效降低成本、减少工艺程序和降低环境污染。利用新兴发展起来的激光打标机进行激光诱导发泡,可以实现高分子材料的工业化、连续、高效大规模发泡。通过调控激光参数、一维碳物质与无机化合物比例等条件,即可实现高分子材料在激光辐照区域内的局部快速、可控发泡。
附图说明:
图1是激光诱导发泡工作原理图。
图2是实施例1复合发泡剂颗粒扫描电镜形貌图。
图3是实施例1聚丙烯发泡图案的正面数码照片(发泡剂含100份碳酸钙)。
图4是实施例1聚丙烯发泡图案的侧数码面照片(发泡剂含100份碳酸钙)。
图5是实施例1聚丙烯发泡图案的正面数码照片(发泡剂含70份碳酸钙)。
图6是实施例1聚丙烯激光诱导发泡前(A)、后(B)的拉曼光谱。
图7是实施例1发泡区域的表面形貌扫描电镜图。
图8是实施例1发泡区域视觉呈现白色的原理示意图。
图9是实施例2聚乙烯发泡图案的正面数码照片。
图10是实施例3聚苯乙烯发泡图案的正面数码照片。
图11是对照例1聚丙烯发泡图案的正面数码照片。
图12是对照例2聚乙烯发泡图案的正面数码照片。
具体实施方式
本发明下面结合实施例作进一步详述:
实施例1
用如图1所示激光辐照高分子材料产生发泡的工作原理。
将2份碳纳米管(CNTs)与100份碳酸钙(CaCO3)置于2000份乙醇中,在30℃条件下超声2小时,制备成发泡剂体系溶液。在50℃真空烘箱中将乙醇完全蒸发,得到CNTs/CaCO3复合发泡剂,复合发泡剂颗粒扫描电镜形貌图如图2所示。
将制备的复合发泡剂颗粒按照百分之五的比例添加入聚丙烯(PP)基体中,采用半导体激光打标机,激光功率为15W,脉冲激光波长为1064nm,发泡图案设定为“2020”数字,发泡图案的正面与侧面照片分别如图3和图4所示,聚丙烯显示了肉眼可辨识的白色发泡图案,清晰度和对比度明显。
若将碳酸钙添加量降低为70份,其余步骤均不变,发泡图案如图5所示,聚丙烯仍然显示了肉眼可辨识的白色发泡图案,但是对比度以及发泡高度有所下降,这是由于发泡剂中碳酸钙含量的降低导致产生的气体减少,导致发泡程度降低。因此,可以通过调节发泡添加剂的含量,形成不同程度的发泡结构。
通过拉曼光谱对指定区域发泡前后进行分析(百分之五添加量),绘制的拉曼光谱如图6所示,图6(A)为激光诱导发泡前的拉曼光谱,图6(B)为激光诱导发泡后的拉曼光谱,可以看出,发泡区域在1000cm-1至2000cm-1区域产生一个弥散的宽吸收峰,代表了无定形碳结构的形成。表明聚丙烯表面发泡后形成了一定程度的碳结构。
通过扫描电镜对发泡区域的表面形貌进行观察,如图7所示。聚丙烯表面在激光诱导发泡后,形成了阵列化的“鼓包”,这些“鼓包”是由于发泡添加剂在激光辐照过程中发生热分解从而产生气体,这些气体被聚丙烯熔体包裹所产生的。由于“鼓包”内部包裹气体,造成了光在其表面发生折射和反射,使得肉眼观察下呈现白色,其原理图如图8所示。
实施例2
用如图1所示激光辐照高分子材料产生发泡的工作原理。
将5份碳纤维(CF)与200份碳酸铝(AlCO3)置于1500份乙酸乙酯中,在40℃条件下超声3小时,制备成发泡剂体系溶液。在50℃真空烘箱中将乙酸乙酯完全蒸发,得到CF/AlCO3复合发泡剂。
将制备的复合发泡剂按照百分之十的比例添加入聚乙烯(PE)基体中,采用半导体激光打标机,激光功率为20W,脉冲激光波长为1064nm,图案设定为卡通图案,发泡图案如图9所示,聚乙烯显示了肉眼可辨识的白色发泡结构,清晰度和对比度明显。
实施例3
用如图1所示激光辐照高分子材料产生发泡的工作原理。
将10份碳纤维(CF)与150份碳酸镁(MgCO3)置于1200份石油醚中,在30℃条件下超声2小时,制备成发泡剂体系溶液。在40℃真空烘箱中将石油醚完全蒸发,得到CB/MgCO3复合发泡剂。
将制备的复合发泡剂按照百分之八的比例添加入聚苯乙烯(PS)基体中,采用半导体激光打标机,激光功率为10W,脉冲激光波长为1064nm,图案设定为“2020”数字,发泡图案如图10所示,聚苯乙烯显示了肉眼可辨识的白色发泡结构,清晰度和对比度明显。
对照例1
将2份氧化石墨烯(GO)与100份碳酸钙(CaCO3)置于2000份乙醇中,在30℃条件下超声2小时,制备成发泡剂体系溶液。在50℃真空烘箱中将乙醇完全蒸发,得到GO/CaCO3复合发泡剂。
将制备的复合发泡剂颗粒按照百分之五的比例添加入聚丙烯(PP)基体中,采用半导体激光打标机,激光功率为15W,脉冲激光波长为1064nm,激光辐照区域设定为方块图案,图案的正面照片如图11所示,方块图案粗糙模糊,清晰度与对比度低,且表面形貌不完整,无法观察到规整的发泡结构。这是因为二维结构的氧化石墨烯不能在低添加量条件下构筑成三维协同网络结构,整体激光响应性与一维碳纳米管相比较低,使得发泡图案的整体效果不佳。
对照例2
将5份炭黑(CB)与200份碳酸铝(AlCO3)置于1500份乙酸乙酯中,在40℃条件下超声3小时,制备成发泡剂体系溶液。在50℃真空烘箱中将乙酸乙酯完全蒸发,得到CB/AlCO3复合发泡剂。
将制备的复合发泡剂按照百分之十的比例添加入聚乙烯(PE)基体中,采用半导体激光打标机,激光功率为20W,脉冲激光波长为1064nm,图案设定为方块图案,发泡图案如图12所示,肉眼基本观察不到发泡图案,聚乙烯基体表面只有方块形状的黑色印记,这是因为炭黑颗粒很难在低添加量的条件下构筑成完整的网络体系,所以在激光辐照下光热转化效率低,无法形成发泡结构。

Claims (8)

1.一种近红外激光诱导高分子材料局部发泡方法,其特征在于:所述发泡方法具体步骤如下:
(1)将具有光热转化效果的一维碳物质与无机化合物按比例配置于有机溶剂中,在30℃-40℃下超声2-3小时,制备成发泡剂体系溶液;
(2)在40℃-50℃真空烘箱中将有机溶剂完全蒸发,得到发泡添加剂颗粒;
(3)将发泡添加剂颗粒按比例与高分子基体在密炼机中熔融共混,并压制成样品,随后用1064nm的激光打标机对样品进行辐照处理,实现高分子材料在激光辐照区域内的局部快速、可控发泡。
2.如权利要求1所述近红外激光诱导高分子材料局部发泡方法,其特征在于:所述具有光热转化效果的一维碳物质为碳纳米管(CNTs)、碳纤维(CF)。
3.如权利要求1所述近红外激光诱导高分子材料局部发泡方法,其特征在于:所述无机化合物为碳酸钙、碳酸锌、碳酸镁、碳酸铝。
4.如权利要求1所述近红外激光诱导高分子材料局部发泡方法,其特征在于:所述有机溶剂为乙酸乙酯、石油醚、乙醇、二甲苯。
5.如权利要求1所述近红外激光诱导高分子材料局部发泡方法,其特征在于:所述高分子基体材料为聚乙烯(PE),聚丙烯(PP),聚苯乙烯(PS),聚碳酸酯(PC)。
6.如权利要求1所述近红外激光诱导高分子材料局部发泡方法,其特征在于:所述原料组分按质量份数计,为:
Figure FDA0003170251450000011
7.如权利要求1所述近红外激光诱导高分子材料局部发泡方法,其特征在于:所述激光为钇铝石榴石晶体脉冲激光,激光功率设定为10-20W,脉冲激光波长为:1064nm。
8.一种如权利要求1-7任一项所述方法制备的近红外激光诱导高分子发泡材料。
CN202110816382.5A 2021-07-20 2021-07-20 一种近红外激光诱导高分子材料局部发泡方法 Pending CN113402760A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110816382.5A CN113402760A (zh) 2021-07-20 2021-07-20 一种近红外激光诱导高分子材料局部发泡方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110816382.5A CN113402760A (zh) 2021-07-20 2021-07-20 一种近红外激光诱导高分子材料局部发泡方法

Publications (1)

Publication Number Publication Date
CN113402760A true CN113402760A (zh) 2021-09-17

Family

ID=77687075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110816382.5A Pending CN113402760A (zh) 2021-07-20 2021-07-20 一种近红外激光诱导高分子材料局部发泡方法

Country Status (1)

Country Link
CN (1) CN113402760A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114369287A (zh) * 2021-12-28 2022-04-19 万华化学集团股份有限公司 一种激光发泡助剂组合物及其制备方法和应用
CN117024845A (zh) * 2023-08-03 2023-11-10 华南理工大学 一种激光快速热解聚烯烃制备乙烯基封端聚合物的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102939330A (zh) * 2010-03-26 2013-02-20 化学制造布敦海姆两合公司 激光诱导的聚合物发泡
CN110294866A (zh) * 2019-06-14 2019-10-01 常州大学 一种低添加量的高分子材料激光打标粉及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102939330A (zh) * 2010-03-26 2013-02-20 化学制造布敦海姆两合公司 激光诱导的聚合物发泡
CN110294866A (zh) * 2019-06-14 2019-10-01 常州大学 一种低添加量的高分子材料激光打标粉及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈宇超等: ""基于光热转换的吸收材料与转换机理研究进展"", 《能源研究与利用》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114369287A (zh) * 2021-12-28 2022-04-19 万华化学集团股份有限公司 一种激光发泡助剂组合物及其制备方法和应用
CN114369287B (zh) * 2021-12-28 2023-09-19 万华化学集团股份有限公司 一种激光发泡助剂组合物及其制备方法和应用
CN117024845A (zh) * 2023-08-03 2023-11-10 华南理工大学 一种激光快速热解聚烯烃制备乙烯基封端聚合物的方法
CN117024845B (zh) * 2023-08-03 2024-06-07 华南理工大学 一种激光快速热解聚烯烃制备乙烯基封端聚合物的方法

Similar Documents

Publication Publication Date Title
Ma et al. Recent advances in preparation and application of laser-induced graphene in energy storage devices
Hu et al. Transforming waste polypropylene face masks into S-doped porous carbon as the cathode electrode for supercapacitors
CN113402760A (zh) 一种近红外激光诱导高分子材料局部发泡方法
Tiliakos et al. Morphic transitions of nanocarbons via laser pyrolysis of polyimide films
Trusovas et al. Reduction of graphite oxide to graphene with laser irradiation
CN109024085B (zh) 一种实现高效光热转化的纸基复合吸光材料及其制备方法
Ginting et al. Novel strategy of highly efficient solar-driven water evaporation using MWCNTs-ZrO2-Ni@ CQDs composites as photothermal materials
Tao et al. Graphite powder/semipermeable collodion membrane composite for water evaporation
Liu et al. Composite of Coal‐Series Kaolinite and Capric–Lauric Acid as Form‐Stable Phase‐Change Material
Chen et al. Cellulose nanofibers based composite membrane with high solar radiation and heat conduction for agricultural thermal dissipation application
Zhu et al. Structurally engineered 3D porous graphene based phase change composite with highly efficient multi-energy conversion and versatile applications
Bai et al. Investigation of micro/nano formation mechanism of porous graphene induced by CO2 laser processing on polyimide film
Tsai et al. Preparation of expandable graphite using a hydrothermal method and flame-retardant properties of its halogen-free flame-retardant HDPE composites
Shao et al. MgO nanofibres via an electrospinning technique
CN108821262B (zh) 一种利用半导体激光器诱导聚酰亚胺表面碳化制备纳米高比表面积碳颗粒的方法
CN110294866B (zh) 一种低添加量的高分子材料激光打标粉及其制备方法
Pandey et al. Optimized AC conductivity correlated to structure, morphology and thermal properties of PVDF/PVA/Nafion composites
CN110714240B (zh) 一种激光辐照制备多孔聚合物纤维的方法
CN110203913A (zh) 一种制备石墨烯的方法
Peng et al. Femtosecond laser-induced ultrafast growth of volcanic-shaped graphene micropillars
CN112225209A (zh) 一种利用可膨胀石墨制备石墨烯的方法
Dong et al. Few-layer graphene film fabricated by femtosecond pulse laser deposition without catalytic layers
Yeamsuksawat et al. CO 2-laser-induced carbonization of calcium chloride-treated chitin nanopaper for applications in solar thermal heating
Chen et al. Enhanced Ventilation Processes on Vacuum Thermal Reduction TiO2 Porous Ceramics for High‐Efficiency Solar‐Driven Interfacial Evaporation
CN115520866A (zh) 一种基于常温激光诱导的活性炭及成孔方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination